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Abstract

In heterogeneous multi-processor platforms for real-time systems, Dynamic Ran-
dom Access Memory (DRAM) is typically used as a shared resource to reduce cost
and enable communication between memory clients, i.e. the processing elements.
Since multiple applications with firm real-time requirements run concurrently in
such platforms, the memory clients impose strict worst-case requirements on main
memory performance in terms of bandwidth and/or latency. These requirements
must be guaranteed at design time to reduce the verification effort. This is made
possible using a real-time memory subsystem consisting of a real-time memory
controller and a memory interconnect in front of it that multiplexes requests ar-
riving from different clients. Existing real-time memory controllers bound the
execution time of a memory request by fixing the memory access parameters,
such as burst size and page policy, at design time. To bound the response time,
predictable arbitration policies, such as Time Division Multiplexing (TDM) and
Round-Robin (RR), are employed in the memory interconnect. The performance
of real-time memory subsystems can be analyzed using formal performance anal-
ysis based on e.g., such as network calculus and data-flow analysis.

To meet the ever increasing demand for memory bandwidth with more appli-
cations being integrated into multi-core platforms, the maximum clock speeds of
memory devices were increased by over a factor of two for every memory gener-
ation with the help of technology node scaling. Moreover, memory devices with
multiple memory channels (multi-channel memories) and wider interfaces, such as
Wide IO, were introduced, targeting battery-operated mobile devices. To support
the upcoming memory generations in multi-processor platforms with increasing
number of clients, scalable memory subsystems are essential. However, existing
bus-based memory interconnects with centralized implementation of predictable
arbitration policies are not scalable in terms of clock frequency, and current dis-
tributed interconnects either suffer from poor performance in terms of area, power
consumption and latency, or do not provide differential treatment to the memory
clients according to their diverse real-time requirements. Also, there is currently
no real-time memory controller for the efficient utilization of multi-channel mem-
ories.
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Structured design methodologies are essential for cost-efficient design of mem-
ory subsystems in real-time systems since the system designer needs to make
design choices of several system-level parameters, such as selecting the memory
type, memory controller configuration and mapping of memory clients to mem-
ory channels in a multi-channel memory. Selection of these parameters need to
be done carefully as it impacts the efficient use of the memory bandwidth. How-
ever, currently there is no structured methodology for bandwidth-efficient design
of memory subsystems in real-time systems.

This thesis addresses the key issues with the current memory subsystems,
i.e. non-scalable architectures in terms of clock frequency and number of mem-
ory channels and the lack of design methodologies for cost-efficient design with
the following four main contributions: 1) A generic, globally arbitrated mem-
ory tree (GAMT) architecture for distributed implementation of five different
predictable arbitration policies. GAMT runs four times faster compared to exist-
ing centralized memory interconnects and provides better performance in terms of
area/bandwidth and power/bandwidth trade-offs. 2) A coupled memory intercon-
nect (CMI) architecture that allows coupling of any existing globally arbitrated
memory interconnect, such as TDM Network-on-Chips (NoC) or GAMT, with
the memory controller. CMI provides lower area usage, power consumption and
worst-case latency compared to decoupled architectures. 3) A configurable real-
time multi-channel memory controller (MCMC) with a novel method for logical-
to-physical address translation that allows memory requests of clients to be in-
terleaved across memory channels with different interleaving granularities. 4) An
automated design-flow for the design of bandwidth-efficient memory subsystems
in real-time systems, which performs memory type selection, memory controller
configurations and mapping of memory clients to memory channels, while consid-
ering the real-time requirements of the clients. We demonstrate the effectiveness
of our proposed design-flow using a case-study of designing the memory subsystem
in a HD video processing system.
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Chapter 1

Introduction

Integrated circuits are used to perform a wide variety of tasks in almost all present-
day electronic systems. Today, with over one billion CMOS transistors in an inte-
grated circuit [41], multi-processor platforms with multiple cores interconnected
using an on-chip communication protocol are available in the market [38, 89, 42].
Such platforms run multiple applications at the same time, offering high per-
formance at very low power consumption compared to traditional multi-chip
platforms. In contemporary multi-processor platforms, main memory (off-chip
DRAM) is typically a shared resource for cost reasons and to enable communica-
tion between the between the processing elements [80, 128, 89]. Multi-processor
platforms for real-time systems run a mix of applications with different real-time
requirements on main memory performance in terms of bandwidth and/or la-
tency [129, 123]. However, memory resource sharing causes interference between
the applications that may lead to violation of their real-time requirements. These
real-time requirements must be guaranteed at design time and efforts must be
made to minimize the time to market. This is made possible using real-time
memory subsystems [104, 13, 108] and employing predictable arbitration policies
for resource sharing in the memory interconnect.

To meet the memory performance demands in future systems with a large
number of processing elements, which we refer to as memory clients, faster mem-
ories and memories with multiple memory channels are introduced [9]. Existing
memory interconnects are not scalable with the increasing number of clients and
cannot be run at higher clock frequencies. Moreover, selecting the right arbi-
tration policy in the interconnect according to the diverse and dynamic client
requirements on memory bandwidth and latency in re-usable platforms requires
a generic re-configurable architecture supporting different arbitration policies.
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There is currently no re-configurable architecture supporting different arbitra-
tion policies. Existing memory controllers either interleave all memory requests
of all clients across all memory channels or do not interleave at all. However,
a multi-channel memory controller that interleaves memory requests across the
memory channels according to the client requirements is essential for the efficient
utilization of multi-channel memories. Additionally, with the increasing complex-
ity of future systems, design methodologies are essential for a faster and efficient
design of systems [3]. However, existing design methodologies either does not
support configuration of a multi-channel memory subsystem or do not provide
performance guarantees to real-time systems.

This chapter is organized as follows: We start with a general discussion on the
current trends in various aspects of real-time systems, such as the applications,
hardware platforms and the memory subsystems in Section 1.1. Then in Sec-
tion 1.2, we introduce the existing research problems related to real-time memory
subsystem design that need to be addressed. The main contributions of thesis are
then introduced in Section 1.3, and finally, we conclude this chapter in Section 1.4.

1.1 Trends in Real-Time Systems

This section presents some of the general trends in real-time applications, hard-
ware platforms, memories and memory subsystems. First, we introduce the prop-
erties and requirements of different real-time applications. Then, the trends in
hardware platforms, memories and real-time memory subsystems are presented.

1.1.1 Application Requirements

Applications in real-time systems are typically classified according to their time
and safety criticality as hard, firm, soft and non real-time [30, 87]. Both hard
and firm real-time applications have strict timing requirements in order to meet
their deadlines, and missing deadlines are not acceptable. Missing the deadlines
of hard real-time applications have negative implications on human safety. For
example, the Full Authority Digital Engine Controller (FADEC) in the aircraft
jet engine should report abnormal effects in the engine within a predetermined
time to avoid catastrophe [22]. On the other hand, firm real-time requirements
are usually set by standards, such as the software defined radios [98] for LTE [21],
or derived, such as the LCD controller in a video processing system [123], to
maintain a sufficient Quality of Service to the users. Hence, missing deadlines
of firm real-time applications is highly undesirable as it may lead to incorrect
functionality of the system.

Soft real-time applications also have real-time requirements, but they are not
as strict as for hard and firm real-time applications. Soft real-time applications
have statistical real-time requirements, and hence, the deadlines can be missed
once in a while still guaranteeing an acceptable performance on average. For
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example, a Video-on-Demand server needs to provide each segment of video at the
exact time to maintain continuity without jitter, but the frame rate can be reduced
under resource-constrained conditions [77]. Lastly, non-real-time applications,
such as web browsing, do not have any timing requirements, but they must run
as fast as possible, i.e. have a good average-case performance.

In this thesis, we consider only applications with firm real-time requirements.
However, the ideas presented can be applied to hard real-time applications as
well, but with additional mechanisms to ensure safety, such as redundancy. In
addition to firm real-time applications, we assume that the soft and non-real-
time applications are present in the system as well. Note that this thesis does
not address the issue of efficient resource utilization by soft real-time applications
and they require systems with statistical service provisioning [77].

1.1.2 Hardware Platform

With the help of CMOS process technology scaling, the number of transistors in
an integrated circuit are doubled approximately every year following Moore’s law.
This drastic reduction in feature size helped to move a large amount of off-chip
circuitry from the printed circuit board to inside the integrated circuit, minimizing
the production cost, power consumption and the complexities involved in high-
speed board design. Moreover, with such a smaller feature size, the integrated
circuit can be clocked at higher speeds allowing more applications to be run in a
single core at the same time. However, there are some limitations in continuing the
process-technology scaling down the line. The leakage power starts dominating the
overall power consumption, the fabrication cost increases, and it is hard to keep
the process variation within acceptable levels [58]. Hence, in order to meet the
processing power requirements of future applications, processing platforms with
multiple processors, such as System on Chip (SoC), were introduced [75, 89, 54].

Multi-processor platforms can be found in almost all present-day electronic
systems used in consumer electronics [80, 128, 38], telecommunication systems [26],
automobiles [99, 136] and avionics [102, 84]. Multi-processor platforms typi-
cally consist of multiple homogeneous or heterogeneous processing elements in-
terconnected using a bus, such as AXI [23] or DTL [106], or a Network-on-Chip
(NoC) [27, 51]. Such platforms allow multiple tasks of the same application to be
mapped efficiently to the multiple processing elements to achieve a higher overall
performance in terms of power consumption and execution time or throughput.
Main memory, i.e. off-chip Dynamic Random Access Memory (DRAM) is typ-
ically a shared resource in multi-processor platforms to enable communication
between the applications running on different processing cores and minimize the
cost.
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1.1.3 Memories

There are several DRAMs available in the market that have been standardized by
the Joint Electron Device Engineering Council (JEDEC) [9]. They are of different
generations and have different interface widths, operating frequencies, and number
of memory channels [9, 96]. As mentioned before, the number of memory clients
is ever increasing with more applications being integrated in multi-processor plat-
forms [59]. To meet this continuous demand for memory bandwidth with more
applications being integrated into multi-processor platforms, the maximum clock
frequency of memories were increased by over a factor of two every memory gen-
eration with the help of technology node scaling. This trend can be clearly seen
by observing the clock speeds of memories in every generation of a DRAM type,
such as LPDDR, LPDDR2 and LPDDR3 [9]. Due to the ever increasing mem-
ory bandwidth requirements with strict power budget in battery-operated mobile
devices, memories with multiple memory channels in the same die, i.e. multi-
channel memories, and wider interfaces, such as Wide IO [4] and Wide IO2 [8],
were introduced. This is because a higher memory bandwidth-to-power ratio is
achieved by increasing the number of memory channels and/or the memory in-
terface width than by increasing the operating frequency [48]. The current trend
in the scaling of memory clock frequency and/or the number of memory channels
to satisfy the ever increasing bandwidth demands is expected to continue at least
for the next few years [5, 61].

1.1.4 Memory Subsystems

In real-time systems, real-time guarantees on memory performance in terms of
bandwidth and/or latency need to be provided to the memory clients to meet
the firm real-time requirements of the applications, which are often quite quite
diverse [129]. For example, in a H264 video processing system, the video de-
coding engine have high bandwidth requirements, while the LCD controller and
CPU have low latency requirements [123]. These real-time requirements must be
guaranteed at design time to reduce the cost of verification. Existing real-time
memory controllers [105, 13, 108, 115, 25, 131, 82, 62] with a memory inter-
connect (IC) in front of it employing one or more predictable arbitration poli-
cies [14, 50, 110, 55, 113], as shown in Figure 1.1, provide guarantees on memory
performance in terms of bandwidth and/or latency.

Real-time memory controllers typically bound the execution time of a mem-
ory request by fixing the memory access parameters of the request, such as burst
length, number of banks over which a request is interleaved and the number of
read/write commands, at design time. These parameters determine the access
granularity and memory-map of the memory controller. The access granularity
defines the amount of data read/written from/to the memory per request and the
memory-map defines the physical placement of the request internally in the mem-
ory. A dedicated hardware block, atomizer (AT), is typically used to split every
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Figure 1.1: Real-time memory subsystem consisting of a real-time memory controller and
memory interconnect. The atomizer (AT) splits a larger request into smaller sized requests
according to the fixed access size of the real-time memory controller.

request of a memory client into smaller service units of size equal to the fixed re-
quest size of the real-time memory controller. Note that the atomizer can either
be on the client side, i.e. an atomizer per client, or in front of the memory con-
troller. In this thesis, we consider an atomizer per client, as shown in Figure 1.1,
that splits large requests to smaller service units such that other clients can be
served in bounded time [16, 49]. For a fixed access granularity, statically and semi-
statically scheduled real-time memory controllers [25, 13, 108] use a fixed memory
command schedule according to the command timing requirements provided by
the memory data-sheet, which bounds the worst-case execution time of a read-
/write request. In dynamically scheduled memory controllers [131, 115, 62, 82],
the worst-case command schedule is determined to bound the execution time.
Also, the gross bandwidth offered by a memory for a fixed access granularity can
be computed [16]. The gross bandwidth of a memory is the worst-case bandwidth
for a given access granularity configuration and it is computed after considering
the overhead in memory access. Note that the gross bandwidth of a memory
will always be less than or equal to its peak bandwidth, which is the maximum
achievable bandwidth of a memory defined as the product of its interface width,
operating frequency and data rate. In this thesis, we refer to a memory request of
fixed size as a service unit and the time taken to execute a service unit as service
cycle.

For resource sharing between multiple memory clients, memory interconnects
employing predictable arbitration policies, such as Time Division Multiplexing
(TDM) and Round-Robin, are used to provide real-time guarantees to the mem-
ory clients [13]. Existing interconnect architectures can be classified as centralized
and distributed according to the implementation of the arbitration policy. In a cen-
tralized implementation, such as in [14, 50], the arbitration policy is implemented
in a single physical location. Centralized architectures are easy to implement as
the arbitration decision is made at a central location using a single arbiter for all
clients.
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In distributed architectures, arbitration of memory clients is performed in
a distributed manner using multiple arbitration nodes [43, 110, 55, 113, 107].
The arbitration nodes in a distributed architecture are connected in a tree-like
structure with the clients at the leaves of the tree and the memory controller at the
root. Distributed memory interconnects can be either locally arbitrated or globally
arbitrated depending on whether the arbitration nodes work independently or in
a coordinated manner.

In a locally arbitrated (distributed) interconnect [43, 107, 110], the multiple
arbitration nodes operate independently of each other and they have local first in-
put first output (FIFO) buffer per input port, which buffers the incoming requests
until they are served1. For example, the routers in a Round-Robin (RR) [110] and
priority-based [117] NoCs forwards the packets according to a local arbitration
policy. The high-level architecture of a locally arbitrated memory interconnect
(IC) with distributed implementation is shown in Figure 1.2. It can be seen that
decoupling buffers are required in between every arbitration stage as the arbiters
operate independently. This means that the memory requests arriving a node
might have to wait for their turn in the local buffers until they get service. On
the other hand, the arbitration nodes in a distributed memory interconnect with
global arbitration, such as statically scheduled TDM NoCs [55], serve requests
according to a single global schedule, as shown in Figure 1.3. Hence, every arbi-
tration node (implicitly) is aware of the scheduling decisions of other nodes such
that buffering of requests are not required at every node. Note that we assume
separate request and response paths, i.e. the read responses from the memory do
not interfere with the read/write requests. Table 1.1 shows a summary of features
of the different state-of-the-art memory interconnects.

Client1

Client2

Client4

IC

ICA1

A3IC

A2

Client3

To memory 

controller

FIFO

Figure 1.2: Locally arbitrated distributed memory interconnect (IC) with four memory clients.
The FIFOs at the input of every arbitration stage store the requests temporarily until they get
served.

1Other buffering schemes also are possible, but in essence there is always a decoupling buffer of
size at least equal to a request size between the routers.
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Client4
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Client3

To memory 

controller

FIFO

Figure 1.3: Globally arbitrated distributed memory interconnect (IC) with four memory
clients. All of the arbitration stages works according to a single global schedule, and hence,
FIFOs are not required in between the arbitration stages.

Table 1.1: Summary of different state-of-the-art memory interconnects.

Interconnect Scope Arbitration

Bus-based [14],
PMAN [50]

Centralized Global

TDM NoCs [55, 45, 113] Distributed Global
Other NoCs [110, 117] Distributed Local

1.2 Research Problems

This section introduces the two main research problems addressed in this thesis.
First, we discuss the limitations of the existing real-time memory subsystem ar-
chitectures in terms of scalability. Then, the necessity for design methodologies
for faster design of memory subsystems in future real-time systems is shown.

1.2.1 Scalability

Traditional bus-based memory interconnects employing predictable arbitration
policies having a centralized implementation, such as PMAN [50], suffer from poor
scalability with respect to the number of clients. This is because the priorities
of all memory clients are compared, i.e. priority resolution, using combinatorial
logic consisting of a tree of multiplexers [118, 39, 88, 20], which increases the
critical path of the logic for a large number of clients. The main drawback of
this approach is that the critical path of the multiplexer tree increases with the
number of clients, which reduces the maximum clock frequency at which the logic
can be synthesized [33]. Moreover, the implementation of slack management in
any of the predictable arbitration policies requires implicit priority resolution as
one client needs to be selected out of many based on the slack management policy,
which again is not scalable using centralized architectures [118].

Existing locally arbitrated memory interconnect suffer from large overhead in
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terms of area, power and latency with increasing number of clients due to their
decoupling buffers [45]. Moreover, the real-time performance analysis of such
memory interconnects are difficult. On the contrary, the arbitration nodes of a
globally arbitrated interconnect, such as a TDM NoC [55, 45, 113], work in a co-
herent manner, i.e. according to a single global schedule, such that no FIFOs are
required at every arbitration stage. The arbitration decisions made at multiple
arbitration nodes in a globally arbitrated interconnect are combined to determine
the final arbitration decision. Existing NoC-based memory interconnects using a
single global schedule, i.e. globally arbitrated interconnects only support TDM,
which is not suitable in systems where the client requirements are diverse. This
is because the TDM arbitration policy inherently couples the latency and band-
width, which typically increases the over-allocation of bandwidth to the clients
with low latency requirements [14].

In this thesis, we consider only the globally arbitrated distributed memory
interconnects as they are scalable and have lower area consumption, power usage
and latency compared to locally arbitrated interconnects. In a globally arbitrated
interconnect, there is a dedicated virtual circuit between each source (client) and
destination (memory controller). Since the clients use the interconnect concur-
rently and the requests may arrive interleaved at the memory controller, each
client requires a dedicated buffer in the memory controller to avoid deadlock.
Then, a local bus-based interconnect with an arbitration policy can be used to
serve the requests to the memory controller as shown in Figure 1.4. However, this
increases the area usage, power consumption and latency.

Global 

schedule

MC DRAM

Client1

Client2

Client4

fi fm

IC

ICA1

A3

Am

IC

A2

BusIC

AT

AT

AT

Client3
AT

Figure 1.4: Globally arbitrated memory interconnect (IC) with distributed implementation
with four memory clients, decoupled from the memory controller (MC) using FIFOs.

Multi-channel memories allow memory requests to be interleaved across dif-
ferent memory channels with different interleaving granularities after splitting
it into smaller sized requests, as the memory channels are independent of each
other. Previous studies on multi-channel memories show that mapping soft real-
time memory clients to multiple memory channels according to their memory
request sizes benefit average-case performance [111, 31, 101]. Interleaving a mem-
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ory request across multiple memory channels allows parallel access to the different
channels, which minimizes the latency. In addition to different request sizes, firm
real-time memory clients in real-time multi-processor platforms come with dif-
ferent requirements on memory bandwidth, latency, communication and memory
capacity as well. The memory requests of the different memory clients need to
be interleaved across the different channels according to the client requirements
and request sizes for efficient utilization of the multi-channel memory. Existing
real-time memory subsystems only allow either interleaving of memory requests
across all the memory channels or statically allocating memory clients to sin-
gle memory channels, i.e. no interleaving. However, interleaving memory clients
across all memory channels or not interleaving at all may result in poor memory
utilization.

To summarize, we define our scalability problem as the lack of a scalable
memory interconnect and a multi-channel memory controller. The memory inter-
connect must be scalable in terms of clock frequency to support faster memories
and a large number of clients, and with lower area usage, power consumption
and worst-case latency. The memory interconnect architecture must furthermore
be configurable with different arbitration policies according to the diverse client
requirements in re-usable platforms. For the efficient worst-case utilization of
the multi-channel memories, the real-time multi-channel memory controller must
allow interleaving of memory requests across memory channels with different in-
terleaving granularities and with different bandwidth allocated to them in each
channel. Note that the (single channel) memory controller architecture remains
unchanged with increasing number of clients, and hence, we do not consider it as
a bottleneck for scalability.

1.2.2 Design Methodologies

As we have discussed before, the ever increasing number of transistors integrated
into a chip enables us to design a multi-processor platform for a real-time system
with multiple simultaneously running applications. However, the design complex-
ity of such multi-processor platforms is increasing with the number of applications
being integrated into such platforms. Existing computer-aided tools for design-
ing and configuring the hardware architecture for a large number of clients do not
catch up with the speed at which the semiconductor feature size is decreasing [90].
To minimize the design time (time-to-market), the design gap [3] between hard-
ware process technology capability and design methodologies need to be reduced.

Off-chip DRAM is expensive in terms of area and power consumption, and
the memory price typically increases with bandwidth and memory capacity [1].
Hence, we need to design the memory subsystem such that the memory bandwidth
utilization is maximized and the bandwidth allocated to the clients is minimized
while meeting their requirements. There are plenty of DRAMs available in the
market, of different generations, capacities, interface widths, operating frequen-
cies and number of memory channels [9, 96]. These system-level parameters need
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to be selected such that all of the memory client requirements are satisfied with
minimal bandwidth allocated to them. Apart from these system-level parameters,
the memory controller configuration, such as the memory-map configuration, de-
cide the memory bandwidth utilization [18]. There are several memory-map con-
figurations possible for a memory, which increases the design-space. Moreover,
the clients typically have different memory request sizes and their bandwidth
and/or latency requirements are quite diverse. Hence, determining the memory-
map configuration is not a trivial problem. Additionally, the presence of multiple
memory channels (multi-channel memory) introduces a new mapping problem,
i.e. optimal mapping of memory clients to the memory channels. The total mem-
ory bandwidth allocated to the clients in a multi-channel memory depends on
the interleaving granularities of memory requests of each memory client and the
bandwidth allocated to them in each memory channel. Currently, there exist no
methodology for optimal mapping of memory clients to a multi-channel memory.
We define our memory subsystem design optimization problem as follows:

Given a set of real-time memory clients with different request sizes and diverse
requirements on memory bandwidth and/or latency, select the memory, configure
the memory controller and arbiter, and determine the mapping of memory clients
to memory channels, such that the memory bandwidth utilization is maximized
and the bandwidth allocated to the clients is minimized.

1.3 Thesis Contributions

In this section, we introduce the two main contributions of this thesis. First, we
address the scalability issue by presenting our proposed scalable memory sub-
system architecture for real-time systems. Then, an automated methodology for
bandwidth-efficient design of memory subsystems for real-time systems is pre-
sented.

1.3.1 Scalable Architecture

Our proposed solutions for a scalable memory subsystem architecture consists
of three main innovations that build on each other: (1) A generic, and globally
arbitrated memory tree (GAMT) [47] that can be configured with five different
arbitration policies. (2) A coupled memory interconnect (CMI) architecture that
can be used to couple existing globally arbitrated interconnects with the mem-
ory controller [45]. (3) A multi-channel memory controller (MCMC) that allows
interleaving memory requests across memory channels with different interleaving
granularities and with different bandwidth allocated to them in different chan-
nels [44, 46].

To address the scalability issue in terms of clock frequency in existing memory
interconnects, this thesis proposes a distributed memory interconnect, generic and
globally arbitrated memory tree (GAMT). The high-level architecture of GAMT,
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shown in Figure 1.5, consists of dedicated accounting and priority assignment
(APA) logic per client, which keeps track of its eligibility status to get scheduled
and assigns a unique priority level according to an arbitration policy. All clients
are scheduled according to the notion of a global scheduling interval, which means
that the scheduling decisions are taken by the different APAs at the same time.
The priority resolution among the clients is done using a tree of multiplexers with
pipeline registers in between them. When the service unit of a client with the high-
est priority in a scheduling interval reaches the memory controller, it is removed
from the request FIFO. The remaining service units that are dropped at the mul-
tiplexer stages are re-scheduled in the next scheduling interval. The distributed
APA logic and the priority resolution enables GAMT to be synthesized up to four
times faster than traditional bus-based architectures. Moreover, GAMT outper-
forms the centralized implementations by over 51% and 37% in terms of area and
power consumption for a given bandwidth, respectively. (Chapter 3)

Priority 

assignment
Priority 

resolution

Priority 

assignment

Accounting
Priority 

assignment

Accounting

Accounting

Update state

ATClient1

ATClient2

ATClientn

To memory 

controller

FIFO

Figure 1.5: A generic scalable memory interconnect architecture. Accounting keeps track of
eligibility status of a client to get service. Priority assignment assigns a unique priority to
each client. The fully-pipelined priority resolution grants access to the client with the highest
priority.

To address the issue of large area usage, power consumption and worst-case
latency due to the decoupled memory interconnect and memory controller, this
thesis proposes a novel coupled memory interconnect (CMI) architecture. The
basic idea of CMI is to generate the interconnect and memory controller clock
frequencies from the same clock source and align the clock cycles at the boundaries
of their service cycles. The service unit size is made same in the interconnect and
the memory controller. This helps to remove the decoupling buffers and the
bus-based arbiter between the interconnect and the memory controller, which
reduces the area usage, power consumption and the worst-case latency. The high-
level architecture of the coupled memory interconnect is shown in Figure 1.6.
It can be seen that the arbitration is only done in a single point compared to
the decoupled architecture shown in Figure 1.2, where the arbitration is done
twice. Our proposed CMI architecture can be used to couple a globally arbitrated
memory interconnect, such as TDMNoC and GAMT, with the memory controller.
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Coupling a TDM NoC and memory controller using our approach saves 45% in
guaranteed latency, 20% in area, 19% in power consumption, with different DRAM
generations, for a system consisting of 16 memory clients. (Chapter 3)

Global 

schedule

MC DRAM

fi fm

IC

ICA

AIC

A

FIFO

fs

ATClient1

ATClient2

ATClient3

ATClient4

Figure 1.6: Proposed coupled memory interconnect (CMI) architecture. The interconnect and
memory clock frequencies fi and fm, respectively, are derived from the source clock frequency
fs.

For efficient use of a multi-channel memory, a configurable multi-channel mem-
ory controller (MCMC) architecture, as shown in Figure 1.7, is proposed. MCMC
consists of a dedicated channel selector (CS) per client, which routes the ser-
vice units to the different channels according to the configuration programmed
in the sequence generator (SG). Each memory channel is controlled by a channel
controller (CC) with a memory interconnect employing a predictable arbitration
policy, which multiplexes the requests arriving from different channel selectors.
Note that the channel controller is the same as the (single channel) memory
controller (MC) and we use a different name here to avoid confusion with the
multi-channel memory controller. Also, we propose a novel method for logical-to-
physical address translation, that allows each client to be mapped with different
interleaving granularities and allocated bandwidth in each memory channel. Note
that the logical-to-physical address translation performs service unit to channel
mapping, whereas the memory-map performs service unit to physical memory
address mapping. (Chapter 3)

Combining the three innovations, i.e. GAMT, CMI and MCMC, a scalable
real-time memory subsystem can be realized, as shown in Figure 1.8. MCMC en-
ables efficient utilization of the multi-channel memory. GAMT allows the memory
subsystem to be synthesized at higher clock frequencies and configured with dif-
ferent arbitration policies according to the diverse client requirements. Moreover,
by coupling GAMT with the memory controller (channel controller) using the
CMI architecture, its area, power and the worst-case latency is minimized. Note
that a globally arbitrated interconnect, such as TDM NoC and GAMT, can be
coupled with the memory controller by making the service unit size and schedul-
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Figure 1.7: High-level architecture of the proposed multi-channel memory controller (MCMC).
The Channel Selector (CS) routes the service units to the different memory channels according
to the configuration in the sequence generators (SG). Note that the point-to-point connections
between the CS and the Interconnect (IC) are short wires.

ing interval same as the memory controller and by ensuring non-blocking delivery
of the service unit. Hence, a completely scalable memory subsystem, both in
terms of clock frequency and number of memory channels can be realized using
the contributions presented in this thesis.

1.3.2 Bandwidth-Efficient Design Methodology

This thesis proposes an automated design-flow for a bandwidth-efficient memory
subsystem design, i.e. the worst-case memory bandwidth is maximized and the
bandwidth allocated to the clients is minimized, in real-time systems, as shown in
Figure 1.9. At first, a pre-selection of memories is made from all available mem-
ory types. In this step, only the memories with peak bandwidth greater than
or equal to the gross bandwidth requirement of all clients together are selected.
Then for all those memories, we compute the worst-case gross bandwidth using
our proposed design guidelines for memory-map selection. We propose the de-
sign guidelines for memory-map selection, which maximizes the worst-case gross
bandwidth, based on a worst-case analysis of memory types across and within
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generations [48]. The design guidelines reduce the design space of memory-map
selection drastically. Note that we compute the worst-case gross bandwidth using
the methods presented in [14]. Then, using our proposed method, we compute
the aggregate bandwidth requirements for the different service unit sizes. The
aggregate bandwidth requirement is computed to consider the impact of data ef-
ficiency, which defines the fraction of fetched data that is useful to the clients [14].
The aggregate bandwidth computation takes in to account the different request
sizes and bandwidth requirements of all clients. Finally, for all those service unit
sizes, we perform mapping of clients to memory channels, with the objective to
minimize the bandwidth allocated to them while satisfying their requirements,
using our proposed algorithms. To determine the mapping of memory clients to
memory channels with minimum allocated bandwidth, this thesis proposes two al-
gorithms, one an optimal algorithm based on an integer programming formulation
of the mapping problem, and the other a fast heuristic algorithm to determine
the number of service units and the bandwidth that needs to be allocated to each
client in each memory channel. With up to 4 memory channels and 100 mem-
ory clients, our heuristic algorithm finds a valid mapping in less than one second
while the optimal algorithm in a solver takes 2 hours. However, this performance
gain comes at a cost of 7% reduction in successfully mapped use-cases, which is
significantly lower than the failure ratios 19% and 33% of two traditional heuristic
mapping algorithms on the same input set [44, 46]. (Chapter 4)

1.4 Summary

With the drastic reduction in feature size of an integrated circuit over the years,
the number of processing cores integrated into a chip has increased significantly.
Such multi-processor platforms allow a large number of applications running at
the same time with different application tasks communicating with each other
using a shared memory. Real-time memory controllers with a memory intercon-
nect employing a predictable arbitration policy are used to provide guarantees
on memory bandwidth and/or latency to the firm real-time applications running
in the system. However, current memory subsystems are not scalable for future
systems with a large number of clients. This is because the existing memory
interconnect cannot be synthesized at higher clock frequencies and are decou-
pled from the memory controller, i.e. they consume more power and area and
have larger worst-case latencies. Moreover, we need a reconfigurable memory in-
terconnect that can be configured with different predictable arbitration policies
according to the diverse client requirements in re-usable platforms. On the other
hand, efficient utilization of a multi-channel memory needs interleaving memory
requests of clients with different granularities according to their bandwidth and/or
latency requirements, and currently there is no real-time memory controller for
multi-channel memories.

With a large number of applications integrated into multi-processor platforms,

15



the system design complexity increases as well. For the design of a real-time mem-
ory subsystem, there are several design parameters that need to be selected. This
includes parameters related to the selection of the memory type, configuration
of the memory controller and arbiter, and mapping of the memory clients to the
memory channels. The selection and configuration of these parameters impact
the efficient utilization of the memory. As the memory resource is scarce and
systems are getting more complex, we need automated design methodologies for
faster and bandwidth-efficient design of memory subsystems for future real-time
systems.

To address the scalability issue in the existing real-time memory subsystems,
we propose three innovations in this thesis: (1) A generic, globally arbitrated
memory tree (GAMT), which runs four times faster than traditional bus-based
interconnects and can be configured with five different predictable arbitration
policies. (2) A coupled memory interconnect (CMI) architecture to couple any
existing globally arbitrated memory interconnect with the memory controller for
lower area usage, power consumption and latency compared to a decoupled ar-
chitecture. (3) A real-time multi-channel memory controller (MCMC) with a
novel method for logical-to-physical address translation, together allowing mem-
ory requests of different clients to be interleaved across the memory channels with
different interleaving granularities.

For faster and bandwidth-efficient design of memory subsystem in real-time
systems, we propose a novel automated design-flow. The inputs to the design-flow
are the set of memory type specifications, client bandwidth, latency, capacity and
communication requirements, and client request sizes. The design-flow includes
methodologies for memory type selection, memory-map configuration in the mem-
ory controller, and algorithms for bandwidth-efficient mapping of memory clients
to memory channels. The final output of the design-flow is the memory type,
memory-map configuration and mapping of clients to the channels.

In the remainder of this thesis, Chapter 2 gives an introduction to DRAMs,
state-of-the-art real-time memory controllers, predictable arbitration policies and
existing memory interconnects. In Chapter 3, the proposed GAMT, CMI and
MCMC architectures, and their experimental evaluations are presented. Chap-
ter 4 then presents the proposed automated design-flow for bandwidth-efficient
design of DRAM subsystems in real-time systems and applies it to a case-study
where the memory subsystem of a High-Definition (HD) video processing system
is designed. Previous works related to the contributions presented in this thesis
are discussed in Chapter 5. Finally, the thesis is concluded in Chapter 6 with
future work.
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Figure 1.9: Proposed automated design flow for bandwidth-efficient DRAM subsystem de-
sign in real-time systems. Note that the final output of the design-flow is a single optimal
configuration although there are one or more service unit sizes that gives a valid mapping.
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Chapter 2

Background

DRAM is typically a shared resource for cost reasons and to enable communica-
tion between the processing elements in multi-processor platforms. As introduced
in Section 1.1.4, real-time memory subsystems consists of a real-time memory con-
troller and a memory interconnect employing predictable arbitration policies mul-
tiplexing the requests arriving from different clients. The memory interconnect
architecture can be centralized (bus-based) or distributed (TDM NoCs). Real-
time memory subsystems provide performance guarantee on memory bandwidth
and/or latency to the memory clients in the system. Real-time memory subsys-
tems can be analyzed using shared resource abstractions, such as the Latency-Rate
(LR) [126] server model, which can be used in formal performance analysis based
on e.g., network calculus [35] or data-flow analysis [121].

In this chapter, we give an overview of the high-level DRAM architecture, its
operation and available DRAM configurations in Section 2.1. We introduce the
concept of real-time memory controllers in Section 2.2, and the LR server model
and different predictable arbitration policies in Section 2.3. In Section 2.4, we
introduce statically-scheduled TDM NoCs.

2.1 Dynamic Random Access Memories (DRAM)

This thesis proposes memory subsystem architectures and design methodologies
primarily for Dynamic Random Access Memories (DRAM). In this section, we
first present the high-level architecture of DRAM and its operation, and then the
different DRAM devices and their configurations.
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2.1.1 DRAM Architecture and Operation

In a DRAM device, each bit is stored using a single transistor-capacitor pair
known as storage cell [64]. The storage cells are arranged to form a memory
array with a matrix-like structure, as shown in Figure 2.1. The intersection of
rows and columns, specified by a row address and a column address, identifies
the storage cells inside the memory array. The memory array and a row buffer
constitute a bank. Current DRAM devices contain either 4 or 8 banks that can
be accessed concurrently, although they share command, address, and data buses
to reduce the number of off-chip pins.

Activate 
(ACT)

Precharge 
(PRE)

Read 
(RD)

Write 
(WR)

Bank 1

Bank 2

Bank 3

Bank 4

Memory array

Row buffer

Figure 2.1: High-level DRAM architecture showing the organization of memory array, row
buffer and banks.

During a memory access, the data from the storage cells of target row are
copied to the row buffer before performing a read/write operation. Data is then
transferred over the data bus with a data rate of one or two words per clock cycle,
depending on if the memory device uses a Single Data Rate (SDR) or a Double
Data Rate (DDR). The data rate affects the peak bandwidth of the memory, which
is defined as the product of its operating frequency, data rate, Interface Width
(IW) and number of memory channels (NC).

The memory controller interacts with the DRAM by sending DRAM com-
mands. There are several timing constraints that must be considered while issuing
these commands. To understand these timing constraints, an example scenario
for a read operation is shown in Figure 2.2. The contents of a row inside the
memory array is copied to the row buffer by issuing an activate (ACT) command.
It takes tRCD cycles to fetch the data from the storage cells and copy it to the
row buffer, which is the minimum time before the read (RD) command can be
issued. Once the read command is issued, it takes additional tRL cycles before
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the first words of data is available on the data bus, as indicated by D0-D1 for
the DDR device in the figure. A read/write command accesses the memory as a
burst with a predefined Burst Length (BL) (in words). Before another row in the
memory array can be read, the existing row must be closed by writing back the
contents to the storage cells using a precharge (PRE) command. The precharge
command can only be issued tRAS cycles after the activate command. Also, the
next activate command is allowed to be issued only after tRP cycles from the
precharge command as shown in the figure.

tRCD

tRAS

ACT NOP NOP RD NOP NOP NOP NOP PRE NOP NOP ACTCommand

Data D0 D1 D2 D3

Figure 2.2: DRAM command timing diagram for an example read operation.

In addition, there are other constraints that needs to be satisfied for the correct
functioning of the memory device. The four-active window constraint specifies the
maximum number of activate commands in a window of duration tFAW cycles.
As there will be leakage of charge from the storage cells over the time, they must
be recharged using a refresh command every refresh interval, tREFI, to prevent
loss of data. The DRAM data-bus is bi-directional and setting the bus direction
for a read operation after a write will take tWTR clock cycles. Please refer to the
data-sheet of the memory for an exhaustive list of timing constraints [9, 96]. Note
that due to the various command timing constraints of DRAM, the maximum
achievable memory bandwidth will always be less than the peak bandwidth.

2.1.2 DRAM Generations and Configurations

DRAM devices standardized by the Joint Electron Device Engineering Council
(JEDEC) [9] can be broadly classified into standard DRAMs and mobile DRAMs.
Standard DRAM generations, such as DDR2, DDR3, and DDR4, are targeted to-
wards high-performance computing systems, such as workstations and servers, and
can be clocked at higher speeds compared to mobile DRAMs. Mobile DRAM gen-
erations, such as LPDDR, LPDDR2, LPDDR3, LPDDR4, WideIO and WideIO2,
are designed specifically for battery-operated mobile devices, such as smart phones
and notebook computers, due to their lower power consumption compared to the
standard DRAMs. Mobile DRAMs differ from the standard DRAMs in the ini-
tialization sequence, input/output circuitry and clocking [92]. Table 2.1 shows
an overview of the standard and mobile memories across and within generations
based on the JEDEC specifications [66, 67, 68, 72, 69, 70, 71, 73, 4, 8]. It can
be seen that the operating frequency increases every generation to increase the
memory bandwidth, and supply voltage is reduced to minimize the power con-
sumption. Moreover, the memory capacities are increased in order to meet the
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application demands.

Due to the ever increasing memory bandwidth requirements in mobile de-
vices with strict power budget, memories with multiple memory channels in the
same die, i.e. multi-channel memories, are proposed for the LPDDR3, LPDDR4,
WideIO and WideIO2 memory generations. In addition to having multiple mem-
ory channels, WideIO and WideIO2 have wider interfaces which further reduces
their power consumption [48]. WideIO is a single data rate (SDR) device con-
sisting of four independent memory channels, each having an interface width of
128 bits, while its second generation, WideIO2, consists of eight channels, each
having a 64-bit interface.

2.2 Real-Time Memory Controllers

Existing real-time memory controllers can be classified as static, dynamic and
semi-static, according to their scheduling policy of memory commands. Memory
controllers with static [25] command schedule require the complete sequence of
memory requests in advance for the analysis of the worst-case execution time
of a request. Dynamic memory controllers [131, 115, 62, 82] make the memory
command scheduling decisions at run-time. The worst-case command schedule
is analytically determined to bound the execution time in dynamically scheduled
memory controllers. Semi-static memory controllers [13, 108] use a pre-computed
(fixed) command sequence to perform the basic memory operations, such as read,
write and refresh, and dynamically schedule the command sequences according
to the incoming memory requests. Figures 2.3 (a) & (b) show example pre-
computed command schedules for read and write operations, respectively, for a
memory request interleaved across two memory banks. The read and write may
have different command schedules depending on the command timing constraints,
as explained in Section 2.1. The NOPs in the command schedule are inserted
such that the different command timing constraints are satisfied. The worst-case
execution time of a memory request can be computed from the pre-computed
command sequences as explained in [17].

ACT
1

NOP NOP
ACT
2

RD
1

NOP NOP
RD
2

PRE
1

NOP NOP NOP
PRE
2

NOP NOP

ACT
1

NOP NOP
ACT
2

WR
1

NOP NOP
WR
2

PRE
1

NOP NOP
PRE
2

NOP NOPNOP NOP

(a) Read operation

(b) Write operation

Figure 2.3: Example pre-computed command schedules for memory read and write operations
in semi-static real-time memory controllers. The NOPs in the command schedule are inserted
such that the different memory command timing constraints are satisfied.

Real-time memory controllers bound the execution time of a memory request
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by fixing the memory access parameters of a request, such as burst length and
number of read/write commands, at design time [14]. Memory accesses by real-
time memory controllers can be characterized by three parameters: Burst Length
(BL) (as explained in Section 2.1), Banks Interleaved (BI), and Burst Count (BC).
These are collectively referred to as the memory map [52] as they determine the
physical location of data in the memory array. BI specifies the number of banks
over which the data is interleaved and BC specifies the number of bursts per
bank [17]. These parameters define the access granularity (AG) of the memory
controller, which defines the amount of data read/written from/to the memory
per request. The access granularity of a memory in bytes is given by AG =
BI ·BC ·BL · IWm, where IWm is the interface width of the memory. The choice
of memory map is done at design time and determines the memory efficiency that
is guaranteed for a given mix of request sizes [52].

In this thesis, we consider the amount of data accessed in the memory while
serving a single request to be fixed and we refer to these memory requests of a
fixed size as service units (SU) with size (in Bytes) SUbytes, and the time taken
to serve such a service unit is a service cycle. The service unit size of DRAMs is
typically in the range of 16-256 Bytes. Note that although the dynamic memory
controllers can support multiple request sizes, we consider only a single service
unit size as all the atomizers are configured to split the incoming requests to the
same size. The time (in ns) taken by the memory controller to finish the execution
of a service unit is called a memory service cycle and is denoted by SCns. For a
given memory with operating frequency fm, the memory service cycle length of a
service unit size of SUbytescan be computed according to [18]. The service cycle
for a read and a write request can be different and depends on the memory type
(tWTR constraint as explained in Section 2.1) and the memory controller. For
simplicity, we assume the same service cycle length for read and write requests,
as it is shown in [53] that the memory service cycle for read and write requests
can be made equally long with negligible loss of gross bandwidth. Note that the
request size of a memory client may be smaller than the service unit size of the
memory controller. In that case, the data efficiency, defined as the ratio of request
size to the service unit size, will be lower than 100%. For a service unit size with
a given memory map configuration, gross bandwidth (bgrossm ), which is defined as
the maximum achievable memory bandwidth in the worst-case without taking
data-efficiency into account, can be computed according to the analysis presented
in [14]. The gross bandwidth accounts for various overheads, such as activating
and precharging of rows, write-to-read switching and refresh operation. Note that
although we use the analysis techniques presented in [14] for the computation of
gross bandwidth, the techniques can in general be applied to static and dynamic
memory controllers as well.
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2.3 Predictable Arbitration

Current real-time memory controllers provide real-time guarantees to the clients
and use a predictable arbitration policy in the memory interconnect in front
of them to multiplex requests from different clients. In this thesis, we use the
Latency-Rate LR server [126] model as the shared resource abstraction to de-
rive bounds on service provided by predictable arbiters. First, we introduce the
LR server model and then the predictable arbitration policies considered in this
thesis.

2.3.1 Latency-Rate (LR) Servers

Latency-Rate (LR) servers [126] are a general model to capture the worst-case
behavior of various scheduling algorithms or arbiters in a simple unified manner,
which helps to formally verify the service provided by a shared resource. There
are many arbiters belonging to the class of LR servers, such as TDM, Round-
Robin and its variants Weighted Round-Robin (WRR) [78], Deficit Round-Robin
(DRR) [119], and priority-based arbiters with a rate-regulator, such as Credit-
Controlled Static Priority (CCSP) [20] and Priority Based Scheduler (PBS) [124].
The LR abstraction capture behavior of many different arbiters, and is compatible
with a variety of formal analysis frameworks, such as data-flow analysis [121] or
network calculus [35].
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Figure 2.4: Example service curves of a LR server showing service latency (Θc) and completion
latency (Nc/ρ′c).

Using the LR abstraction, a lower linear bound on the service provided by
an arbiter to a client can be derived. In this thesis, we assume a simplified LR
abstraction and we do not consider clients with multiple outstanding requests,
although it can be added if the characterizations of the arriving traffic is taken
into consideration to bound the waiting time in the queue [126]. Otherwise, it is
also possible if the LR abstraction is embedded in a formal analysis framework,

25



such as data-flow, that considers back-pressure [100].

Figure 2.4 shows example service curves of a LR server. The requested service
(request size) by a client at a time consists of one or more service units, indicated
on the y-axis of the figure. The minimum service provided to the client c is the
service guaranteed by the LR abstraction, which depends on two parameters,
namely the service latency Θc and the allocated rate ρ′c (bandwidth). The service
latency is defined as the maximum time before the allocated rate is provided, as
seen in the figure, and depends on the choice of arbiter and its configuration, e.g.
allocated rate and/or priority [14]. After a request consisting of Nc service units
is scheduled to be served, it receives service at the allocated rate ρ′c and it hence
takes Nc/ρ

′
c service cycles to finish serving the request, called the completion

latency of the client. The worst-case latency L̂′
c (in service cycles) of a client

c is the total time taken by its request of size Nc service units at the head of
its request queue to get served in the worst case, which is the sum of the service
latency and the completion latency, given by Equation (2.1).

L̂′
c = Θc + ⌈Nc/ρ

′
c⌉ (2.1)

The worst-case latency (in ns) of a memory client c in a real-time memory
subsystem consisting of a memory m operating at frequency fm is given by Equa-
tion (2.2), where δm the internal pipeline delay of the memory subsystem and
depends on the number of pipeline stages in the RTL implementation of the
memory controller.

L̂′
c =

(Θc + ⌈Nc/ρ
′
c⌉) · SCcc

m + δm
fm

(2.2)

2.3.2 Predictable Arbitration Policies

In this thesis, we consider five different arbitration policies, Time Division Mul-
tiplexing (TDM), Round Robin [78], Frame-Based Static Priority (FBSP) [14],
Priority-Based Scheduler (PBS) [124, 115] and Credit-Controlled Static-Priority
(CCSP) [20], which have been proposed for shared memory access in real-time
systems.

TDM is a frame-based arbitration policy with a fixed frame size, f , consisting
of one or more TDM slots and each slot is of size equal to the SI. Each client is
statically assigned to one or more slots and the fraction of number of assigned
slots to the total number of slots in the frame is the allocated rate, ρ′c (corresponds
to the fraction of total gross memory bandwidth). With the progress of time, the
clients are served every SI according to the static order in the TDM schedule and
the frame repeats itself at the end of every frame. RR is a special case of TDM
where the frame size is equal to the number of clients and each client is assigned
to exactly one slot such that the clients are served one after the other. Note that
TDM and RR are the same except that RR is more restrictive.
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Since a client can issue a read or write request in a TDM slot, we consider a slot
size equal to the maximum of read or write service cycles. Figures 3.5(a) & 3.5(b)
show a TDM frame of size f with client c allocated two slots using contiguous and
distributed slot allocation strategies, respectively. Here, c gets a rate ρ′c = 2/6,
since two out of six slots are allocated to c. The service latency (Θc) of c is 4
and 2 for contiguous and distributed (equidistant) TDM allocations, respectively,
because of the interference from other clients that occupy the remaining set of
TDM slots. In terms of rate ρ′c and/or frame size f , the service latencies of
contiguous and distributed TDM are given by Θc = f × (1−ρ′c) and Θc = f/(f ×
ρ′c) − 1, respectively, as shown in [14]. A more complex method for determining
the service latency for arbitrary slot allocations is presented in [19].

f 

ρ' = 2/6x x x x c c

Ɵc 

f 

Ɵc 

x x c x x c

(a) (b)

Figure 2.5: Example TDM frame of size f showing service latency (Θc) of client c with its
slots allocated using (a) contiguous and (b) distributed allocation strategies.

Hence, for a TDM arbiter with a frame size f , the worst-case latency (in slots)
of a client c with an allocated rate of ρ′c for contiguous and distributed TDM is
given by Equations (2.3) & (2.4), respectively, in which both service latency and
completion latency are rounded up to make the bound conservative.

L̂′
c = ⌈f × (1− ρ′c)⌉+ ⌈Nc/ρ

′
c⌉ (2.3)

L̂′
c = f/⌈f × ρ′c⌉ − 1 + ⌈Nc/ρ

′
c⌉ (2.4)

Similar to TDM, FBSP [14] is also frame-based with a fixed frame size and
each client is assigned a budget of slots corresponding to its rate, ρ′c. However,
unlike in TDM there is no static assignment of clients to the slots. Instead,
each client is assigned a unique static priority and at every SI, the (backlogged)
client with the highest priority and one or more remaining budget slots is granted
service. When a client is granted service during an SI, its budget is reduced by
one. Note that in this thesis, we refer to the clients with sufficient budget to get
scheduled as eligible clients. At the beginning of every new frame, the budgets of
all clients are reset to their initial values, i.e. all clients will be eligible. PBS is
a special case of FBSP where only one of the clients is assigned with the highest
priority [124] and every other client has equal (lowest) priority.

Unlike frame-based arbitration policies, CCSP [20] does not use the notion
of frames for the replenishment of the client budgets. Instead, the budget of
each client is replenished continuously, i.e. for every SI. This means that the
replenishment interval in CCSP is a lot less than the frame-based arbitration
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policies. The service provided to a client c depends on allocated burstiness (σc),
rate (ρ′c), and its static priority. To start, a client is credited with initial budget,
which depends on σc. During every SI, the budget level is incremented at a
constant fractional rate ρ′c and decremented by one when it is granted service.
When the client is not backlogged, it is only allowed to build up its budget until
its initial budget value.

One important aspect of the various arbitration policies is that each of them
comes with different properties. TDM is suitable for providing temporal isolation
among the clients, and RR when all clients need fair treatment. FBSP, PBS and
CCSP are priority-based with different benefits [14] and suitable when differenti-
ated treatment needs to be provided to the clients. CCSP provides lower latency
to high priority clients without using the notion of frame. Using PBS is beneficial
when there is one low latency client in the system and high switching overhead
between the remaining clients. This means that an arbitration policy needs to be
selected according to the requirements of clients running in the system.

In all the arbitration policies that we discussed above, work conservation, i.e.
assigning the unused time slot of a client to another client with pending request(s),
can be implemented according to a certain slack management policy. For example,
higher priorities can be given to the bandwidth-demanding soft or non-real-time
clients to improve their average-case performance or using the same static-priority
levels in priority-based arbitration policies in work-conserving mode as well. Note
that the budget of the scheduled client in work conservation mode is not deducted.

2.4 Statically Scheduled TDM NoCs

In this section, we explain statically scheduled TDM NoCs in detail as we consider
it as the globally arbitrated memory interconnect for the evaluation of our Coupled
Memory Interconnect (CMI) architecture explained later in Chapter 3.

State-of-the-art TDM NoCs are either packet switched [51, 57, 97, 112, 11] or
circuit switched [122, 130], and are globally arbitrated as the arbitration in the
routers is done using a statically computed global TDM schedule. The routers
in the NoCs are non-blocking, and hence, the Network Interface (NI) performs
end-to-end flow control to avoid overflow of the buffers in the routers and NIs.
The NI converts a memory request into one or more smaller units, called flits,
and transports them to a destination NI according to the global TDM schedule.
Typically, the service unit (flit) size of the NoC is in the order of few words (4-
12 Bytes) [55]. The time taken to transport a complete service unit over a NoC
link i is called a NoC (or interconnect) service cycle and is given by SCns

i (in
ns) and SCcc

i (in clock cycles). For a service unit of size SUbytes, SCcc
i can be

computed using Equation (2.5), where IWi is the interface width of the NoC (in
bits) and δov the cycles to carry a header, such as address and command that is
specific to a NoC architecture.
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SCcc
i =

⌈

(SUbytes × 8)/IWi

⌉

+ δov (2.5)

In this thesis, we use the TDM NoC connected in the form of a tree with
the memory controller at the root of the tree and a fully pipelined response path
without arbitration as in [55, 113]. The worst-case latency of a memory client c in
the NoC (in ns), L̂i,c, to transport a read request from a source to a destination
NI and read back the response consisting of Nc service units is given by Equa-
tion (2.6), where fi is the NoC operating frequency (in MHz), Θi,c is the service
latency in the global TDM arbitration, ρ′i,c the rate allocated to the client in the
NoC, nhops the number of hops between the source and destination NI, and δp the
fixed pipeline delay of a NoC router [16]. For a write request, only the request
path need to be considered, and hence, there will be a single nhops · δp as given
by Equation (2.7). Note that we assume no self-interference/back-pressure and
no flow control considering sufficiently large buffers after the atomizers (in front
of the memory controller), and equal-length request and response paths.

L̂i,c(RD) =
(Θi,c + ⌈Nc/ρ

′
i,c⌉) · SCcc

i + 2nhops · δp
fi

(2.6)

L̂i,c(WR) =
(Θi,c + ⌈Nc/ρ

′
i,c⌉) · SCcc

i + nhops · δp
fi

(2.7)

Decoupled Memory Interconnect

TDM NoCs and the memory controller with a bus-based memory interconnect in
front of it are used in conjunction, with the NoC connected in a tree-like structure
and the memory controller at the root of the tree as shown in Figure 2.6. Since
the NoC and the memory controller run in different clock domains, the virtual
circuit for each client in the NoC needs to be decoupled using dedicated buffers
in the memory controller clock domain. Then, a bus-based interconnect with a
predictable arbitration policy is used to schedule the requests in different buffers
to the memory controller. Moreover, the NI, which interfaces with the memory
controller, requires a separate port for each virtual circuit increasing its area and
power consumption. Note that this is the current setup in CompSOC [15, 57,
122, 49], which is a hardware platform for real-time systems.

In such a decoupled architecture, the worst-case latency of a memory request
can be computed as the sum of worst-case latencies of the memory intercon-
nect (Equation (2.6)) and the bus-based arbitration stage and memory controller
(Equation (2.2)). It can be seen that this approach could introduce a large over-
head in terms of worst-case latency, since there are multiple arbitration stages for
the same request and each of them introduces a service latency in the worst-case
latency estimation.
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Figure 2.6: High-level architecture of a decoupled distributed memory interconnect and a
memory controller. The interconnect and the memory controller with the bus-based arbiter run
in different clock domains using clock frequencies fi and fm, respectively. Every arbitration
stage (An) in the interconnect makes scheduling decisions according to a single global schedule.

2.5 Summary

A DRAM typically consists of multiple memory banks with each bank consisting
of several storage elements organized in the form of a matrix-like structure. The
contents in the memory are accessed by issuing different memory commands with
strict timing constraints. The contents stored in the memory elements are first
copied into a row buffer before a read/write operation is performed. There are
plenty of DRAM device options available in the market, of different interface
widths, operating frequencies, memory capacities, banks, and memory channels.
With every memory generation, the memory capacities and operating frequencies
are increased for the standard DRAMs, while the supply voltage is reduced for
mobile DRAMs. The ever increasing demands for main memory bandwidth while
keeping the power budget to the minimum led to the introduction of memories
with multiple memory channels and wider interfaces, such as WideIO DRAM.

Existing real-time memory controllers bound the execution time of a memory
request by fixing the memory access parameters of a request, such as burst length
and number of read/write commands, at design time, which define the access
granularity of the memory controller. For a fixed access granularity, real-time
memory controllers use a fixed memory command schedule which bounds the
worst-case execution time of a read/write request and also allows the worst-case
bandwidth offered by a memory to be computed.

Predictable arbitration policies, such as Time Division Multiplexing (TDM),
Round Robin (RR), Frame-Based Static Priority (FBSP), Priority-Based Sched-
uler (PBS) and Credit-Controlled Static-Priority (CCSP), are used to provide firm
real-time guarantees to clients sharing a single memory resource (DRAM) between
the multiple memory clients in multi-core real-time systems. The Latency-Rate
(LR) server model can be used to analyze real-time memory subsystems, which
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can be used in formal performance analysis based on e.g., network calculus or
data-flow analysis. LR is an abstraction that captures the worst-case behavior of
a resource shared by any predictable arbiter with two parameters.

TDM NoCs connected in a tree-like structure are used as the memory inter-
connect to provide real-time guarantees to the memory clients. However, they
need to be decoupled from the memory controller using dedicated buffers as they
run in different clock domains.
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Chapter 3

Scalable Memory

Subsystem Architecture

Scalable memory subsystem architectures are essential to support the ever grow-
ing memory bandwidth demands of future real-time systems. Scalability in terms
of clock frequency is achieved by either a local or global arbitration policy imple-
mented in a distributed way, i.e. arbitration is pipelined in a distributed imple-
mentation in the memory interconnect. Distributed memory interconnects with
local arbitration policies, i.e. locally arbitrated, have decoupling buffers between
every arbitration stage which incur a large area, power and latency overhead.
Although there exists distributed memory interconnects with global TDM arbi-
tration, i.e. globally arbitrated, they are decoupled from the memory controller
due to the different clock domains of interconnect and memory controller. This
increases area, power and latency with the number of clients. Moreover, TDM
arbitration is not suitable in systems where the clients have diverse requirements
in terms of memory bandwidth and latency [14]. Scalability of the memory sub-
system in terms of number of memory channels requires a memory controller
that can be configured to interleave memory client requests across the memory
channels with different interleaving granularities and rates according to the client
specifications for the efficient utilization of the multi-channel memory.

This chapter starts with our proposed generic distributed globally arbitrated
memory tree (GAMT) in Section 3.1 that can be configured with five different
arbitration policies supporting work conservation. Section 3.2 presents a coupled
memory interconnect (CMI) architecture that couples a globally arbitrated dis-
tributed memory interconnect with the memory controller reducing area, power
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and latency. For scalability of the memory subsystem in terms of number of
memory channels, we present multi-channel memory controller (MCMC) in Sec-
tion 3.3 including a novel method for logical-to-physical address translation that
allows clients to be mapped across multiple memory channels with different inter-
leaving granularities. Finally, in Section 3.4, the performance evaluations of the
proposed CMI and GAMT against the state-of-the-art approaches and functional
verification of the MCMC are presented.

3.1 Generic Distributed and Globally Arbitrated
Memory Tree (GAMT)

This section presents our proposed scalable memory tree (GAMT) [47] that can
be configured with five different arbitration policies and supports work conser-
vation for improving average-case performance by distributing slack. Before we
present the detailed architecture and operation of GAMT, we first discuss the
novel concept by which we achieve scalability, global arbitration and genericness
in GAMT.

Scalability

We propose a distributed architecture, as shown in Figure 3.1, with dedicated
Accounting and Priority assignment logic for each client and Priority resolution
among the N clients using a tree consisting of N-1 pipelined multiplexer stages.
The Accounting logic keeps track of the eligibility status of a client to get service,
the Priority assignment logic assigns a unique priority to the client based on
the arbitration scheme and whether or not the client is eligible, and the Priority
resolution grants service to the client with the highest priority. Once a client is
granted service, a feedback signal from the output of the Priority resolution logic
updates the client’s eligibility status in its Accounting logic. Also, the eligibility
status of all clients is updated every scheduling interval. The use of pipelined
multiplexer stages for priority resolution breaks the critical path and enables the
logic to be synthesized at higher clock frequencies. However, this increases the
time between selecting of a client and the update of the eligibility status, which
sets a minimum limit for the scheduling interval length.

Global Arbitration

The Accounting logic of all clients use a global scheduling interval of fixed dura-
tion determined by the fixed access duration of the memory controller and the
pipeline depth of the multiplexer stages (which depends on the number of clients
in the system) in Priority resolution. Since the scheduling decision is made at the
Accounting logic at the leaves of the tree, the pipeline registers in the multiplexer
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Figure 3.1: A generic, distributed and globally arbitrated memory interconnect architecture.

tree are simple registers of width equal to the data-path width, unlike the flit-sized
buffers at every arbitration stage in the existing distributed implementations.

Generalization

Several predictable arbiters can be realized by configuring the Accounting logic.
In TDM and RR, the responsibility of the Accounting logic is to keep track of
the current slot, which essentially is the deciding factor for a client to get service.
In FBSP, PBS, and CCSP the Accounting logic keeps track of the budget of the
client. The priority level assigned to an eligible client by the Priority assignment
logic is based on the arbiter configuration, which guarantees a minimum band-
width and/or a maximum latency according to the LR model. In TDM and RR,
there can only be one eligible client at a time, and hence, the highest priority
is assigned to the client that is statically assigned to the slot. For FBSP, PBS
and CCSP, the priority levels that are computed at design time to meet a certain
bandwidth/latency requirement [14] are assigned to the eligible clients. At run
time, multiple eligible clients may be eligible and enter the tree. Note that for
slack management in work-conserving mode, i.e. when none of the eligible clients
are backlogged, the backlogged non-eligible clients are assigned with unique pri-
orities that are lower than the lowest priority level assigned to an eligible client.
The priority levels in the work-conserving mode depends on the slack management
policy, which could be the same or different from the regular arbitration policy.

3.1.1 Detailed GAMT Architecture and Operation

Given that we have presented the high-level concept of GAMT, now we proceed
with the detailed GAMT architecture and its operation.
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GAMT Architecture

Figure 3.2 shows the detailed architecture of GAMT in which the clients are at
the leaves of the tree and the memory controller and DRAM at the root. The
Accounting and Priority Assignment (APA) logic for each client is located in the
network interface (NI) to which the client is attached. Note that we show a NI
to emphasize that GAMT can be implemented as a NoC. The 2-to-1 multiplexers
(Mux) implementing the priority resolution are interconnected in a tree-like struc-
ture with a NI (NId) at the root of the tree which interfaces with the memory
controller. We assume a real-time memory controller with a fixed service unit
size, as discussed in Section 2.2.
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Figure 3.2: Detailed architecture of GAMT along with the memory shared by four clients
c1 − c4. The APA logic for each client is located in their network interfaces (NI). The valid
signal used to indicate a new request is denoted by v, the data/command lines d, priority
lines p and the acknowledgement signal a. The multiplexer (Mux) stages perform the priority
resolution by selecting the client with the highest priority. The APA status is updated using
the acknowledgement signal.

The incoming memory requests from a client is split into equal-sized service
units with a service cycle duration of SCcc by the atomizer at the NI (not shown in
the figure) according to the fixed access size of the memory controller. Each service
unit is then scheduled by the arbitration policy at fixed scheduling intervals (SI).
When an eligible request is scheduled, the request valid (v) signal is asserted and
the data/command (d) and the priority (p) of the client are transmitted over the
bus. When two inputs of the multiplexer stage arrive at the same clock cycle, the
one which carries the highest priority is granted access and the other is dropped.
Note that the notion of a global scheduling interval makes this possible. When
a service unit arrives at the root, NId generates an acknowledgement (a) signal
that is sent back to the client, which removes the request from the head of its
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request queue and the current state of the Accounting logic is updated (details are
presented later in Section 3.1.2). The dropped service units are not removed from
their request buffers (no acknowledgement) and they are re-scheduled during the
next SI. Note that if the request of an eligible client is dropped during a scheduling
interval, the client remains eligible in the next scheduling interval. One drawback
of this approach is that dropping and rescheduling requests could increase the
switching activity, and hence, the power consumption.

It can be seen that for functional correctness, the minimum SI duration
(SImin), must at least be equal to or greater than the total time when a re-
quest is scheduled until its acknowledgement arrives back at the source NI. This
depends on the number of multiplexer stages in the tree, which in turn depends
on the number of clients in the system. For a balanced tree, this constraint is
given by SImin ≥ 2 × log2(C), where C is the number of memory clients since
each multiplexer stage introduces one cycle delay in both the request and re-
sponse paths. The WCET for a memory read and write request is then given by
2× log2(C) + SCcc and log2(C) + SCcc, respectively. For a 16-bit IO DDR3-800
memory device, the SCcc for the smallest request size of 16 Bytes is 25 clock
cycles [91] assuming a close-page policy [14]. If we assume that GAMT runs at
the same clock frequency as the memory, the minimum SI of 12 cycles for up to
64 clients is less than the SCcc for the smallest request size. Hence, the mem-
ory bandwidth is not negatively impacted due to the pipeline delays in GAMT.
Moreover, with larger request sizes and faster memories the WCET of requests in
clock cycles increases making this constraint insignificant. Note that GAMT may
not be suitable for SRAMs where data can be accessed in a single clock cycle.

For a read request, the response arrives back at the source on a pipelined
response path. In this section, we assume the same clock domain and data-path
width for both GAMT and the memory controller to ensure that their SIs are of
the same duration. Hence, the buffer in the memory controller does not overflow
as the service unit (if any) scheduled by the tree will be consumed by the memory
during the same SI. However, it is possible to have different data-path widths for
the memory tree and the controller and run them at different speeds by coupling
the GAMT and memory controller, as proposed later in Section 3.2. During
the periodic DRAM refresh operation in the memory controller, the service unit
arriving at the root is dropped and rescheduled again. The refresh duration need
not be an integer multiple of service cycle duration and the pending request will be
served immediately in the first service cycle after the refresh operation is finished.
Note that the impact of refresh needs to be taken into account for the worst-case
memory bandwidth and latency computation [14].

Operation

Figure 3.3 shows an example timing behavior of the GAMT when there are pend-
ing requests to be scheduled in the FIFOs of NI1 and NI3 from clients c1 and c3,
respectively (irrelevant signals are omitted for clarity). We consider a SI duration
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of 7 clock cycles in this example. At the beginning of the first SI (grey vertical
lines), the APA logic in NI1 and NI3 assert the valid signals, v1 and v3, and the
data/command of the requests are issued on d1 and d3, respectively. We assume
that client c1 has higher priority than c3 and their priorities are sent over p1 and
p3, respectively (not shown in Figure 3.3). Since there are no pending requests
in NI2 and NI4, the multiplexers Mux1 and Mux2 grant access to both requests
arriving from NI1 and NI3, respectively. The requests arrive at Mux3 after a delay
of one clock cycle introduced by the first multiplexer stage. However, Mux3 grants
access to the request arriving from NI1 since it has the highest priority, and the
request from NI3 is dropped. Once the root NI receives the valid signal on v7, it
sends back an acknowledgement on a7 after one clock cycle delay as shown. The
acknowledgement is sent back to the source NI1 over a fully-pipelined response
path and arrives back at NI1 after three clock cycles. The request is then removed
from the head of the FIFO in NI1 and the APA status is updated. In the next
scheduling interval, NI3 reschedules the dropped request as it did not receive an
acknowledgement.
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Figure 3.3: Example timing diagram showing scheduling of write requests from clients c1 and
c3. All valid and accept signals are combined and shown together as (vn) and (an), respectively.

3.1.2 APA Architecture and Configuration

In this section, first the proposed generic RTL architecture of the Accounting and
Priority assignment (APA) logic is presented and then we show how it can be
configured to operate as either TDM, RR, FBSP, PBS or CCSP, which typically
are suitable to share the DRAM resource in real-time systems.
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The RTL architecture of the proposed generic APA logic is shown in Fig-
ure 3.4. In the NI, the atomizer splits an incoming request into smaller service
units (corresponding to the fixed request size in a real-time memory controller)
and the FIFO buffer stores all pending service units from a memory client. Work-
conserving mode of the arbitration policy is enabled by setting the register WC
to one, which enables the data valid signal (v) to be asserted whenever there
is a request pending in the FIFO. Note that in the work conserving mode, the
priority level of the memory client will be lower than its any priority level in the
non work conserving mode. Work conservation is disabled by setting WC to zero,
which means the valid signal is asserted only when a client is eligible (has enough
budget) to get service and is backlogged.
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Figure 3.4: Generic APA architecture that can be configured to operate as either TDM, RR,
FBSP, PBS or CCSP arbitration.

Algorithm 3 shows the logical operation of the Accounting and Priority as-
signment blocks1. In Accounting, the value in register Current credits (CuCr) is
incremented by the value in the register Numerator (Nr) at every SI (line 8). The
SI counter (SIC) asserts a valid signal, vSI, indicating the start of every new SI.
Addition is performed using a full-adder, Adder, with one of its inputs connected
to CuCr and the second input to Nr when it is in addition (ADD) mode. The
Adder is in the ADD mode by default and the subtract (SUB) mode is enabled
when the acknowledgement signal is valid. Note that CuCr is updated once every
SI, since it is enabled (EN) when vSI is asserted. As explained in Section 2.3,
the building up of budget in CCSP mode is not allowed when the client is not
backlogged. Hence, when bl is not asserted, the value in CuCr is set to the initial

1For clarity in presentation, the pseudo code is split into two procedures, Accounting and
Priority assignment. Accounting is triggered by signals acknowledgement (a) and backlogged
(bl) signals, whereas Priority assignment is purely combinatorial logic.
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budget stored in register Initial credits (InCr) using the multiplexer logic which
selects InCr when the output of the Adder is greater than or equal to the initial
budget (lines 3-4). On a valid acknowledgement signal, CuCr is decremented by
the value in register Denominator (Dr) (lines 10-11). Note that the value of Aout
returned (line 13) at the end of the procedure is passed to the Priority assignment
block and also used as the next state value of CuCr during the next iteration of
the Accounting procedure. The RI counter (RIC) is used by frame-based arbi-
tration policies to replenish the budget every replenishment interval by asserting
vRI which causes CuCr to be reset to the value in RCr (line 6).

Algorithm 1 Accounting and priority assignment logic

Input signals: Acknowledgement (a), Backlogged (bl)
Output signal: Priority (p)

1: procedure Accounting(a, bl)
2: if vSI then

3: if (!bl) & (Aout ≥ InCr) then

4: CuCr ← InCr
5: else if vRI then

6: CuCr ← RCr
7: else

8: CuCr ← CuCr + Nr
9: end if

10: else if (a) & (Aout ≥ LB) then
11: CuCr ← CuCr - Dr
12: end if

13: return Aout
14: end procedure

15: procedure Priority assignment(Aout)
16: if LB ≤ Aout ≤ UB then

17: p ← SP
18: else

19: p ← SPO
20: end if

21: return p
22: end procedure

The Priority assignment logic selects a priority level stored in the register
Static priority (SP) when the value of the Adder output, Aout, falls in between
the values stored in registers Lower bound (LB) and Upper bound (UB) (lines 16-
17). A different priority level with a constant offset as configured in the register
SP plus offset (SPO) is selected (lines 18-19) in work conservation mode, i.e, when
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the client is not eligible to get service in the current SI such that SP has a higher
priority than SPO. The value of the offset needs to be selected according to the
slack management policy, discussed in Section 2.3. When a client is scheduled in
work-conserving mode, no credits are deducted from its budget, and to ensure this
its current budget level is checked against the sufficient budget limit in LB before
enabling CuCr (line 10). Note that TDM does not have the notion of budget for
the clients. In FBSP and CCSP, all non-eligible clients, i.e. with budget less than
LB, are in work-conserving mode by definition.

3.1.3 APA Configurations

A summary of the different programmable registers in APA and the initial values
that need to be configured to implement the different arbitration policies are
shown in Table 3.1, which we will discuss in detail in this section.

Table 3.1: APA programmable registers and their configuration for TDM/RR, FBSP/PBS
and CCSP arbitration policies.

Arbitration policy

Register TDM/RR FBSP/PBS CCSP

InCr f f · ρ σ · dr

CuCr 0 f · ρ σ · dr

RCr 0 f · ρ Not used
Nr 1 0 nr

Dr 0 1 dr

SP Unique for each client Unique for each client Unique for each client
SPO SP + Offset SP + Offset SP + Offset
UB End slot in TDM frame > f · ρ High value
LB Start slotp in TDM frame 1 nr − dr

SIC SI SI SI

RIC f · SI f · SI Not used

TDM and RR

When configured in TDM mode, the Accounting logic keeps track of the progress
of the current frame in terms of number of slots and the Priority assignment logic
sets the priority of a client to the highest value available during its allocated slot(s)
in the frame. Note that the GAMT supports only TDM with contiguous slot
allocation strategy. In Accounting, CuCr is initialized to zero and is incremented
by one every SI by configuring Nr with a value of one, which basically keeps track
of the current slot in the frame. To identify the start of a new frame, the RIC
is configured to assert vRI every frame. This resets CuCr to zero by loading the
value from RCr which needs to be initialized to zero to restart counting the slots
for the new frame. In TDM, there is no budgeting required, and hence, the value
in Dr is initialized to zero so that ack does not affect the value in CuCr as it
switches the Adder to SUB mode. Note that RR is a special case of TDM where
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only one slot is allocated to each client, i.e. the frame length is equal to the total
number of clients.

In Priority selection, LB needs to be configured with the starting slot number
of the client in the frame and UB with the ending slot number according to
the continuous number of slots allocated to the client in the frame. In non-
work-conserving mode, the priority level of clients configured in SP does not
matter as only a single client schedules its request in a scheduling interval. For
operation in work-conserving mode, we need to assign unique priority to each
client in SP such that there is no conflict of priorities when SPO is selected, i.e.
the priority levels of all clients in SPO must be less than in SP. For example,
when the slack management policy is such that the average-case performance of
bandwidth-demanding clients needs to be increased, as explained in Section 2.3.2,
SPO can be assigned priority levels in descending order starting from the client
with largest bandwidth requirement. Note that InCr is not used in TDM mode,
but is configured to the maximum value of f to ensure that CuCr is not updated
from InCr.

Consider three memory clients, c1, c2 and c3, allocated in a TDM frame of size
five, as shown in Figure 3.5. Table 3.2 shows the initial values that need to be
set to the different programmable registers for the three clients. We have used a
constant offset value of 10 to configure SPO. Table 3.3 shows the values of CuCr
and the priority selected at different scheduling intervals for the three clients. In
general, it can be seen that the highest priority is assigned to a client during its
slot in a TDM frame according to the schedule shown in Figure 3.5. Note that
the acknowledgment signal does not have any impact on the values of CuCr and
priority as Dr is set to zero.

f 

c1 c2 c2 c3 c3

Figure 3.5: Example TDM slot allocation for clients c1, c2 and c3.

Table 3.2: Initialization of the programmable registers for clients c1 - c3 using TDM.

Register c1 c2 c3

CuCr 0 0 0
RCr 0 0 0
Nr 1 1 1
Dr 0 0 0
SP 1 2 3
SPO 11 12 13
UB 1 3 5
LB 1 2 4
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Table 3.3: Example TDM operation: values of CuCr and priority lines every scheduling interval
of clients c1 - c3.

SI # CuCr(c1) CuCr(c2) CuCr(c3) p(c1) p(c2) p(c3)

1 0 0 0 1 12 13
2 1 1 1 11 2 13
3 2 2 2 11 2 13
4 3 3 3 11 12 3
5 4 4 4 11 12 3
6 0 0 0 1 12 13

FBSP and PBS

In FBSP and PBS modes, the Accounting logic keeps track of the current budget
of a client in terms of number of slots in a frame of size f, and the Priority
assignment logic sets the priority level of the client on the priority lines as long
as sufficient budget is available. At the start of every frame, CuCr is initialized
with f · ρ′c, which corresponds to the number of slots allocated to the client c in
a frame, i.e, the maximum budget. The current budget needs to be decremented
by one whenever a service unit gets scheduled, i.e. when an acknowledgement
arrives back, and hence, Dr is configured with one. To replenish the budget at
the start of every new frame, the RIC enables the multiplexer logic to update the
initial budget from RCr to CuCr at the end of every frame. Note that Nr is set to
zero as it is not used for budget replenishment. SP needs to be configured with
the priority (determined at design time to meet the latency requirements) of the
client and SPO with a constant offset. For example, consider the case when SP is
assigned with values starting from zero, being the highest priority, and upwards
with decreasing priority. As explained in Section 2.3.2, if the slack management
policy requires the same relative priorities as SP for all the clients, a constant
offset needs to be added to SP to get SPO such that the priority levels in SPO
of all clients are lower than in SP. Note that SP is used while within budget and
otherwise SPO is used, which ensures that the allocated bandwidth is guaranteed
to the clients before the slack bandwidth is distributed among them. LB needs
to be configured with a value of one and UB with a value greater than f · ρ′c such
that the priority in SP is selected for a number of service units equal to f · ρ′c in a
frame. Note that InCr is not used in FBSP mode, but is set to a maximum value
of f · ρ′c to avoid initialization of CuCr from InCr.

Consider three memory clients c1, c2 and c3, with c1 having the highest pri-
ority and c3 the lowest, and rates ρ′1 = 1/5, ρ′2 = 2/5 and ρ′3 = 2/5, respectively,
allocated to them with an FBSP arbiter frame of size five. Table 3.4 shows the
initialization values of the different programmable registers for the three clients.
We have selected a constant offset value of 10 to configure SPO. The numbered
lines in first column of Table 3.5 shows the values of CuCr at the start of every
scheduling interval and the priority selected for the three clients. The successive
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line shows the updated values of CuCr and the priority line when an acknowl-
edgement of a client arrives back. Note that we assume all clients are always
backlogged in this example. It can be seen that the budget of a client is decre-
mented by one whenever it gets scheduled successfully, i.e. when it receives an
acknowledgement. Moreover, the priority level in SP is selected when a client
have sufficient credits (i.e. more than one) and SPO otherwise.

Table 3.4: Initialization of the programmable registers for clients c1 - c3 using FBSP.

Register c1 c2 c3

CuCr 1 2 2
RCr 1 2 2
Nr 0 0 0
Dr 1 1 1
SP 1 2 3
SPO 11 12 13
UB 3 3 3
LB 1 1 1

Table 3.5: Example FBSP operation: values of CuCr and priority lines every scheduling
interval of clients c1 - c3.

SI # a CuCr(c1) CuCr(c2) CuCr(c3) p(c1) p(c2) p(c3)

1 - 1 2 2 1 2 3
- c1 0 2 2 11 2 3
2 - 0 2 2 11 2 3
- c2 0 1 2 11 2 3
3 - 0 1 2 11 2 3
- c2 0 0 2 11 12 3
4 - 0 0 2 11 12 3
- c3 0 0 1 11 12 3
5 - 0 0 1 11 12 3
- c3 0 0 0 11 12 13
6 - 1 2 2 1 2 3

CCSP

In CCSP mode, the Accounting logic keeps track of the current budget level of
a client based on a continuous replenishment policy and the Priority assignment
logic sets a higher priority for the client on the priority lines based on its current
budget. Each client is initialized with an initial budget of σ · dr in CuCr and
InCr. The budget stored in CuCr is replenished by incrementing at a rate of nr,
configured in Nr, every SI and depleted by subtracting dr, configured in Dr, when
an acknowledgement arrives back, where nr and dr are integers used to represent
the allocated rate, ρ = nr/dr. In the Priority assignment logic, SP and SPO are
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configured with the client’s priority level and with a constant offset, respectively.
LB is set to dr as dr − nr is the minimum budget required to select SP and
that Aout is CuCr+nr at the beginning of every SI which determines the priority
level. UB needs to be set to a sufficiently large value such that it is larger than
the maximum budget that can ever built up, which is bounded in [20].

Consider three memory clients, c1, c2 and c3, with c1 having the highest
priority and c3 the lowest, rates ρ1 = 1/4, ρ2 = 1/5 and ρ3 = 2/7, and burstiness
σ1 = 1, σ2 = 1 and σ3 = 2, respectively, allocated using CCSP arbitration.
Table 3.6 shows the initialization of different programmable registers for the three
clients. We have selected an offset value of 10 to configure SPO. Table 3.7 shows
the values of CuCr and the priority levels selected for the three clients, at different
scheduling intervals and when the acknowledgement arrives back. For simplicity,
we assume all clients are always backlogged in this example. It can be seen that
the priority level in the SP is selected when a client have sufficient credits and
SPO otherwise. We can also see that the credits of c2 and c3 increase beyond their
initial credits until they get scheduled, which is valid in CCSP arbitration scheme
as long as the clients are backlogged. The continuous replenishment scheme of
CCSP allows a high-priority client to interfere more with low-priority clients since
they may build up new credits before the low-priority client depletes its budget.
This behavior can be seen when both c1 and c2 replenish and interfere again with
c3 (SI 4 & 5) before it depletes its budget. Note that this cannot happen in FPSP,
where replenishment is based on frames. As a result, CCSP gives lower latency
to high-priority clients and higher latency to low-priority clients [14].

Table 3.6: Initialization of the programmable registers for clients c1 - c3 using CCSP.

Register c1 c2 c3

CuCr 4 10 14
InCr 4 10 14
Nr 1 1 2
Dr 4 5 7
SP 1 2 3
SPO 11 12 13
UB 100 100 100
LB 4 5 7

3.2 Coupled Memory Interconnect (CMI)

In this section, we first introduce the architecture of the proposed coupled memory
interconnect (CMI) that can be used to couple a globally arbitrated memory
interconnect with the memory controller. Then, a methodology to compute the
interconnect parameters for a CMI and the worst-case guarantees provided by the
CMI is presented.
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Table 3.7: Example CCSP operation: values of CuCr and priority lines every scheduling
interval of clients c1 - c3.

SI # a CuCr(c1) CuCr(c2) CuCr(c3) p(c1) p(c2) p(c3)

1 - 4 10 14 1 2 3
- c1 0 10 14 11 2 3
2 - 1 11 16 11 2 3
- c2 1 6 16 11 2 3
3 - 2 7 18 11 2 3
- c2 2 2 18 11 12 3
4 - 3 3 20 1 12 3
- c1 0 3 20 11 12 3
5 - 1 4 22 11 2 3
- c3 1 0 22 11 12 3
6 - 2 1 15 11 12 3

3.2.1 Architecture

The basic idea is to use a single arbitration policy for the memory subsystem,
in the memory interconnect, without the decoupling buffers and the bus-based
interconnect in front of the memory controller. The interconnect and memory
controller are treated as a single (deeply) pipelined resource. For this, a single
clock source is used and the different clock frequencies for both the interconnect
and the memory controller are generated from the same clock source, which helps
to align their clock edges at the service cycle boundaries. This enables us to
schedule the service units to the memory controller using the single global schedule
without the decoupling buffers and the bus-based arbiter in front of the memory
controller. The arbiter works on a single service unit size in the interconnect and
the memory controller. This implies that the memory service cycle must be equal
to the interconnect service cycle (in ns), i.e., SCns = SCns

i . This allows the service
units to be scheduled at fixed scheduling intervals (SI).

Figure 3.6 shows the high-level architecture of a TDM NoC coupled with
a memory controller, shared by five memory clients. The clocks for the NoC
and the memory controller represented by clk i (fi) and clkm (fm), respectively,
are derived from a single clock source, clks, by dividing in different ratios, m
and n. The memory controller is a real-time memory controller, as discussed in
Section 2.2, attached to a memory operating at a frequency (in MHz) given by
fm. Compared to the decoupled architecture, previously shown in Figure 2.6,
the decoupling buffers and the atomizer in the memory controller domain are
moved to the leaves of the memory interconnect tree. Since the service units are
scheduled using the global arbitration in the interconnect, the bus and the arbiter
in front of the memory controller are not required anymore. The NI attached
to the memory controller needs only a single port instead of a number of ports
equal to the number of clients in the decoupled architecture. Since there are
no decoupling buffers in the memory controller clock domain, the NI requires a

46



buffer of size equal to the service unit. This is because we assume that the memory
controller does not serve the request until the complete service unit (including the
payload of a write request) is available in its input.
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Figure 3.6: High-level architecture of a coupled interconnect (TDM NoC) with a memory
controller shared by five memory clients c1 to c5. R1, R2 and R3 represent the routers of the
NoC.

3.2.2 Operation

Consider an example memory subsystem with five memory clients c1 to c5, and
a TDM NoC used as the memory interconnect coupled to the memory controller,
shown in Figure 3.6, with three routers R1, R2, and R3, respectively. Let us
assume a global TDM schedule with allocation for the five clients according to
Figure 3.7, where each client is allocated one slot in a frame of size five. Fig-
ure 3.8 shows the clock-cycle-level behavior of the interconnect. For simplicity,
we assume SCcc = 4 cycles and SCcc

i = 6 cycles and fi =
3
2 fm, i.e., three clock

cycles of clk i correspond to two clock cycles of clkm. In the first scheduling in-
terval (SI 1), router R1 schedules the service unit of client c1 and the first word
arrives at router R3 after a pipeline delay of R1 equal to δp (one clock cycle in
this example). Router R3 immediately forwards the service unit to the memory
controller after introducing another pipeline delay, and hence, the service unit of
c1 arrives after 2δp cycles. The memory controller has to wait for one service
cycle for the complete service unit to be delivered by the NoC. Once the memory
controller issues a read/write command, the internal pipeline stages in the mem-
ory controller introduce a delay of δm cycles after which the command reaches
the memory. Note that δm can be several clock cycles depending on the number
of pipeline stages in the memory controller. In our memory controller, δm was
around 20 clock cycles [53].

After the first read command of a request is issued to the memory, the response
data comes out after a delay of several clock cycles, δt, which depends on the tRL
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Figure 3.7: Global TDM allocation for clients c1 to c5.

and tRCD timing constraints of the memory type, as explained in Section 2.1.
The response path is fully pipelined and there is no flow control as in the channel
trees proposed in [55]. Hence, the memory controller sends back a read response
as soon as it buffers the complete data (in the memory controller FIFO) from the
memory device. As shown in Figure 3.8, the response for the service unit of c1
is completely buffered in the memory controller after δx, which takes BL/2 clock
cycles for a single burst in a double data-rate memory. However, at this point the
end of the service cycle may not be aligned with the NoC clock and hence, it has
to wait for the next rising edge of the clock before the response can be forwarded
back to the client through the routers. Similarly, clients c2 − c5 are scheduled
during the successive scheduling intervals SI 2 − SI 5, respectively, as shown in
the figure.

3.2.3 Bandwidth Matching

To ensure that the memory interconnect delivers a complete service unit in a ser-
vice cycle for a given memory operating at frequency fm and a service unit size of
SUbytes with a service cycle duration SCcc, the interconnect link bandwidth must
be same as the memory controller in a service cycle, as given by Equation (3.1).
The left-hand side of the equation corresponds to the bandwidth of the inter-
connect link during an interconnect service cycle considering the communication
overhead, δov, of the request (e.g. flit header in NoC as explained in Section 2.4)
and right-hand side the bandwidth of the memory controller interface in a memory
service cycle. In addition, we need to make sure that the NoC and the memory
controller clocks are aligned on the boundary of the service cycle. In order to
satisfy this constraint, the clock frequencies of the interconnect and the memory
controller need to be selected according to Equation (3.2). Intuitively, this means
a memory service cycle is equal to the interconnect service cycle in ns.

fi × (IWi/8)×
SCcc

i − δov
SCcc

i

= fm ×
SUbytes

SCcc
m

(3.1)

SCcc
i × fi = SCcc

m × fm (3.2)
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3.2.4 Computation of Interconnect Parameters

Given the memory frequency (fm), service unit size (SUbytes) and memory service
cycle duration (SCcc

m) and interconnect overhead (δov), we need to determine all
valid combinations of interconnect frequency and interface width (fi, IWi). Note
that the interconnect overhead is a constant for a given interconnect type. Since
we use a single clock source for both the interconnect and the memory controller,
the possible fi and fm are integer divisions of the system clock frequency. Hence,
at first a set, Z, containing all possible values of fi that are integer multiples and
common fractions of fm need to be computed. Our proposed algorithm for the
computation of interconnect parameters is given in Algorithm 2. We need to make
sure that SCns

i = SCns
m and the interconnect and the memory controller clocks are

aligned at the boundary of the service cycle. This is because the bandwidth
matching is done over a window of a service cycle, which is measured in clock
cycles. Hence, those values of fi that satisfy Equation (3.2) need to be selected
(line 6), which ensures that the number of cycles in SCcc

i (previously defined in
Equation (2.5)) corresponding to an fi will also be an integer multiple or common
fraction (same used for computing the fi from fm) of SCcc

m, i.e., the clocks will be
aligned at the edge of the service cycle. Finally, the values of IWi correspond-
ing to the different fi can be computed by substituting the values of the known
and the computed parameters in Equation (3.1)(line 9). The computed value of
IWi is rounded up if the result is a non-integer. Note that our approach might
result in IWi configurations which may not be integer multiples of IWm, requiring
appropriate width converters.

3.2.5 Real-Time Guarantees

In the coupled architecture, the worst-case latency (in ns) of an interconnect i,
L̂i,c, for a read request consisting of Nc service units at the head of the request
queue of a client c is given by Equation (3.3), where, ρ′i,c is the rate allocated
to the client in the arbiter of the coupled architecture and Θi,c is the service
latency (in service cycles) caused by interfering clients. This worst-case latency
consists of an additional memory clock cycle since the response from the memory
may not be aligned with the interconnect clock and hence it has to wait for one
interconnect clock cycle. The worst-case latency of write request, given by Equa-
tion (3.4), is similar to the read request, except that it experiences the number of
hops, nhops, across the interconnect only once as there is no response for a write
request. It can be seen in Equation (3.3) that the coupled architecture introduces
only a single service latency component in the worst-case latency as opposed to
the two in the decoupled architecture, one by the bus-based interconnect in the
memory controller clock domain (Equation (2.2)) and the other by the memory
interconnect (Equation (2.6)).
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Algorithm 2 Computation of memory interconnect parameters

Input: Memory frequency (fm), Service unit size (SUbytes), Memory service cycle
(SCcc

m), Interconnect overhead (δov), Set of integer multiples and common fractions
(Z)
Output: Interconnect interface width and frequency combinations (Fi,Wi)

1: procedure ComputeICparam(fm, SUbytes, SCcc
m, δov, F (t))

2: Fi ← ∅
3: Wi ← ∅
4: for all ζ ∈ Z do

5: f′i ← fm × ζ
6: if (SCcc

m × f′i) mod fm = 0 then

7: Fi ∪ f′i
8: SCcc

i ← ζ × SCcc
m

9: IW′
i ← ⌈ 8·fmfi ×

SUbytes

SCcc
m
× SCcc

i

SCcc
i −δov

⌉
10: Wi ∪ IW′

i

11: end if

12: end for

13: return Fi,Wi

14: end procedure

L̂i,c(RD) =
(Θi,c + ⌈Nc/ρ

′
i,c⌉) · SCcc

i + 2nhops · δp + 1

fi
+

δm + SCcc
m

fm
(3.3)

L̂i,c(WR) =
(Θi,c + ⌈Nc/ρ

′
i,c⌉) · SCcc

i + nhops · δp + 1

fi
+

δm + SCcc
m

fm
(3.4)

To summarize, a globally arbitrated memory interconnect can be coupled with
a real-time memory controller by configuring its request size equal to the memory
service unit size (using an atomizer), selecting a buffer of size equal to the memory
service unit size for the NI attached to the memory controller, and configuring the
response path to be fully pipelined. Table 3.8 shows a summary of comparison
between the coupled and decoupled architectures in terms of number of clocks,
buffers and arbiters.

3.3 Multi-Channel Memory Controller (MCMC)

In this section, we present our proposed real-time multi-channel memory controller
(MCMC) architecture. We start this section with an analysis of the impact of
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Table 3.8: Comparison between coupled and decoupled globally arbitrated memory intercon-
nect architectures.

Coupled architecture Decoupled architecture

Clocks Two (synchronous at SC boundary) Two (asynchronous)
Destination NI : One SU size for
bandwidth matching

Destination NI : FIFO ≥ one SU
size per client

Router/Mux : Pipeline register (for
global arbitration)

Router/Mux : One SU size per in-
put portBuffers

MC : One SU size MC : One SU size
Arbiters One (interconnect) Two (MC and interconnect)

interleaving memory requests across multiple memory channels on the guaranteed
service provided by arbiters belonging to the class of LR servers, which we refer
to as LR arbiters. Then, we present our proposed architecture of MCMC which
builds on the architectures of GAMT and CMI, followed by a novel method for
logical-to-physical address translation.

3.3.1 Multi-Channel Memories and LR Servers

As we have seen in Section 2.1.2, multi-channel memories allow a memory request
to be interleaved across multiple memory channels. When the memory request of
a firm real-time client is interleaved across multiple memory channels with each
channel consisting of an LR arbiter, the worst-case latency is the maximum of the
worst-case latencies among all the memory channels to which the request is inter-
leaved. Using the LR model, the worst-case latency of a client, c with a required
rate (bandwidth) ρ̌′c increases when the number of channels to which its request
is interleaved increases. This counter-intuitive result is shown in Equation (3.5),
which shows the worst-case latency (in service cycles) for a TDM arbiter in each
memory channel, assuming the required rate ρ̌′c and the total number of service
units Nc in a memory request are distributed evenly across the number of channels
to which the request is interleaved, nChc. It can be seen that the service latency
increases with nChc, however, the completion latency remains constant. Note that
the results are same even when the service units are not evenly distributed across
the memory channels. This conclusion is valid for all LR arbiters that couple
latency and rate since they all have the rate term, ρ̌′c, which will always get split
across channels and the completion latency remains constant. This is evident
from their worst-case latency equations [14]. However, note that the worst-case
latency can be reduced by interleaving a memory request across multiple memory
channels and by allocating a higher rate than requested, i.e., over-allocating rate.

L̂′
c =

⌈

f ×
(

1− ρ′

nChc

)

⌉

+

⌈

Nc/nChc

ρ′/nChc

⌉

=

⌈

f ×
(

1− ρ′

nChc

)

⌉

+

⌈

Nc

ρ′

⌉

(3.5)
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Interleaving a memory request to more than one memory channel is unavoid-
able under the following four conditions: (1) When the latency requirement of a
client cannot be met in a single channel even after allocating a 100% bandwidth
(ρ̌′c = 1) to the client. This could happen with larger request sizes as can be seen
in Equation (2.3) if the request size is so large that even after allocating a 100%
bandwidth (ρ̌′c = 1) of a channel, it does not meet its latency requirement it must
then be interleaved across multiple channels with an over-allocated rate. (2) When
the bandwidth requirement of a client could not be satisfied with the available
bandwidth in a single shared memory channel. (3) When the memory capacity
requirements cannot be met with the capacity available in a memory channel.
(4) When a client needs to communicate with another client whose requests are
interleaved across multiple memory channels for any of the previous three reasons,
since communicating requestors must be mapped to the same channels.

In a real-time system consisting of several memory clients with different re-
quest sizes and diverse requirements on bandwidth, latency, communication and
memory capacity, the optimal mapping of clients to the memory channels for min-
imal bandwidth utilization may result in different degrees of interleaving across
the memory channels for each client. This implies that the existing methods [132],
in which all clients are interleaved in the same fashion to the memory channels are
not always optimal. Hence, we need a configurable memory controller architecture
that can be configured to interleave memory requests of a client to any number
of available memory channels at different granularities. The next section presents
our proposed memory controller architecture for multi-channel memories, while
methodologies to determine the optimal mapping of memory clients to channels
are presented in Chapter 4.

3.3.2 MCMC Architecture

As we have seen in Section 3.3.1, for optimal bandwidth utilization, memory
clients need to be interleaved across multiple memory channels according to their
requirements. To enable mapping of memory requests from memory clients to
memory channels at different granularities, MCMC performs channel interleaving,
by which an incoming memory request is split into several service units of equal
size and routes them to different memory channels. The architecture of MCMC,
shown in Figure 3.9, consists of a dedicated (single channel) channel controller
(CC) (we call it channel controller to avoid confusion with multi-channel memory
controller) for each memory channel, and a memory interconnect (IC) employing
a predictable arbitration policy. The channel controller is a real-time memory
controller with a fixed service unit size configuration, as explained in Section 2.2.
The interconnect can be either a centralized memory interconnect or a globally
arbitrated interconnect, such as a TDM NoC or GAMT, coupled with the memory
controller using our proposed CMI architecture. The atomizer (AT) splits an
incoming memory request into a number of smaller units equal to the service
unit size and the channel selector (CS) routes the service units to the different
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channels according to the configuration in the sequence generator (SG). The CS
has separate request and response paths for each client. As shown in the figure,
point-to-point connections are used to interconnect the channel selectors and the
memory interconnects.

IC1 CC1
DRAM 

Channel1

Client1
CS1

SG1

A1

IC2 CC2
DRAM 

Channel2

A2

SG2

SGn

ICm CCm
DRAM 

Channelm

Am

CS2

CSn

fi fm

AT

Client2

Clientn

AT

AT

Figure 3.9: High-level architecture of the proposed multi-channel memory controller (MCMC).
The atomizer (AT) splits a memory request in to smaller service units and the channel selec-
tor (CS) routes these service units to the different memory channels according to the configu-
ration in the sequence generators (SG).

A detailed architecture of the channel selector showing both request and re-
sponse paths is shown in Figure 3.10. In the request path, the atomizer first
splits an incoming memory request into a number of service units, and then the
sequence generator routes them to the respective memory channels. The sequence
generator performs logical-to-physical address translation (explained in the next
section) for each of the service units before routing them to the memory channels.
The buffers at each output of the channel selector ensure non-blocking delivery
of service units (write data) to the different memory channels. The service units
routed to the different memory channels may get served at different time instants,
and hence the (read) responses from the memory channels may arrive at different
times and even out-of-order. Hence, the incoming responses are buffered in the
response path at the channel selectors until all of the responses from the different
channels have arrived, and then the atomizer forwards the complete response to
the client. The pattern stored in the sequence generator is used to re-order data
in the response path. Hence, the size of the output and input buffers (for write
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To atomizer

To channel 1 

From channel 1 

To channel 2

FIFO
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Figure 3.10: Detailed architecture of the channel selector, showing request and response
paths. The sequence generator routes the service units to the memory channels to which they
are mapped after performing the logical-to-physical address translation. The responses from
different channels are buffered in the response path before forwarding the complete response to
the atomizer.

data and read response, respectively) should be equal to the maximum number of
outstanding requests of a client times its request size (assuming fixed request size
for all requests from a client) to enable maximum throughput. Since the sequence
generators, arbiters and atomizers can be configured at design time, this archi-
tecture enables all possible connections of a client to any of the memory channels
with any level of interleaving, and different rate allocated to each client in each
channel. Later in Chapter 4, we present our proposed methodology for optimal
mapping of clients to channels and configuring the arbiters.

3.3.3 Logical-To-Physical Address Translation

As discussed before, an optimal mapping of clients to memory channels could
result in each channel allocated a different number of clients and different mem-
ory capacities allocated to the clients in different memory channels. Hence, the
service units of a memory request can end up in different physical addresses in
each channel when interleaved across multiple memory channels. However, the
application programmer must be able to view the entire memory space (including
all memory channels) as a single continuous logical address space to avoid explicit
data partitioning and data movement while writing the application program. In
other words, the application programmer need not worry about the number of
memory channels in the system and how memory requests are interleaved across
them.

Consider an example scenario consisting of a client c1 with a capacity require-
ment of 512 B (we consider a small capacity requirement for ease of presentation)
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and request size of 256 B interleaved across two memory channels, Channel 1 and
Channel 2. Figures 3.11a and 3.11b illustrate the logical and physical views of
the memory, respectively. Assuming a service unit size of 64 B, every request
from the client consists of four service units. Figure 3.11b shows the physical
memory map of the two memory channels, each having an address space of 1 GB.
Two service units (SU1, SU2) of request Q1 are allocated to Channel 1, and the
remaining two (SU3, SU4) are allocated to Channel 2. Request Q2 is also shown
in the figure and is allocated in the same fashion. To access an incoming memory
request, say Q2 starting at logical address 0x10010200, the address needs to be
translated to the corresponding physical addresses 0x10000180 and 0x10000080
in Channel 1 and Channel 2, respectively. To reduce complexity in the logical-to-
physical address conversion and to avoid the use of complex look-up table (LUT)
based addressing schemes, we propose a method to compute the logical address in
each channel, expressed by Equation (3.6). Note that Request size is in service
units.
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Figure 3.11: Example memory map showing client c1 allocated to two memory channels, with
every request Q1 and Q2 interleaved across the two memory channels.

ReqAddrCh = (ReqAddrApp −BaseAddrApp)≫ log2(Request size/NChn
) +BaseAddrChn

(3.6)
The logical address offset between the requested logical address, ReqAddrApp,

and the logical base address of the application, BaseAddrApp, is computed first,
and then added to the physical base address of the application in the corre-
sponding channel, BaseAddrChn

. When a request is interleaved across multiple
channels, the logical address offset is divided by the ratio of service units allo-
cated to each memory channel. This is because the memory capacity allocated
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to a client in each channel is proportional to the number of service units of its
request allocated to the channel as all the requests of a client are interleaved with
the same proportions in each memory channel. For a fast and simple hardware
implementation, division is performed using a logical shift operation. We hence
require the number of service units allocated to each channel and request sizes
(in service units) to be a power of two. Note that the request sizes of most of the
real-world memory clients, such as CPUs, DSPs, LCD & DMA controllers are in
the order of power of two [123, 127].

The logical base address of an application, BaseAddrApp, is generated by the
application compiler/linker, while the number of service units allocated to each
channel, NChn

, is decided by the one of our two mapping methods, later presented
in Section 4.3. We generate the base addresses for all the clients mapped to each
of the channels, BaseAddrCh, based on the memory capacity allocated to them
by adding the capacity required by each client in a channel.

3.4 Experiments

In this section, we first compare the performance of the coupled memory intercon-
nect (CMI) with a decoupled architecture, for two different TDM NoCs, in terms
of area, power and guaranteed latency. Also, we show the trade-off between area
usage and power consumption for the different interconnect parameters using
GAMT and the two different TDM NoCs. Then, the performance comparison of
the scalable memory tree (GAMT) with respect to centralized implementations
of two different arbitration policies is presented. Finally, we experimentally eval-
uate the real-time guarantees provided by the proposed multi-channel memory
controller (MCMC) architecture.

3.4.1 CMI Performance

Experimental Setup

Our experimental setup consists of RTL implementations of the following mod-
ules: (1) Router and NI of two different TDM NoCs, one is the packet-switched
Aelite [57] and the other circuit-switched Daelite [122]. (2) A TDM arbiter.
(3) A Bus-based interconnect using the Device Transaction Level (DTL) proto-
col, which is comparable in functionality and complexity to the AXI and OCP
protocols [106]. For logic synthesis and for power/area estimation of the designs,
we used the Cadence Encounter RTL compiler and the 40 nm nominal Vt CMOS
standard cell technology library from TSMC with worst-case process corner.

Comparison Between CMI and Decoupled NoC-Based Interconnects

This section compares the performance of CMI and decoupled NoC-based mem-
ory interconnects in terms of area, power consumption and guaranteed latency.
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Since the architectural differences between the CMI and decoupled architectures
are in the destination NI, the bus-based memory interconnect and TDM arbiter,
we synthesized these modules independently to find the differences in area and
power consumption. For simplicity, we do not compare the power consumption
of the clock sources in CMI and decoupled architectures. However, note that
the single clock source of CMI consume less power than the multiple sources in
the decoupled architecture. To determine the impact of the savings in area and
power in a real system, we consider a system consisting of 16 memory clients
with a three-stage NoC tree consisting of eight two-input NIs and seven routers.
Figures 3.12 and 3.13 show the decoupled and coupled architectures, respectively,
of the example system under consideration. The NoC and the DTL bus was con-
figured with a data-path width of 32-bits assuming a 16-bit DDR memory device
that reads/writes 32-bits every clock cycle, and synthesized with a TDM arbiter
for a target frequency of 500 MHz. For the decoupled architecture, we configured
the NI, DTL bus and the TDM arbiter with 16 ports, as shown in Figure 3.12.
Assuming that the clients have diverse requirements on bandwidth and latency,
the TDM arbiter was configured with a frame size of 64 considering an average
allocation of four TDM slots per client, which enables fine-grained allocation in
chunks of 100/64 ≃ 1.5% giving sufficient flexibility in allocating slots to the
clients according to their requirements.
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Figure 3.12: Decoupled architecture with 16 memory clients.

To compare the worst-case guaranteed latency of both CMI and decoupled
architectures, we assume the same TDM allocation for the NoC in both architec-
tures. For a system consisting of 16 clients with a worst-case bandwidth require-
ment of each client equal to 1/16th of the gross memory bandwidth, we consider
a TDM wheel of frame size 64 with four slots allocated to each client using the
distributed (equidistant) allocation strategy. Hence, the service latency of a client
c in the interconnect i, Θi,c, is 15 service cycles. For a three-stage NoC tree, i.e.,
nhops = 3. The value of δp of Aelite and Daelite are 3 and 2 clock cycles, re-

58



MC DRAM

clki clkmclks

1xFIFO 

NI

NI

R

NI

R

NI

R

NI
R

NI

R

NI

R

NI

R

NI

Client1

Client2

Client3
Client4

Client5

Client6

Client7
Client8

Client9
Client10

Client11
Client12

Client13
Client14

Client15
Client16

Figure 3.13: Coupled architecture with 16 memory clients.

spectively, according to the number of pipeline stages in their routers [57, 122].
Since we consider the worst-case latency for a read, we use a value of 20 cycles for
δm based on the pipeline stages for a read operation in the RTL implementation
of our memory controller [53]. For the decoupled architecture, we assume the
same TDM slot allocation in the bus-based arbiter in front of the the memory
controller as in the NoC for simplicity, and hence, their service latencies are 15
service cycles each.

The savings in area and power consumption by using CMI over a decoupled
architecture with Aelite and Daelite NoCs are shown in Figure 3.14. It can be
seen that the CMI consumes much less power and area and has a lower latency
compared to the decoupled architecture. The savings in area are 24% and 20%
and in power are 27% and 19% compared to Aelite and Daelite NoCs, respectively.
The larger savings in Aelite compared to Daelite is because of the larger area us-
age of its NI when a new port is added compared to the NI of Daelite. It can
be seen that the guaranteed latency with the CMI architecture is 45% lower than
the decoupled architecture with both Aelite and Daelite NoCs. This is due to the
double service latency in the decoupled architecture because of its two decoupled
arbitration stages. However, the decoupled architecture has the flexibility of se-
lecting any arbiter type in the bus-based arbiter in front of the memory controller
irrespectively of the arbitration policy in the memory interconnect. For example,
by using a priority-based arbiter and assigning the highest priority to one of its
clients, its service latency can be reduced to zero as in the case of CMI. However,
this will affect the guaranteed latencies of the low-priority clients in the system
adversely. Another benefit of using a decoupled architecture is that the memory
controller with the arbiter in front of it and the interconnect (NoC) can be run at
different clock frequencies that are not aligned. Hence, there is no restriction on
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the selection of clock frequencies unlike in the coupled architecture, as we have
seen in Section 3.2.4.
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Figure 3.14: Area and power savings and latency reduction of CMI with respect to the decou-
pled architecture for Aelite and Daelite NoCs.

Impact of Interface Width and Operating Frequency

We analyze the impact of different operating frequency and interface width (fi,
IWi) combinations for the coupled NoC on its area and power consumption in
this section. First, we compute the memory service cycle SCcc and worst-case
guaranteed bandwidth bgrossm for different DRAM devices (of 16-bit IO) with a
service unit size of 64 B according to [18]. For all those memories with different
service unit sizes, we then computed the different (fi, IWi) combinations for both
Aelite and Daelite NoCs, and GAMT according to the methodology presented in
Section 3.2.4. The values of δov for Aelite, Daelite and GAMT is 3, 2 and 0 cycles,
respectively. Table 3.9 shows the different interconnect operating frequencies and
interface widths for different memories for the service unit size of 64 B. In general,
it can be seen that the interface width and operating frequency requirement of
the interconnects increase with the gross bandwidth of the memory device, as
expected. The three interconnects may have different interface width requirements
because of their different overhead, δov. In general, it can be seen that increasing
service unit size increases the gross bandwidth of the memory because of more
efficient memory accesses and hence a faster and/or wider interconnect is required.

To analyze the trade-off between area and power consumption with the dif-
ferent (fi, IWi) combinations in Table 3.9, we synthesized the RTL design of a
single router-NI combination of both Aelite and Daelite NoCs and single APA-
Mux of GAMT, with the different (fi, IWi) combinations. We selected a single
router-NI combination for this analysis as these are the main building blocks
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Table 3.9: Memory service cycle and gross bandwidth for different DRAMs with a service unit
size of 64 B

Memory SCcc(cc) bgrossm (MB/s) (fi, Aelite IWi, Daelite IWi, GAMT IWi) com-
binations

LPDDR-
266

19 448.0 (133,32,31,27),(266,15,15,14),(399,10,10,9),
(532,8,7,7),(665,6,6,6),(798,5,5,5),(931,4,4,4)

LPDDR-
416

19 700.6 (208,32,31,27),(416,15,15,14),(624,10,10,9),
(832,8,7,7),(1040,6,6,6),(1248,5,5,5)

LPDDR2-
667

25 853.8 (199.8,43,40,35),(266.4,31,29,26),(333,24,23,21),
(399.6,19,19,18),(466.2,16,16,15),(532.8,14,14,13),
(599.4,13,12,12),(666,11,11,11),(999,8,8,7)

LPDDR2-
1066

39 874.7 (177.6,52,47,40),(355.3,23,22,20),(533,15,14,14),
(710.6,11,11,10),(888.3,9,9,8),(1066,7,7,7),
(1243.6,6,6,6)

DDR3-
800

25 1024.0 (240,43,40,35),(320,31,29,26),(400,24,23,21),
(480,19,19,18),(560,16,16,15),(640,14,14,13),
(720,13,12,12),(800,11,11,11),(1200,8,8,7)

DDR3-
1600

44 1163.6 (200,65,57,47),(400,27,26,24),(600,18,17,16),
(800,13,13,12),(1000,10,10,10),(1200,9,8,8)

of a TDM NoC and we assume that our power and area results scale accord-
ingly in a larger network. Although we understand that there could be impact
of physical routing of wires on the area usage and power consumption in a real
implementation of a NoC, an exploration in this direction is beyond the scope of
this work. Figures 3.15a, 3.15b and 3.15c show the trade-off between area and
power consumption for Aelite, Daelite NoCs and GAMT, respectively, coupled
with the different memories with a service unit size of 64 B. It can be seen that
Daelite, which is a circuit-switched NoC has about 20% higher area and 35%
higher power consumption compared to the packet-switched Aelite because of the
additional logic required by the slot table (LUT) in the Daelite router. On the
other hand, GAMT uses less than a third of the area compared to the NoC-based
interconnects as it does not have slot tables, as we have seen in Section 3.1.2.
However, the power consumption of GAMT is about 50% and 20% higher than
Aelite and Daelite NoCs at higher operating frequencies. This is because of the
larger switching activities due to the number of wires in GAMT as it uses DTL
protocol on its wires between the routers.

For all the interconnects, the power consumption increases with the gross
bandwidth of the memory device because of higher operating frequency and/or
interface width requirements. For lower area usage (smaller interface widths and
higher operating frequency), the power consumption is higher because of the dy-
namic power consumption at higher operating frequencies. The power consump-
tion reduces with operating frequency, however, the area increases because of
increase in interface width. The only exception is in the case of GAMT at higher
frequencies when the additional area is added to the APA logic to make it syn-
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thesizable at those frequencies due to the critical path in the APA logic. The
area requirement increases linearly with the interface width and hence the leak-
age power consumption. In addition to leakage power, increase in area increases
the dynamic power as well due to the added switching activity in the circuit.
Figures 3.16a, 3.16b and 3.16c show the trade-off between energy efficiency and
area usage of the three interconnects. It can be seen that although the area is
increased with wider interfaces, the energy efficiency is higher due to the slower
operating frequencies. However, increasing interface width beyond a certain limit
does not increase the energy efficiency as the leakage power starts dominating.
Note that we observed the similar results with different access granularities, 16 B,
32 B, 128 B and 256 B, and is shown in Appendix E.

To summarize, we have seen that the power consumption and area usage of
a coupled memory interconnect depends on the memory device, its access gran-
ularity and the interconnect type. Hence, given a memory interconnect, its opti-
mal interface width and operating frequency need to be selected based on power
vs. area trade-off of all the different combinations computed using our proposed
methodology. Comparing Aelite, Daelite and GAMT, we can see that Aelite and
GAMT overall have low power consumption and GAMT has low area usage.

3.4.2 GAMT Performance

In this section, we present the functional verification and performance comparison
of GAMT with centralized implementations of two different arbitration policies.
First, we will introduce the experimental setup and then proceed with the exper-
iments.

Experimental Setup

The experimental setup consists of the RTL implementation of GAMT and cen-
tralized implementations of two different arbitration policies, TDM [53] and CCSP [14],
with a 32-bit data-path. We used Cadence Encounter RTL compiler and the 40 nm
nominal Vt CMOS standard cell technology library from TSMC with the worst-
case process corner for logic synthesis to determine the power and area usage and
the maximum synthesizable frequency of the designs.

Functional Verification

We ensured the functional correctness of GAMT by comparing the scheduling
decisions made by the FPGA implementation of GAMT (with 16 clients) at every
scheduling interval with C++ reference models of centralized implementations of
TDM, FBSP, and CCSP. Note that the other supported arbitration policies are
special cases of these three arbiters and do not require additional verification. We
used synthetic traffic generators for the clients to generate random traffic to cover
both backlogged and non-backlogged conditions and verified the functionality
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Figure 3.15: Area vs. power trade-off of Aelite and Daelite NoCs, and GAMT coupled with
different memories with a service unit size of 64 B. For clarity, only the (fi, IWi) combinations
for LPDDR-266 are shown.
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Figure 3.16: Energy efficiency (Gb/J) vs. area trade-off of Aelite and Daelite NoCs, and
GAMT coupled with different memories with a service unit size of 64 B. For clarity, only the
(fi, IWi) combinations for LPDDR-266 are shown.
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(for several thousands of scheduling decisions) in both work-conserving and non-
work-conserving modes of all the three arbitration policies. We found that all
scheduling decisions made by both GAMT and the centralized implementations
were the same, and hence, we conclude that GAMT correctly implements the
different arbitration policies. Since all decisions in GAMT are made identically
to the centralized reference implementations, the timing analyses of the original
arbiters can be used for GAMT as well with an only addition of the constant
propagation delay in GAMT.

Performance Comparison

We synthesized the design of GAMT and the centralized implementations of TDM
and CCSP for different number of clients, i.e. 4, 8, 16, 32 and 64 to determine the
maximum synthesizable frequency. Note that we selected frame-based (TDM)
and priority-based (CCSP) arbiters to compare GAMT with different types of
hardware implementations. For TDM, we have used a frame size such that each
client gets four slots and for CCSP, we used registers with 16-bit precision for
the configuration registers (Numerator, Denominator, and Current Credits). Ta-
ble 3.10 shows the area, power and maximum clock frequency of the GAMT and
the centralized implementations of TDM and CCSP. In general, it can be seen
that the maximum clock frequency, fmax, of centralized TDM and CCSP do not
scale with the number of clients. With 64 clients, GAMT can be run up to a clock
frequency of 1.2 GHz, whereas CCSP and TDM are limited to 0.3 GHz.

Table 3.10: Area, power and maximum clock frequency (fmax) of GAMT and centralized
implementations of TDM and CCSP

Area (mm2) Power (mW ) fmax (MHz)
# Clients TDM CCSP GAMT TDM CCSP GAMT TDM CCSP GAMT

4 0.016 0.020 0.017 5.19 5.35 4.55 588 526 1250
8 0.029 0.036 0.035 7.88 8.07 9.77 500 435 1250
16 0.061 0.077 0.070 16.13 14.94 20.20 435 357 1250
32 0.107 0.172 0.141 17.46 25.36 41.07 333 333 1250
64 0.203 0.417 0.282 35.60 63.18 82.81 333 303 1250

In general, the area and power consumption of all different designs increase
linearly with the number of clients due to the additional logic added. The area
usage of centralized CCSP increases significantly with increasing number of clients
due to the extra logic added to break the critical path. The fmax for centralized
TDM scales down as well with increasing number of clients due to the critical
path in the priority resolution logic for the work-conserving mode. On the other
hand, GAMT has better scalability in fmax with the number of clients, since its
critical path in the APA logic remains constant irrespectively of the number of
clients as it is dedicated for each client. However, it is worthwhile to note that
GAMT consumes more power compared to the centralized implementations in
most cases. This is primarily due to the addition of extra priority lines in the bus
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and the dedicated APA logic for each client. One limitation of GAMT is that
it can support only TDM with contiguous slot allocation strategy, whereas the
centralized implementation of TDM using a Look-up-Table (LUT) can support
distributed allocations [14].

To efficiently compare the centralized designs and GAMT in terms of fre-
quency, area and power consumption, we define two cost-efficiency metrics, band-
width/area and bandwidth/power (bits/Joule). Bandwidth is computed by multi-
plying data-path width (in Bytes) with the clock frequency (fmax). Figures 3.17
& 3.18 shows the ratio of bandwidth (Bytes/s) to area usage (mm2) and band-
width (Bytes/s) to power consumption (mW ), respectively, of centralized CCSP
and TDM normalized to GAMT. It can be seen that for all configurations of
clients, GAMT has over 51% and 37% performance gain in terms of area and
power consumption, respectively, compared to traditional centralized implemen-
tations of CCSP and TDM. Hence, we can conclude that GAMT is suitable when
there are a large number of memory clients in the system that requires the arbiter
to be clocked at higher speed or when the platform requires different arbiters for
different sets of applications.
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Figure 3.17: Bandwidth/Area performance of centralized CCSP and TDM arbiters normalized
to GAMT.

3.4.3 MCMC Evaluation

Experimental Setup

The experimental setup consists of a cycle-accurate SystemC model of MCMC us-
ing Predator [13] as channel controllers attached to a Wide IO 200 MHz DRAM [4]
memory model with each channel consisting of 4 banks and a data bus of 128-bits.
TDM arbiters with contiguous slot allocations are used as the LR arbiter in the
channel controllers.
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Figure 3.18: Bandwidth/Power performance of centralized CCSP and TDM arbiters normal-
ized to GAMT.

To demonstrate the guarantees provided by MCMC on worst-case latency
and bandwidth, we consider two clients: one with low latency requirements (c1)
and the other with worst-case bandwidth requirements (c2), which corresponds
to real-time low-latency and some streaming clients [129], respectively. We used
the mpeg2 decode application from the MediaBench [81] benchmark suite applica-
tions as c1. To emulate c1, we used a SystemC traffic generator that can elastically
replay transaction-level traces of memory requests of the application. The mem-
ory request traces are generated by running the application on a SimpleScalar
out-of-order simulator [2] with a unified 64 KB and 128 KB L1 and L2 caches,
respectively. The L2 cache is configured with 64 B cache lines, 512 sets and an
associativity of 4. With this configuration, each request in the trace thus corre-
sponds to a cache miss of 64 B. To measure the actual round-trip latency from
the point at which a request is issued until the final response arrives back at
the client without the impact of self-interference2, we have configured the traffic
generator with maximally one outstanding request, such that c1 issues memory
requests of size 64 B one at a time (for each cache-miss) and the successive re-
quests are blocked until the response of last issued request has arrived. For c2,
we used a synthetic memory request generator, which generates requests of size
64 B according to a normal distribution with a sufficiently low mean to request
more bandwidth than the client is allocated to ensure that the client is always
backlogged. This implies self-interference between the requests. The synthetic
client generates a mix of both read and write requests.

For the Wide IO SDR 200 MHz device, we selected an access granularity of
32 B in each channel that provides a worst-case bandwidth of 484.1 MB/s per
channel (computed according to the analysis in [14]). We selected the service unit

2To be consistent with our system model that provides guarantees on end-to-end latency for a
complete request without self-interference.
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size equal to the access granularity of 32 B, which takes 13 clock cycles to read
and write to the memory (service cycle). We selected this service unit size since it
is smaller than the request size (of 64 B), giving us the flexibility of interleaving
the memory requests across channels.

Bandwidth is computed counting the requests served by a channel controller
during an interval. When a request is interleaved across multiple memory chan-
nels, we compute the bandwidth in each channel individually and sum them up
to find the total provided bandwidth. To measure the latency of a request, we
find the time difference between the time at which a read request arrives at the
request buffer of MCMC until the complete response arrives back. Note that this
is consistent with our system model presented in Section 2.3.

We measured the latency and bandwidth of c1 and c2, respectively, for differ-
ent cases (discussed in the next section) and compared against the analytically
computed worst-case bounds. The worst-case bandwidth of a client is computed
as a fraction of the worst-case bandwidth provided by a channel using the fraction
of TDM slots (rate) allocated to the client. We computed the worst-case latency
bound using Equation (2.3), and also included the overhead due to the hardware
pipeline stages (9 clock cycles) and one refresh duration (130 ns for Wide IO
DRAM). The hardware pipeline delays are introduced by the atomizer, channel
selector, interconnect and the memory controller. We add only one refresh dura-
tion to the latency of a request, since only one refresh operation can occur in a
single TDM wheel considering the much larger refresh interval of 7.8 µs for the
WIDE IO 200 MHz 2 Gb device compared to the TDM frame size of 6 (= 390 ns),
which we used in our experiments.

Simulation Results

We need to evaluate the guarantees on latency and bandwidth provided by our
MCMC to c1 and c2, respectively, under different interleaving schemes. Hence,
we perform experiments by configuring the sequence generators in the channel
selectors for the following four different cases of interleaving: 1) Neither client is
interleaved across memory channels. 2) Only c1 is interleaved across two memory
channels. 3) Only c2 is interleaved across two memory channels. 4) Both clients
are interleaved across memory channels. Figures 3.19 & 3.20 show both TDM
slot allocation and the simulation result for Cases 3 & 4, respectively. Due to
similarity in results, we do not show Cases 1 & 2. The simulation results show
both measured latency of c1 and bandwidth of c2 during the first 200 µs of the
simulation with their respective worst-case bounds.

In all four cases and for the complete duration of simulation, we observed that
the guaranteed latency bound is only about 15% higher than the maximum of the
measured latencies (depicted by crosses) of all of the requests and the measured
bandwidth (depicted by circles) is 0% off from the guaranteed bandwidth bound as
expected. This is because the worst-case latency bound is computed according to
the abstract LRmodel, which provides a conservative bound. However, the worst-
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Figure 3.19: Case 3 : c2 is interleaved across two memory channels with a rate of 5/6 in each
channel, and c1 is interleaved to one memory channel with a rate of 1/6. The measured latency
of every request of c1 is depicted by a cross and the measured bandwidth of c2 during every
refresh interval is depicted by a circle.

case guaranteed bandwidth is a tight bound, since it is computed considering the
actual DRAM command timing constraints including refresh. Refresh is periodic
and its impact on bandwidth can be estimated accurately [14]. Note that c2 is
constantly backlogged to measure the guaranteed bandwidth. This shows that
the analysis technique that we use in this work gives good bounds. Comparing
Figures 3.19 & 3.20, it can be seen that the average latency of c1 is lower by
about 50% after interleaving across two memory channels, since it gets twice the
rate. However, the guaranteed latency bound is lower by about 30% only, as the
completion latency is reduced by half but the service latency remains the same,
according to Equation (3.5).

To summarize, we have demonstrated that the bounds on bandwidth and
latency given to the clients are conservative and we have verified the conserva-
tiveness for much longer simulation traces than shown in the figures. Also, we
have seen that the worst-case latency and/or bandwidth bounds vary according to
the number of service units allocated in each memory channel and the allocated
rate. Hence, our configurable multi-channel memory controller enables configur-
ing the memory subsystem for efficient utilization according to the latency and/or
bandwidth requirements of the memory clients.

3.5 Summary

To address the scalability issue with present real-time memory subsystems, this
chapter presented three main innovations: (1) A generic globally arbitrated mem-
ory tree (GAMT). (2) A coupled memory interconnect (CMI) architecture. (3) A
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Figure 3.20: Case 4 : Both clients c1 and c2 are interleaved across the two memory channels
with a rate of 1/6 and 5/6, respectively, in each channel. The measured latency of every request
of c1 is depicted by a cross and the measured bandwidth of c2 during every refresh interval is
depicted by a circle.

multi-channel memory controller (MCMC). In addition, we have shown the per-
formance evaluation of the different architectures by experimentation.

For a scalable memory interconnect in terms of clock frequency, we proposed
a novel memory tree, GAMT, for distributed implementation of predictable ar-
bitration policies. Moreover, our configurable RTL-level design of GAMT can
be configured to operate as any of the five different predictable arbitration poli-
cies, TDM, RR, FBSP, PBS, and CCSP, which are proposed for shared memory
access in real-time systems. Our experimental results show that GAMT outper-
forms the centralized implementations by more than four times in terms of clock
speed and over 51% and 37% in terms of bandwidth/power and bandwidth/area
trade-off, respectively. However, GAMT consumes more power than centralized
implementations due to the larger switching activity.

To minimize the area usage, power consumption and worst-case latency in the
existing distributed memory interconnects, we presented a novel coupled memory
interconnect architecture (CMI) to couple the memory interconnect with a real-
time memory controller. Coupling the NoC and memory controller using the
proposed architecture saves 45% in guaranteed latency, 24% and 20% in area,
27% and 19% in power consumption, for two different TDM NoCs when used as
the memory interconnect, for a system consisting of 16 memory clients. However,
this comes at the cost of restricting the interconnect operating frequency to a
limited set of values.

For a scalable memory subsystem in terms of number of memory channels, we
presented a real-time multi-channel memory controller (MCMC) architecture in-
cluding a novel method for logical-to-physical address translation. Our proposed
MCMC architecture allows interleaving of memory requests across multiple mem-
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ory channels with different granularities and rates allocated to each client in each
channel. Finally, we demonstrated the real-time guarantees provided by MCMC
by experimentation.
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Chapter 4

Bandwidth-Efficient

Memory Subsystem Design

Bandwidth-efficient design of the memory subsystem, i.e. maximum memory ef-
ficiency and minimum bandwidth allocated to clients, in a real-time system is
challenging. This is because the design choice of several system-level parameters
related to DRAM type selection and configuration, and configuration of multi-
channel memory controller need to be made, while providing memory performance
guarantees to the memory clients with diverse real-time requirements. Currently,
there are plenty of memory type options available in the market with different
interface widths and operating frequencies. These parameters need to be consid-
ered carefully while selecting a memory type in order to get maximum memory
bandwidth for the price paid. In addition, the configuration of the memory map in
the memory controller affects how efficiently the memory bandwidth is utilized.
On the other hand, the bandwidth that needs to be allocated to the memory
clients in the memory subsystem in order to meet their bandwidth and/or la-
tency requirements must be minimized to maximize the slack bandwidth. The
slack memory bandwidth can be allocated to the soft or non-real-time clients in
the system to improve their average-case performance. The bandwidth that needs
to be allocated to the clients in a multi-channel memory subsystem depends on the
the client bandwidth and/or latency requirements, mapping of clients to memory
channels, and the client request sizes. Existing design methodologies of memory
subsystems either does not consider mapping of clients to multi-channel memories
or do not provide real-time performance guarantees to the memory clients.

In this chapter, we first formally define the problem and give a high-level
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overview of our proposed design flow for the bandwidth-efficient design of memory
subsystem in Section 4.1. We present a worst-case analysis of memory types across
and within generations in Section 4.2, and derive guidelines for the configuration of
memory map parameters. In Section 4.3, we present our proposed algorithms for
mapping memory clients to memory channels and arbiter configuration. Finally,
a case study demonstrating the effectiveness of our proposed approach for a High-
Definition (HD) video processing system is presented in Section 4.4.

4.1 Motivation and Proposed Solution

In this section, we first define the problem and then introduce the high-level
overview of our proposed design-flow for bandwidth-efficient design of memory
subsystems in real-time systems.

4.1.1 Problem Statement

There are plenty of DRAM types available in the market [9, 96, 10] of differ-
ent generations, interface widths (IWm), operating frequencies (fm) and number
of memory channels (NC). Once a memory type is selected, there are differ-
ent configuration options for the memory map parameters (BI, BC), defined in
Section 2.2, in the memory controller. The selection of a memory type and its
configuration need to be done carefully as the worst-case bandwidth utilization of
the memory depends on its interface width and operating frequency, the config-
uration of the memory map parameters in the memory controller, and the client
requirements and request sizes [17, 48].

As we have seen in Section 1.1.4, the real-time memory subsystem consists of
an arbiter in front of the memory controller, which multiplexes memory requests
arriving from the different clients. The configuration of this arbiter, such as frame
size (f) and number of TDM slots allocated to each client in the case of a TDM
arbiter, needs to be done such that their bandwidth and/or latency requirements
are satisfied. However, the bandwidth allocated to a client depends on other
factors as well, such as the amount of over-allocation of bandwidth required due
to the discretization of rate in the case of frame-based arbiters [46] and the impact
on client latency and memory bandwidth of the memory map configuration.

Memories with multiple physical channels and wide interfaces, such as Wide IO
DRAMs [4, 8], are essential to meet the main memory power/bandwidth demands
of future real-time systems [48]. In multi-channel memories, a memory client
can be mapped to multiple memory channels by interleaving its memory requests
across different memory channels after splitting it into smaller sized requests.
Previous studies on multi-channel memories show that mapping soft real-time
memory clients to multiple memory channels according to their memory request
sizes benefits average-case performance [111, 31, 101]. In addition to having dif-
ferent request sizes, and communication and memory capacity requirements, firm
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real-time memory clients in real-time multi-processor platforms come with diverse
requirements on memory bandwidth and latency, as well. The bandwidth allocated
to firm real-time memory clients must be minimized to maximize the slack band-
width that can be allocated to the soft and non-real-time clients in the system,
which improves their average-case performance [83].

To summarize, we define our problem statement as follows: Given a set of
memory client requirements and memory type specifications, select the memory
and configure the memory map parameters in the memory controller for maximum
worst-case gross bandwidth, and determine the mapping of memory clients to the
channels for minimum allocated bandwidth.

4.1.2 Overview of Proposed Design-Flow

The proposed design-flow for the bandwidth-efficient design of memory subsystem
in real-time systems shown in Figure 4.1 consist of four main steps as explained
below.

Step 1 : Given a set of memory types, first we need to compute the peak
bandwidth of each memory, as explained in Section 2.1, and select those with
peak bandwidth greater than or equal to the total bandwidth requirements of all
the clients. Also, the total memory capacity requirements of all the clients need
to be satisfied by the selected memories. This step helps to discard the memory
types that trivially cannot satisfy the client bandwidth and capacity requirements.
Both single and multi-channel memories are included in this step. Note that we do
not consider DRAM prices in our design-flow as prices are volatile [1]. However,
the system designer can consider the memory price when including the memories
in this step.

Step 2 : In this step, the worst-case bandwidth of the memories (from the pre-
vious step) is computed for different service unit sizes according to our memory-
map design guidelines, which will be explained later in Section 4.2.1. Note that
the worst-case gross bandwidth of different memory map configurations is com-
puted as explained in [14]. Using our memory-map design guidelines in this step
reduces the design-space significantly as there are several memory-map configu-
rations possible for a memory.

Step 3 : Here, the aggregate bandwidth requirements of all clients is computed,
as explained in Section 4.2.2, considering the different request sizes of the clients.
This step captures the impact of data efficiency, as explained in Section 2.2, on the
bandwidth requirement. Then, those service unit sizes that provide a worst-case
gross bandwidth larger or equal to the aggregate client bandwidth requirements
are selected.

Step 4 : For each memory type and for all the service unit sizes determined in
the previous step (that provides sufficient bandwidth to meet the aggregate client
bandwidth requirements) the clients are mapped to the memory channels, i.e. the
interleaving granularities of each client in each memory channel and the arbiter
configurations are determined. For this, we present two design-time methods,
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that determine the number of service units and allocated rate allocated to each
client in each memory channel, for minimal total allocated bandwidth. One is an
optimal algorithm (Section 4.3.2) based on an integer programming formulation
of the mapping problem, and the other a fast heuristic algorithm (Section 4.3.3).

If the client requirements are not met with any of the service unit size con-
figurations in Steps 2, 3 or 4, a new set of memories with higher bandwidth are
selected and the whole process is repeated from Step 1. Note that the new set
of memories can be faster memories or memories with larger number of memory
channels which were not considered previously.

Set of available 

memory types

Compute client aggregate 

bandwidth requirement for 

different service unit sizes

Compute worst-case gross 

bandwidth for different service 

unit sizes

One or more service unit size and gross 
bandwidth that satisfies client 
gross bandwidth requirement

One or more service unit size and gross 
bandwidth that satisfies client 

aggregate bandwidth requirement

Map clients to memory channels 

for different service unit sizes 

Select memories with peak 

bandwidth ≥ gross bandwidth 

requirement of all clients

Memory specifications

Client Client Client Client 

requirementsrequirementsrequirementsrequirements::::
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Communication

Client request sizes

If mapping fails

Start

Memory map 

design guidelines

OutputOutputOutputOutput::::

Memory device, memory 

map configuration,  

mapping of clients, and 

arbiter configuration

If no service unit size satisfies client 
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Select different 
memory types

Figure 4.1: Proposed design-flow for bandwidth-efficient design of DRAM subsystem in real-
time systems. Note that the final output of the design-flow is a single optimal configuration
although there are one or more service unit sizes that gives a valid mapping.
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4.2 Memory Map Selection and Aggregate Band-
width Computation

In this section, we first start with a worst-case analysis where we show the guaran-
teed bandwidth results of DRAM types across generations and derive guidelines
for the configuration of memory map parameters. Then, we present our proposed
methodology for the selection and configuration of DRAM.

4.2.1 Memory Map Selection

Our worst-case analysis assumes a real-time memory controller, as explained in
Section 2.2. The different memories selected for the worst-case analysis are given
in Table 4.1. For simplicity, we consider only the mobile memory generations that
target at battery-operated mobile devices, although our approach can be straight-
forwardly applied to other memory generations, such as DDR2 and DDR3, as
well. We computed the worst-case bandwidth of the memories for different ac-
cess granularities using the analysis methods in [14]. Note that a similar analysis
can be applied to other existing real-time memory controllers as well. The mem-
ory command timings for LPDDR, LPDDR2 and LPDDR3 are based on Micron
specifications [93, 94, 95], and WideIO (SDR) and WideIO2 (DDR) on JEDEC
specifications [4, 8]. Note that the BL is fixed to the standard configuration for
all the memory types.

Table 4.1: Memory types of different generations, capacities, operating frequencies, interface
widths and burst length settings used for our worst-case analysis.

Memory type Memory
capacity
(Gb)

Operating
frequency
(MHz)

Interface
width
(bits)

Number of
memory
channels

Burst
length
(BL)

LPDDR 2 133, 208 16 1 8
LPDDR2 2 333, 533 16 1 8
LPDDR 2 133, 208 32 1 8
LPDDR2 2 333, 533 32 1 8
LPDDR3 8 667, 800 32 2 8
WideIO 4 200, 266 128 4 4
WideIO2 8 400, 533 64 4 8

For the design-space exploration of memory map configuration, we computed
the worst-case bandwidth for different combinations of BI and BC (BL is fixed as
shown in Table 4.1) and for different access granularities. Figure 4.2 shows the
worst-case gross bandwidth of all memory types for different access granularities,
i.e. service unit sizes, and with different (BI,BC) combinations. In general, it
can be seen that the gross bandwidth increases with the service unit size. This
is because a larger burst access improves the memory efficiency by minimizing
the negative impact of the overhead clock cycles, explained in Section 2.1, for a
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memory access [14]. Now looking at the different (BI,BC) combinations, we can
see that the gross bandwidth is larger when BI is increased first and then BC for all
the memory types. This is because by increasing the number of banks over which
a memory request is interleaved, bank-level parallelism can be exploited to hide
the overhead in accessing data from a memory bank [14]. However, interleaving
memory requests across 8 memory banks (8,1) results in poor memory bandwidth
due to the negative effect of the four-activate window constraint, explained in
Section 2.1, on the worst-case gross bandwidth [52]. Note that WideIO memories
have a two-activate window constraint, and hence, the memory map configuration
(4,1) has lower gross bandwidth than (2,2) for those memories. From our worst-
case analysis results, we derive the following two guidelines for the selection of BI
and BC to maximize the worst-case bandwidth:

1. Maximize BI, i.e. interleave data over the maximum number of banks until
the activate command window constraint. This is because efficient pipelin-
ing of memory commands across different banks, i.e. bank-level parallelism,
improves overall efficiency by hiding some of the DRAM timing constraints.

2. Maximize BC to amortize remaining overhead over a larger access granu-
larity.

These guidelines should be respected in the order they are mentioned. Note
that while this approach maximizes the worst-case bandwidth, it reduces the
energy efficiency due to the use of a large number of memory banks [52].
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Figure 4.2: Worst-case gross bandwidth of slowest and fastest memory types with different in-
terface widths across and within generations. The X axis shows the different access granularities
(in Bytes) and different (BI,BC) combinations.

79



916.9
1,684.1

1,828.7

2,895.4
3,357.4

3,636.9

4,521.6

5,657.0
6,541.1

4,659.1

0

1000

2000

3000

4000

5000

6000

7000

(1,1) (1,2) (2,1) (1,4) (2,2) (4,1) (1,8) (2,4) (4,2) (8,1)

32 B 64 B 128 B 256 B

G
ro
ss
 b
an
d
w
id
th
 (
M
B
/
s)

(i) LPDDR3-1333-x32

933.8
1,736.6

1,862.7

3,045.7
3,464.0

3,705.6

4,888.2

6,059.2
6,891.2

4,829.9

0

1000

2000

3000

4000

5000

6000

7000

8000

(1,1) (1,2) (2,1) (1,4) (2,2) (4,1) (1,8) (2,4) (4,2) (8,1)

32 B 64 B 128 B 256 B

G
ro
ss
 b
an
d
w
id
th
 (
M
B
/s
)

(j) LPDDR3-1600-x32

3,393.6

5,358.4
6,356.9

7,541.4

10,158.0
9,231.5 9,470.6

11,283.0 11,283.0

0

2000

4000

6000

8000

10000

12000

(1,1) (1,2) (2,1) (1,4) (2,2) (4,1) (1,8) (2,4) (4,2)

64 B 128 B 256 B 512 B

G
ro
ss
 b
a
n
d
w
id
th
 (
M
B
/
s)

(k) WideIOSDR-200-x128

3,762.1

6,156.2
7,517.0

9,029.1

12,288.6

9,655.3

11,777.1

15,012.1 15,012.1

0

2000

4000

6000

8000

10000

12000

14000

16000

(1,1) (1,2) (2,1) (1,4) (2,2) (4,1) (1,8) (2,4) (4,2)

64 B 128 B 256 B 512 B
G
ro
ss
 b
a
n
d
w
id
th
 (
M
B
/
s)

(l) WideIOSDR-266-x128

2,959.8
5,279.7

5,903.7

8,682.1
10,233.1

11,735.8
12,809.7

16,815.5

19,259.1
17,915.4

0

5000

10000

15000

20000

(1,1) (1,2) (2,1) (1,4) (2,2) (4,1) (1,8) (2,4) (4,2) (8,1)

64 B 128 B 256 B 512 B

G
ro
ss
 b
a
n
d
w
id
th
 (
M
B
/
s)

(m) WideIO2DDR-800-x64

3,100.2
5,661.3

6,181.7

9,645.2
11,276.9

12,288.4
14,881.2

19,134.7

22,371.2

18,338.8

0

5000

10000

15000

20000

25000

(1,1) (1,2) (2,1) (1,4) (2,2) (4,1) (1,8) (2,4) (4,2) (8,1)

64 B 128 B 256 B 512 B

G
ro
ss
 b
an
d
w
id
th
 (
M
B
/s
)

(n) WideIO2DDR-1066-x64

4.2.2 Aggregate Bandwidth Computation

In a system consisting of multiple clients with different request sizes, it may
not always be ideal to select the largest service unit size configuration for the
memory controller to get the highest gross bandwidth. This is because there can
be several clients with smaller request sizes than the service unit size, which results
in poor memory utilization. Hence, we need to consider data efficiency before
selecting a memory map configuration. In this section, we present an algorithm to
compute the aggregate gross bandwidth requirements of all the clients considering
the different request sizes, which helps determining whether or not the gross
bandwidth provided by a given service unit size can meet the client requirements.

We use Equation (4.1) to compute the client aggregate bandwidth requirement
(b̌aggu ), where u ∈ U is the set of service units. The inputs to the equation are
the client request sizes sc (in Bytes), worst-case bandwidth requirements b̌c of all
the clients c ∈ C in the system and set of service unit sizes SUbytes

u . Typically,
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the service unit sizes can be 16 B, 32 B, 64 B, 128 B, 256 B and 512 B, as 16 B
is the minimum access granularity of a 16-bit DDR memory (with a burst length
of 8) and the request sizes of most of the real-world memory clients are less than
512 B [123, 127]. In Equation (4.1), first the aggregate bandwidth requirement
(b̌aggu ) of all the clients, as proposed in [52], is computed. This is repeated for
different service unit sizes u. For a given access granularity, the minimum band-
width requirement of a client after considering its data efficiency is computed
by dividing its bandwidth requirement with the ratio of its request size and the
access granularity.

∀u ∈ U : b̌aggu =
∑

c∈C

b̌(c)

min[1, (sc/SU
bytes
u )]

(4.1)

Given that we have presented the guidelines for memory map configuration
based on worst-case analysis and the algorithm for computation of aggregate
client bandwidth requirements, we now proceed to our proposed algorithms to
map memory clients to memory channels, in the next section.

4.3 Mapping Clients to Memory Channels

This section presents an optimal method, which is based on an integer program-
ming formulation of the problem, and a heuristic algorithm for mapping memory
clients to memory channels. First, we present a formal definition of our system
and then a generic optimization problem formulation, which applies to any arbiter
belonging to the class of LR servers, followed by our proposed heuristic algorithm.
Finally, we present a performance comparison of the two approaches.

4.3.1 System Model

The set of memory channels is defined as m ∈M , with each channel having a total
memory capacity (in Bytes) given by κm. Note that we use the same notation
m previously used to denote a memory for the memory channel as well as we
consider the memory channels are a set of independent memories. As defined in
Section 2.2, the service unit size (in Bytes) of each memory channel is given by
SUbytes

m , with a service cycle (in ns) given by SCns
m . For simplicity, we assume

the same service unit size in all memory channels. Also, we assume the same
LR arbiter in all memory channels, possibly with different configurations. For
each memory channel m ∈M , the worst-case gross bandwidth (in MB/s) can be
computed for a fixed service unit size SUbytes

m (e.g. see [14]), and is given by bgrossm .
Note that we assume the same service unit size configuration in all the memory
channels.

Consider a set of clients denoted by c ∈ C, each with a worst-case latency
requirement (in ns) given by L̂ns

c , minimum bandwidth requirement (in MB/s)
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given by b̌c, and a total (minimum) memory capacity requirement (in Bytes) given
by κ̌c. Note that the minimum rate required by a client can be computed as the
ratio of its minimum bandwidth requirement b̌c and the worst-case bandwidth of
a channel bgrossm . The worst-case latency requirement (in service cycles) of a client
c ∈ C, in each channel m ∈M is given by L̂m,c, and is defined as:

L̂m,c = ⌊L̂ns
c /SCns

m ⌋ (4.2)

The request size (in Bytes) of requests from a client c ∈ C is given by sc.
We assume a constant (or maximum) request size for all requests from a single
client since it typically holds for the real-time clients under consideration, such as
CPUs, hardware accelerators, and LCD controllers. The number of service units
in each request of a client c ∈ C is given by qc and is defined by Equation (4.3).
Since the request sizes, sc, and access granularity of a memory client, SUbytes

m , are
both powers of two, qc will also be a power of two.

qc = sc/SU
bytes
m (4.3)

Each client c ∈ C has an associated group number given by gc, which repre-
sents the communication dependencies with other clients. In other words, clients
that need to communicate through shared memory are assigned the same group
number. A summary of the memory system and client parameters and their
corresponding notations are given in Appendix B.

4.3.2 Optimal Method for Mapping Clients to Channels

In this section, we present the formulation of the multi-channel mapping problem
as an integer programming problem. As mentioned before, we need to minimize
the bandwidth allocated to firm real-time clients to maximize the slack band-
width, which improves the average-case performance of soft real-time clients in
the system. Hence, we define our optimization problem as follows:

Find the mapping of clients to the memory channels, the number of service
units allocated to those channels, Nm,c, and a rate, ρ′m,c, for each client c ∈ C in
each memory channel m ∈ M , such that all client requirements are satisfied and
the sum of rates allocated to all clients is minimized. The optimization problem
is defined as:

Minimize:
∑

m∈M

∑

c∈C

ρ′m,c (4.4)

Such that the following nine constraints are satisfied:
Constraint 1: The worst-case latency of each client c ∈ C after allocation L̂′

c

must be less than or equal to its worst-case latency requirement L̂c, and is defined
as:

∀c ∈ C : L̂′
c ≤ L̂c (4.5)
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The service units of every request of a client are allocated across the memory
channels such that each client has a (Θ, ρ′) pair per channel describing its service.
The worst-case latency of a client c ∈ C in each channel m ∈ M is then given
by L̂′

m,c, and is defined by Equation (4.6), where Θm,c is the service latency of a
client c in each channel m. Note that Equation (4.6) is same as Equation (2.2),
but adapted for multiple memory channels. For simplicity of presentation, we
do not add the fixed delay that depends on the number of pipeline stages in the
RTL implementation of the multi-channel memory controller architecture. Note
that this fixed delay is about 20 clock cycles in the RTL implementation of our
memory controller [53].

∀m ∈M, c ∈ C : L̂′
m,c = Θm,c + ⌈Nm,c/ρ

′
m,c⌉ (4.6)

The worst-case latency of a client c ∈ C is then the maximum of the worst-case
latencies among all the memory channels, which is defined as:

∀m ∈M, c ∈ C : L̂′
c = max

m∈M
L̂′
m,c (4.7)

The max function is removed to enable formulation as an integer programming
problem, and Constraint 1 is then defined as:

∀m ∈M, c ∈ C : L̂c − L̂′
m,c ≥ 0 (4.8)

Constraint 2: The sum of rates allocated to all clients c ∈ C in each memory
channel m ∈M must not be greater than 1, i.e., 100%, defined as:

∀m ∈M :
∑

c∈C

ρ′m,c ≤ 1 (4.9)

Constraint 3: The sum of rates allocated to each client c ∈ C across all memory
channels m ∈M should be greater than or equal to its minimum required rate.

∀c ∈ C :
b̌c

∑

m∈M bgrossm
≤

∑

m∈M

ρ′m,c (4.10)

Constraint 4: The sum of service units Nm,c of each client c ∈ C allocated
across all memory channels m ∈ M must be equal to the total number of service
units qc in every request from the client, defined as:

∀c ∈ C : qc =
∑

m∈M

Nm,c (4.11)

Constraint 5: The number of service units Nm,c of each client c ∈ C allocated
to each memory channel m ∈M must be a power of two.

To formulate this constraint as a linear constraint, we define two decision
variables tm,c and N ′

m,c for each client in every channel. tm,c is a binary deci-
sion variable defined by Equation (4.12) and N ′

m,c can take a value in the range
0.. log2[qc]. Constraint 5 is then defined by Equation (4.13)
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tm,c =

{

1, if Nm,c > 0.

0, otherwise.
(4.12)

∀m ∈M, c ∈ C : Nm,c = 2N
′

m,c × tm,c (4.13)

Constraint 6: Each pair of communicating clients, i.e. with the same group
number gc, must be allocated to the same set of memory channels, and the number
of service units of the clients allocated in each channel must be proportional for
data alignment since they may have different request sizes.

To understand this constraint, consider two communicating clients c1 and c2,
each with a request size of eight and four service units, respectively, interleaved
across two memory channels. Assume that c1 issues a memory write request
Q1 and c2 reads the data with two read requests P1 and P2. In this case, four
service units of request Q1 and two service units of requests P1 and P2 must
be allocated to each memory channel, as shown in Figure 4.2, so that the ratio
Request size/NChn

remains same for both clients and results in coherent address
translation according to Equation (3.6). Note that this constraint only ensures
that the number of service units allocated in each channel are proportional. Fur-
thermore, the service units of all communicating clients must be aligned in each
memory channel. As shown in Figure 4.2, the first four service units SU1-SU4 of
c1 must be interleaved across two memory channels so that the response for the
first read request from c2 contains four service units (data) from the continuous
logical address space. To ensure this, the sequence generator of c1 in the multi-
channel memory controller must be programmed to route the first four service
units of a request to Channel 1 and the next four to Channel 2. For c2, the
sequence generator must be programmed to route the first two service units to
Channel 1 and the next two to Channel 2.
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Figure 4.2: Physical memory maps of two memory channels showing request Q1 of size eight
service units aligned with requests P1 and P2 of size 4 service units each.

For two communicating clients ci and cj , the constraint is defined by Equa-
tion (4.14). The decision variable N ′

m,c is the same as defined under Constraint 5.
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The main purpose of this constraint to maintain a particular proportion of service
units in channels to which two communicating clients are mapped. This constraint
ensures that N ′

m,ci and N ′
m,cj are selected such that Nm,ci and Nm,cj are propor-

tional. Hence, for every non-zero number of service units of ci allocated to a
memory channel, Nm,ci , a corresponding number of service units in the order of

power-of-two of client cj , 2
N ′

m,cj is allocated to the same channel, and vice versa.

∀m ∈M, ci, cj ∈ C, g(ci) = g(cj) : Nm,ci × 2
N ′

m,cj = Nm,cj × 2N
′

m,ci (4.14)

Constraint 7: The total memory capacity of all clients in each channel m ∈
M must be less than or equal to the channel capacity κm, defined by Equa-
tion (4.15).

This constraint along with Constraint 4 ensures that the sum of the memory
capacities allocated to a client in all memory channels is equal or larger than its
total memory capacity requirement.

∀m ∈M :
∑

c∈C

Nm,c

qc
× κ̌c ≤ κm (4.15)

Constraint 8: For every service unit allocated to a memory channel m ∈ M ,
there must be a corresponding rate allocated, and vice versa, defined by Equa-
tions (4.16) and (4.17).

The decision variable, tm,c, is the same as in Constraint 5 and D is a constant
with a value larger than the maximum rate, i.e., D > 1. Equation (4.16) ensures
that when service units are allocated to a channel (according to Constraint 5), a
corresponding rate is allocated in the channel. Equation (4.17) ensures that the
rate is set to zero when there are no service units allocated to the channel.

∀c ∈ C, ∀m ∈M : (1− tm,c)×D + ρ′m,c > 0 (4.16)

∀c ∈ C, ∀m ∈M : tm,c ×D − ρ′m,c ≥ 0 (4.17)

In general, our optimization problem formulation can be used for LR servers
whose service latency is linear or can be linearized, such as TDM with contigu-
ous and distributed slot allocation strategies, by using their worst-case latency
derivations in Constraint 1. However, the problem formulation might have to be
extended with additional constraints which are specific to the arbiter. In this
work, we show how to extend our problem formulation for a contiguous TDM ar-
biter. In the worst-case latency derivation of contiguous TDM (Equation (2.3)),
we can see that for a given frame size, f , the rate that needs to be allocated
depends on the latency requirement of a client and the discretization of rate when
it is converted to TDM slots. This means that we need to make f a decision
variable in the optimization problem formulation for an optimal allocated rate.
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Moreover, the allocated rate needs to be optimized considering the over-allocation
of bandwidth due to the discretization of rate. To ensure that the allocated rate,
ρ′m,c, is the discretized rate for a given frame size, we define a decision variable,
αm,c, which can take a value between 0 and 1, and the allocated rate is then
defined by Equation (4.18).

ρ′m,c = (⌈f × αm,c⌉)/f (4.18)

In essence, this constrains ρ′m,c such that it gets a value which corresponds to
an integer number of slots in the TDM table of a given frame size. Finally, we
need to add Constraint 9 to the problem formulation to ensure that the frame size
is sufficiently large to accommodate the number of slots required by all clients in
each memory channel.

Constraint 9: For a TDM arbiter, the frame size, f , must at least be equal to
or greater than the sum of the number of slots required by the clients allocated in
each memory channel, defined by Equation (4.19)

∀m ∈M : f ≥
∑

c∈C

f × ρ′m,c (4.19)

After presenting the optimal algorithm for mapping memory clients to memory
channels, now we proceed to our proposed heuristic algorithm.

4.3.3 A Fast Heuristic Algorithm to Map Memory Clients
to Memory Channels

The optimal algorithm for mapping clients to memory channels presented in the
previous section may not be scalable for future systems in terms of computation
time, as the number of variables and constraints increases drastically with the
problem size, i.e. 17 variables and 39 constraints are added for every new client.
Hence, we devised a fast heuristic algorithm to map clients to the memory channels
that minimizes total memory bandwidth allocated to the clients while considering
the client requirements.

Our heuristic algorithm consists of two main steps: (1) Sorting clients : We
perform a two-step sorting approach. In the first step, we find the minimum
number of channels to which each client must be interleaved to meet its latency
requirements. Then we create a list of communicating client groups with at least
one client in the group requiring more than one memory channel. Note that a
client group may have one or more clients. The clients requiring more than one
memory channel have tight latency requirements, and hence, we need to map them
first to minimize over-allocation of rate. This is because we need to minimize the
number of channels to which clients with low latency requirements are mapped
to minimize over-allocation of rate, as explained in Section 3.3.1. However, the
probability of them being mapped to multiple memory channels are high when the
other clients have used most of the bandwidth available in the memory channels.
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The second step consists of creating a list of communicating clients sorted in
ascending order of their latency requirements. The minimum latency of a client
in a group is selected for the sorting. By mapping clients to the memory channels
in order of this list, the over-allocation of rate is reduced. The two lists in this step
are concatenated to create a single list. (2) Mapping to the memory channels : The
clients are mapped to memory channels using a first-fit algorithm, which allocates
them one by one from the sorted list to the first available channel(s) with enough
resources (bandwidth and memory capacity) to satisfy the client requirements.
During the mapping process, a configuration process is invoked for each client to
determine the interleaving granularity and the rate that needs to be allocated in
each channel. This is because, according to Equation (3.5), a higher rate than the
requested rate may need to be allocated depending on the latency requirement and
the interleaving granularity. Note that whenever we are computing the allocated
rate in this algorithm, we consider the discretization of rate that happens when
it is finally converted to TDM slots. We proceed by discussing the two steps in
detail.

Sorting Clients

As we concluded in Section 3.3.1, we need to minimize the number of channels
to which a client is interleaved to minimize the allocated bandwidth. Since we
use a first-fit algorithm for mapping clients to memory channels, the last clients
are more prone to be interleaved across multiple memory channels during the
mapping process, because the available bandwidth and memory capacity in the
channels keep reducing. We must hence start mapping the clients that might end
up having a larger over-allocation of rate if interleaved across multiple channels.

When a client is interleaved across a number of memory channels, nChc, as
expressed by Equation (3.5), the amount of over-allocation of the required rate
increases when its latency requirement is lower and the request size, N , is larger.
Note that with a larger request size, the discretization of rate increases and the
completion latency gets longer. Hence, we map clients with lower latency require-
ment and larger request sizes first. Since it is hard to sort the clients based on
two parameters, i.e. request size and latency requirement, we perform a simple
two-step sorting approach:

1. We find the minimum number of channels to which each client must be in-
terleaved to meet their latency requirements. If the request size of a client
is large such that its latency requirement (in service cycles), L̂sc

c , cannot be
satisfied in a single memory channel even after allocating a rate of 100%, it
must fundamentally be interleaved across multiple memory channels. The
minimum number of channels, ňChc

, to which the request needs to be in-
terleaved is given by:

ňChc
= 2⌈log2

(qc/L̂
sc
c )⌉ (4.20)
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In the above equation, qc/L̂
sc
c is rounded to the upper power of two since we

need to allocate service units in powers of two for logical-to-physical address
translation according to our method presented in Section 3.3.3. When the
request size and the number of service units in each memory channel is a
power-of-two, the number of channels to which the request is interleaved
must also be a power of two to meet the worst-case latency requirement of
the client. Consider an example scenario in which qc = 8 service units and
L̂sc
c = 3 service cycles. In this case, if we consider ⌈qc/L̂sc

c ⌉ = 3 channels
and with an allocation of the service units of 4, 2 and 2 in each memory
channel, respectively, the latency requirement of 3 service cycles cannot be
met since it would take 4 service cycles even with ρ̌′c = 1. Hence, we need 4
memory channels to successfully map with 2 service units allocated to each
memory channel. This means that our heuristic distributes the number of
service units, and thereby also the rate, to all memory channels equally
when a client is interleaved across multiple memory channels. Note that the
optimal method presented in Section 4.3.2 does not have the restriction of
interleaving to the number of channels in powers of two, which is supported
by our multi-channel memory controller as well.

We make a list of communicating client groups with each group consisting of
at least one client requiring more than one memory channel, i.e. ňChc

> 1.
Note that a client group may consist of a single client that does not have any
communication requirements. We need to map these clients first because
ňChc

> 1 indicates a lower latency and a larger request size, which must be
mapped first to avoid a larger over-allocation of rate. The order of mapping
of clients from this list does not matter because we find ňChc

for each client
after allocating 100% of bandwidth available in each channel, and hence
a client with ňChc

> 1 uses most of the bandwidth of the ňChc
memory

channels. This means two client groups belonging to this list cannot be
mapped to the same set of channels.

2. The remaining client groups with clients requiring ňChc
= 1 are sorted (us-

ing a quick-sorting algorithm) according to the ascending order of the av-
erage of the worst-case latency requirements of the clients in each group.
This is because the amount of over-allocation of rate increases as the latency
requirements get tighter according to Equation (3.5).

Finally, we append the above two lists in-order to make a single list consisting
of groups of clients. Mapping of clients from this list to the memory channels is
presented in the next section.

Mapping to Memory Channels

The client groups are picked one by one from the sorted list in order and a config-
uration process, shown in Algorithm 3, is used to find the number of service units,
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i.e. interleaving granularity, and the rate that must be allocated in each channel
for the number of channels, ňChc

, to which each client in the group needs to be
interleaved. The interleaving granularity, Nm,c, in every channel is determined by
dividing the request size by the number of channels to which the request needs to
be interleaved (line 1). Note that Nm,c will always a power of two since qc and
ňChc

are always powers of two. For the interleaving granularity in each channel,
Nm,c, the new rate ρ′′m,c is computed such that it satisfies the latency requirement

L̂sc
c by solving Equation (2.3)(line 2). Since the ceiling functions from the latency

equation are removed, we added 2 to make the computation conservative. The
rate required by the client, ρreqm,c, in the channel is then maximum of its required
rate and the newly computed rate (line 3). The required rate is divided equally
across the number of channels to which the client needs to be interleaved, since
we distribute the number of service units evenly among the channels. Note that
this approach may not be optimal for clients with high latency requirements, as
it might be possible to allocate different rates in different channels without over-
allocating the rate. Finally, the allocated rate, ρ′m,c, is computed considering
discretization of the required rate (line 4).

Algorithm 3 Find interleaving granularity and allocated rate of a client.

Input: Min. number of channels interleaved ňChc
, request size qc, worst-case

latency L̂sc
c and bandwidth b̌c requirements, worst-case gross bandwidth of a

memory channel bgrossm , TDM frame size f .
Output: Number of service units Nm,c and rate ρ′m,c allocated to each channel.

1: Nm,c =
qc

ňChc

2: ρ′′m,c =
(f−L̂sc

c +2)+
√

(f−L̂sc
c +2)2+4·f ·Nm,c

2·f

3: ρreqm,c = max
(

b̌c
bgrossm ·ňChc

, ρ′′m,c

)

4: ρ′m,c =
⌈f×ρreq

m,c⌉

f

Finally, the client is assigned to the number of channels among the set of
channels that satisfy its memory capacity and bandwidth requirement using a
first-fit algorithm. Note that the memory capacity requirement is divided equally
among the channels to which the client is interleaved. When a client needs to
be interleaved across multiple memory channels, the algorithm searches among
channel combinations of the specific number of required channels. If there are no
such number of channels that can satisfy the requirements, ňChc

is increased to
the next power of two. The configuration process is invoked again to determine
the new interleaving granularity and the allocated rate in each channel, and the
mapping of clients to the memory channels is repeated. To determine the optimal
frame size, the whole mapping process is repeated with different frame sizes, from
the lowest value of one to a sufficiently large value. Finally, the successful mapping
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with the lowest total allocated rate is selected that satisfies the condition that the
sum of rates allocated to all clients in each channel is less than or equal to one.

4.3.4 Algorithm Computational Complexity and
Optimality

For a system consisting of |C| clients and |M | memory channels, finding the
minimum number of channels for all clients takes O(C) time, sorting the client
groups using a quick sort algorithm O(C2) time units (the number of groups will
be equal to the number of clients in the worst-case), and mapping each client in
C to a memory channel after searching for resource availability in |M | memory
channels with all (log2(M) + 1) possible values of ňChc

(i.e. different power of
two combinations with M channels) O(C ×M × (log2(M) + 1)). In total, our
heuristic algorithm takes O(C + C2 + F × C ×M × (log2(M) + 1)) time, since
the mapping process needs to be repeated until an upper bound F on the frame
size. Since the number of clients and the frame size will typically be larger than
the number of memory channels, i.e. C ≥ M and F ≥ M , respectively, the time
complexity of our heuristic algorithm can be expressed as O(C4).

Our heuristic algorithm always interleaves to a number of memory channels
in powers of two. Hence, we divide the request size, and thereby also the rate,
equally when a client is interleaved across multiple memory channels, which is op-
timal for clients with tight latency requirement as we have seen in Section 4.3.3.
However, when the latency requirement of a client is relaxed, its request can be
split in different powers of two and allocated to different channels with differ-
ent rates (according to its bandwidth requirement) at the same time meeting its
latency requirement. We do not consider extending the heuristic to support in-
terleaving across a number of memory channels that is not in a power of two for
two reasons: (1) This work primarily focuses on mapping of firm real-time clients
with tight latency requirements. (2) When request sizes are not evenly distributed
across memory channels, the complexity of the mapping process increases since
we need to check the bandwidth and memory capacity availability in all possible
combinations of memory channels. We evaluate the impact of this restriction on
the mapping success ratio of our heuristic algorithm in the experimental section
presented next.

4.3.5 Optimal, Heuristic and Existing Mapping Algorithms
- Performance Comparison

In this section, we evaluate the mapping success ratio of our two proposed map-
ping algorithms, optimal and heuristic (presented in Sections 4.3.2 & 4.3.3, re-
spectively), and two existing mapping algorithms, First-fit and Interleave-all. The
First-fit is a basic bin-packing algorithm that picks one client at a time and maps
to one of the first memory channels that has enough resources (bandwidth and
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memory capacity) available to meet the client requirements. The First-fit algo-
rithm does not interleave memory requests across multiple memory channels, and
hence, we used this algorithm to evaluate the benefits of interleaving across mul-
tiple memory channels, since our heuristic algorithm is based on first-fit which
interleaves memory clients across memory channels. Note that the First-fit al-
gorithm do not consider communicating clients into account. The Interleave-all
algorithm maps every client to all memory channels available by distributing the
number of service units and rate evenly among all channels. This is the traditional
method for mapping in multi-channel memories and has the advantage that only
a single Channel Controller is required for all the memory channels [132]. With
these algorithms, we span the extreme ends of the design space from no interleav-
ing to full interleaving, and that our solution is configurable within this space.
Furthermore, we compare the computation time of our optimal and heuristic al-
gorithms in this section.

Experimental Setup

The experimental setup consists of the optimization problem model implemented
in the CPLEX optimization tool [7], implementation of our proposed heuristic,
the First-fit and Interleave-all algorithms in C++, for a TDM arbiter. For a fair
comparison with the heuristic, the First-fit and Interleave-all algorithms are also
run with different TDM frame sizes to determine the optimal frame size with the
lowest over-allocation of rate (after discretization) and which satisfies the condi-
tion that the sum of rates allocated to all clients in each channel is less than or
equal to one. Note that we did not include communication requirements for clients
in the use-cases to be fair against the First-fit algorithm, which does not consider
communication groups and including them in reality could further reduce the per-
formance of the algorithm. For the implementation of the optimization problem
for a TDM arbiter in CPLEX, we substitute its worst-case latency expression
given by Equation (2.3) in Equation (4.8) of Constraint 1. Since CPLEX does
not support decision variables in the denominator, such as ρ′ in Equation (2.3),
we multiply the equation by ρ′ and the constraint hence becomes quadratic, as
expressed by Equation (4.21), making it a Quadratic Constrained Quadratic Prob-
lem (QCQP). The two ceiling functions had to be removed to make the problem
linear, and hence the service latency and the completion latency are approximated
as f × (1− ρ′m,c) + 1 and Nm,c/ρ

′
m,c + 1, respectively, to make the computation

conservative.

∀m ∈M, c ∈ C : f × ρ′2m,c − ρ′m,c × (f − L̂c + 2)−Nm,c ≥ 0 (4.21)

To compare the performance of the optimal method and the heuristic under
different scenarios, we used a synthetic use-case generator, which generates mem-
ory clients according to a normal distribution function with latency requirements
in the range 1-10 µs, bandwidth requirements 1-1000 MB/s and request sizes
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64-512 B. We selected these ranges since they cover the following different traffic
classes of real memory clients: clients with low average latency requirements, such
as LCD controllers and CPUs [125], clients with medium latency requirements,
such as H.264 video decoders [12], and clients with relaxed latencies, which in-
cludes a wide variety of clients with low and high bandwidth requirements, e.g.,
graphics processing [125], input processors [123]. We do not consider memory
capacity requirements since we did not have sufficient data to define the range for
the different traffic classes. We used a 4-channel WideIO 200 MHz DRAM with
a service unit size of 64 B as the target memory.

Mapping Success Ratio

Using our proposed heuristic and the First-fit and Interleave-all algorithms, we
performed mapping with 200 different use-cases, which are feasible according to
the optimal algorithm, with different number of clients (5-25) and requirements.
Note that we had to limit the number of use-cases to 200 due to the computation
time of the optimal algorithm. In all algorithms, we set an upper bound of 100 for
the frame size considering the long computation time of the optimal algorithm,
but we assume that this is sufficiently large for our use-cases. The mapping success
ratio of the proposed heuristic, First-fit and Interleave-all algorithms normalized
to the success ratio of the optimal method is shown in Figure 4.3. Also, the figure
shows the average over-allocation of rate for the three algorithms. It can be seen
that our proposed heuristic algorithm has the highest mapping success ratio of
93%, followed by the First-fit 81% and Interleave-all with 68%. The Interleave-all
has the highest over-allocation of bandwidth as expected. Our heuristic algorithm
failed to find a valid mapping for about 7% of the use-cases consisting mainly of
clients with relaxed latency requirements. The mapping failed for those use-cases
when the total required bandwidth by all clients is more than 95% of the maximum
bandwidth capacity of all channels. As we have already seen in Section 4.3.4, our
heuristic algorithm distributes the rate evenly across the channels to which a
client is interleaved. Since the heuristic algorithm does mapping based on a first-
fit algorithm, it could fail for one of the last clients to be mapped (with relaxed
latency requirements) which could be allocated with different rates in different
channels according to the slack bandwidth available in each channel in order to
meet its bandwidth requirement. For all use-cases we considered, our heuristic
algorithm allocated clients with tight latency requirements to the same number
of channels as the optimal algorithm and hence both of have the same amount of
over-allocation of bandwidth.

The First-fit algorithm failed in 19% of use-cases since it did not interleave
clients that could have been successfully mapped by interleaving across multiple
channels. The Interleave-all algorithm failed for 33% of the use-cases, since it
over-allocates a much larger amount of bandwidth than required to meet the la-
tency requirements of clients with tight latency requirements. Figure 4.4 shows
the increase in over-allocated bandwidth by the Interleave-all algorithm (of 100

92



93

81

68

20 19

35

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Heuristic First-fit Interleave-all

M
a
p
p
in

g
 s
u
cc

es
s 
ra

ti
o
 (
%

)

A
v
er

a
g
e 
o
v
er

-a
ll
o
ca

ti
on

 (
%

)

Figure 4.3: Mapping success ratio of the heuristic, First-fit and Interleave-all algorithms
normalized to the optimal method. Also is shown the average over-allocation of rate for all the
three algorithms.
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Figure 4.4: Increase in bandwidth over-allocation of the Interleave-all algorithm compared to
the optimal algorithm for different use-cases.

feasible mappings) compared to the heuristic and optimal algorithms. Hence, the
traditional approach of interleaving every memory client across all memory chan-
nels available is not an efficient method in real-time multi-processor platforms.

To summarize, we have seen that our heuristic algorithm outperforms the
First-fit and Interleave-all algorithms in terms of mapping success ratio. Note that
the front-end for First-fit and Interleave-all algorithms could be simpler (lower
area and power consumption) as a Channel Selector would not be required. How-
ever, the cost in the worst-case latency due to the Channel Selector is one clock
cycle, which is negligible. We have shown that both the traditional approaches
of interleaving memory request to all the memory channels and not interleaving
at all does not efficiently utilize the memory bandwidth and that an alternative
solution in the middle is warranted. In the next section, we evaluate the trade-off
between algorithm computation time and mapping success ratio of our optimal
and heuristic algorithms.
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Computation Time Comparison

The computation time of the optimal algorithm in CPLEX and the heuristic
algorithm with different number of clients and for different number of memory
channels are shown in Table 4.2. Note that the solver takes a significant amount
of time to search because of the large design space of the optimization problem.
Hence, the time taken by CPLEX shown in this table is for finding the first optimal
solution and this is observed from the solutions found by the tool at different time
instants until it terminates normally. We considered up to 16 memory channels,
as it will be a valid multi-channel memory configuration in the near future [6].
It can be seen that the heuristic algorithm runs much faster (the First-fit and
Interleave-all algorithms also run in less than a second) than the optimization
tool, and is required to scale to future needs. To summarize, we have seen that
our solver-based method finds an optimal solution within few seconds to about
2 hours for small to medium-size systems. However, mapping large future systems
require the heuristic algorithm and this comes at a reduction of approximately
7% in success ratio of the mapping.

Table 4.2: Tool vs Heuristic - computation time

Channels Clients CPLEX Heuristic

4
25 7 mins
50 25 mins < 1 sec
100 2 hrs

8
25 4 hrs
50 1 day < 1 sec
100 > 2 days

16
25
50 > 3 days < 1 sec
100

4.4 Case Study: High-Definition Video and Graph-
ics Processing System

In this section, we present a case study where we demonstrate the proposed design-
flow for bandwidth-efficient memory subsystem design by applying it to a High-
Definition (HD) video and graphics processing system. First, we derive memory
subsystem requirements for the video processing system, and then show the design
of the memory subsystem.
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4.4.1 HD Video and Graphics Processing System Require-
ments

A HD video (1080p) and graphics processing system with a Unified Memory
Architecture (UMA) is shown in Figure 4.5. This system is based on the industrial
systems from [123] and [125] combined to create a suitable load for a modern multi-
channel memory. The Input Processor (IP) receives the encoded video stream, the
Video Engine (VE) decodes the video, the GPU performs post-processing (e.g.
video overlay) and finally, the HDLCD Controller (HDLCD) sends the screen
refresh by copying all the data to the frame buffer. In addition, the host CPU
require memory access to perform system-dependent activities [125]. The GPU
and CPU requirements are based on [125], and the IP requirements on [123]. The
VE and HDLCD requirements are computed considering the requirements for HD
video with a resolution of 1920× 1080, 8 bpp and 30 fps [28].

Input Processor 
(IP)

GPU
Video 

Engine (VE)
HDLCD Controller 

(HDLCD)

Multi-channel Memory Controller

Multi-channel DRAM

CPU

IPout VEoutVEin GPUoutGPUin LCDin

Figure 4.5: Memory-centric architecture of a HD video and graphics processing system.

The Input Processor (IP) receives an H.264 encoded YUV 4:2:0 video stream
with a resolution of 720× 480, 12 bpp, at a frame rate of 30 Hz [123], and writes
to memory (IPout) at 15.6 MB/s. The VE generates traffic for reading the com-
pressed video and reference frames for motion compensation (VEin), and decoder
output (VEout). The motion compensation is the most bandwidth demanding
traffic, and requires at least 769.8 MB/s to decode the video samples at a res-
olution of 1920 × 1080, 8 bpp, at 30 fps [60, 28]. The bandwidth requirement
to output the decoded video image is 93.3 MB/s. These worst-case bandwidth
requirements must be satisfied to meet the sufficient bandwidth requirements over
a frame period. We consider the request sizes of IP and VE as 64 B and 128 B,
respectively.

The bandwidth requirement of the GPU depends on the complexity of the
frame to be processed. Assuming processing requirements of 50 MB/frame in the
worst-case, the GPU needs on average a bandwidth of 1500 MB/s [125]. The
GPU traffic can be split into the pixels read by GPU for processing (GPUin) and
the frame being rendered by the GPU (GPUout). The GPU does not know the
complexity of a frame in advance, and hence it completes processing the frame
at its maximum rate and remains idle until the next frame. We consider GPUout

to have a firm requirement in order to meet the deadline of 16.6 ms for every
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frame (for 60 Hz screen refresh). Hence, GPUout needs a bandwidth of at least
248.8 MB/s. GPUin is then allocated a bandwidth of 1251.2 MB/s. We assume
a GPU cache-line size of 256 B for the request size. Note that we consider a large
request size for the GPU cache line to demonstrate channel interleaving.

The HDLCD is latency critical [123], and continuously scans the frame buffer
at a constant rate. For an uncompressed 1080p 60 Hz display at 32 bpp, the
HDLCD requires at least 248.8 MB/s to output a frame every 33.3 ms. Note
that each rendered frame is displayed twice by the LCD controller. For a LCD
burst size of 256 B, the latency requirement would be 1028.8 ns, which is equal
to 205 clock cycles for a 200 MHz memory. The CPU is cache-based and has
a cache line size of 64 B [125]. We allocate a bandwidth of 150 MB/s to the
latency-sensitive system-dependent bandwidth requirements of the CPU [125]. A
summary of system requirements is shown in Table 4.3. The clients that need to
communicate are assigned the same group number g.

Table 4.3: Memory subsystem requirements for the HD video processing system

Client b̌c (MB/s) L̂cc
c (cycles) sc (B) gc

IPout 15.6 - 64 1
VEin 769.8 - 128 1
VEout 93.3 - 128 2
GPUin 1251.2 - 256 2
GPUout 248.8 205 256 3
LCDin 248.8 205 256 3
CPU 150 - 64 4

Total 2777.5

4.4.2 Demonstration of Design-Flow

Given that we have derived the different client requirements for the HD video and
graphics processing system, we now proceed to apply the proposed design-flow to
demonstrate its effectiveness on the derived use-case.

According to our methodology for memory type selection and configuration
presented in Section 4.1.2, we first compute the peak bandwidth of all the con-
sidered memory types and select those memories that provide a peak bandwidth
greater than or equal to the total gross bandwidth requirements of all the clients.
In this case study, we consider the mobile memories shown in Table 4.1. Note that
for simplicity, we consider memory types on a single die, although it is possible to
combine multiple memories forming several memory channels, wider interfaces, or
multiple ranks. The computed peak bandwidth of all memory types are shown in
Table 4.4, sorted in ascending order of bandwidth. As we can see from Table 4.3,
the total worst-case requirements by all the clients is 2777.5 MB/s. Hence, the
memory types from LPDDR2-533-x32 onwards are selected for computation of
worst-case gross bandwidth.
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Table 4.4: Peak bandwidth of different memories.

Memory Operating
frequency
(MHz)

Interface
width
(bits)

Number
of chan-
nels

Burst
length
(BL)

Data
rate

Peak
Bandwidth
(MB/s)

LPDDR 133 16 1 8 2 532
LPDDR 208 16 1 8 2 832
LPDDR 133 32 1 8 2 1064
LPDDR2 333 16 1 8 2 1332
LPDDR 208 32 1 8 2 1664
LPDDR2 533 16 1 8 2 2132
LPDDR2 333 32 1 8 2 2664
LPDDR2 533 32 1 8 2 4264
LPDDR3 667 32 2 8 2 10672
LPDDR3 800 32 2 8 2 12800
WideIO 200 128 4 4 1 12800
WideIO 266 128 4 4 1 17024
WideIO2 400 64 4 8 2 25600
WideIO2 533 64 4 8 2 34112

We computed the gross bandwidth of the selected memory types for different
service unit sizes according to the guidelines for the configuration of memory map
presented in Section 4.2.1. Then, for all the service unit sizes that have worst-case
gross bandwidth larger than or equal to the total client bandwidth requirements,
which is 2777.5 MB/s, the aggregate bandwidth requirement is computed us-
ing the algorithm presented in Section 4.2.2. The computed worst-case gross
bandwidth (bgrossm ) for the different service unit sizes u and their aggregate rate
requirement (b̌aggu ) for different memories are shown in Table 4.5. Note that the
minimum service unit size of Wide IO is 64 B.

In this case-study, we select memories in the order of increasing bandwidth
until a successful configuration is found. Note that in reality this order can be
based on other factors as well, such as the memory price. It can be seen that
LPDDR2-533-x32 provides the required total client bandwidth of 2777.5 MB/s
with larger service unit sizes, starting from 256 B onwards. However, its aggregate
bandwidth requirement with larger service unit sizes, i.e. from 256 B onwards, is
much higher than the gross bandwidth offered by the memory making them an
invalid option. This is because of the over-allocation of bandwidth required due
to poor data efficiency of the service unit, mainly due to the clients of request
sizes 64 B and 128 B. We do not show the results for larger service unit sizes
than 512 B as the negative impact of data efficiency increases further with larger
service unit sizes. Note that in general it is never beneficial to select service unit
sizes larger than the largest client request size since the loss in bandwidth due
to data-efficiency is much higher than the gain in gross bandwidth. Hence, we
conclude that LPDDR2-533-x32 cannot satisfy the client requirements.

Now we consider LPDDR3-1333-x32, which is a faster memory compared to
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Table 4.5: Gross bandwidth of different memories and the required aggregate bandwidth after
considering data efficiency.

Memory Bandwidth
(MB/s)

32 B 64 B 128 B 256 B 512 B

bgrossm 445.5 888.3 1765.9 3177.6 3569.4
LPDDR2-533-x32

b̌aggu - - - 5020.6 8388.0

bgrossm 916.9 1828.7 3636.9 6541.1 8697.0
LPDDR3-1333-x32

b̌aggu - - 3000.4 4251.7 8392.6

bgrossm 933.8 1862.7 3705.6 6891.2 10161.6
LPDDR3-1600-x32

b̌aggu - - 3020.1 4272.5 8434.1

bgrossm - 3393.6 6356.9 10158.0 11283.0
WideIO-SDR-200-x128

b̌aggu - 2799.8 2971.9 4215.6 8377.6

bgrossm - 3762.1 7517.0 12288.6 15012.1
WideIO-SDR-266-x128

b̌aggu - 2802.8 2988.0 4301.0 8406.8

bgrossm - 2959.8 5903.7 11735.8 19259.1
WideIO2-DDR-800-x64

b̌aggu - 2811.8 2996.1 4254.2 8377.7

bgrossm - 3100.2 6181.7 12288.4 22371.2
WideIO2-DDR-1066-x64

b̌aggu - 2821.2 3013.6 4300.9 8445.1

LPDDR2-533-x32 and has two memory channels. Note that the gross bandwidth
of a multi-channel memory is computed by multiplying the gross bandwidth of a
single channel with the number of channels since we assume the same service unit
size in all channels. The gross bandwidth of LPDDR3-1333-x32 is more than twice
of LPDDR2-533-x32 for the same access granularity size because the former mem-
ory is faster and has twice the number of channels. We can see that the aggregate
bandwidth requirements for LPDDR3-1333-x32 are lower than the gross band-
width of service unit sizes 128 B, 256 B and 512 B. Hence, for these access granu-
larities, we performed mapping and configuration of arbiter using our optimal and
heuristic algorithms presented in Section 4.3.2 and Section 4.3.3. However, none
of the service unit size configurations provided a successful mapping with either
algorithm. The same results hold for the faster memory, LPDDR3-1600-x32.

Next, we considered WideIO-SDR-200-x128, which is a single data-rate mem-
ory with four memory channels. WideIO-SDR-200-x128 provides sufficient gross
bandwidth for all service unit size configurations, 64 B, 128 B, 256 B and 512 B.
We performed mapping for all these service unit size configurations. The 64 B
configuration failed to provide a successful mapping because there was insufficient
bandwidth to meet all requirements. Also, the 512 B configuration failed to map
due to its poor data efficiency. However, we got successful mappings with service
unit sizes 128 B and 256 B with slack bandwidth of 2118.4 MB/s and 4126.6 MB/s,
and TDM frame sizes of 6 and 8, respectively. The optimal algorithm in a solver
took about 10 seconds and the heuristic algorithm less than a second to find the
successful mappings. The mapping results for service unit sizes 128 B and 256 B
are shown in Tables 4.6 and 4.7, respectively. Note that we obtained the same
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mapping results with both the optimal and heuristic algorithms.

Table 4.6: Mapping of clients to WideIO-SDR-200-x128 - allocated service units (Nm,c) &
rates (ρ′m,c) for a service unit size of 128 B

Client Channel 1 Channel 2 Channel 3 Channel 4
N1,c ρ′1,c N2,c ρ′2,c N3,c ρ′3,c N4,c ρ′4,c

IPout 0 0 0 0 1 0.17 0 0
VEin 0 0 0 0 1 0.50 0 0
VEout 0 0 1 0.17 0 0 0 0
GPUin 0 0 2 0.83 0 0 0 0
GPUout 2 0.33 0 0 0 0 0 0
LCDin 2 0.33 0 0 0 0 0 0
CPU 1 0.33 0 0 0 0 0 0

Total 5 0.99 3 1.00 3 0.67 0 0.00

Table 4.7: Mapping of clients to WideIO-SDR-200-x128- allocated service units (Nm,c) & rates
(ρ′m,c) for a service unit size of 256 B

Client Channel 1 Channel 2 Channel 3 Channel 4
N1,c ρ′1,c N2,c ρ′2,c N3,c ρ′3,c N4,c ρ′4,c

IPout 0 0 0 0 1 0.13 0 0
VEin 0 0 0 0 1 0.63 0 0
VEout 0 0 1 0.13 0 0 0 0
GPUin 0 0 1 0.50 0 0 0 0
GPUout 1 0.375 0 0 0 0 0 0
LCDin 1 0.375 0 0 0 0 0 0
CPU 1 0.25 0 0 0 0 0 0

Total 3 1.00 2 0.63 2 0.76 0 0.00

It can be seen that, IPout & VEin, VEout & GPUin and GPUout & LCDin, are
allocated to the same memory channel to enable communication between them.
The total worst-case bandwidth allocated to all clients with 128 B and 256 B ser-
vice unit sizes are 4238.4 MB/s and 6031.2 MB/s, respectively. This means that
the over-allocated rate is 1266.9 MB/s and 1815.6 MB/s. The over-allocation is
primarily due to the tight latency requirement of GPUout & LCDin, and secon-
darily due to the discretization of the rate when the bandwidth requirements are
converted to TDM slots.

Given that we have determined the mapping of memory clients to memory
channels, we show how to configure our multi-channel memory controller ar-
chitecture proposed in Section 3.3. Let us consider that we need to configure
the multi-channel memory controller for the four-channel WideIO-SDR-200-x128
memory for a service unit size of 256 B, i.e. with the mapping results of Table 4.7.
At first, the arbiter in each memory channel needs to be set with a frame size
of 8 as we assume the same frame size in all memory channels. Then, for each
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client c, each of those arbiters need to be allocated with the rates according to the
values of ρ′m,c in Table 4.7. For example, clients GPUout & LCDin needs to be
allocated with 3 slots each in Channel 1 corresponding to a rate of 0.375. Finally,
the sequence generator of each client needs to be configured to route its service
units to the different channels according to the values of Nm,c. For example, the
sequence generators of GPUout & LCDin need to be configured such that their
service units are only forwarded to Channel 1.

To summarize, we have demonstrated our proposed design-flow for the bandwidth-
efficient design of memory subsystem for the HD video and graphics processing
system. We performed mapping of the memory clients, using both our optimal and
heuristic algorithms, considering their latency/bandwidth requirements, request
sizes and/or communication requirements, for minimal total bandwidth allocated
to the clients. We found successful mapping with WideIO-SDR-200-x128, with
a slack bandwidth of 1815.6 MB/s, that could be allocated to soft/non-real time
clients in the system to improve their performance. Note that memory capac-
ity requirements of the clients generally also impact the interleaving of requests
across channels, which we did not consider in this case study

4.5 Summary

Bandwidth-efficient design of memory subsystems in real-time systems is challeng-
ing as there are several design choices to be made, such as memory interface width
and operating frequency, memory map, interconnect interface width and operat-
ing frequency, and mapping of memory clients to the memory channels, while
satisfying the memory client requirements. In this chapter, we defined the prob-
lem statement and then presented a structured design-flow for bandwidth-efficient
design of memory subsystem in real-time systems. Moreover, we have presented
the main steps in the design-flow in detail, such as configuration of memory map
parameters, computation of aggregate client bandwidth, and mapping of memory
clients to memory channels using optimal and heuristic algorithms.

To maximize memory bandwidth utilization, we presented design guidelines for
the selection of the memory type (i.e. interface width and operating frequency)
and configuration of its memory map based on worst-case analysis of memory
types of different configurations across and within generations. The basic idea of
our design guidelines is to maximize memory bank parallelism up to four-active
command window constraint before increasing the burst size in the same bank.

We presented an optimal method based on an integer programming problem
formulation and a fast heuristic algorithm to map memory clients to the memory
channels and configure the arbiters in each channel, while minimizing the total
bandwidth allocated to the clients. We show that for a use-case scenario consisting
of 4 memory channels and up to 100 memory clients, the optimal algorithm in
a solver can find a mapping in 2 hours, and our heuristic in less than 1 second.
Our heuristic algorithm finds an optimal solution in less than 1 second with up
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to 16 memory channels, which clearly outperforms the solver in terms of scaling
for future needs. This comes at a cost of 7% reduction in successfully mapped
use-cases, which is significantly lower than the failure ratios 19% and 33% of two
existing mapping algorithms. Also, by comparing with our proposed approaches,
we show that the traditional approaches of not interleaving memory request to
any of the memory channels or interleaving across all the channels are not efficient
in terms of memory bandwidth utilization.

Finally, we demonstrated the effectiveness of our proposed design-flow step by
step on a real use-case scenario by configuring the memory subsystem in a HD
video processing system.
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Chapter 5

Related work

In this thesis, we present scalable memory subsystem architectures and design
methodologies for bandwidth-efficient memory subsystem design in real-time sys-
tems. We discuss the related work in this chapter. Section 5.1 introduces the
previous works on memory interconnect architectures and Section 5.2 discusses
related work on the co-design of memory interconnect and memory controller.
Section 5.3 presents the state-of-the-art approaches of interleaving requests across
multi-channel memories and multi-channel memory controllers. Finally, Sec-
tion 5.4 discusses previous works on design methodologies for memory subsystem
design.

5.1 Memory Interconnect Architectures

As discussed in Section 1.1.4, existing memory interconnect architectures im-
plementing predictable arbitration policies can be classified into centralized and
distributed according to the implementation of the arbitration policy. The cen-
tralized implementations of predictable arbitration policies consisting of a tree of
multiplexer stages for priority resolution among the clients presented in [118, 39,
88, 20] are not scalable in terms of clock frequency. This is because the number
of logic gates in the critical path for multiplexing increases with the number of
clients, restricting their maximum synthesizable frequency. Although the scalabil-
ity issue is addressed using distributed implementation with global arbitration, i.e.
globally-arbitrated, using TDM in Network-On-chip (NoC) [55, 45, 113], TDM is
not suitable when the clients have diverse bandwidth and latency requirements.
For example, the clients with low latency and bandwidth requirements often need
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to be allocated more than their required bandwidth to meet their latency re-
quirements, which is not desirable when memory bandwidth is scarce. NoCs
using priority-based packet switching [117] provide real-time guarantees, but the
buffering of packets in every router stage increases the memory access latency,
area and power consumption, as we have seen in Section 3.4.

Memory trees with distributed implementation of several local arbiters, i.e.
locally-arbitrated, consisting of 2-to-1 multiplexer stages connected in a tree-like
structure and each stage having a RR arbiter are presented in [43, 107], and a sim-
ilar binary arbitration tree using a First Come First Serve (FCFS) policy in [110].
In the hybrid arbitration tree [50], a combination of RR and TDM arbitration poli-
cies were used in which the latency-sensitive clients are scheduled with TDM and
bandwidth-demanding clients with work-conserving RR to improve their average-
case performance. However, cascading multiple independent arbitration stages
leads to larger area and power usage due to the buffering of memory requests at
every arbitration stage. Note that the requests are not dropped and rescheduled
in the arbitration stages of locally arbitrated interconnects, unlike GAMT.

To summarize, existing centralized implementation of arbitration policies are
not scalable in terms of clock frequency with number of clients and the locally-
arbitrated distributed implementations suffer from long latencies and large area
and power usage due to the buffers in the local arbitration stages. On the other
hand, existing distributed memory interconnects using global TDM arbitration
(buffer-less) are not suitable for clients with diverse requirements. Also, there is
no re-configurable architecture supporting different arbitration policies.

Our proposed generic distributed globally-arbitrated memory tree (GAMT)
can be configured to operate as five different arbitration policies and supports
work-conservation. The experimental results in Section 3.4 show that GAMT
outperforms the centralized implementations by more than four times in terms
of clock speed and over 51% and 37% in terms of area and power consumption,
respectively, for a given bandwidth.

5.2 Co-Optimization of Memory Interconnect and
Memory Controller

Related work on co-optimization of memory interconnect and memory controller
can be classified into those that provide guarantees on real-time requirements to
the clients and those that focus on improving the average-case performance of the
system, respectively. Traditionally, power/performance optimized tree topologies
using bus-based interconnects and predictable arbitration policies [50, 40] were
used to provide real-time guarantees while accessing a shared memory. Since
bus-based interconnects were not scalable in larger SoCs, statically scheduled
TDM [51, 57, 97, 122, 112, 130, 11] and priority-based NoCs [116] were intro-
duced. Although a tree topology using TDM NoC, channel trees [55], has been
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proposed for accessing shared resources to reduce the worst-case latency using a
fully pipelined response path, it was not optimized for area or power consumption.
Optimization of a TDM NoC in terms of area and power consumption was done
in [120] by coupling it with a memory interface and removing the buffers and flow
control by implementing a Direct Memory Access (DMA) access table inside a NI.
However, the approach is specific for DMA clients and is not applicable for clients
with diverse requirements on bandwidth and/or latency. At the application level,
DRAM-aware mapping of application tasks to the processing nodes exploiting
bank-level parallelism [74] has been proposed, and memory-centric scheduling ap-
proach in which statically computed TDMA schedules are made for each core to
access the memory system to avoid memory access contention, allowing applica-
tions to be verified in isolation[133]. However, those were not optimized in terms
of area and/or power consumption.

Other related work that focus on improving the average-case performance of
the memory clients include a memory-centric NoC design that explores the ben-
efits of a dedicated NoC for shared DRAM access by funneling the traffic from
different processing cores of different data-bus widths to the memory using op-
timized width converters [114]. Another memory-centric NoC design includes a
connectionless tree topology NoC for shared memory access that multiplexes mul-
tiple clients to one bus master are proven to reduce average latency and hardware
cost as opposed to a general connection-oriented NoC [110]. At the architecture
level, DRAM traffic-aware NoC routers [65] and network interfaces [37] exploit
bank-level parallelism and minimize bus turnaround time by grouping read and
write transactions to improve memory utilization. Also, memory controllers that
interacts with the NoC and make command scheduling decisions based on the con-
gestion information from the NoC [79] improves the average-case performance, but
do not provide guarantees on bandwidth and/or latency to the clients.

To the best of our knowledge, there exists no previous work that optimizes the
interconnect with the memory controller in terms of area, power consumption and
performance, while providing real-time guarantees on bandwidth and/or latency
to the clients.

Our proposed Coupled Memory Interconnect (CMI) architecture can be used
to couple a globally-arbitrated memory interconnect with a real-time memory
controller and configure the interconnect parameters for minimal area and/or
power consumption. As shown in Section 3.4, coupling the NoC and memory
controller using our approach saves over 45% in guaranteed latency, 24% and
20% in area, 27% and 19% in power consumption, for two different NoC types
and with different DRAM generations, for a system consisting of 16 memory
clients.
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5.3 Multi-Channel Memory Access

Among the previous work related to accessing multi-channel memories, some ex-
ploit the benefits of interleaving data across multiple memory channels. [12, 101,
137, 31] proposed interleaving data across the memory channels such that all chan-
nels are accessed by a single transaction to improve average-case performance.
Similarly, [32] proposed splitting the traffic within a logical address region across
multiple memory channels to reduce average latency. Mechanisms for efficient
data placement to reduce average memory access latency in a system compris-
ing multiple memory controllers is proposed by [24]. However, all of them focus
on the improvement of average-case performance, and do not consider providing
guarantees on bandwidth and latency to firm real-time applications.

The rest of the related work focuses on memory controller architectures and
logical-to-physical address translation for multi-channel memories. [135] proposed
a parallel-access mechanism in which two separate memory controllers are used
to control eight memory channels of a 3D-DRAM and the architecture by [85]
has every processing element allocated to its own local DRAM channel with a
memory controller, and a custom crossbar is used to route incoming traffic from
other processing elements. Also, the multi-channel NAND flash memory con-
troller by [103] and the multi-channel memory controller architecture by [29] uses
a crossbar switch for routing traffic across multiple memory channels with a map-
ping table that stores the logical-to-physical address translation. [134] presented a
memory controller architecture for fine-grained DRAM access of memory chips in
a DIMM by grouping them in logical sub-ranks of different interface widths and
accessing them concurrently. However, neither of the aforementioned memory
controller architectures provide any firm performance guarantees and hence they
cannot be used for formal verification of firm real-time clients. Conversely, even
though there are real-time memory controllers that provide bounds on memory
performance [105, 13, 108, 115, 25, 131, 82, 62], they do not consider multi-channel
memories and interleaving memory requests across multiple memory channels, i.e.,
they do not support an efficient mapping of memory clients to memory channels,
which could lead to larger design costs.

To summarize, presently there is no real-time memory controller with a suit-
able logical-to-physical address translation method for multi-channel memories
that allows memory requests of clients to be interleaved across different memory
channels with different interleaving granularities. Our proposed multi-channel
memory controller (MCMC) architecture in Section 3.3 with the novel method
for logical-to-physical address translation can interleave memory requests across
multiple memory channels at different granularities. Moreover, MCMC provides
real-time guarantees on memory bandwidth and latency to firm real-time clients.
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5.4 DRAM Subsystem Design Methodology

Related work on design methodologies for DRAM subsystems focus on memory se-
lection and configuration and arbiter configuration. A design-space exploration of
DRAM system-level parameters is performed in [63] and [36], although the design
choices are targeting non-real-time systems. However, some of their conclusions,
such as exploiting bank-level parallelism and selecting the correct transaction size
to reduce latency, hold true for any system. In contrast, analysis on DRAMs is
performed with real-time memory controllers that provide bounds on worst-case
bandwidth and latency in [105, 13, 108, 115, 25, 131, 82, 62]. However, none of
these explores different memory configurations to determine the optimal operat-
ing points, nor do they specifically consider memories for mobile devices including
3D-stacked DRAMs.

In [12] and [101], an average-case analysis of off-chip multi-channel memories
is performed to evaluate the performance of multiple memory channels offered by
3D-stacked DRAMs. However, none of these works compare the real-time per-
formance of mobile memories across generations. [34] compares different memory
architectures for mobile devices, and a comparison of parallel interface DRAMs,
such as LPDDR2 and Wide-IO, is made with serial interface memories in terms
of bandwidth and power consumption. A methodology is proposed in [76] to
select the memory configuration for a mobile device based on storage capacity,
throughput, latency, power, cost and thermal concerns. However, none of these
work consider providing bounds on bandwidth to real-time applications.

Optimal configuration of TDM arbitration policy has been studied by many in
the past [109, 56, 86, 19]. However, none of them consider mapping of service units
to the multiple memory channels while allocating the rates in each channel. To
the best of our knowledge, there is no prior work that proposes a methodology for
the bandwidth-efficient design of memory subsystem in real-time system, which
involves selection and configuration of the memory and mapping of the memory
clients to the memory channels.

Our proposed design-flow performs a bandwidth-efficient design of memory
subsystems in real-time systems considering various client requirements on mem-
ory bandwidth, latency, communication, and capacity. In addition, the design-
flow performs mapping of clients to the memory channels using two different
methods, one an optimal algorithm based on integer program formulation of the
problem and the other, a heuristic algorithm.

5.5 Summary

Existing centralized memory interconnect architectures are not scalable as the
critical path in the priority resolution logic increases with the number of clients
while the locally-arbitrated distributed memory interconnects incur large area,
power and latency overhead due to their decoupled arbitration stages. Moreover,
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the existing globally-arbitrated distributed memory interconnects support only
TDM, which is not suitable in reconfigurable systems when the client requirements
are dynamic and diverse. Our proposed generic distributed globally-arbitrated
memory tree (GAMT) can be configured with five different arbitration policies
and can be run up to four times faster compared to centralized architectures.

Most of the previous work on the optimization of memory interconnect focus
only on average-case performance improvement. On the other hand, existing
distributed memory interconnects providing real-time guarantees are decoupled
from the memory controller, i.e. they run at unsynchronized clock frequencies.
This requires a bus-based memory interconnect with a predictable arbitration
policy in front of the memory controller, which increases the area usage, power
consumption and the worst-case latency of a memory request. Our proposed
coupled memory interconnect (CMI) removes the additional arbitration point in
front of the memory controller by generating the clock frequencies for the memory
interconnect and the memory controller from the same clock source and aligning
their clock edges at their service cycle boundaries. CMI has lower area, power
and latency compared to a decoupled architecture.

Previous solutions for multi-channel memory access either interleave memory
request across all the memory channels and/or are suitable only for the average-
case performance improvement. Moreover, existing multi-channel memory con-
troller architectures do not provide any real-time guarantees on memory perfor-
mance to the clients. Our multi-channel memory controller (MCMC) architecture
with a novel logical-to-physical address translation allows memory requests to be
interleaved across different memory channels at different interleaving granularities
and different rates allocated to them.

Existing design methodologies for selecting and configuring a DRAM device
are not suitable for real-time systems as they do not consider providing real-
time guarantees to the clients. On the other hand, previous work on optimal
arbiter configuration do not consider a multi-channel memory. Our proposed
design-flow performs bandwidth-efficient design of memory subsystem in real-
time systems. The design-flow includes methodologies and algorithms for memory
selection, configuration, and optimal mapping of clients to the memory channels.
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Chapter 6

Conclusions and

future work

In heterogeneous multi-processor platforms for real-time systems, main memory,
i.e. the off-chip DRAM, is shared between multiple memory clients for cost and
communication reasons. Due to the continuous demand for higher memory band-
width of applications, memories operating at high frequencies and/or with multi-
ple memory channels, i.e. multi-channel memories, are introduced. State-of-the-
art real-time memory subsystems consist of a real-time memory controller and a
memory interconnect with a predictable arbitration policy that multiplexes re-
quests arriving from different clients to the memory controller. Existing memory
subsystems cannot support faster memories and are not suitable for multi-channel
memories. This is because the memory interconnect cannot be synthesized at
higher clock frequencies with a large number of clients and the memory con-
troller does not support interleaving of memory requests across multiple memory
channels of a multi-channel memory. Additionally, existing memory intercon-
nects are decoupled from the memory controller, which consumes large area and
power consumption and increase the memory request latency. On the other hand,
while designing a memory subsystem for a real-time system, there are several
design choices that need to be made, such as the memory type selection, mem-
ory controller configuration and mapping of memory clients to memory channels
in a multi-channel memory. With an increasing number of applications being
integrated into multi-processor platforms for real-time systems, the design com-
plexity of such platforms is increasing as well. Currently there exist no design
methodologies for faster and efficient design of memory subsystems in real-time
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systems.
In the remainder of this chapter, Section 6.1 summarizes the different contri-

butions presented in this thesis and Section 6.2 discusses some promising future
work.

6.1 Conclusions

This section summarizes our main contributions presented in this thesis, i.e. the
generic globally-arbitrated memory tree (GAMT), the coupled memory intercon-
nect (CMI), multi-channel memory controller (MCMC) and the design-flow for
bandwidth-efficient design of memory subsystems in real-time systems.

6.1.1 Globally-Arbitrated Memory Tree

To address the scalability issue with the present memory interconnects, we pro-
posed a generic, distributed and globally-arbitrated memory tree (GAMT) that
can be configured with five different arbitration policies that have been proposed
for shared memory access in real-time systems. Moreover, GAMT optionally sup-
ports work-conservation for the different arbitration policies. GAMT consists of
pipelined 2-to-1 multiplexers connected in a tree-like structure with dedicated
accounting and priority assignment (APA) logic per client at the leaves of the
tree and the memory controller at the root. The APA logic keeps track of the
eligibility status of a client to get scheduled and all the clients schedule requests
according to a single global schedule. During a scheduling interval, the APA logic
sets a priority level on the priority lines and the priorities of all the clients gets
resolved at the multiplexers, i.e. each multiplexer grants access to the client with
the highest priority. Hence, the request with the highest priority in a scheduling
interval reaches the memory controller and the remaining requests are dropped.
The dropped requests are then rescheduled during the next scheduling interval.
Due to the distributed APA and the priority resolution, GAMT can be run up
to four times faster compared to traditional centralized architectures. Moreover,
it has performance gain over 51% and 37% in terms of bandwidth/power and
bandwidth/area trade-off, respectively. Note that GAMT consumes more power
than centralized implementations due to the larger switching activity.

6.1.2 Coupled Memory Interconnect

We presented a coupled memory interconnect (CMI) architecture that can be
used to couple a globally-arbitrated memory interconnect, such as TDM NoCs
and GAMT, to the memory controller without the decoupling buffers and the
additional bus-based interconnect in front of the memory controller, thereby re-
ducing area usage, power consumption and worst-case latency. The basic idea is
to generate the clocks for the memory interconnect and the memory controller
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from the same clock source such that the clock edges are aligned at the intercon-
nect and memory service cycle boundaries. The service unit size is made equal in
both interconnect and in the memory controller. We show that by coupling the
TDM NoC and memory controller using our proposed architecture minimizes the
guaranteed latency by 45%, area usage by 24% and 20%, and power consumption
by 27% and 19%, for two different TDM NoC types, for a system consisting of 16
memory clients.

6.1.3 Multi-Channel Memory Controller

For efficient utilization of a multi-channel memory, we proposed a multi-channel
memory controller (MCMC) architecture that consists of a dedicated channel
selector for each client, which routes the service units to the different mem-
ory channels according to the configuration in a sequence generator. For each
memory channel, there is a dedicated channel controller with a memory inter-
connect employing a predictable arbitration policy that multiplexes the requests
arriving from the different channel selectors. We proposed a novel method for
logical-to-physical address translation that allows interleaving memory requests
across the different channels with different interleaving granularities. Finally, we
demonstrated the real-time guarantees on bandwidth and latency provided by our
multi-channel memory controller architecture by experimental evaluation.

To summarize, a completely scalable memory subsystem for real-time systems
can be realized using the MCMC architecture for the multi-channel memory with
each channel having a GAMT coupled with the channel controller using our CMI
architecture.

6.1.4 Design-Flow for Bandwidth-Efficient Memory Sub-
system Design

Our proposed design-flow for the bandwidth-efficient design of memory subsys-
tems in real-time system perform the memory type selection, memory controller
configuration and mapping of clients to the channels, while considering the real-
time requirements of the clients. The design-flow consists of four main steps.
In the first step, the memory types whose peak bandwidth is greater than or
equal to the gross bandwidth requirement of all the clients are selected. Then,
the worst-case gross bandwidth for the different service unit sizes are computed
according to our proposed design guidelines in the second step. In the third step,
the aggregate bandwidth requirement of all clients for the different service unit
size configurations is computed considering the client requirements and specifi-
cations. Then, those service unit sizes are selected with gross bandwidth that
satisfies the aggregate bandwidth requirement. Finally, for all selected service
unit size configurations, the clients are mapped to the memory channels using
one of two proposed algorithms. One is an optimal algorithm based on an integer
programming formulation of the mapping problem and the other a fast heuristic
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algorithm. We compared the performance of the mapping problem formulation
in a solver and the heuristic algorithm against two existing mapping algorithms
in terms of computation time and mapping success ratio. Our analysis show that
the traditional approaches of interleaving memory requests across all memory
channels and no interleaving at all results in poor memory utilization. We show
that a valid mapping can be found in 2 hours using the solver and in less than 1
second with less than 7% mapping failure using the heuristic for realistically sized
problems. Also, we show that our heuristic algorithm finds a valid mapping in
less than 1 second with up to 16 memory channels, which clearly outperforms the
solver in terms of scaling for the future needs. Finally, we performed a case-study
of designing the memory subsystem in a High-Definition (HD) video and graphics
processing system to emphasize the practical applicability and effectiveness of our
design-flow.

6.2 Future work

6.2.1 Multi-Channel Memory Controller for Mixed Time-
Criticality Systems

Multi-channel memories, such as WideIO DRAMs, are essential to meet the band-
width/power demands of future mobile systems. In this thesis, we considered only
firm real-time memory clients for the design and configuration of the multi-channel
memory controller. However, there can be a mix of firm and soft real-time ap-
plications in a real-time system. Hence, different architectural choices for the
multi-channel memory controller for improving the average-case performance of
soft real-time applications, while providing real-time guarantees to the firm real-
time applications need to be explored. The different architectural choices include
selection of different arbiter types, memory controller configurations in different
memory channels and selection of interleaving schemes. In this work, we assumed
the same arbiter type and channel controller configuration in all memory chan-
nels. However, it might be beneficial to have different arbiter types in different
memory channels as the client requirements are quite diverse. Moreover, there
will be an impact on the optimal mapping of memory clients to the channels if
different service unit sizes are considered in different channels as the clients come
with different request sizes.

6.2.2 Real-Time Host Controller for HMC

Hybrid Memory Cube (HMC) [6] is a new DRAM architecture using Through-
Silicon-Via (TSV) technology that sets new standard for memory performance,
power consumption and cost. HMC consists of 16 memory channels including a
configurable channel (memory) controller in the base logic layer for each memory
channel. Moreover, every channel is made accessible via each IO link using a
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crossbar switch in the logic layer. To access a memory channel using the crossbar
switch, a communication protocol as specified by the standard needs to be fol-
lowed. The main challenge in this work is to devise a predictable host controller
for the HMC that can interleave memory requests across the memory channels,
while accessing the channels using the crossbar. The access time for a mem-
ory channel needs to be bounded in order to provide real-time guarantees to the
clients. As the crossbar allows connections to any memory channel via an IO link
using a communication protocol, the access time of a memory channel will vary
depending on the IO link through which the request is sent. Hence, bounding the
memory access time may not be straightforward. Moreover, the mapping of the
clients to the memory channels will have an impact on the memory access time.

6.2.3 Heterogeneous Multi-Channel Memory Subsystem

In this thesis, we considered a homogeneous multi-channel memory and channel
controller configuration, i.e. all memory channels are of same memory type and
memory controller configuration. However, it could be beneficial to have different
memory types and configurations in the memory channels. For example, memo-
ries with wider interfaces and low operating frequencies are more efficient com-
pared to memories with narrow interfaces and higher operating frequencies [48].
On the other hand, memories with narrow interface width that provide smaller
access granularities are suitable for clients with small request sizes for better data-
efficiency. Also, different service unit sizes in each channel according to the client
request sizes might have an impact on the data-efficiency. Hence, our proposed
mapping algorithms need to be extended to support heterogeneous multi-channel
memories and channel controller configurations. Also, the multi-channel memory
controller architecture needs to be extended to support a heterogeneous memory
subsystem.

6.2.4 Heterogeneous GAMT Operation

As we have seen in Section 3.1, our proposed generic and globally-arbitrated
memory tree (GAMT) can be configured to run as one of five different arbitra-
tion policies. The GAMT architecture allows the different clients to be run with
different arbitration policies at the same time as well, which could provide cer-
tain benefits. For example, some clients can have non-work-conserving TDM and
be isolated from other clients, while others use work-conserving priority-based
scheduling. In this case, an unused slot of a client running with TDM can be
used by a backlogged client running with a priority-based arbiter, which improves
its average-case performance. However, a detailed timing analysis needs to be
performed to determine the impact on real-time guarantees. In addition to us-
ing different arbitration policies for different clients, each client can be switched
between multiple arbitration policies at run-time. For example, this could be ben-
eficial for soft real-time applications that has dynamic service requirements [77].
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However, the switching from one arbitration policy to another might take some
time, which might impact the real-time guarantees of the clients. The impact
of running multiple arbitration policies and safe switching between arbitration
policies needs to be analyzed and the potential benefits needs to be evaluated
experimentally.

6.2.5 Network-on-Chip Based Memory Tree for a Multi-
Channel Memory

In this thesis, we proposed a memory interconnect per memory channel in a
multi-channel memory. This means, for a large number of clients, we need to
use a distributed memory interconnect, such as GAMT or a TDM NoC. When
using the TDM NoC, it must be connected in a tree-like structure and coupled
with the channel controller. However, instead of using a NoC tree per memory
channel, it must be possible to use the NoC in other topologies while maintaining
the coupling with the memory controller. In this case, the NoC must be able to
route the traffic to the memory channel according to the interleaving configured
in the channel selector. Such a NoC based memory tree may have lower area
and power consumption compared to the tree topology currently proposed. This
requires a methodology to be devised as well to configure the TDM slots in the
routers of the NoC.
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[104] M. Paolieri, E. Quiñones, and F. J. Cazorla. Timing Effects of DDR Memory
Systems in Hard Real-time Multicore Architectures: Issues and Solutions.
ACM Trans. Embed. Comput. Syst., 12(1s):64:1–64:26, Mar. 2013.
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versity, Sweden in 2010, and Bachelor of Technology in Applied Electronics from
University of Kerala, India in 2002. He has previous work experience in embedded
software development in Robert Bosch India, where he designed and developed
firmware for power management, device drivers and schedulers for multimedia
and cyber-physical systems.

131



132



List of Publications

Journal Articles

[1] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens, M.
Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad, A. Nelson, and S. Sinha.
Virtual Execution Platforms for Mixed-time-criticality Systems: The CompSOC
Architecture and Design Flow. SIGBED Rev., 10(3):23–34, Oct. 2013. (Not
covered in this thesis)

[2] M. D. Gomony, B. Akesson, and K. Goossens. A Real-Time Multi-Channel
Memory Controller and Optimal Mapping of Memory Clients to Memory Chan-
nels. ACM Trans. Embed. Comput. Syst., 14(2):25:1–25:27, Feb. 2015.

Conference Papers

[3] M. D. Gomony, C. Weis, B. Akesson, N. Wehn, and K. Goossens. DRAM Se-
lection and Configuration for Real-Time Mobile Systems. In Design, Automation
Test in Europe Conference Exhibition (DATE), pages 51–56, 2012.

[4] M. D. Gomony, B. Akesson, and K. Goossens. Architecture and Optimal
Configuration of a Real-Time Multi-Channel Memory Controller. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pages 1307–1312, 2013.

[5] M. D. Gomony, B. Akesson, and K. Goossens. Coupling TDM NoC and DRAM
Controller for Cost and Performance Optimization of Real-Time Systems. In De-

133



sign, Automation Test in Europe Conference Exhibition (DATE), pages 1–6, 2014.

[6] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. A
Generic, Scalable and Globally Arbitrated Memory Tree for Shared DRAM Access
in Real-time Systems. In Proceedings of the 2015 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 193–198.

134



Coupled Interconnect

Architecture - Trade-offs

The area vs. power trade-off of Aelite and Daelite NoCs, and GAMT coupled
with different memories with a service unit size of 16 B, 32 B, 64 B and 256 B
are shown in this appendix.
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Figure E.1: Area vs. power trade-off of Aelite and Daelite NoCs, and GAMT coupled with
different memories with a service unit size of 16 B. For clarity, only the (fi, IWi) combinations
for LPDDR-266 are shown.
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(c) GAMT

Figure E.2: Area vs. power trade-off of Aelite and Daelite NoCs, and GAMT coupled with
different memories with a service unit size of 32 B. For clarity, only the (fi, IWi) combinations
for LPDDR-266 are shown.
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(c) GAMT

Figure E.3: Area vs. power trade-off of Aelite and Daelite NoCs, and GAMT coupled with
different memories with a service unit size of 128 B. For clarity, only some of the (fi, IWi)
combinations for LPDDR-266 are shown.
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(c) GAMT

Figure E.4: Area vs. power trade-off of Aelite and Daelite NoCs, and GAMT coupled with
different memories with a service unit size of 256 B. For clarity, only some of the (fi, IWi)
combinations for LPDDR-266 are shown.
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