

A reconfigurable mixed-time-criticality SDRAM controller

Citation for published version (APA):
Goossens, S. L. M. (2015). A reconfigurable mixed-time-criticality SDRAM controller Eindhoven: Technische
Universiteit Eindhoven

Document status and date:
Published: 09/12/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 23. Sep. 2019

https://research.tue.nl/en/publications/a-reconfigurable-mixedtimecriticality-sdram-controller(18b662e2-e1e3-4f05-ac59-a5d39d5c500e).html

A Recon�gurable Mixed-Time-Criticality SDRAM Controller

proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magni�cus prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op woensdag 9 december 2015 om 16:00 uur

door

Svennius Leonardus Maria Goossens

geboren te Wouw

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. A.C.P.M. Backx
1e promotor: prof.dr. K.G.W. Goossens
copromotor: dr. K.B. Akesson
leden: Prof.Dr.-Ing. R. Ernst (Technische Universität Braunschweig)

prof.dr. K.L.M. Bertels (Technische Universiteit Delft)
prof.dr. H. Corporaal
dr.ir. R.J. Bril

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstemming

met de TU/e Gedragscode Wetenschapsbeoefening.

A Recon�gurable
Mixed-Time-Criticality
SDRAM Controller

Sven Goossens

Committee:

prof.dr. K.G.W. Goossens Eindhoven University of Technology, promotor

dr. K.B. Akesson Eindhoven University of Technology, copromotor

prof.dr.ir. A.C.P.M. Backx Eindhoven University of Technology, chairman

Prof.Dr.-Ing. R. Ernst Technische Universität Braunschweig
prof.dr. K.L.M. Bertels Technische Universiteit Delft
prof.dr. H. Corporaal Eindhoven University of Technology
dr.ir. R.J. Bril Eindhoven University of Technology

© Sven Goossens 2015. All rights are reserved. Reproduction in whole or in part is pro-
hibited without the written consent of the copyright owner.

Velociraptor skeleton cover image: (CC BY 2.0) Ben Townsend from Blacksburg, Vir-
ginia.

This thesis is typeset in LATEX, was written in Sublime Text and built with SCons, con-
tains �gures created in LibreO�ce Draw and graphs plotted using matplotlib, and is held
together by Python-based duct-tape.

Printed by CPI Koninklijke Wöhrmann – The Netherlands.

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-3976-5

Hofstadter’s law: It always takes longer than you expect,

even when you take into account Hofstadter’s Law

— Douglas Hofstadter, Gödel, Escher, Bach, 1979

A C K N O W L E D G M E N T S

This thesis did not appear out of thin air. In fact, its main ingredients are time, e�ort, and
the support that I received from everyone that I will try to list here. Traditionally, a good
place to start seems to be the promotor, and I see no reason to deviate from that trend.
I would like to thank Prof. Kees Goossens, for being an organized, interested and very
helpful promotor. Working together has always been a pleasant experience, and I think
that the team-like atmosphere that he created within the CompSOC research group,
both during and after o�ce hours, might have been my greatest motivator during these
past years. I am also extremely thankful to my copromotor, Dr. Benny Akesson, who
possesses a seemingly endless supply of both energy and patience, which helped out a
great deal in making this thesis what it is today. I appreciate his sense of humor, and
the motivation and help he provided to improve the quality of my work.

I thank Prof. Rolf Ernst, Prof. Koen Bertels, Prof. Henk Corporaal and Dr. Reinder Bril
for being a part of my Doctoral Committee, and for their time and e�ort in reviewing
the manuscript. I would also like to thank Christian Weis and his team in Kaiserslautern
for bringing an interesting set of practical problems that mixed well with the work done
in the Memory Team in Eindhoven. I appreciated our collaborations.

Speaking of the Memory Team, I have to thank Karthik, Manil and Yonghui as the
core members of the local SDRAM enthusiasts ensemble. I think every Ph.D. should
have such a nice group of smart peers to bounce ideas back and forth with, and our
discussions typically led to good insights and ways to move our work forward. I also
thank the Memory Team alumni Tim and Jasper, who contributed a great deal to the
foundations of this thesis. They were great to have around, and delivered a very nice
piece of work, that I appreciate a lot more in hindsight, now that I realize how the
average master student project ends up.

Working in the CompSOC team has been awesome. Since I cannot remember the
exact Star-Trek-based classi�cation system we made up, so I will just use an alphabeti-
cally ordered list: Anca, Andrew, Ashkan, Gabriela, Hadi, Juan, Martijn, Rasool, Reinier,
Shubhendu, and those who I might have missed: Thanks for the all support and the fun
things we have done over the past years.

One of the perks of being a Ph.D. student is the ability to travel around, and to see
interesting places with interesting people. The highlight of this aspect was undoubtedly
my internship at Sonics in Silicon Valley, where I was received with incredible amounts

v

of hospitality. It was an experience that I will never forget, and want to I sincerely thank
the Milpitas team for that.

To make sure that this acknowledgment section does not overstay its welcome, I will
speed it up now: Cedric, Gert-Jan, Maurice, Francesco: Fiuggi was excellent! (bottlesort,
anyone?) Davit and Shakith: running around in Montreal with them made an already
interesting ESWeek even better. Ralph, Sander, and my programming buddy Raymond:
thanks for allowing me to ride along on the Computation train, it is hard work, but
so much fun. Joost, Luc (x2), Marcel, Mar(c/k), and Roel: made “the co�ee table” (and
most notably the Friday afternoon version) an infamous tradition that is now passed on
across the generations. And to Marja, Margot, Rian, and all the other ES group members
I missed: I greatly value their support and the e�ort they put into making �oor 3/4 the
fun, functional and friendly place that it is.

Finally I thank my family and friends, for all the obvious reasons. Barend, Bas, Evert,
Emil, JWN, Koen, Marijn, Niels and Rob: thanks for trucking along through at least the
�rst 6+ years of my TU/e career: some of the older uploads might have faded away, but
the memories and quotes live on!

vi

A B S T R A C T

A Recon�gurable Mixed-Time-Criticality SDRAM Controller

Embedded systems process, move, and store data on behalf of the applications they run,
and in doing so, inherit their requirements. Driven by cost and power constraints, there
is a trend to integrate an increasing number and variety of applications within a single
system. Applications have di�erent time-criticalities: some have real-time constraints,
and need certain worst-case performance guarantees from the system to assert that
deadlines or throughput requirements are met. Others are satis�ed with all the resources
they can get, working according to a best-e�ort principle, where the user experience
improves when the system provides more resources to them.

One of the commonly used data storage media for embedded systems is SDRAM. Mul-
tiple applications within a system typically share one SDRAM controller. Even though
resource sharing reduces costs, it comes at a price: whenever applications share hard-
ware, their timing behavior becomes interdependent. Some applications may not be
tolerant to this interference, since it signi�cantly increases the e�ort of verifying their
behavior, or simply because a safety standard requires them to be isolated from oth-
ers. Predictable and composable systems can be built to provide isolation of worst-case
and actual-case performance to their applications, respectively, although this requires
careful considerations when these systems are designed.

SDRAM technology progresses quickly, with new standards arriving almost on a yearly
basis. Existing real-time SDRAM controllers lack the �exibility to e�ectively deal with
this, since they are usually designed for one particular SDRAM device or generation. On
a smaller timescale, they also lack the �exibility to adapt to applications that are dy-
namically started and stopped. Even though such applications only require resources
in speci�c use-cases, existing controllers typically use a single con�guration that nec-
essarily has to account for the most challenging super-set of applications, leading to
over-allocation. Finally, power consumption is not taken into account in the SDRAM
command-scheduling algorithms these controllers use, even though most embedded
systems have a limited power budget.

This thesis is about the design and performance analysis of an SDRAM controller that
caters to both real-time and best-e�ort applications, and is hence amixed-time-criticality

memory controller. We propose a novel recon�gurable memory controller architecture and

corresponding worst-case performance analysis. A prototype implementation of the con-
troller in SystemC and synthesizable VHDL for an FPGA development board are used
both as a proof of concept of the architecture template, and as a means to evaluate the
remaining contributions.

vii

The command scheduler in the controller applies the concept of memory patterns,
which are sequences of SDRAM commands that are statically computed at design time
and dynamically scheduled at run time. We improve upon the state of the art by ex-

ploring the entire memory pattern design space, by varying the number of banks data
is interleaved across, e�ectively changing the low-level memory map. We show that a

trade-o� exists between worst-case bandwidth, power, and request execution time based on

the selected memory map, and evaluate it for twelve memories from six di�erent SDRAM
generations (LPDDR1/2/3, DDR2/3/4). The results quantify the controller’s performance,
and the observed trends can help a system designer in selecting a cost-e�cient memory
device and the associated memory-map operating point.

To create e�cient memory patterns for the various considered memory generations,
we propose an optimal ILP formulation and two fast heuristic versions. The �rst version
generates near optimal results for most considered memory types. The second version
is aware of bank-groups, a new architectural feature in DDR4, and can hence create
shorter patterns for these memories. We additionally provide an algorithm to post-process

memory patterns such that they deliver complete cycle-level isolation. This reduces the
application veri�cation costs with minimal impact on the worst-case performance.

For best-e�ort applications, we introduce a conservative open-page policy, capable of
partially exploiting locality of reference in the request stream the controller processes. It
improves average-case performance without compromising worst-case guarantees of real-

time applications. The policy can be combined with an alternative method to provide
composability based on hardware delay blocks, enabling best-e�ort applications to ben-
e�t from the open-page policy, while real-time applications still receive cycle-level iso-
lation. This scheme hence meets the needs of both application classes.

The proposed controller is con�gurable at boot-time, and recon�gurable at run-time

on a per use-case basis, allowing arbiter settings and memory patterns to be customized
to the active set of applications. Boot-time recon�guration enables the use of di�erent
memories devices and generations from the same memory controller. The memory pat-
terns can be customized to select di�erent power / performance operating points (mem-
ory maps). For recon�guration at run time as a result of a use-case switch, we show

which conditions should be satis�ed to maintain composable or predictable performance

for running applications, while arbiter allocations are changed. This allows us to allocate
arbiter budgets on a per use-case basis, instead of allocating for all use-cases at once,
which increases the number of applications we can successfully map to the controller.
We de�ne, implement, and demonstrate how to implement these conditions for a TDM
arbiter.

viii

C O N T E N T S

1 introduction 1
1.1 The SoC - SDRAM interface . 2
1.2 SDRAM Controllers . 3
1.3 Cramming more applications onto (power-constrained) SoCs 4
1.4 Performance . 6
1.5 Requirements for SDRAM controllers in modern SoCs 9
1.6 Problem statement and contributions 10
1.7 Thesis outline . 13

2 background and terminology 14
2.1 SDRAM . 15
2.2 Pattern-based SDRAM controller . 21
2.3 Burst grouping . 25
2.4 Refresh . 26
2.5 Latency-rate servers . 28

3 reconfigurable real-time memory controller architecture 30
3.1 Architecture template . 31
3.2 Worst-case performance analysis . 36
3.3 CompSOC controller instance . 46
3.4 Evaluation . 48
3.5 Conclusion . 52

4 memory patterns 54
4.1 Generalized command scheduling rules 55
4.2 Predictable patterns . 58
4.3 Composable pattern conversion . 71
4.4 Evaluation . 76
4.5 Conclusion . 88

5 power/performance trade-offs 90
5.1 Worst-case bandwidth, energy, and power metrics 90
5.2 Worst-case bandwidth / power trends 92
5.3 Worst-case response time of an atom 98
5.4 Evaluation . 100
5.5 Conclusion . 102

ix

x contents

6 conservative open-page policy 104
6.1 Conservative open-page policy . 105
6.2 Impact on pattern-based controller . 108
6.3 Using explicit precharge commands . 110
6.4 Evaluation . 113
6.5 Conclusion . 123

7 reconfiguration 125
7.1 Recon�guration options . 126
7.2 Performance guarantees during a use-case switch 128
7.3 Delay block / arbiter recon�guration with persistent clients 129
7.4 Recon�gurable TDM arbiter . 130
7.5 Evaluation . 140
7.6 Conclusion . 145

8 related work 146
8.1 SDRAM Controllers . 146
8.2 SDRAM Performance overviews . 156
8.3 Recon�guration . 157

9 conclusions and future work 159
9.1 Conclusions . 159
9.2 Future work . 162

bibliography 164

a ilp problem formulation 178
a.1 High-level goal . 178
a.2 Variables . 178
a.3 Determining lower and upper bounds 180
a.4 Constraints . 181
a.5 Objective function . 184

b memory specifications 185

c code listings 188

d list of acronyms 190

e list of symbols 193

f worldwide dram production 197

g about the author 198

list of publications 199

L I S T O F F I G U R E S

Figure 1.1 Typical SoC-SDRAM interface. 2
Figure 1.2 Simpli�ed general memory controller architecture. 3
Figure 1.3 The Snapdragon 800 SoC [128]. 5
Figure 1.4 Mapping of requirements to contributions and chapters. . . . 12
Figure 1.5 Overview of chapters. 13
Figure 2.1 Schematic view of the architecture of an SDRAM device. 16
Figure 2.2 High-level SDRAM operation. 17
Figure 2.3 Typical memory hierarchy for embedded SoCs and COTS systems. 20
Figure 2.4 Allowed pattern sequences. 21
Figure 2.5 The general architecture of a pattern-based controller. 23
Figure 2.6 An example of the order in which patterns may be executed. . 24
Figure 2.7 Examples of the e�ects of burst grouping. 26
Figure 2.8 A LR server and its associated concepts. 28
Figure 3.1 SDRAM controller architecture. 31
Figure 3.2 SDRAM controller back-end. 33
Figure 3.3 Address generator architecture. 34
Figure 3.4 The interface characterized by the back-end performance. . . 37
Figure 3.6 Worst-case back-end behavior for continuous reads. 41
Figure 3.7 Worst-case back-end behavior for continuous writes. 42
Figure 3.8 Worst-case back-end behavior for interleaved read / write atoms. 43
Figure 3.9 Demonstration of latency compensation for WCSI. 44
Figure 3.10 Front-end and back-end LR server concatenation. 45
Figure 3.11 Typical clock frequencies and data bus widths for Raptor. . . . 48
Figure 3.12 Resource usage of Raptor vs. MPMC. 50
Figure 3.13 Front-end LUT and register usage break-down per port. 52
Figure 4.1 The pattern �ow in this chapter. 54
Figure 4.2 Constraint abstraction. 56
Figure 4.3 DDR3-1600 example schedules. 59
Figure 4.4 A (BI 2, BC 2) read pattern for a DDR3-1066. 61
Figure 4.5 Example execution of the earliest function. 62
Figure 4.6 Example execution of the minPatternDistance function. . . 62
Figure 4.7 (Partial) DDR4-1866 read pattern. 65
Figure 4.8 Example of the ILP precedence constraints. 68
Figure 4.9 Memory map from logical to physical address. 70
Figure 4.10 Three memory map examples. 71
Figure 4.11 Composable pattern generation example. 73
Figure 4.12 Exceptional non-optimal result for LPDDR3. 77

xi

xii list of figures

Figure 4.13 Write pattern lengths using BS BI, BS PBGI and ILP. 78
Figure 4.14 Setup of the composability experiment. 82
Figure 4.15 Timeline of events during the composability experiment. . . . 84
Figure 4.16 Di�erence in execution of MB1 compared to the baseline trace. 87
Figure 5.1 Worst-case bandwidth vs. worst-case power. 93
Figure 5.2 Maximum energy e�ciency versus access granularity. 97
Figure 5.3 Request WCRT components. 98
Figure 5.4 Worst-case and measured bandwidth. 102
Figure 6.1 Response time of a hit versus a miss. 105
Figure 6.2 Read schedules in four di�erent modes. 106
Figure 6.3 Allowed mode transitions. 107
Figure 6.4 Mapping of patterns to the pattern memory. 108
Figure 6.5 Example of the relation between modes. 109
Figure 6.6 Example where an ANP pattern is longer than an AP pattern. . 110
Figure 6.7 Patterns after converting auto-precharges to explicit precharges.112
Figure 6.8 Relative time-window size histogram. 115
Figure 6.9 Upper bound on the optimal window size. 115
Figure 6.10 Setup of the conservative open-page experiments. 117
Figure 6.11 Available spatial locality per trace. 118
Figure 6.12 Single-application experiment results. 119
Figure 6.13 Multi-application experiment results. 122
Figure 7.1 Recon�gurable components and their interdependencies. . . . 126
Figure 7.2 Example burst placement after recon�guration. 128
Figure 7.3 Client type hierarchy. 129
Figure 7.4 Potentially violated LR guarantees during recon�guration. . 132
Figure 7.5 Recon�gurable TDM arbiter architecture. 133
Figure 7.6 Splitting the recon�guration in two steps. 134
Figure 7.7 Example of the latency-rate guarantees during recon�guration. 135
Figure 7.8 Setup showing predictable performance during recon�guration. 140
Figure 7.9 Active clients over time. 141
Figure 7.10 Slot allocation results. 141
Figure 7.11 Response times with and without predictable recon�guration. 142
Figure 7.12 Predictable patterns runs. 144
Figure 7.13 Composable patterns runs. 144
Figure A.1 Visualization of the ILP variables in matrix form. 180
Figure A.2 Finding lower and upper bounds on the position of a command. 181
Figure A.3 Visualization of window-based constraints. 183

L I S T O F TA B L E S

Table 2.1 Approximate values of SDRAM timings relative to rc. 19
Table 4.1 Common constraints across SDRAM types (de�nition of d ()). . 57
Table 4.2 SDRAM-type speci�c constraints 57
Table 4.3 Memory speci�cations. 76
Table 4.4 epc (Equation (4.3)) for a range of SDRAM x16 devices 80
Table 4.5 The number of runs of a speci�c type that follow the gray (x)

or black plotted trace. 86
Table 5.1 Raptor worst-case bandwidth (bwc). 101
Table 6.1 Time-window sizes using the conservative open-page policy. . 114
Table 6.2 CHStone trace characteristics. 116
Table 6.3 Pattern con�guration in�uence on single application perfor-

mance when using the conservative open-page policy. 121
Table 7.1 Components we can recon�gure for persistent clients 130
Table 8.1 Related memory controllers. 150
Table B.1 Memory device datasheets. 185
Table B.2 Memory device timings in clock cycles. 186
Table B.3 IDD [mA] / VDD [V] parameters for DRAMPower. 187

xiii

If you wish to make an apple pie from scratch,

you must �rst invent the universe.

— Carl Sagan, Cosmos, 1980

1
I N T R O D U C T I O N

The average human has a working memory capacity of seven digits, according to one
of the most cited publications in psychology [102]. This means if you try to recite the
series 3, 8, 5, 3, 2, 1, 1 after simply reading it once you will probably succeed, but re-
peating that trick with 4, 8, 1, 5, 1, 6, 2, 3, 4, 2 will likely fail. The literal translation of
“working memory” to Dutch is “werkgeheugen,” a word that is colloquially used to refer
to the Random-Access Memory (RAM) in a computer system. The majority of the RAM
in a computer is Synchronous Dynamic Random-Access Memory (SDRAM), which is the
center point of this thesis. Seven digits is approximately equal to 23 bits of information
(7 ×2 log (10)), so in some sense, we all are the proud owners of 23 bits of brain-RAM,
which is almost enough to store the word “bit” in standard 8-bit ASCII encoding in a
computer.

Even though the 640 KB RAM that Bill Gates is rumored1 to have said “ought to be
enough for anybody” is already �ve orders of magnitude larger than the working mem-
ory of the brain, the world’s hunger for memory has grown far beyond this number.
Memory sizes in the order of gigabytes are now commonplace. The advances in mem-
ory capacity are part of a much larger trend, in which the number of transistors that
can be manufactured for the same cost grows over time, due to the down-scaling of
semiconductor circuits, as stated by Moore’s law [103]. An equally important aspect of
technology scaling is described by Robert Dennard [39], who notes that the power den-
sity of a chip remains constant, despite the scaling. The combination of Moore’s law and
Dennard scaling implied that the amount of potential functionality o�ered by a chip of
constant size and with a constant power envelope grew almost exponentially over the
past years, and even though we may have reached the tail-end of this trend [44, 69], we
are still experiencing the bene�ts today.

In this chapter, we �rst look at the developments and trends that led to the current
way of working with SDRAM in Section 1.1-1.4. We then identify the requirements on

1 There are no reliable sources that con�rm this quote.

1

2 introduction

Figure 1.1: Typical SoC-SDRAM interface.

a modern SDRAM controller in Section 1.5, and capture them in the problem statement
in Section 1.6. Here, we also brie�y discuss how our contributions address the raised
issues. Finally, we link the contributions to the remaining chapters in Section 1.7.

1.1 the soc - sdram interface

The ability of chips to harbor more and more transistors led to the integration of rel-
atively powerful computing systems on a single chip, into what is called a System-on-

Chip (SoC). Their large computing capacity makes it possible to merge multiple distinct
pieces of functionality onto a single SoC [65], as opposed to using a separate chip for
each of them. The main advantage of doing this is cost reduction [93], which can be at-
tributed to several forms of resource sharing. Most obviously, consolidating the function-
ality of multiple chips on a single SoC reduces the number of chips and the associated
costs involved in their manufacturing, consisting of raw materials, masks, packaging,
etc. Common circuit components, related to power distribution and clock generation
may be shared. On-chip wires are less expensive in terms of area and power compared
to wires that leave the silicon, also reducing the costs.

SDRAM has been largely left out of this integration trend, i.e. most modern SoCs con-
nect to an external SDRAM chip. This can again be attributed to economic pressure
which drives the development of Dynamic Random-Access Memory (DRAM) semiconduc-
tor technology in the direction of high-density and low-leakage chips. The design goal
is to reduce the costs per bit and power consumption, while still satisfying capacity
demands, contrary to logic-circuit technology which was mostly guided by speed re-
quirements [95]. Uniting DRAM and logic in the same technology is not fundamentally
impossible, but it is generally less cost e�ective than using separate chips.

The implication of separating the SoCs from the SDRAM is that a chip-to-chip interface
has to be used to connect them, as shown in Figure 1.1. Interfaces (pins) that connect the
SoC to external chips are relatively expensive. The International Technology Roadmap for

Semiconductors (ITRS) [68] estimates the costs per pin as 0.21 (dollar) cents for an SDRAM
chip, and as 0.20 and 1.21 cents per pin on a general low-end or high-performance SoC

1.2 sdram controllers 3

Figure 1.2: Simpli�ed general memory controller architecture.

package, respectively. Assuming these SoCs have a 84-pin and 240-pin memory interface,
their total cost (at the SoC side) is approximately between 0.17 and 2.90 dollars per chip,
respectively.

The number pins that can be spent on the SDRAM interface is limited by the size of
the SoCs package, which additionally has to accommodate power-supply pins and all
other external connections. This naturally creates a bottleneck at the interface, and the
associated requirement to use the available SDRAM pins as e�ciently as possible.

A complicating factor that is at play here is the so called memory wall problem [96,
149], which, in short, consists of the observation that the performance of logic grows
faster than the performance of memory, such that memory performance eventually dom-
inates the overall system performance. The memory wall exists for the same reason as
the separation between the SoC and the DRAM, i.e. it is an implication of the di�erent
optimization goals that are applied to logic-circuit and DRAM technology. Even though
3D stacking promises to increase the number of connections between logic and mem-
ory [72, 150], improving the available bandwidth signi�cantly, it does not seem likely
that the drive for using the SDRAM interface e�ciently will leave the picture.

Looking back at these developments helps to explain the status quo: we only have a
relatively narrow interface by which the memory can be reached, shared by the entire
SoC. Even though parallelism (in terms of the generation or consumption of data) may
exist within both the SoC and SDRAM, we require a serializing component that controls
what data is transported across the interface at a given time. The SDRAM controller ful�lls
this role, and is discussed in more detail in the next section.

1.2 sdram controllers

An SDRAM controller is the interface for the SoC to the SDRAM devices. SDRAM con-
trollers have one or more ports (on the SoC side), and each port is connected to amemory

client. We de�ne clients as the sources of memory tra�c that are directly connected to
the SDRAM controller. Clients generate read or write requests for the controller, which
are queued until it is ready to execute them.

4 introduction

Figure 1.2 shows a simpli�ed memory controller architecture. It is divided into a front-
end, and a back-end. The front-end deals with the multi-ported nature of the controller,
by deciding on the order in which requests from di�erent clients are executed. It con-
tains an (inter-client) arbiter, and queues for requests that are not executed immediately.

The back-end deals with the SDRAM protocol itself. Scheduled request are translated
into SDRAM commands by a command generator. Once the commands are generated, they
can be scheduled for execution on the SDRAM by the command scheduler. Although
request-level arbitration and command-level scheduling are conceptually separate is-
sues, they may be combined, depending on the controller implementation, although
this naturally blurs the line between front-end and back-end.

Command scheduling is complex, since there are multiple timing constraints that
have to be satis�ed for each individual command to use the SDRAM correctly accord-
ing to its speci�cation. Each scheduling decision changes the memory state and thus
the constraints that need to be taken into account for future decisions. Additionally, a
scheduler may have to choose between multiple schedulable commands without a clear
indication of the impact on performance and future scheduling options. This leads to
a type of emergent behavior that is hard to predict, and thus memory performance is
hard to bound in the general case; for many commercial controllers no analytical bounds
can be provided. However, there are real-time memory controllers that do provide hard
bounds on the time to serve all requests to assure client-level requirements are always
satis�ed, as will be discussed in Section 1.5.

In the next section, we will have a closer look at what the clients of a memory con-
troller actually represent, and why they are growing in number.

1.3 cramming more applications onto (power-constrained) socs

Cost reduction through resource sharing is the main cause for the rise of the SoC, and
their availability paved the way for a growing catalog of applications that use them.
Applications might be purely software based, like those found in the app-store of the
particular phone eco-system one subscribes to. However, we use “application” here in
the broader sense of the word, and also include combinations of hardware and soft-
ware that o�er a certain chunk of functionality to the end user or to other applications
through sensors, actuators and communication links [137].

It often possible to think of the clients of a memory controller as applications, al-
though this does not always work. For example, an application may be distributed over
multiple processors, each having its own connection to the controller, and hence one

application might be represented by multiple clients. In our de�nition, applications can-
not communicate or share data (if they do one of these things, they by de�nition are
part of the same application).

The success of SoCs has enabled the use of high-performance multi-core architec-
tures in consumer electronics, like mobile phones [128], tablets [12], wearables (smart

1.3 cramming more applications onto (power-constrained) socs 5

Figure 1.3: The Snapdragon 800 SoC [128].

watches, health trackers), home automation, and smart TVs [123], for example. Simi-
larly, they �nd their way into cars, which contain a large number of Electronic Control
Units (ECUs) [22], essentially SoCs with control applications. In all of these areas, we ob-
serve that the number of applications on a single SoC is increasing, as a logical consequence

of growing SoC performance, the availability of the applications, and the drive towards cost

reduction.
For example, consider mobile phones or tablets, which are simultaneously involved

in handling a multitude of wireless protocols (like Wi�, Bluetooth, LTE, GPS and NFC),
implemented in dedicated radio solutions or by using Software-De�ned Radio (SDR) [116].
At the same time, they render graphics onto the screen, deal with encryption, while also
running user apps and the underlying an operating system, all from the same SoC [93].
A high-end phone SoC is drawn in Figure 1.3, illustrating the various applications it
supports. Wearables aspire towards the same feature set, although they are signi�cantly
more battery constrained. In general, battery capacity does not grow as quickly as the
demand for processing power [138]. For mobile devices, the expected battery lifetime
constrains the available power budget for the SoC and the SDRAM, and limiting power
usage is hence an important design goal in this area.

One of the main challenges in the car industry is to merge the functionality of mul-
tiple ECUs, reducing costs in terms of materials, cabling and weight. Simultaneously,
the trend towards (semi-) automated driving increases the required feature-set of cars.
Automated driving heavily relies on sensing (vision, radar) and communication appli-
cations [46, 120, 142], for which custom SoCs are desired to e�ectively deal with all the
required computation.

In conclusion, we see a growth of the number of applications per SoC across the
board. A subset of those applications uses the SDRAM, and hence turn into clients of the
memory controller. Unfortunately, the e�ects of sharing are not all positive, especially

6 introduction

when it involves a scarce resource like the SDRAM interface. In the next section, we
discuss how applications are judged by their performance and why resource sharing
can have a negative impact on it.

1.4 performance

The evaluation of the success or failure of an application can be qualitative, but for the
most part, it is quanti�ed in terms of performance. Performance is an umbrella term
describing the rate at which something of interest is produced or consumed, or the
amount of time it takes to complete a speci�c operation [70]. Each instance of such
rate or quantity of time is called a performance metric. For example, a video decoder’s
performance may be expressed as frames per second, or a control loop can process a
speci�c number of input samples per millisecond. A better or higher performance almost
universally refers to an increase of the rate or reduction of time, except when the quantity
is consumed energy, in which case a smaller energy-time ratio is considered better.

Some performance metrics straight-forwardly apply to SDRAM controllers [131]. Band-
width (bytes / second), response time (seconds / access) and power (joules / second)
are the ones featured most prominently in this thesis. At �rst sight this might seem
strange, since there are not many people who actually care how much bandwidth a
certain application receives, or how much power the SDRAM consumes on its behalf.
Instead, requirements are usually expressed at a higher level of abstraction, based on a
speci�cation of the functionality for user, e.g. “the video should play smoothly”, or “the
battery should last for at least 24 hours”. Once re�ned in terms of performance metrics,
requirements bound the allowed performance. Usually, requirements are one-sided (upper
/ lower) bounds, e.g. “at least 60 frames per second should be generated”, or “at most
3 watts may be consumed.” A guarantee bounds the actual performance. When the guar-
anteed performance equals or exceeds the required performance, then the requirement
is satis�ed.

1.4.1 Application requirements

A real-time application typically has a set of timing-related requirements it should sat-
isfy [18, 131]. Such applications often have links to peripherals of the SoC, i.e. the inter-
face to real world. For example, a SDR application might have to generate a response
on the radio interface within a limited amount of time to correctly implement a com-
munication protocol, or an adaptive cruise control system in a car might have to detect
slowdowns of the surrounding tra�c in time to avoid accidents.

The severity of the consequences of not meeting a deadline is usually expressed as
a quali�cation on the real-time requirement, although the exact de�nitions vary. Using
the de�nitions from [24, 131], we can distinguish Hard real-time (HRT) requirements and
Soft real-time requirements (SRT). HRT requirements relate to hard deadlines that can

1.4 performance 7

not be missed without severe loss of functionality for the application’s user. Sometimes
such requirements are called critical or safety critical, in case the safety of the user is not
guaranteed if the requirement is not satis�ed. SRT requirements, on the other hand, may
occasionally be missed, although this is still undesirable. In this thesis, we use real-time

to refer to HRT, and we will not discuss SRT requirements. In the absence of real-time
requirements, an application works on a best-e�ort basis.

Applications are not alone: instead, the increasing number of applications per SoC
leads to an growing amount of interaction between them. This has an impact on the
application’s performance, and on how we deal with their requirements, as is discussed
in the next sections.

1.4.2 Interference

An application that shares SoC resources is susceptible to interference, i.e. its (functional

and temporal) behavior and that of other applications become interdependent. Only one
application can use a shared resource at a time, leading to resource contention [104].
Other applications inevitably have to wait before they get access to the same resource,
and hence experience timing interference. In an analogous manner, applications can ex-
perience state interference, which occurs when multiple applications change the state
of a shared resource. As a straight-forward example, consider a memory in which one
application overwrites the data of another application, changing its behavior in a po-
tentially destructive manner.

Measures mitigating state interference for memory resources have been researched
for quite some time [146], and solutions are available in the form of memory protec-
tion [13, 136] / management units [151] or data protection units. These modules e�ec-
tively cordon o� address ranges depending on the source of a memory access. Therefore,
we focus on the timing aspect of interference in this thesis.

In most contexts, the word “interference” represents a negative e�ect, which is also
the case here, since it changes the application’s performance with respect to the case
where there is no interference in an unpredictable way. In the following two sections,
we describe two ways to qualify performance that are useful for real-time applications
in the presence of interference.

1.4.3 Predictable performance

Predictability is a quali�cation of a performance metric of an application or hardware
component [35] that (partially) speci�es the assumptions that were made when this per-
formance metric was derived. The predictable performance is a bound on all actual per-

formances, assuming any possible initial condition, and including worst-case interference

on shared resources without assumptions on the behavior of co-running applications [8].

When we refer to guaranteed or worst-case performance in this thesis, it is implied that

8 introduction

this performance is predictable. When a resource or methodology is predictable, then
this means that predictable performance bounds can be derived for it or based on it.

Applications cannot communicate or share data (or else they would be part of the
same application). If all resources an application uses provide predictable performance,
then its worst-case performance is independent from other applications. The veri�ca-

tion of the worst-case requirements of the application can then be done independently
from other applications, i.e. it only has to consider the (predictable) hardware and the
application itself. This reduces the complexity of this analysis compared to the non-
predictable case, where all possible combinations of co-running applications also need
to be factored in [121]. As such, it enables incremental veri�cation at a low relative cost,

and reduces veri�cation time. Predictable performance enables model-based veri�cation
of requirements, using Data�ow [129], network calculus [34], or other traditional real-
time approaches, for example. [53, 109, 118] outline what this process can entail.

1.4.4 Composable performance

Predictable performance is su�cient in cases where an application’s veri�cation is done
based on a (formal) analysis of its worst-case requirements. However, there are cases
where such an analysis is not possible, for example when a model of the application’s
timing behavior is not available. Such applications might be veri�ed by simulation in-
stead, essentially by executing them with a number of test inputs and assessing the
results. Two issues complicate this work �ow in multi-application environments: 1) the
performance of tested applications can only be de�nitely assessed after they are inte-
grated with their co-running applications, and 2) the performance in conjunction with
all possible combinations of co-running applications has to be veri�ed [86, 121]. If re-
quirements are not satis�ed, or if any application or the system setup is changed for
other reasons, then the veri�cation process has to be repeated, making the entire pro-
cess circular [122].

These issues are avoided by systems o�ering composable performance, which means

that the actual-case performance an application receives is not in�uenced by co-running

applications [62, 115]. This de�nition is strict: intuitively it means that a deviation of a

single cycle from the actual timing behavior the application expressed when running in

isolation quali�es as being non-composable. Once an application receiving composable
performance has been veri�ed in isolation, it is guaranteed to also work correctly after
integration, since its actual timing behavior during the veri�cation is (exactly) the same
as after integration. Composability is orthogonal to predictability, since it only implies
independence of behavior, but by itself says nothing about the existence of worst-case
bounds2.

2 In practice, predictability is often used to provide composable performance [8].

1.5 reqirements for sdram controllers in modern socs 9

1.5 reqirements for sdram controllers in modern socs

In the previous sections, we discussed why the SDRAM is a scarce resource, and how it
is shared amongst more and more applications with diverse requirements. We also dis-
cussed the complications interference introduces to the evaluation of real-time applica-
tion performance. Based on these observations, we summarize the 5 main requirements
on modern SDRAM controller in the context of this thesis as follows:

1. Some applications have real-time requirements. To assure these requirements are met,
the SDRAM controller must deliver predictable performance when the requirement
veri�cation is based on worst-case models, or composable performance, when the
veri�cation is based on simulation, or when a veri�cation standard requires tempo-
ral isolation.

2. Some applications bene�t from improved average-case (typical) performance, i.e. they
can make use of all the resources the system can spare for them. Generally, an appli-
cation’s behavior or quality improves with additional resources, bene�ting the user.
Best-e�ort applications, i.e. applications without real-time requirements, generally
fall within this category. Other examples include video decoding algorithms that
support quality scaling [147], and user interfaces, for which higher responsiveness
is generally better.

3. Applications are not active all the time. Instead, they can be transient, i.e. they only
run in speci�c use-cases, in conjunction with a sub-set of the other applications the
SoC supports. A memory controller should hence be able to e�ciently deal with the
changes in its set of clients.

4. SDRAM technology progresses quickly, and new generations are introduced every
two to three years. An SDRAM controller architecture should hence be su�ciently
�exible to handle the di�erences between the standards, such that it remains usable
for a reasonable amount of time. The same requirement holds for the analysis on
which its predictable performance guarantees are based. Ideally, a SoC should use
the type of SDRAM that best �ts its applications’ requirements.

5. The power budget is limited for (battery-powered) SoCs. This requires a careful evalu-
ation of how the SDRAM is used to minimize its power usage while still satisfying
the remaining performance requirements.

Existing memory controllers come in a variety of forms, some of which are a better �t
for these requirements than others. We distinguish three categories:

1. Real time, i.e. geared towards maximizing predictable performance. Real-time con-
trollers are designed such that their guaranteed performance is maximal. The un-
derlying assumption is that only the worst-case performance matters, and anything
that cannot be guaranteed and analyzed is wasted e�ort.

10 introduction

2. Best e�ort, i.e. geared towards maximizing average-case (typical) performance. They
are built according to the philosophy that mechanisms which positively impact
the average performance are considered worthwhile, even if they negatively a�ect
the worst case. They exploit knowledge that is only available at run time to make
request-level or command-level scheduling decisions. As a result, they typically pro-
vide no useful analytical bounds on performance.

3. Mixed time-criticality3, i.e. balancing the needs of real-time and best-e�ort appli-
cations. Ideally, these controllers guarantee su�cient performance to satisfy the
worst-case performance requirements, while maximizing the average-case perfor-
mance for the applications.

When these descriptions are matched with the requirements we listed earlier, it is
fairly obvious that best-e�ort controllers do not satisfy them, since they cannot guar-
antee (su�cient) performance to real-time applications. Complete isolation, as required
for composability, is also practically impossible to achieve for these controllers, due to
the complex interaction between the various average-case performance-improvement
mechanisms, which inevitably leak state-information from one application to the other.

Real-time controllers, on the other hand, miss opportunities to improve the average-
case performance that best-e�ort applications care about. It is hence not surprising that
we consider a mixed-time-criticality controller the best �t for the requirements. Such
a controller is built upon concepts that are known to be real-time analyzable, while
selectively using techniques from best-e�ort controllers to improve the average case.

1.6 problem statement and contributions

The high-level question we answer in this thesis is:
How should a mixed-time-criticality SDRAM controller be constructed that 1) provides pre-

dictable and composable performance to its real-time applications, both in terms of band-

width, response time, and potentially within a limited power budget, while exploiting oppor-

tunities to improve the average-case performance for best-e�ort applications, 2) is �exible,

both in terms of architecture and worst-case performance analysis, such that it can be used

for the various available SDRAM generations, and allows for comparisons between them,

and 3) retains these properties in the presence of transient applications, i.e. when it is used

in multiple use-cases.

Existing works on real-time SDRAM controllers focus on providing predictable per-
formance, and some extend this with composable performance. Mixed-time-criticality
controllers improve average-case performance while retaining predictability. However,
their scopes and capabilities are limited in certain areas. We highlight these issues in

3 We focus on the diversity of timing requirements this thesis. In contrast, the broader term mixed criticality

is typically used in works that deal with di�erences in certi�cation requirements, including fault tolerance
concerns, and varying degrees of pessimism in WCET estimations based on the required level of certainty [141].

1.6 problem statement and contributions 11

the following sections, and connect them to the contributions in this thesis that address
them. A graphical representation of the mapping of requirements from the previous
section to contributions and chapters is shown in Figure 1.4. A detailed positioning of
this thesis with respect to related work is given in Chapter 8.

1.6.1 Multi-generation power-aware command scheduling

The rapid development of SDRAM technology means multiple SDRAM generations are at
a system designer’s disposal at any given time. To select the right memory for a SoC that
support real-time applications, worst-case performance bounds of the memories need
to be available and comparable, to satisfy Requirements 1 and 4. Existing real-time con-
trollers and command scheduling algorithms are limited to a single memory device, or
one or two memory generations, and ignore the impact of the command scheduling al-
gorithm on the SDRAM power usage, even though this is an important design constraint
for (battery-powered) embedded systems [138], as identi�ed by Requirement 5.

To address these issues, we provide an abstraction that allows us to write down an

SDRAM command scheduling algorithm in a general fashion, i.e. without targeting one
speci�c memory device or generation. Using this abstraction, we introduce a generation-
agnostic command scheduling heuristic (Chapter 4). The schedules it produces allows us
to bound the SDRAM’s performance. The quality of the heuristic is evaluated through
a comparison with optimal solutions generated by an Integer Linear Programming (ILP)

formulation. We also provide a simple transformation for these schedules to turn the
memory controller into a composable resource with negligible impact on the perfor-
mance bounds.

The command scheduling heuristic is parameterized, such that worst-case perfor-
mance in terms of bandwidth and response time can be traded against worst-case power,
which is derived based on the power model of [31]. We apply the heuristic to twelve
memory devices from six di�erent memory generations, and plot this trade-o� space,
e�ectively providing an overview of worst-case power/performance trade-o�s across gen-

erations (Chapter 5).

1.6.2 Improving average-case performance without a�ecting worst-case performance

Opportunities to improve (non-guaranteed) performance in real-time controllers are
generally ignored, even though they could have a positive impact on both the appli-
cation’s performance and the power usage. Improving average-case performance and
reducing power consumption is desirable, as mentioned in Requirements 2 and 5. Lo-
cality of reference in�uences how long it takes to read or write a unit of data. Mem-
ory controllers attempting to exploit locality across requests use an open-page policy,
while those that do not use a close-page policy [119]. Open-page policies have only re-
cently found their way into a few real-time and mixed time-criticality controllers, al-

12 introduction

Figure 1.4: Mapping of requirements to contributions and chapters.

though they require special measures (bank privatization, explained in Chapter 8) to
avoid worst-case performance reduction.

In this thesis, we introduce a conservative open-page policy that improves the average-

case performance without compromising on worst-case guarantees (Chapter 6). It exploits
locality of reference to reduce the response time of requests, like any open-page policy
would. However, it only deviates from how a close-page policy would act when the
response time is guaranteed to be smaller while doing so.

1.6.3 Recon�gurable architecture

Existing controllers typically con�gure the behavior of the request-level arbiter and the
command scheduler only once, when the SoC is booted. Therefore, this con�guration
has to cover all use-cases. Adapting the controller’s behavior per use-case at run-time,
to adapt to the arrival or departure of transient applications, is not considered, contra-
dicting Requirement 3. If existing controllers would be recon�gured at run-time, they
provide no bounds on performance to applications that remain active during these use-
case transitions, which is unacceptable for real-time applications according to Require-
ment 1. Given how the number of applications per SoC is growing, it becomes paramount
to specialize the controller con�guration to the requirements of the active application
set, in order to use the SDRAM in the most e�cient manner.

To address this, we introduce a recon�gurable SDRAM controller architecture template

(Chapter 3), and a proof-of-concept implementation, integrated in a predictable and com-
posable SoC. The performance that is provided to each controller port is characterized
by a worst-case analysis, and can be changed at run-time through recon�guration. This
allows for specialization of the controller on a per use-case basis, making it easier to
swap transient applications in and out without having to (over) dimension for the most
challenging super-set of requirements. The rules that have to be respected to retain

1.7 thesis outline 13

Figure 1.5: Overview of chapters.

predictability or composability for (real-time) applications that are active during recon-
�guration are discussed in Chapter 7. We demonstrate how to implement these rules for
a Time-DivisionMultiplexing (TDM) arbiter, and prove that our recon�guration protocols
are safe.

1.7 thesis outline

This remainder of this thesis is structured as follows. Chapter 2 introduces the neces-
sary background information on SDRAM memories and SDRAM controllers. Chapter 3
shows the architecture template and the worst-case analysis of the memory controller
we propose, and looks at one concrete instance of the template in more detail. Chap-
ter 4 discusses how both predictable and composable con�gurations for the command
scheduler in this memory controller can be generated. The used algorithms are trans-
parently applicable to all contemporary SDRAM generations through the introduction
of a simple abstraction layer. In Chapter 5, we provide an overview of the worst-case
power and performance trade-o�s in twelve memory devices in six di�erent memory
generations as a function of the di�erent command scheduler parameters. Chapter 6
introduces a mechanism that improves average-case performance without sacri�cing
worst-case guarantees. Chapter 7 then shows when and how the various con�gurable
components in the memory controller can be recon�gured without violating predictable
or composable performance bounds. Figure 1.5 shows the relations between Chapter 3-7.
Finally, Chapter 8 relates this thesis to the state of the art, and we end with conclusions
and future work in Chapter 9.

Get your facts �rst,

and then you can distort them as much as you please.

— Mark Twain, From sea to sea: letters of travel, 1899

2
B A C K G R O U N D A N D T E R M I N O L O G Y

The purpose of this chapter is to set the stage on which the rest of this thesis plays
out. Contrary to the remaining chapters, we try our best to not introduce novel ideas
here. Instead, we describe the technology that we work with, in the form of the SDRAM
chips that external companies produce for us (and the rest of the world) in Section 2.1.

The same SDRAM chips are used by everyone, so it is not surprising that most mem-
ory controllers, i.e. the interfaces that interact with these chips, have at least the same
high-level structure, as introduced earlier in Section 1.2. For the sake of e�ciency, the
proverbial wheel tends to be invented only a few times before the interested community
settles for a design that works in most cases. Further improvements are driven by the
needs of speci�c application areas and the gradual evolution of the surrounding actors
and requirements. This thesis focuses on the area of mixed-time-criticality systems, and
uses an existing SDRAM controller for real-time systems, the pattern-based controller [3],
as its starting point. The properties of this controller are introduced in Section 2.2.

Section 2.3 contains a brief introduction on burst grouping, which can be intuitively
understood as a sort of batch processing. In the context of SDRAMs it means that groups
of bursts that are relatively similar can be processed more quickly than those that are rel-
atively di�erent. Most memory controllers try to achieve some degree of burst grouping.
We parameterize this concept, such that we can use it in later chapters to characterize
the behavior of a memory command scheduler.

The advantage of not starting from scratch is that existing analysis methods are
more or less applicable to the derived work, or at most require minor changes. Sec-
tion 2.4 brie�y introduces various existing approaches for dealing with refresh, which
is a (mandatory) recurring operation required to retain data in an SDRAM. We end this
chapter with Section 2.5, containing an introduction of the abstraction method on which
the worst-case performance analysis in Chapter 3 is based.

14

2.1 sdram 15

2.1 sdram

SDRAM is an extremely popular type of memory. DRAMExchange (a market analyst)
reports that in February 2015 alone, 2.4 billion 2 gibibit (230) equivalent units were pro-
duced worldwide [42], for a total capacity of 5.16 exabits. This amounts to a production
rate of 267 GB/s1, a relatively modest “bandwidth” that about 100 combined contempo-
rary SDRAM devices (single chips) could easily deliver, as we later show in Chapter 5.

SDRAM is volatile and used as temporary data storage, similarly to caches or Static
Random-Access Memory (SRAM) memories. It only stores data as long as power is pro-
vided to it. In terms of area and power consumption it is cheaper than SRAM, since
it requires only a single transistor-capacitor pair to store a bit. This e�ciency makes
it feasible to store gigabytes of data in SDRAM, while SRAM and caches are limited to
capacities in the order of megabytes.

Many generations of SDRAM have been developed since it was invented by Robert
Dennard in 1967 [38], but most of their characteristics are similar. SDRAM devices con-
tain a hierarchically structured storage array [70]. A schematic view on a generic SDRAM
architecture is shown in Figure 2.1. Each device consists of typically 8 or 16 banks that
can work in parallel, but share a command, address, and data bus. Therefore, only one
command can be sent to one bank at a time, but commands can take multiple cycles to
complete, and the execution of commands on di�erent banks can happen in a parallel
(pipelined) fashion. A bank consists of a memory array, divided into rows, each row con-
taining a certain number of columns. A column is as wide as the number of pins on the
memory device’s data bus, and hence only one bank may drive the data pins at a time.
Typically, there are 210 or 211 columns per row, and about 214 to 216 rows per column,
depending on the capacity of the device and its data bus width. SDRAMs with 4, 8, 16,
and 32-bit data buses exist. The data bus is bidirectional, i.e. the same pins are used for
both reading and writing. Some SDRAMs are Single Data Rate (SDR), transporting valid
data on the rising clock edges only. However, all memory generations we consider in
this thesis use a Double Data Rate (DDR), i.e. they transfer one data word (which is as
wide as the data bus) on both the rising and the falling edge of the clock.

The name of an SDRAM device starts with its generation name, followed by its data
rate in MHz, so for example DDR3-1600 refers to a DDR3 memory with a 800 MHz com-
mand clock frequency. In this thesis, we refer to the generation name as the SDRAM type.
The width of the data bus is often indicated by a post�xed ‘x’ followed by the width in
bits, e.g. an LPDDR2-1066x32 has a 32-bit data bus. The capacity of SDRAM devices is usu-
ally expressed in multiples of Mib (220 bits) or Gib (230 bits), although the ‘i’ is commonly
dropped in datasheets. Bandwidths in this thesis use SI pre�xes. For example, fully read-

1 2402·106 ·2·230/8 bytes
2.419·106seconds . Incidentally, this is only 0.15% less than the tra�c �owing into the Amsterdam Internet

Exchange (AMS-IX) in the same month [11] (645772 TB). The (live) construction of an SDRAM cache of a
signi�cant portion the Internet tra�c was hence possible, although it might have been the last month this
was feasible, given the growth trend of AMS-IX tra�c. The power footprint of this Internet cache might be
problematic though.

16 background and terminology

Figure 2.1: Schematic view on the architecture of an SDRAM device with the dimensions of a
512 MiB DDR3-1600 chip (see Appendix B).

ing a 512 MiB SDRAM with a bandwidth of 512 MB/s takes about 1.049 seconds (Gi is
7.3% larger than G).

2.1.1 SDRAM commands

An SDRAM can be instructed to perform certain actions by giving it commands. There are
six main2 SDRAM commands: 1) Activate (ACT), 2) Read (RD), 3) Write (WR), 4) Precharge
(PRE), 5) Refresh (REF) and 6) No operation (NOP). The command bus of a DDR3 SDRAM
consists of 4 wires: row address strobe (RAS), column address strobe (CAS), chip select (CS)
and write enable (WE). The combination of these wires forms a (4-bit) command, which
is clocked into the SDRAM. The other generations use a similar interface, although some
reuse parts of the address bus as command wires. The commands work as follows:

• An ACT command opens a row in a bank, and makes it available for subsequent RD
and WR commands by moving its content to the row bu�er of the bank. An activate
command is accompanied by the address of the row that should be opened.

• Each RD or WR command results in a burst of data, consisting of a range of columns
from the active row. One burst occupies the data bus for multiple consecutive cycles.
The number of words per RD or WR is called the Burst Length (BL). Across contem-
porary memory generations the commonly supported value for BL is 8 [73–78]. The

2 The remaining commands relate to power-down modes and setting up mode registers.

2.1 sdram 17

Figure 2.2: High-level SDRAM operation. The activation of bank 3 happens in parallel with the
read command to bank 2. Data bursts of di�erent banks are serialized, since the data
bus is shared across banks. The two cycles between A2 and A3 are the result of the
ACT-to-ACT timing constraint (rrd).

memory generations we consider all have a DDR, transporting data on both the ris-
ing and falling clock edge. Therefore, it takes only BL/2 clock cycles to transfer a
burst. A RD or WR command is accompanied by the address of the �rst column of the

burst, which generally must start at a multiple of the burst length. Data is available
on the data bus after the associated read or write latency after the RD or WR has
passed. The latencies for RD and WR commands may be di�erent, but tend to be of
the same order of magnitude (see Table 2.1).

• The PRE command closes a row, i.e. it stores the contents of the row bu�er in the
memory array, allowing for another row to be subsequently opened. Only one row
per bank can be open at a time. An optional auto-precharge �ag can be added to
RD and WR commands, such that the associated row is closed as soon as the read or
write is completed. A RD or WR with auto-precharge can be regarded as a regular RD
or WR, followed by a PRE command from a timing perspective. The di�erence is that
the precharge does not require the command bus. This frees a slot in the command
schedule, which may be used for other commands.

• SDRAM is volatile, because the transistor-capacitor pairs it uses to store bits lose their
charge over time. To avoid data loss, the memory must be refreshed periodically by

18 background and terminology

issuing a REF command. The required refresh command interval depends on the
operating temperature and the memory size, and ranges between approximately
1 µs and 10 µs [73–78]. In this thesis, we assume the SDRAM always works within a
�xed temperature range, and that the refresh interval is set to an appropriate (�xed)
value.

• Finally, the NOP command does nothing. It is used to �ll the time, e.g. while waiting
for timing constraints (see Section 2.1.2) to be resolved. Some standards also support
a deselect (DES) command that behaves similarly to a NOP, while others only have
DES commands. We do not require a distinction between NOP and DES commands
in this thesis, and always refer to unused command bus cycles as NOPs.

The scheduling of PRE and ACT commands is determined by the memory controllers’
page policy. Memory controllers that leave a row open after a request is completed use
an open-page policy, while those that close (precharge) it as soon as possible use a close-
page policy [119]. A request that does not require an activate command, because the
row it accesses is still open, is called a row hit or page hit. Requests that target a closed
row are called a row miss or page miss. We return to discuss page-policies in Chapter 6.

The relation between the command, address and data bus is shown in Figure 2.2. In
�gures, we often show traces of commands as a series of rectangular blocks, like at the
top of Figure 2.2 for example. Each block in this series represents a command. A block
may contain a letter representing the command type, and a number, representing the
bank to which the command is directed. We abbreviate ACT, PRE, RD and WR by A, P, R,
and W, respectively, and encode NOPs as empty boxes.

2.1.2 Timings and timing constraints

Vendors of SDRAM devices characterize their memory chips by specifying their timings.
Timings de�ne the maximum time between internal operations in the memory, usually
relating to the (analog) propagation delay between distinct components in the SDRAM.
Timing constraints are built as mathematical expressions from these timings, and they
de�ne the minimum time between pairs of commands based on the state of the memory,
which in turn is a consequence of earlier executed commands. An SDRAM controller
has to satisfy all timing constraints to operate correctly. A detailed explanation of what
each timing represents for a speci�c memory generation is found in the standards [73–
78]. For the purpose of this thesis, these details are less important, since we mostly
consider the SDRAM as a black box that we merely have to use according to its interface
speci�cation. Appendix B shows the numerical values associated with the timings of
a range of SDRAM devices, while Chapter 4 provides a detailed view on the relation
between timings and timing constraints. However, we will sometimes refer to timings
before Chapter 4 to point out trends, and hence provide some early intuition on their

2.1 sdram 19

Table 2.1: Approximate values of SDRAM timings relative to rc.

Timing Related constraint Approximate value

rc ACT-to-ACT, same bank 45 - 60 ns
ras ACT-to-PRE, same bank 70% of rc, 35 ns
rcd ACT-to-RD/WR in the same bank 30% of rc, 15 ns
rp PRE-to-ACT, same bank 30% of rc, 15 ns
rrd ACT-to-ACT, same device 25% - 30% of rc, 12.5 ns
rfc REF-to-ACT, same device 1-5 times rc, depends on capacity
rl, wl or cl RD/WR-to-data 30% of rc, 15 ns
faw Four Activate Window 85% of rc (50% for DDR4)

relative length in Table 2.1. All numbers in this table are approximates, because timings
vary across SDRAM devices and generations.

Some constraints only restrict commands for a single bank, like rc, and rcd for ex-
ample, while others like rrd and rfc, are device-level constraints. The Four Activate

Window (FAW) is di�erent from other constraints. Instead of specifying a minimum dis-
tance between two commands, it de�nes a rolling time window in which at most four
activate commands may be executed. In this thesis, we typeset timings in small caps.

2.1.3 Memory generations

SDRAM technology has evolved over the years. JEDEC creates the standards that ensure
compatibility between devices of the same memory generation from di�erent vendors.
We consider six of them in this thesis. Chronologically ordered by the date of their in-
troduction3 they are: DDR2 [73], DDR3 [75], LPDDR [74], LPDDR2 [99], LPDDR3 [78], and
DDR4 [77]. Newer standards evolve by de�ning timings for higher clock frequencies
and modi�cations of the physical interface. The optional LP-part in a generation name
stands for Low Power, and the respective standards are more suited for power / energy
constrained systems, for example, by operating at a lower supply voltage, or by the
introduction of more e�cient low-power modes. LPDDR devices have a maximum of
4 banks, while DDR2s can have 4 or 8 banks, and DDR4 may have 8 or 16 banks. The re-
maining generations always have 8 banks. Occasionally standards are augmented with
new features, like a reduced supply voltage, for example, as in the case of DDR3L [100].

3 The order is based on the date stamp of the earliest JEDEC document version available online at the time of
writing. Being a standardization body whose main contribution is documentation, JEDEC is surprisingly bad
at actually archiving versions of the documents they produce, and hence Google was required in most cases.

20 background and terminology

Figure 2.3: Typical memory hierarchy for embedded SoCs and COTS systems.

2.1.3.1 DDR4 bank groups

DDR4 introduces bank groups: banks are clustered into (at least two) bank groups per
device. Banks in a bank group share power-supply lines. To limit the peak power per
group, sending successive commands to the same group is discouraged by making cer-
tain timings larger in that case. These timings are post-�xed with _l (long) or _s (short)
for commands for the same or a di�erent bank group, respectively. Successive RD or
WR commands to the same group need to be separated by at least ccd_l cycles. Because
ccd_l is larger than the number of cycles per data burst (BL/2), performance is impacted
by ccd_l unless bursts are interleaved across bank groups.

2.1.4 Memory hierarchies

SDRAM devices can be used as standalone chips, as generally done in embedded SoCs [84,
128, 136, 139] for example. The Interface Width (IW), which we de�ne as the width of the
data bus between the memory controller and the SDRAM, is then equal to the data bus
width of this chip, and typically ranges from 8 up to 32 bits. Bigger and wider memories
can be built by having multiple chips work in lock-step in a rank, executing the same
commands, producing or consuming data in parallel. The IW of the controller is then
equal to the combined data bus width of all these chips. The request size divided by
IW and BL determines how many data bursts, and thus RD or WR commands should be
generated for a request, with a minimum of one burst.

Multi-device setups are typically used in Commercial-O�-the-Shelf (COTS) and high-
performance computer systems. Memory chips are not bought individually for these

2.2 pattern-based sdram controller 21

Figure 2.4: Allowed pattern sequences.

systems, but instead come pre-combined on Dual Inline Memory Modules (DIMMs) [79]
or Small Outline DIMMs (SO-DIMMs) [80] that contain one or two ranks with a combined
data bus width of 64 bits. Ranks can share a command and data bus, as long as they do not
drive the data bus simultaneously. Finally, a memory hierarchy may contain multiple
independent groups of ranks called channels, each with an individual SDRAM controller.

In this thesis, we target embedded SoCs, and hence most of our examples are based on
relatively narrow interfaces compared to DIMMs. The techniques that we propose are
independent from how the memory hierarchy beneath the SDRAM controller is built,
i.e. both single devices or DIMM modules can be supported. We do, however, rely on a
custom controller architecture (Chapter 3), which by de�nition places this work outside
of the COTS realm (assuming FPGA development kits are classi�ed as non-COTS). We also
focus on a single SDRAM controller, leaving multiple channels out of the equation.

2.2 pattern-based sdram controller

To create a predictable SDRAM resource, useful bounds on the response time of memory
requests have to be given. The underlying technique by which our memory controller
bounds the response time of a request is the approach from [3], revolving around mem-

ory patterns. A memory pattern is a design-time constructed series of SDRAM commands

with a known execution time (length) and a speci�c function.

The commands in a pattern are scheduled such that all timing constraints within the
pattern itself are satis�ed. Six di�erent patterns types exist: 1) Read, 2) Write, 3) Read-
To-Write switch (RTW), 4) Write-To-Read switch (WTR), 5) Refresh and 6) Idle patterns.
The sequences of patterns that can be executed by the controller are summarized in
Figure 2.4. The function of each pattern type is the following:

• Read and write patterns are access patterns that transport data from and to the
SDRAM, respectively. Multiple read patterns and multiple write patterns may be ex-
ecuted successively, indicated by their respective self-edges in Figure 2.4. In their

22 background and terminology

construction, that factor has to be taken into account, such that SDRAM timing con-
straints within and across these patterns are not violated. Typically, read and write
patterns contain between 1 and 32 bursts (RD or WR commands).
Read and write patterns implement a close-page policy. They activate the banks they
will be accessing, and all banks are precharged at the end of the pattern.

• Switching patterns consist of only NOPs. They are inserted between a read and write
pattern to resolve timing constraints across access patterns of opposing types. If
there are no such constraints, or if no additional NOPs are required to satisfy them,
then switching patterns may have a length of zero.

• A refresh pattern consists of a single refresh command preceded and succeeded by
enough NOPs such that it can be scheduled after an access pattern without violating
timing constraints. The switching patterns and the refresh pattern are called the
auxiliary patterns.

• Finally, the idle time of the controller can be discretized explicitly into idle or power-
down patterns [28]. We do not evaluate the use of power-down patterns in combina-
tion with the techniques proposed in this thesis, and hence we stick to idle patterns
consisting only of NOPs. Idle patterns can be inserted on most edges in Figure 2.4
(only not between WTR and read patterns and RTW and write patterns). Their min-
imum size is 1 cycle.

There is one pattern of each type available to the memory controller in what is called
a pattern set. The SDRAM controller makes scheduling decisions at the granularity of
patterns instead of individual commands, which simpli�es bounding its performance.
Some close-page real-time controllers use variations of memory patterns in their ar-
chitecture [2, 43, 64, 117], scheduling patterns from such a set instead of individual
commands. This simpli�es the logic of the controller, since there are fewer constraints
it has to track. Others de�ne patterns only in their worst-case analysis [112, 125], know-
ing the behavior of their architecture is bounded by them. In both cases, the analysis
complexity is greatly reduced.

2.2.1 Pattern-based controller architecture

The architecture of a general pattern-based controller is described here, based on [3].
We make a distinction between the resource front-end, which deals with the preparation
of requests from clients and the arbitration amongst them, and the SDRAM back-end,
which schedules patterns and translates them into SDRAM commands. Finally, the Physi-
cal interface (PHY), deals with the physical connection to the (o�-chip) SDRAM. Figure 2.5
shows this general architecture.

The commands in a pattern are �xed at design time, and the controller hence al-
ways works at the same �xed access granularity, i.e. there is a speci�c number of bytes

2.2 pattern-based sdram controller 23

Figure 2.5: The general architecture of a pattern-based controller.

associated with a read or write pattern4. When clients send requests into the memory
controller, they are not necessarily of the same size as the access granularity. The atomi-

zer resolves this inconsistency by splitting incoming requests into atomic service units
called atoms. Access to the SDRAM is granted to clients by the arbiter on a per-atom
basis. This allows clients to be preempted at the granularity of atoms, independently
of the size of the requests they produce, which is a property we require to be able to
bound the interference from each client [8, 53]. The type of the atoms (read or write) is
equal to the type of the request they are based on, but the amount data that is associated
with an atom is always equal to the access granularity of the memory controller, which
typically ranges from 16 bytes up to 1 KB, depending on its con�guration. The atomizer
concept was �rst shown in [6, 62], and we base our implementation on these works.

The atom queue holds incoming atoms until either all associated data is bu�ered (for
write atoms), or enough space is available for the response (for read atoms). An atom
is only eligible for scheduling once this bu�ering requirement is satis�ed. Internal and
individual bu�ering per client is necessary for two reasons: 1) the SDRAM determines
when data must be provided to and accepted from it on consecutive cycles, in accor-
dance with the JEDEC speci�cations [73–78]. Clients are not guaranteed (or required)
to produce or consume all data for an atom on consecutive cycles, and data must hence
be bu�ered somewhere internally in the memory controller to ensure this requirement
is always satis�ed. 2) Individual queues per client are needed to avoid situations where
clients occupy the shared resource before they are capable of reading / writing a com-
plete atom. If a shared queue would be used, then a non-cooperative (blocking) client
could occupy the queue inde�nitely and stall the resource as a result. This would break
the isolation between clients, because preempting (and �ushing out) an ongoing trans-
action is not supported. Using individual queues, a non-cooperative client can only in-
de�nitely occupy its own queue, which is not disruptive for others.
Delay blocks wrap the atom queues. Each delay block can be con�gured such that the

data consumption and production behavior of the SDRAM is equal to a speci�c Latency-
rate (LR) curve [132] from the client’s point of view. It achieves this by manipulating

4 Chapter 7 introduces the option to change access granularity through recon�guration. The bene�ts and lim-
itations are explained in detail in that chapter.

24 background and terminology

Figure 2.6: An example of the order in which patterns may be executed.

�ow-control signals that govern the acceptance of incoming atoms and their data, and
the time at which responses are released by the atom queue. In essence, it delays each
response to its Worst-Case Response Time (WCRT), as speci�ed by its LR guarantee. This
is a generalization of the Logical Execution Time (LET) idea [50, 85], which uses a single
number to represent the WCRT. Delay blocks were introduced in [6], and we use the
same design. An introduction on LR servers is provided in Section 2.5.

The resource bus grants one client at a time access to the SDRAM back-end. Arbitration
decisions are made by a predictable arbiter (e.g. any arbiter in the class of latency-rate
servers [132]), which schedules one of the eligible atoms from the atom queues to be
processed by the back-end. Each scheduling decision corresponds to a single atom, al-
lowing for �ne-grained interleaving of atoms from di�erent clients.

The SDRAM back-end accepts one atom at a time, and based on the type (read or write)
and the type of the previously executed pattern, it executes one or two patterns:

1. A write pattern, if the previously executed pattern was a write, refresh or idle pat-
tern, and the current atom is a write.

2. A RTW pattern followed by a write pattern, if the previously executed access pattern
was a read, and the current atom is a write.

3. A read pattern, if the previously executed pattern was a read, refresh or idle pattern,
and the current atom is a read.

4. A WTR pattern followed by a read pattern, if the previously executed access pattern
was a write, and the current atom is a read.

Figure 2.6 shows a pattern execution example. The time between scheduling decisions,
or Scheduling Interval (SI), is variable as a result of this behavior, both across atom types
and for atoms of the same type, i.e. a write atom could require a RTW and write pattern,
or only a write pattern, as shown in Figure 2.6. In the continuation of thesis, we use the
following terminology for the pattern lengths: tp

r
, tp

w
, tp

wtr
and t

p
rtw

represent the read,
write, write-to-read and read-to-write pattern lengths, respectively. Additionally, the
refresh pattern length is denoted by t

p
ref

.

2.3 burst grouping 25

The focus of [3] is primarily on the front-end, and a detailed description of the back-

end, is not given. In Chapter 3, we provide an architecture for the back-end of a pattern-
based controller. We additionally describe the new features that we added to the front-
end to allow the entire controller to function on a real hardware platform.

2.3 burst grouping

The smallest request size that a memory controller has to process is often larger than
the size of one read or write burst to a memory device in the embedded SoCs we focus
on. This means that multiple bursts can be grouped together to form a single atomic
access at a larger access granularity. The relative order of bursts within one such an
atom is �xed, which gives it guaranteed properties that improve the worst case. The
banks to which these grouped bursts are sent is determined by the low-level memory
map. Depending on this memory map, grouping bursts can guarantee:

1. Bank parallelism: The atom is interleaved over multiple banks that work in parallel
to produce or consume data. While one bank is precharged or activated, other banks
are accessed with read and write commands.

2. Consecutive bursts access the same row: Multiple bursts are fetched from the same
row in the same bank within an atom, in essence generating guaranteed row hits,
and guaranteeing no read-write switching of the data bus across those bursts.

Timing constraints enforce a minimum amount of time between consecutive activations
of the same bank, and they also separate bursts of di�erent types (read / write). Atomi-
cally grouping bursts helps to reduce the overhead of these two e�ects, improving the
memory e�ciency, since more useful commands are executed in the same amount of
time, as shown in Figure 2.7.

A trade-o� exists between these two e�ects: requests have a �nite size, and hence
there is only a limited movement range within these two dimensions. The width of the
SDRAM’s data bus also plays an important role here. The wider it is, the more bits are
transferred per burst, and the fewer bursts can be grouped to �ll an atom with a given
access granularity. DIMM-based (COTS) systems, which typically have a 64-bit bus, are
hence more limited in their ability to exploit burst grouping compared to embedded
SoCs that typically use single SDRAM chips with a smaller (8-32 bit) interface.

We de�ne two parameters to characterize where a controller operates within this
con�guration space:

1. Bank Interleaving (BI): the number of banks that are accessed atomically, and

2. Burst Count (BC): the number of bursts per bank.

Using these parameters we can describe theAccess granularity (AG) of a pattern-based
controller, i.e. the number of bytes that are transported within a read or write pattern.

26 background and terminology

(a) Using BI 1, BC 1.

(b) Using BI 1, BC 4.

(c) Using BI 4, BC 2.

Figure 2.7: Examples of the e�ects of grouping bursts. Shaded bursts are page misses. It shows
how the number of bursts that can be executed within a �xed amount of time varies
based on how they are grouped.

It depends of the number of bursts in the pattern, given by BI · BC, the length of a burst
in words (BL), and the number of bytes per word, which is equal to the interface width
in bytes (IW):

AG = BI · BC · BL · IW (2.1)

The worst-case or average-case behavior of an SDRAM controller’s command sched-
uler can be characterized by a (BI, BC) combination, and this in turn determines its
performance. Some real-time memory controllers interleave bursts belonging to one re-
quest over all available banks [2, 112, 125]. Others interleave consecutive bursts to dif-
ferent banks [43, 117], but the origin of each of these bursts may be a di�erent request.
Controllers using open-page policies generally assume each request maps to a single
burst [82, 88]. [2] considers the number of bursts per bank as con�guration parameter,
but not the number of banks. Chapter 4 turns BI and BC into an integral part of the gen-
eration of patterns for our memory controller, and Chapter 5 shows the con�guration
trade-o�s when both degrees of freedom are used.

2.4 refresh

An SDRAM needs to be refreshed once every refi cycles on average (Appendix B). Dur-
ing a refresh, the SDRAM is unavailable to clients, which impacts the worst-case per-

2.4 refresh 27

formance. Most works [3, 88, 112, 148] assumes refresh is triggered asynchronously
with respect to the inter-client scheduling by an internal timer in the controller, and
has precedence over requests from clients. Refresh then impacts both bandwidth and
response time.

The refresh e�ciency describes the refresh-related bandwidth reduction when such a
timer-based refresh mechanism is used. It is de�ned as one minus the fraction of time
spent on refreshing, which for a pattern-based controller is equal to:

eref = 1 −
t
p
ref

refi (2.2)

where t
p
ref

is the length of the refresh pattern as de�ned earlier. The refresh e�ciency
ranges from 0.96 to 0.99 for the devices we evaluate in this thesis, and hence only a
small fraction of all requests is actually a�ected by a refresh. In related works, refresh
has been incorporated in the worst-case analysis in several ways.

Busy-period-level refresh
Each request might have to wait for a refresh. A conservative request-level WCRT there-
fore incorporates at least one refresh pattern. When the worst-case analysis is based on
LR servers, like in [3], then it has to account for at least one refresh at the start of a
busy period, which may span many requests.

Application-level refresh
Other approaches, like [88, 112, 126, 148], let go of the notion of a conservative request-
level WCRT, instead derives an application-level bound. First, the Worst-Case Execution

Time (WCET) of an application interacting with the SDRAM is determined, without ac-
counting for refresh. Based on this, the maximum number of interfering refreshes is
found by dividing this number by refi. A cost is assigned to each of these refreshes,
and added to the application’s WCET. This can lead to smaller application-level WCET
bounds compared to [3], as shown in [126], which also does this.

Manual refresh
Finally, there is an approach that we refer to as manual refresh [19, 43, 117]. Activat-
ing and precharging a row e�ectively refreshes it, so data is retained as long as each
row is visited at regular intervals. Controllers that use manual refresh do not have an
internal timer, but instead have a refresh client that cycles over all rows, activating and
precharging them.

When manual refresh is used, eref can be set to 1. The cost of refresh is instead taken
into account when bandwidth is set aside for the refresh client in the front-end. Manual
refresh is less e�cient [19, 20] than the (built-in) REF command, because it refreshes
fewer rows per cycle, and hence the fraction of the available bandwidth that needs
to be reserved for the refresh client is larger than 1 − eref . However, the number of
consecutive cycles for which the SDRAM is unavailable during a manual refresh can be
smaller, which generally reduces the WCRT of a single request.

28 background and terminology

Figure 2.8: A LR server and its associated concepts.

For the remainder of this thesis, we ignore refresh at the level of busy periods, and
assume it is taken into account at a later (application-level) stage, as is done in [88, 112,
126, 148]. [3] shows how to include refresh at the busy-period level for a pattern-based
controller for the interested reader.

2.5 latency-rate servers

To characterize the (predictable) performance of the memory controller, we rely on a
LR server abstraction [132]. A LR server guarantees a minimum rate, ρ, after a maxi-

mum service latency, Θ, to its clients. When the LR abstraction is applied to a memory
controller, the rate (ρ) maps to a certain bandwidth (bytes / second). The service latency
is expressed in a unit of time (seconds or cycles), and it intuitively captures the initial
latency a client experiences before the server can sustain guaranteed the rate. This lin-
ear service guarantee has to (lower) bound the amount of data that can be transferred
during any interval. We proceed with a brief intuitive introduction of the properties of
LR servers.

Figure 2.8 plots the service bound as a thick black line, given the example requested

service line (dotted line). A LR guarantee is conditional and only applies if the client

requests enough service to keep the server busy. This is captured by the concept of busy
periods, which are periods where a client requests at least as much service as it has
been allocated on average (ρ). In Figure 2.8, the client is busy as long as the requested
service line above the busy line, and hence the start of the �rst busy period is marked
by the �rst intersection of the dash-dotted and dotted line (at t = 0). It ends at the
second intersection with the dash-dotted line. The second busy period starts when the
requested service exceeds the busy line again, which is equivalent to one or more new
requests entering the memory controller. After Θ units of time have passed since the
start of this second busy period, the server once again guarantees the ρ in the second
busy period.

The service bound line is equal to the busy line delayed by Θ, and hence starts Θ af-
ter the start of the busy period and increases with rate ρ. The provided service is always

2.5 latency-rate servers 29

larger than or equal to the service guarantee, since it follows the actual-case perfor-
mance, and not the worst-case performance. An example of what the provided service
curve could look like is drawn in Figure 2.8 with the thick gray line. Note that the ser-
vice bound is maximal if the client continuously remains busy, i.e. if the client requests
service at a su�ciently high rate (≥ ρ).

Note that requests arrive instantaneously, as shown by the discrete jumps in the re-
quested service line. A read request is considered to instantaneously arrive once the
request arrives in the atom queue and there is space for the corresponding response. A
write arrives when its last data word arrives in the atom queue. The service bound and
busy line are fractional, and therefore shown as continuous curves. The provided service
for a memory controller is discrete at the level of words, bursts, or atoms, whichever is
preferred (in Section 3.2, we use a word-level characterization).

It works. Planes �y. Cars drive, computers compute.

If you base medicine on science you cure people.

If you base the design of planes on science they �y.

If they base design of rockets on science they reach the moon.

It works... bitches.

— Professor Richard Dawkins, Oxford’s Sheldonian Theater, 2013

3
R E C O N F I G U R A B L E R E A L -T I M E M E M O R Y C O N T R O L L E R
A R C H I T E C T U R E

The previous chapter introduced the relevant concepts that relate to real-time memory
controllers in general, which are required as a basis for understanding the contributions
within this thesis. This chapter continues the story with a description of our novel recon-
�gurable memory controller architecture, which is the framework on which the other
contributions in this thesis are pinned. The memory patterns we generate in Chapter 4
are stored within this controller. The trade-o�s we describe in Chapter 5 apply to mem-
ory controllers that follows the architecture template we describe here, and the conser-
vative open-page policy in Chapter 6 is implemented on a slightly modi�ed version of
the same template. The embedded recon�guration hardware enables the controller to
adapt to di�erent use-cases as we describe in Chapter 7.

This chapter partially concerns the introduction of concepts and structures used in
the controller, and touches upon some of the real-time aspects that are in�uenced by
its structure and implementation (Section 3.1). In Section 3.2, we derive a worst-case
performance model for this memory controller architecture, based on a LR server ab-
straction.

We then continue with a discussion on the implementation of a hardware instance
on Field Programmable Gate Array (FPGA) in Section 3.3, which demonstrates that this
memory controller is not only conceptually sound, but really works when it is connected
to a real SDRAM module and integrated in the Composable System-on-Chip (CompSOC)

platform [53]. Its costs in terms of resource usage are evaluated and contrasted with
a comparable FPGA controller implementation in Section 3.4. This chapter is partially
based on our publication at CODES+ISSS 2013 [59].

30

3.1 architecture template 31

Figure 3.1: SDRAM controller architecture. Arrows indicate the �ow direction of data.

3.1 architecture template

Figure 3.1 shows the three main blocks that constitute the memory controller architec-
ture. Working backwards from the SDRAM itself they are the PHY, SDRAM back-end and
the resource front-end. The following sections introduce the di�erent components within
those blocks, discuss their functionality, and their qualitative impact on the worst-case
performance where relevant.

3.1.1 DTL interfaces per client

The controller has a Device Transaction Layer (DTL) interface [113] for each memory
client, which is a handshake-based communication standard that is similar to AXI4 [14].
DTL has individual command, read-data and write-data channels, and supports multiple
outstanding (pending) requests. Each DTL request consists of a type, which can be either
read or write, a size, specifying the number of words to read or write, and an address. A
multi-word request reads or writes its data from / to consecutive locations in the logical
address space. Byte masking is supported for write-requests only, and addresses have
to be byte-aligned. Requests are executed by the controller in order of arrival on a per-
client basis, i.e. requests from the same client are never reordered, even though the DTL
standard theoretically allows this. DTL interfaces are also used to connect components
within the front-end; all white ports in Figure 3.1 are DTL ports. The gray ports use non-
DTL interfaces that are speci�c to the components they connect to. Commands and data
passing though a pair of DTL ports experience a cycle of latency, so each pair represents
a pipeline stage in the controller. Flow control is based on back-pressure by means of
valid-accept �ags in the DTL interfaces of the blocks.

32 reconfigurable real-time memory controller architecture

3.1.2 Resource front-end

The primary function of the resource front-end is to enable sharing of the SDRAM
amongst multiple clients. It implements and extends the general template from [6], that
we introduced earlier in Section 2.2.1. Here, we focus on the new features that we added
to this template.

To make the atomizer suitable for use with an SDRAM, it now additionally enforces
the address alignment of its outgoing requests to atom boundaries, and handles requests
with sizes that are non-integer multiples of the atom size by padding and masking them
where required. The atomizer is pipelined, such that the �rst stage acts as the input

bu�er for the front-end, quickly terminating logic paths leading from the clients into
the controller, and allowing the overall design to run at a higher clock frequency. The
con�guration port on the atomizer allows its access granularity to be (re)con�gured at
run time. The atomizer uses the same data width as the client it is connected to.

The width converter is a new block in the front end. It accepts requests at the data-
width from the atomizer (generally 32-bits wide), and converts them to the width the
back-end works at, which is typically larger. In essence, this is a common serial-to-
parallel converter. Both the atomizer and width converter work on a streaming basis,
i.e. they contain no data bu�ers apart from pipeline registers that break up the critical
paths within the blocks. After width conversion, all clients use the same data width on
their DTL interfaces.

The atom queue, delay blocks and resource bus are functionally the same as those in [6].
To increase the clock frequency at which the resource bus can be synthesized, an extra
pipeline stage was added to it, in which the arbitration between clients takes place. We
extended the library of predictable arbiters with a recon�gurable TDM arbiter, described
in detail in Chapter 7. Other available arbiter types (that are all selectable within the
associated design �ow [58]) are round-robin [106] and Credit-Controlled Static-Priority

(CCSP) [5]. The arbiter is chosen at design time.
The resource bus drives the pace at which scheduling decisions are made by requesting

scheduling decisions from the arbiter. Compared to [6], it can now be con�gured to do
that strictly periodically, or on-demand, e.g. when the back-end indicates it is ready to
accept new atoms. Other arbiter settings, like TDM slot allocations or the priorities in
CCSP for example, are also con�gurable at run time through the con�guration bus.

Although the communication interface between the front-end and back-end uses DTL
signals, its �ow-control semantics [114] are slightly di�erent compared to the other
ports. Once a request for an atom is handed to the back-end, the front-end is required
to be able to deliver all the associated data for a write atom whenever the back-end

demands it. Similarly, the front-end has to accept data from a read atom whenever the

back-end o�ers it. Both of these requirements are satis�ed by the eligibility test that the
atom queues perform before they forward requests (see Section 2.2.1).

3.1 architecture template 33

Figure 3.2: SDRAM controller back-end.

Although the �gure only shows two memory clients, up to 16 ports can be instanti-
ated automatically by the associated design �ow if required. Section 3.4 evaluates the
e�ect of varying the number of ports on the hardware resource usage.

3.1.3 SDRAM Back-end

The SDRAM back-end translates atoms into command sequences. It interfaces with the
SDRAM through the PHY, and has to ensure that the timing constraints between the com-
mands are satis�ed. It also translates incoming addresses to a physical bank, row and
column in the memory, and it refreshes the memory at regular intervals as required by
the associated SDRAM standard. In contrast to [2], which uses a hard-coded �nite-state
machine to implement the command scheduler, we propose to use a �exible recon�g-
urable back-end, which is shown in detail in Figure 3.2.

The back-end receives atoms from the resource bus that consist of a type (read / write)
and a logical address. Its main function is to select patterns from the pattern memory,
and to transfer their commands to the PHY.

An incoming atom �rst arrives at the pattern selector. It generates an index for the
pattern Look-Up Table (LUT) based on the atom type (read or write) and the previously
executed pattern type. The index represents the type of pattern that should be executed
(the basic pattern types are mentioned in Chapter 2). There may be more than one

34 reconfigurable real-time memory controller architecture

Figure 3.3: Address generator. Both the shift-amounts (s0 − s3) and the masks (m0 −m3) used by
the and-operators are con�gurable. (The and-operators and or-operators are bitwise.)
The sizes of the row, column and bank components correspond to the ML605 memory
(Appendix B).

pattern set available in the pattern memory. An optional o�set can be added to the
pattern index to switch to a di�erent pattern set. Note that this o�set is not selectable
per atom, but instead is part of the overall back-end con�guration. It can be used to
switch between con�gurations in di�erent use-cases, as further explored in Chapter 7.

The pattern LUT contains the starting addresses and the number of commands of
all patterns in the pattern memory. Its output is used by the command player to read
commands from the pattern memory. Both the pattern LUT and the pattern memory are
exposed to the resource manager through the con�guration bus and are thus recon�g-
urable. In Chapter 7, the recon�guration options that this feature enables are discussed
in detail.

The pattern memory is conceptually implemented as a simple SRAM memory, con-
taining a representation of an SDRAM command and optional bank at every entry. The
command player increments the command address every clock cycle, and triggers a new
pattern selection when the current pattern ends, while also converting the commands
into control signals for the PHY. Section 3.3 discusses the speci�c implementation in our
FPGA prototype.

The address generator translates a logical address to the corresponding bank, row
and column (physical) address elements (Figure 3.3). The command player controls the
address generator such that the correct address is given to the PHY at the right time,
i.e. the row address when activating and the column address during read or write com-
mands. Auto-precharge �ags have to be included in the column address of the associated
read or write command. The bit-position (loc) of this �ag depends on the SDRAM type.
The address generator has four con�gurable masks (m0 −m3) and shift amounts (s0 − s3)

3.1 architecture template 35

through which the logical to physical memory-mapping function can be selected. When
combined with the or-operators, the following physical addresses are generated:

row = (addr»s0) andm0 (3.1)
column = ((addr»s1) andm1) or ((addr»s2) andm2) or (autoPreFlaд«loc) (3.2)
bank = ((addr»s3) andm3) or cmd .bank (3.3)

Each atom only has one logical address. This address is registered and incremented
after each read or write command to generate the address for the next burst (in case the
atom consists of more than one burst). Section 4.2.5 shows how to con�gure the address
decoder, based on the selected memory map.

The �nal block to consider is the refresh timer, which responsible for periodically
inserting refresh patterns into the SDRAM. It consists of a cycle counter with a con�g-
urable threshold value. When the counter reaches the threshold, it resets to zero and
a refresh is scheduled as soon as the currently executing pattern �nishes. Automatic
refresh can optionally be disabled to allow manual refresh schemes, as described in [19]
and [117] for example, to be used.

3.1.4 PHY

The PHY handles the physical I/O connections to the SDRAM module. It acts as a level of
abstraction from the circuit-level details of the SDRAM, and o�ers a generic interface to
the back-end. Several di�erent companies create PHY IPs, and speci�cations like DFI [37],
for example, standardize the interface they expose. A PHY is inherently speci�c to the
SDRAM generation it connects to, although there is often a fair amount of logic that
can be re-used across generations [81]. Since the FPGA prototype is meant for a DDR3
memory, the following description of the PHY functionality is also DDR3 speci�c.

Each byte on an SDRAM interface is individually clocked with a strobe signal, and
both the byte lanes and strobe signals are bi-directional, i.e. the same wires are used for
both reading and writing. At initialization, the PHY runs through a calibration procedure
(called read-leveling) to determine the time o�set between these strobe signals and the
presence of valid data on the byte lanes when reading from the memory. Each byte can
have a di�erent o�set, based on the wire layout of the PHY and its connection to the
SDRAM chips. After calibration, the PHY can compensate for these o�sets appropriately
by inserting delays, such that all the bytes from a single memory word are aggregated
and are forwarded to the back-end synchronously. A similar timing-o�set issue exists
for data �owing into the SDRAM (write-leveling), and it is solved in an analogous man-
ner.

The PHY also con�gures the SDRAM by programming the mode registers in the de-
vice. In this work, we assume that both the calibration and the con�guration �nish in a
bounded amount of time. Since this initialization process happens only once (after the
SoC comes out of reset), it can be regarded as part of the boot process and has no further

36 reconfigurable real-time memory controller architecture

in�uence on the real-time analysis of the controller, assuming there are no real-time re-
quirements on the boot time.

The additional delay that the PHY introduces after calibration, on the other hand, has
to be included in worst-case response time of the memory controller (in δ bPHY), as we later
discuss in Section 3.2.1. Since the hardware in the PHY can only compensate for a limited
byte-level o�set (in the order of a few cycles), we use this maximum compensation as a
worst-case bound for the contribution of the PHY to the WCRT.

3.1.5 Recon�guration infrastructure

The con�guration bus allows various memory-mapped registers to be programmed by
a con�guration host. The host does this by sending con�guration requests to the re-
con�gurable components, which are DTL requests, generated by the driver code of the
memory controller running on the con�guration host.

All components in the front-end can be pre-con�gured with a design-time selected de-
fault con�guration after reset, allowing potential early (predictable) access to the back-
end while the rest of the system is still booting. The back-end starts out with an empty
pattern memory, and hence needs to be con�gured before it can be used. A small ROM
containing a minimal back-end con�guration can be added in case a functioning mem-
ory controller is required before the con�guration host is active in the system.

3.2 worst-case performance analysis

This section discusses the worst-case performance analysis of the SDRAM controller
architecture that was presented in the previous section. The general structure we apply
is similar to that in [3], and relies on a Latency-rate (LR) server abstraction (Section 2.5)
of the controller’s behavior. We present a word-level performance model, that in detail
shows how (hardware) pipelining impacts the analysis. The two performance metrics
that we derive for the memory controller are:

1. Worst-case bandwidth (bwc), which speci�es how much bandwidth the SDRAM deliv-
ers in the worst-case when connected to our controller (assuming there is always at
least one request to serve). The worst-case bandwidth is distributable amongst the
di�erent ports on the front-end, and

2. WCRT of a request for a client connected to the front-end.

The analysis is split in two parts. First, we look at the performance of the back-end
in Section 3.2.1, which we characterize with a LR server. Second, we repeat that e�ort
for the front-end in Section 3.2.2. Finally, we derive the WCRT of the combination of
the back-end and front-end in Section 3.2.3, by concatenating their two respective LR
servers.

3.2 worst-case performance analysis 37

Figure 3.4: The interface characterized by the back-end performance. The call-outs on the MTL
channels show the relevant groups of wires they consist of.

3.2.1 Back-end performance

The back-end performance refers to the performance the SDRAM controller would deliver
if it was not shared amongst multiple clients. We characterize back-end performance
with a LR server with parameters (Θbe , ρbe). The server describes the behavior of the
interface at the dotted line in Figure 3.4 (annotated with “back-end performance”).

The requested service increases by one atom worth of bytes when the request for
the atom is o�ered by the front-end to the back-end. For simplicity, we assume that the
back-end runs at the same clock frequency as the SDRAM. It has a dedicated read and
write data bus (the PHY later serializes writes and reads onto the bi-direction SDRAM
data bus). Each of these buses is twice as wide as the IW of the SDRAM, such that the
di�erence in data rate between the controller and SDRAM (SDR vs. DDR) is compensated
for. The LR server gives guarantees on when data is available from / consumed by the
back-end. This corresponds to the sum of the number of handshakes on the read (valid
�ags) and the write (valid / accept pairs) data bus.

First, we focus on worst-case bandwidth, bwc , in Section 3.2.1.1. The worst-case analy-
sis of memory patterns in terms of bandwidth has been extensively discussed in related
work [1, 3, 7]. We apply the same procedure to derive our results as described in those
works, but for convenience and completion provide a small summary of it in this section.
No assumptions are made on the order in which read and write atoms are given to the
back-end. This decouples the inter-client scheduling from the analysis of the back-end,
simplifying both. Later, in Section 3.2.1.2, we determine the value of ρbe and Θbe such

38 reconfigurable real-time memory controller architecture

that the LR server with parameters (Θbe , ρbe) conservatively bounds the behavior of
the back-end.

3.2.1.1 Calculating worst-case bandwidth

The worst-case bandwidth delivered by a pattern set is a function of its pattern lengths,
the clock frequency, the amount of data that is transported per read / write pattern (the
access granularity, AG), and the refresh period.

The worst-case bandwidth (bwc) is a lower bound on the average amount of bytes
transported across the data bus per unit of time. This bound is valid during a busy
period, for every interval starting Θbe after the start of that busy period. To �nd bwc ,
we need to identify the pattern sequence allowed by the pattern state machine that has
the lowest average data-transfer rate (excluding sequences that include idle patterns).
This could imply continuously reading or writing, transporting AG bytes per pattern,
or constantly switching between reads and writes, transporting 2 · AG bytes per pair
of patterns. All these pattern sequences are periodically interrupted by refreshes, and
hence we multiply with the refresh e�ciency

(
eref

)
(see Section 2.4 for its de�nition).

Finally, multiplying with the command clock frequency f to obtain a bytes / seconds

metric, leads to the following worst-case bandwidth equation:

bwc = eref · AG ·min *
,

1
t
p
r

, 1
t
p
w

, 2
t
p
w
+ t

p
r
+ t

p
wtr
+ t

p
rtw

+
-
· f (3.4)

The peak bandwidth (bpeak) that an SDRAM would theoretically deliver if its data bus
was fully utilized, is obtained by multiplying the data clock frequency by the interface
width in bytes (IW). The data clock frequency is 2 · f for double data rate memories:

bpeak = 2 · f · IW (3.5)

The ratio of the worst-case bandwidth and the peak bandwidth is referred to as the
memory e�ciency (e) of a pattern set:

e =
bwc
bpeak

(3.6)

The memory e�ciency shows how well a certain pattern set performs with respect to
the theoretical maximum bandwidth of a memory device.

3.2.1.2 Calculating back-end service latency

The back-end service latency (Θbe), has to be chosen such thatbwc bounds the bandwidth
after this latency has passed since the start of each busy period. We �rst consider the
scenario in which the largest amount of time passes between the request for an atom (re-
quested service) by the front-end and the associated data handshakes (provided service),

3.2 worst-case performance analysis 39

since Θbe necessarily has to include this time. Figure 3.5 shows the relation between the
variables we introduce, and the events they relate to.

First, we account for the latency related to pipeline stages in the hardware, both in
the back-end and the PHY. We use the symbol δ to represent these latencies.

1. δ f
be

on the request (forward) path: cycles that a request for an atom spends in pipeline
stages in the back-end, before the back-end begins to issue commands to the PHY.
We assume write data words traversing the back-end experience the same latency.

2. δ fPHY on the request path: cycles that a command or write data word spends in
pipeline stages in the PHY before it is issued to the SDRAM.

3. δ bPHY on the response (backward) path: cycles that a read data word spends in pipeline
stages in the PHY before it emerges on its interface with the back-end.

4. δ b
be

on the response path: cycles that a read data word spends in pipeline stages in
the back-end before it emerges on the back-end interface.

We combine the pipeline latencies on the forward and backward path into a single vari-
able, since we do not require them individually in the continuation of the analysis:

δ f = δ
f

be
+ δ

f

PHY (3.7)
δ b = δ b

be
+ δ bPHY (3.8)

To account for the time between the start of a pattern and the actual transfer of data
on the SDRAM data bus, we use the symbol ∆.

1. ∆r is the number of cycles between the �rst command of a read pattern entering the
SDRAM, and the emergence of the �rst word of read data on the SDRAM data bus.
It is the sum of the relative cycle of the �rst RD command in the read pattern with
respect to the start of that pattern, and the RD-to-data latency (usually rl) of the
SDRAM.

2. ∆w is the number of cycles between the �rst command of a write pattern entering
the SDRAM, and the transfer of the �rst word of write data by the SDRAM data bus.
It is the sum of the relative cycle of the �rst WR command in the write pattern with
respect to the start of that pattern, and the WR-to-data latency (usually wl) of the
SDRAM. Relative to this number, write data-handshakes on the back-end interface
happen δ f cycles earlier, under the assumption that commands and data are equally
deeply pipelined.

Both for ∆r and ∆w we assume that all data associated with a pattern exits / enters the
SDRAM on consecutive cycles1.

1 If this is not the case, i.e. when there are bubbles in the transfer, compensation is required. The number of
additional idle cycles should then be added to ∆r and ∆w .

40 reconfigurable real-time memory controller architecture

(a) Read atom.

(b) Write atom.

Figure 3.5: Latency experienced by a read or write atom arriving at an idle back-end at the start
of a busy period.

3.2 worst-case performance analysis 41

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
0

4

8

12

16

20

24

W
or
ds

ρr
be

Θr
be

Provided service
Requested service
Busy line
Service bound

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Cycles

Atom in

Pattern

SDRAM command bus

SDRAM data bus

Back-end (read)

Back-end (write)

δ f

∆r

∆′r

r r r r r r
WTR R R R R R R

Figure 3.6: Worst-case back-end behavior for continuous reads. In this (�ctional) example, we
used: tp

r
= 6, tp

w
= 8, tp

rtw
= 3, tp

wtr
= 1,∆r = 3,∆w = 2,δ f = 5,δb = 3, and each atom

is worth 4 words. To simplify the drawing, we assume e
ref
= 1.

We de�ne ∆′
r

and ∆′
w

as the o�set from the start of the pattern (�rst command enters
the SDRAM) until data handshakes happen on the back-end interface. For reads, this
happens later than ∆r , since they generate data on the response path, while for writes
it happens earlier than ∆w on the request path:

∆′
r
= ∆r + δ

b (3.9)
∆′
w
= ∆w − δ f (3.10)

Now we can describe the number of cycles after which service starts for a read or
write atom arriving at the start of a busy period as θr and θw , respectively:

θr = δ f + t
p
wtr
+ ∆′

r
= t

p
wtr
+ ∆r + δ

f + δ b (3.11)
θw = δ f + t

p
rtw
+ ∆′

w
= t

p
rtw
+ ∆w (3.12)

Analogously to Equation (3.4), we have to conservatively cover three scenarios when
we determine (Θbe , ρbe): continuously reading, writing, or switching between reads and
writes. These scenarios are illustrated in Figure 3.6 - 3.8. The �gures consist of two parts.
The bottom half is a gantt chart of the activity in various parts of the controller. When
a request for an atom is o�ered to the back-end by the front-end, a block is drawn on
the atom in line. The commands that the PHY issues to SDRAM are drawn as blocks on
the SDRAM command bus line, and the corresponding pattern is drawn above it on the

42 reconfigurable real-time memory controller architecture

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
0

4

8

12

16

20

24

W
or
ds

ρw
be

Θw
be

Provided service
Requested service
Busy line
Service bound

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Cycles

Atom in

Pattern

SDRAM command bus

SDRAM data bus

Back-end (read)

Back-end (write)

δ f

∆w ∆w ∆w ∆w ∆w ∆w

w w w w w w
RTW W W W W W W

Figure 3.7: Worst-case back-end behavior for continuous writes, using the same parameters as
Figure 3.6.

pattern line. Read and write commands result in data transfers on the SDRAM data bus
after a certain latency. The blocks on the SDRAM data bus line, represent one word of data
on this bus. Note that two words can be transferred per clock cycle for a DDR memory,
and hence the blocks on the SDRAM data bus line are half as wide as on the command
bus. We assume the rate di�erence is compensated for by the double width of the back-
end data buses, as mentioned earlier. Finally, the back-end (read / write) lines represent
handshakes on the data buses that the back-end exposes to the front-end. Each block
on these buses corresponds to a 1 word increase of the provided service curve on the top
half of the �gures. Based on ρbe in each scenario, the requested service curve and busy

line are drawn. Each increase of the requested service corresponds to the arrival of an
atom (an atom is worth 4 words in this example). Atoms arrive as late as possible within
a busy period, which leads to the minimum provided service.

In one of these three scenarios (the worst case, Figure 3.8 for the particular set of
parameters we used to draw the �gures), ρbe is equal to bwc . Which scenario this is,
depends on the length of the patterns. We want to make no assumptions on the order
of reads and writes, and hence select:

ρbe = bwc (3.13)

3.2 worst-case performance analysis 43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

4

8

12

16

20

24

W
or
ds

ρbe

Θbe

Provided service
Requested service
Busy line
Service bound

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Cycles

Atom in

Pattern

SDRAM command bus

SDRAM data bus

Back-end (read)

Back-end (write)

δ f

∆r

∆′r

∆w ∆r ∆w ∆r ∆w

r w r w r w
WTR R RTW W WTR R RTW W WTR R RTW W

Figure 3.8: Worst-case back-end behavior for interleaved read / write atoms, using the same pa-
rameters as Figure 3.6.

In this scenario, the worst-case distance between the “atom in” blocks in Figure 3.6 - 3.8,
the Worst-Case Inter-Atom Time (WCIAT), is given by:

WCIAT = max
(
t
p
r

, tp
w

, 1
2 ·

(
t
p
w
+ t

p
r
+ t

p
wtr
+ t

p
rtw

))
(3.14)

It is proportional to the slope of the busy line, and shows at what intervals the requested
service line has to increase to remain within a busy period.

The number of commands that are executed for one speci�c atom can be larger than
WCIAT. For example, if the �rst argument of the max-term in Equation (3.14) dominates,
then an atom that triggers a switch from writing to reading takes tp

wtr
+ t

p
r
≥ t

p
r

cycles.
WCIAT is the average time the back-end spends per atom when serving a worst-case
sequence of atoms. Equation (3.4), which calculates bwc , uses the same duration. We call
the maximum time between two atom schedulings the Worst-Case Scheduling Interval

(WCSI):

WCSI = max
(
t
p
rtw
+ t

p
w

, tp
wtr
+ t

p
r

)
(3.15)

When WCSI > WCIAT, the back-end can alternate between generating one atom worth
of service quicker than and slower than WCIAT, respectively. This behavior is drawn in
Figure 3.9 as the atoms completed line. The graph starts at max(θr ,θw), i.e. at the time
where we know the provided service starts to increase when serving only read or write
atoms. If read and write atoms are mixed, we must ensure that the time required for each

44 reconfigurable real-time memory controller architecture

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
Cycles

0

1

2

3

4

A
to
m
s

WCIAT

2 ·WCIAT

< WCSI WCSI < WCSI
WCSI

Atoms completed
Provided service
Uncompensated service bound
Compensated service bound
Pessimistic WCSI-based bound

Figure 3.9: Demonstration of latency compensation for WCSI, using the same parameters as Fig-
ure 3.6. The compensated service bound is conservative in cycles 30 and 31, while the
uncompensated service bound is not. Note that the x-axis starts at max(θr ,θw).

possible pair of atoms is conservatively bounded by the (average) WCIAT. To achieve
this, we add WCSI −WCIAT to Θbe . This e�ectively shifts the start of the rate phase of
the server forward in time to make the service guarantee conservative. This amount of
time can be seen in Figure 3.9 as the 2-cycle di�erence between the compensated service
bound and the uncompensated service bound. The �gure also shows that a bound based
on atoms that always take WCSI cycles is overly pessimistic if WCSI > WCIAT. Finally,
the expression for Θbe is equal to:

Θbe = WCSI −WCIAT +max(θr ,θw) (3.16)

3.2.2 Front-end performance

Clients observe a certain performance from the memory controller through the port
by which they are connected to it. The arbiter in the front-end regulates which clients’
atom is processed by the back-end. Each client has an abstract allocation within the
arbiter, that for most intents and purposes can be seen as a speci�c fraction of the total
shared resource time. We assume that the allocation of client c in the arbiter can be
described with two new LR parameters,

(
Θc
arb

, ρc
arb

)
. These parameters are normalized,

such that ρc
arb

represents the fraction of the total server bandwidth that a client receives
after it has waited for Θc

arb
scheduling slots. Because the arbiter schedules atoms, each

scheduling slot represents an atom-sized access.

3.2 worst-case performance analysis 45

Figure 3.10: The LR server describing the memory controller’s performance is the concatenation
of the front-end server and the back-end server.

We always assume a predictable arbiter is used within the memory controller, like
TDM, round-robin [106] or CCSP [5]. [132] shows how to derive the LR parameters
for various popular arbiter types, [5] focuses on CCSP, and [10] extensively discusses
TDM arbiters in the context of LR servers. For the purpose of this thesis, we only need
to look at the details for TDM arbiters, which is done later in Section 7.4.1. All these
arbiters guarantee that the allocated fraction of back-end performance is always visible
and usable by a clients, even during worst-case interference from other clients. The
guarantees that our controller gives to a client are (solely) based on this (guaranteed)
fraction of the back-end performance (budget), which is hence not dependent on the
behavior of other clients. This implies that the memory controller o�ers predictable
performance to a client.

We characterized the front-end for client c as another LR server with parameters(
Θc
fe

, ρc
fe

)
. ρc

fe
represents the bandwidth that is allocated to the client.

ρc
fe
= ρc

arb
· ρbe | 0 < ρc

arb
≤ 1 (3.17)

Intuitively, we can see that if ρc
arb

= 1, the client has the full back-end at its disposal.
Finally, we de-normalizeΘc

fe
such that it is expressed in clock cycles instead of schedu-

ling slots. We do this by multiplying with the duration of such a slot in the back-end. We
can use WCIAT for this, since the back-end LR server is guaranteed to process at least
one atom per WCIAT once Θbe has passed. Additional pipeline stages in the front-end,
on the forward and backward path, are represented by δ

fe
:

Θc
fe
=
⌈
Θc
arb

⌉
·WCIAT + δ

fe
(3.18)

3.2.3 Worst-case response times

A client uses the concatenation of its front-end server and the back-end server. When
two LR servers are concatenated, a single server equivalent has a latency equal to the

46 reconfigurable real-time memory controller architecture

sum of latencies of the individual servers, and the minimum of their rates [132]. We use(
Θc
ctrl

, ρc
ctrl

)
to represent the combined server:

Θc
ctrl
= Θc

fe
+Θbe (3.19)

ρc
ctrl
= min

(
ρc
fe

, ρbe
)
= ρc

fe
(3.20)

The WCRT of a request is de�ned as the maximum time di�erence between the arrival
of the request in the controller and the departure of the response. Intuitively, the WCRT
of a request can be read directly from the LR curve for the client, as the di�erence
between the time at which the request arrives (i.e. where the requested service increases
with one request worth of service), and the time at which the service bound reaches the
same vertical height (see Figure 3.8 for example). LR guarantees are dependent on the
client’s (prior) behavior (the number of outstanding requests, and when they arrived),
and because of that, the WCRT cannot be described as a single simple number, contrary
to what we did earlier with the worst-case bandwidth. Instead, each requests may have
its own WCRT.

The LR server that describes a client’s memory performance can be included as a
component in a larger analysis model to validate the client’s requirements. A general
outline of this process can for example be found in [53, 109], which use the data�ow [129]
model of computation for this purpose. In this context, it is not useful or required to de-
�ne a single WCRT that is valid for all requests.

Introducing additional assumptions can take the client’s behavior out of the equation
if this is really desired. Arguably, the most conservative option is to assume that each
request starts a new busy period, for example, but this potentially introduces a large
amount of undesirable pessimism into the performance analysis. In general, the WCRT
of a number of outstanding requests with a total size s for client c is equal to:

WCRT(s) = Θc
ctrl
+

s

ρc
ctrl

(3.21)

The remaining contributions of this thesis directly impact the back-end LR server,
but have little impact on the front-end server, since only δ

fe
increases slightly due to the

addition of a few extra pipeline stages, as explained in Section 3.1.2. Hence, we focus
on the quanti�cation of the back-end performance in Chapter 5, leaving the front-end
(mostly) out the equation.

3.3 compsoc controller instance

The proposed controller has been integrated into the CompSOC �ow [58] in two di�erent
forms:

1. Transaction-level SystemC. This implementation is �exible in terms of the modeled
SDRAM generation. The PHY is not included in this model.

3.3 compsoc controller instance 47

2. Synthesizable VHSIC Hardware Description Language (VHDL), targeted at DDR3 de-
vices on the ML605 [152] FPGA development board. A fully functioning PHY is in-
cluded in the controller design, and hence both simulation with a VHDL simulator
such as Modelsim, and actual runs on the FPGA hardware are enabled.

The SystemC model is aimed at prototyping controller features, and veri�cation of
its functional correctness. It can produce cycle-level accurate SDRAM command traces,
which can for example be used to check for timing constraint violations, and / or power
estimation through external tools, like DRAMPower [31] for example. Simulating the
model o�ers superior visibility on the internal state of the controller compared to FPGA-
based experiments, but is unfortunately 3 to 4 orders of magnitude slower.

The VHDL version of the controller for the ML605 board is called Raptor
2. This board

contains a Virtex 6 FPGA (XC6VLX240T) from Xilinx, which is connected to a DDR3
SO-DIMM slot. The PHY of Raptor is generated by the Xilinx Memory Interface Gener-

ator (MIG) 3.6 tool [153], and uses an interface that closely resembles the DFI 2.1 stan-
dard [37].

A small LUT in the pattern player converts the commands from the pattern memory
into a 6-bit control �eld and a 3-bit bank �eld. The control �eld contains values for the
standard RAS, CAS, CS and WE signals, and the value for the 10’th address bit in the
physical address, which is the auto-precharge �ag location for DDR3 (as used earlier in
Figure 3.3). The �nal bit is reserved for a strobe signal that is speci�c to the used PHY
(and not part of the DFI standard), and selects the desired data-bus (read/write) direction.
The 3-bit bank �eld speci�es the bank for which the command is meant. The pattern
memory is implemented using Block RAM (BRAM) resources on the FPGA.

The back-end of the controller runs at half the frequency of the SDRAM command
clock, and sends two commands (and four data words) per clock cycle into the PHY to
compensate for this di�erence. This degree of parallelism is needed because the FPGA
fabric is relatively slow compared to the SDRAM device, which makes designing a con-
troller that works at the native command rate infeasible [33]. The PHY eventually se-
rializes the commands and data before sending them to the SDRAM. Note that this is
common practice, and both the DFI standard and commercially available controllers [25]
may provide this operating mode as an option.

The SDRAM slot of an ML605 by default contains a 512 MiB DDR3-1066 device [98]
(speed grade 1G1), capable of running at a 533 MHz command clock, although later ver-
sions have started shipping with larger and slightly faster devices. Figure 3.11 shows
how this memory is typically used. The SDRAM is under-clocked to run at 400 MHz to
match it up to the attainable controller frequencies on the FPGA, e�ectively turning it
into a DDR3-800 with the controller back-end running at 200 MHz. The full data bus
width of the DIMM is 64 bits, but a user of the CompSOC �ow has the option to synthe-

2 Raptor is a forced acronym for recon�gurable and predictable open-page controller, and also short for Ve-
lociraptor, a genus of dinosaurs, and a type of Predator [4]. Raptors are known for their ability to open doors
and disapproval of goto statements [Jurassic Park, XKCD 292].

48 reconfigurable real-time memory controller architecture

Figure 3.11: Typical clock frequencies and data bus widths for Raptor.

size a controller with a 32-bit interface (connecting only half of the data pins) to save
synthesis time or to emulate memories with a smaller interface, at the cost of making
only half the memory accessible.

3.4 evaluation

The goal of this section is to show that the VHDL implementation of our real-time mem-
ory controller is not prohibitively expensive in terms of hardware usage, and to give
the reader a feeling for its relative size. Section 3.4.1 explains how the experiment was
setup and why this speci�c setup was chosen, while Section 3.4.2 discusses the results.

3.4.1 Synthesis setup

The demonstrated concepts in Raptor are technology agnostic, but its prototype im-
plementation is bound to FPGA: the PHY is FPGA speci�c, and hence cannot straight-
forwardly be synthesized to an Application-Speci�c Integrated Circuit (ASIC). Further-
more, the back-end generates two commands in parallel due to speed restrictions of
the FPGA fabric. An ASIC implementation would be signi�cantly di�erent, primarily in
terms of the high-speed I/O implementation of the PHY. Comparisons with ASIC imple-
mentations would hence have to based on the front-end and / or back-end only, but
that still leaves the 2-to-1 command ratio as a signi�cant di�erence. Although there
are works which describe combinations of back-ends and PHYs on ASIC [32, 81], they
provide insu�cient information to clearly separate the contribution of the two compo-
nents, and lack details on the controller implementation. Hence, a comparison with the
back-end of these works would be hard to interpret, and at most of limited use.

The authors of [88] provide a verilog implementation of their controller front-end
and back-end, and also have an FPGA as synthesis target. However, this controller has
only been tested in simulation and lacks an FPGA PHY, the addition of which we expect
impacts the back-end design in a similar way as that of Raptor (i.e. requiring a lower

3.4 evaluation 49

clock frequency and a parallel generation of multiple commands per cycle). Since the
authors furthermore indicate that improvement of and further elaboration on the im-
plementation is part of future work, we will not attempt to compare to it in its current
state. An FPGA implementation of the controller from [89] is available, but it uses a rela-
tively low-frequency SDR SDRAM. The hardware requirements on such a controller are
so di�erent from ours that a comparison is not useful.

An appropriate comparison that we can actually make involves the Multi-Port Mem-

ory Controller (MPMC) controller [154] from Xilinx. The MPMC is widely used, because
it is the default SDRAM controller for Virtex 6 FPGAs and relatively easy to instantiate
from the Xilinx tools. Its PHY is similar in structure to that of Raptor, uses the same I/O
resources, and targets the same memory generation (DDR3). Both controllers generate
two commands per (back-end) cycle. This allows us to focus the comparison on the main
contributions of Raptor, which are the recon�gurable back-end and front-end. The num-
ber of basic FPGA resources (registers and LUTs) consumed by each design is used as the
metric for comparison. Version 13.3 of the Xilinx tools are used, and unless mentioned
otherwise, we use the default settings provided by the Base System Builder wizard of
the XPS tool to create the MPMC-based controllers. The MPMC version is v6.05.a.

The MPMC by default uses BRAMs to implement its equivalent of the atom queues.
This has advantages in terms of timings, since they are essentially dedicated SRAMs on
the FPGA fabric, but it also over-allocates the queues in terms of capacity, because the
minimal size of a BRAM block is 4 KiB. Alternatively, the MPMC can be con�gured to
use a Shift-Register Lookup (SRL) bu�er implementation, which also maps e�ciently to
FPGA resources, but is available at smaller granularities. We select this con�guration and
set the atom queues in the Raptor front-end to the same size as the default MPMC SRL
size, which is 512 B per read or write queue per port. Raptor’s queues also map to SRL
resources on the FPGA, which hence leads to comparable results in terms of size. Note
that for Raptor, this queue size is con�gurable at design time, and does not necessarily
have to be 512 B.

The MPMC and Raptor use di�erent protocols for communicating with their clients:
MPMC provides several protocol sockets, while Raptor uses DTL. We select Processor
Local Bus (PLB) as the socket for the MPMC front-end, since it is similar to DTL in terms
of wiring signature (AXI4 would be a more obvious choice, but is not available). We use
a 32-bit SDRAM bus for both controllers (leaving half of the DIMM unconnected). The
Raptor instances use a recon�gurable TDM arbiter, con�gured to have the same number
of table slots as there are ports on the front-end. The MPMC uses a round-robin arbiter.
We limit the fan-out of Raptor’s con�guration bus (Figure 3.1) to 16 ports, and instantiate
multiple buses if more than 16 recon�gurable components (more than 7 clients) are
present.

50 reconfigurable real-time memory controller architecture

0 1 2 3 4 5 6 7 8 9
Number of ports

0

5000

10000

15000

20000

25000

N
um

be
ro

fr
es
ou

rc
es

MPMC Registers
MPMC LUTs

Raptor Registers
Raptor LUTs

Figure 3.12: Resource usage of Raptor vs. MPMC using 512 byte read / write queues (1024 bytes in
total) per port.

3.4.2 Synthesis results

Figure 3.12 shows the resource usage of the MPMC and Raptor with a varying number of
front-end ports (8 is the maximum number of supported ports on the MPMC). Note that
these numbers are indicative only, since place and route has not been done yet at this
stage, and hence the wiring cost is not visible yet. The performance (clock frequency)
after routing will vary based on the success of the mapping and routing heuristics, which
is highly dependent on the other hardware which is placed on the same FPGA.

The �gure shows that the LUT and register usage of Raptor and the MPMC are of the
same order of magnitude, although Raptor consistently uses more resources: the MPMC
uses 1305 registers and 930 LUTs per additional port on average, versus 1882 registers
and 2304 LUTs per port for Raptor. The di�erence in size can mainly be attributed to:

• The modularity of the design: each DTL port incurs a handshaked-pipeline stage
with double bu�ering for the command and data lines. This modularity allows the
blocks in the front-end to be easily reused and individually instantiated as needed,
at the cost of more hardware at their interfaces.

• The MPMC is tailored for the Virtex 6, often spelling out the exact mapping to ba-
sic FPGA resources, leaving very little to the imagination of the synthesis tool. This
improves the maximum clock frequency and lowers the resource usage, but compli-

3.4 evaluation 51

cates portability to a di�erent FPGA. Raptor is written at a slightly higher level of
abstraction, and has not been extensively optimized for size.3

• The MPMC is synthesized as a single unit, while Raptor is separated in two, the �rst
one containing the front-end, and the second containing the back-end and PHY. This
means that the synthesis tool has more knowledge to exploit when it eliminates
constants and unused hardware for the MPMC. Global optimization across blocks
happens after the point where the numbers in Figure 3.12 are extracted, and its
results are hence not incorporated in the data set.

• Raptor can generate any SDRAM command at any cycle, while the MPMC restricts
activates and precharges to even-cycles, and read and write commands to odd-cycles.
This constraint has a slight performance implication in terms of bandwidth and
response time.

• The recon�guration infrastructure and delay block functionality that exists in Rap-
tor is not available in the MPMC.

For a single-port controller, the front-end / back-end ratio is 0.48 for registers and 0.60
for LUTs, i.e. the back-end is bigger, while for an 8-port controller this shifts to 3.7 and
4.5, respectively, with the front-end dominating the resource usage.

Figure 3.13 shows a break-down of the resource usage in the front-end, obtained
by individually synthesizing its components. Buses are dimensioned for eight front-
end ports, and their size is divided by 8 as an approximation of the contribution of
each port. Since splitting the front-end into multiple synthesis units reduces the global
optimization opportunities as mentioned earlier, the total number of registers and LUTs
accounted for by the sum of the components is respectively 1.8% and 23% higher than
the costs per port estimated based on Figure 3.12. This underlines the importance of
these optimization, and should serve as a warning that the break-down is approximate
only.

Figure 3.13a shows that the resource bus uses relatively the most registers. It contains
a set of pipeline registers as wide as its total fan-in (i.e. for each port), implemented
as registers. The atom queues store signi�cantly more bits, but use LUTs to do this,
which is more e�cient4. Hence, the proportional register usage of the resource bus and
the delay block might at �rst glance look unintuitive. The atomizers use a relatively
large amount registers because they also contain the input-bu�ers for the front-end. For
similar reasons, they use relatively more LUTs than the other components, as shown
in Figure 3.13b. The delay block spends approximately half of its LUTs on the atom

3 Compared to earlier publications on the approximate size of the controller [59], we did however reduce the
resource usage of all FIFOs signi�cantly by modifying their implementation such that they map to SRL and
LUTRAM resources instead of individual registers. Hence, a 4-port controller with 512 bytes per queue now
uses 88% fewer registers in Figure 3.12 than a version with 256 bytes per queue in [59].

4 32 bits can be stored in a single LUT (although only one of those 32 bits can be read / written at a time), versus
1 bit per register.

52 reconfigurable real-time memory controller architecture

Delay Block

9%

Atomizer 28%

Resource Bus

44%

Width Converter

19%

Con�guration Bus (< 1%)

(a) Registers

Delay Block

26%

Atomizer

34%

Resource Bus27%

Width Converter

13%

Con�guration Bus (< 1%)

(b) LUTs

Figure 3.13: Front-end LUT and register usage break-down per port. 100% = 1915 registers,
2837 LUTs.

queues, while the resource bus uses practically all of them to implement the required
multiplexing logic.

Raptor and the MPMC have di�erent design goals: the �rst one provides real-time
guarantees and isolation per client, while the second does not. The MPMC is built to
sustain a high average-case throughput and was optimized for size, while this is not
the main focus of the Raptor prototype. It is hence not possible to connect hard conclu-
sions to a size comparison of the two solutions, since they have di�erent properties and
applications areas. We observe that Raptor is consistently larger (2.2 and 1.3 times the
size of the MPMC in LUTs and registers, respectively, according to Figure 3.12). However,
keeping in mind that Raptor is still the prototype stage, the results indicate that the cost
of the extra functionality that Raptor o�ers appear to be manageable.

3.5 conclusion

This chapter introduced the architecture template of a real-time memory controller. The
main novel feature is its recon�gurability, which is expressed in two ways. Firstly, the
components in the front-end are recon�gurable, allowing the performance that is pro-
vided to each port to be changed at run-time by modifying its front-end settings, i.e.
budgets in the arbiter and delay block settings. Secondly, the back-end contains a pat-
tern memory that holds the SDRAM commands the controller issues to the memory. The
contents of the pattern memory can be changed at run-time to modify the properties
of the scheduling algorithm implemented by the patterns. The application, properties
and limitations of the available recon�guration mechanisms will be discussed further in
Chapter 7, while Chapter 4 elaborates on the possible con�gurations of the scheduling
algorithm used to create the memory patterns that are stored in the back-end. Further-

3.5 conclusion 53

more, we have shown how the worst-case performance of our SDRAM controller can
be characterized in terms of worst-case bandwidth and WCRT. We apply this analysis
later in Chapter 5 to compare the worst-case performance of di�erent contemporary
memory devices.

The Raptor instance of this controller template has been implemented and customized
for use on an FPGA, and is a part of the CompSOC platform. The complete integration all
the way down to the PHY level shows the controller successfully communicates with real
SDRAM devices, and allowed for a resource usage comparison with the MPMC controller
from Xilinx. This proved that our controller template can provide real-time capabilities
at competitive costs, which has signi�cant added value for mixed time-criticality sys-
tems. Additionally, Raptor has been used on a daily basis both in lab-based courses [108]
and as a research vehicle [53, 124] for several years now, and has shown to be a stable
and versatile component for these purposes.

People want to see patterns in the world. It is how we evolved.

We descended from those primates who were best at spotting the

telltale pattern of a predator in the forest, or of food in the Savannah.

So important is this skill that we apply it everywhere, warranted or not.

— Benoît Mandelbrot, The (Mis)Behavior of Markets, 2004

4
M E M O R Y PAT T E R N S

The previous chapter outlined the foundation of the mixed time-criticality SDRAM con-
troller by showing the hardware it consists of. In the process, it introduced multiple
storage elements that reside in the memory controller back-end, like the pattern mem-
ory and the registers in the address generator. In this chapter, we focus on the creation
of con�gurations for the controller back-end that �ll these storage elements.

A pattern memory, as the name suggests, contains memory patterns (Section 2.2),
which are groups of pre-scheduled SDRAM commands that the controller selects and
executes at run-time. Our goal is to provide a memory controller template that is not
bound to a speci�c memory device or SDRAM type, and hence the memory pattern gen-
eration algorithm should be written in such a way that it is easily transferable across
SDRAM types (DDR2/3/4 and LPDDR1/2/3). Section 4.1 describes an abstraction step that
allows us to do this. Section 4.2 applies this abstraction in the form of a parameterized
pattern-generation heuristic, which is later re�ned to improve its e�ectiveness for DDR4
memories. As an alternative, we provide the option to generate patterns that are guar-
anteed to be optimal, although this is more time consuming. The connection between

Figure 4.1: The pattern �ow in this chapter. The related section numbers are written in round
brackets.

54

4.1 generalized command scheduling rules 55

the pattern con�guration and memory map is also explained in this section. Figure 4.1
shows a �owchart of the pattern generation and post-processing steps.

A predictable pattern set can be converted into composable pattern set, as we show
in Section 4.3, hence providing an alternative to the delay blocks (Section 3.1.2) as a
method of creating a composable memory resource. We show that the impact on the
memory e�ciency can be expressed as a function of the original pattern lengths.

At the end of this chapter, in Section 4.4, we �rst introduce the set of memory devices
that are used to evaluate the e�ectiveness of the pattern-generation heuristics. We com-
pare the heuristics with the optimal solution to evaluate the quality of their solutions
to the pattern-generation problem. The produced schedules are also the basis for the
worst-case performance evaluation in Chapter 5. The same range of memory devices is
used to quantify the typical conversion e�ciency from predictable to composable pat-
terns. Finally, we use the FPGA instance of our memory controller to demonstrate how
using composable patterns isolates the timing behavior of two co-running applications.

Parts of this chapter are based on our publications at DATE 2012 [56], CODES+ISSS
2013 [59], and our article in Transactions on Computers [60].

4.1 generalized command scheduling rules

SDRAM command scheduling is an old problem, and solutions to this problem are (al-
most) equally old: an SDRAM cannot be used without a controller that schedules com-
mands to it. Even though the number of popular SDRAM standards introduced in the
past ten years is large [73–78], their structural di�erences from the scheduler’s perspec-
tive are fortunately quite small, although this is not immediately apparent when the
standards are compared. The numerical values of the timings that govern the memory
behavior vary, timings are renamed, and certain constraints are expressed di�erently
across generations, obfuscating the similarities. These factors complicate the reuse of
command scheduling algorithms, and make it hard to compare them structurally, since
the details of a particular SDRAM standard are often intermixed with the actual algo-
rithm. Even though individual timings may be required for the (circuit-level) SDRAM
design or detailed modeling of power usage for example, they are of little use for com-
mand schedulers (and arguably for memory controllers as a whole), and can hence be
hidden from them. Instead, all they need to know is the minimum delay between pairs

of commands.
For this purpose, we introduce a function d , which serves as the interface for these

algorithms to obtain the minimum relative delay between two commands, cmda and
cmdb . Based on 5 properties of these commands and the SDRAM type, it is conceptually
a lookup table that determines the delay. The �rst two properties describe the types of
the commands, typea , typeb ∈ {ACT, RD, WR, PRE, REF}, while the remaining boolean
properties specify the relative physical location of the bank at which the commands

56 memory patterns

Figure 4.2: Constraint abstraction.

are targeted, i.e. if they go to the same or a di�erent rank, bank group (DDR4) or bank,
respectively:

dsdramType (cmda , cmdb) = LUTsdramType (typea , typeb ,
sameRank (cmda , cmdb),
sameBankGroup (cmda , cmdb),
sameBank (cmda , cmdb)) (4.1)

Based on the JEDEC speci�cations [73–78], we collected the delays that this function
should produce for 6 SDRAM generations in Table 4.1 and Table 4.2, e�ectively con-
densing hundreds of pages of documentation into the bare minimum required to create
memory command scheduling algorithms. Since expressing a 5-dimensional lookup ta-
ble compactly on a 2-dimensional page is quite challenging, a few notational shortcuts
are applied:

• If a combination of inputs is not mentioned in the tables, then it is either uncon-
strained, or not allowed by the state-machine of an SDRAM bank. For example, a
read followed by an activate to the same bank is not mentioned, since they should
at least be separated by a precharge command.

• The timings that are post-�xed with _x depend on the sameBankGroup argument.
For DDR4, an implementation of d () selects the _l or _s versions of the timing if
sameBankGroup is true or false, respectively, as required by the speci�cation [77].
For other SDRAM types, the non-post�xed version of the timing is used.

• The Four Activate Window (FAW) timing is not mentioned in the table, because it is
a window-based constraint, and not a simple delay. It has to be taken into account
separately on a per-rank basis for all SDRAM types except LPDDR, which has no
FAW constraint.

For brevity, and because multi-rank operation is not standardized, the tables only
show constraints for the cases where the command pair is sent to the same rank. Com-
mands across ranks are generally not constrained, unless they use the (shared) data bus,

4.1 generalized command scheduling rules 57

Table 4.1: Common constraints across SDRAM types (de�nition of d ()).

typea typeb sameBank Constraint

ACT ACT true rc
ACT ACT false rrd_x
ACT PRE true ras
ACT RD/WR true rcd - al
PRE ACT true rp
PRE REF true or false rp
REF ACT true or false rfc

Table 4.2: SDRAM-type speci�c constraints (de�nition of d ()). b represents the burst transfer time,
equal to BL/2. For DDR2, if BL = 4, rtw = 2, and if BL = 8, rtw = 6. For DDR4, pa depends
on the selected read/write preamble. If a read or write preamble of 1 cycle is used,
pa = 2. With a preamble of 2 cycles, pa = 3. For LPDDR2/3, D = 1, 2, or 4 for LPDDR2-S2,
LPDDR2-S4, or LPDDR3 devices, respectively.

Memory typea typeb = PRE typeb = RD typeb = WR

type sameBank = true sameBank = true or false sameBank = true or false

LPDDR RD b b b + cl
LPDDR WR b + dqss + wr b + dqss + wtr b
DDR2 RD b + al - 2 + max(rtp, 2) b b + rtw
DDR2 WR b + wl + wr b + cl - 1 + wtr b
DDR3 RD al + max(rtp, 4) b b + cl - cwl + 2
DDR3 WR b + cwl + al + wr b + cwl + wtr b
DDR4 RD al + rtp ccd_x b + cl - cwl + pa
DDR4 WR b + cwl + al + wr b + cwl + wtr_x ccd_x
LPDDR2/3 RD b + max(0, rtp - d) b b + rl - wl + dqsckmax + 1
LPDDR2/3 WR b + wl + wr + 1 b + wl + wtr + 1 b

58 memory patterns

i.e. RD and WR commands. An additional delay, typically one or two cycles, has to be
taken into account in those cases to make sure only one rank at a time drives the bus.

By writing scheduling algorithms in terms of calls to the d () function instead of re-
ferring directly to timing constraints, they can be written in a compact, SDRAM-type-
agnostic manner, as later demonstrated in Algorithm 2. To create a SDRAM-type speci�c
instance of a schedule, one only has to substitute the relevant device speci�c timings in
the constraints in the tables, and resolve the d ()-calls the scheduler makes. Figure 4.2
illustrates this process.

4.2 predictable patterns

Commands for all devices in the previously mentioned SDRAM generations can be sched-
uled by respecting the constraints in Section 4.1. By means of the examples in Figure 4.3,
we discuss some of the options the back-end has when it comes to deciding which com-
mands to generate and schedule. The semantics of the �gure are explained �rst, and
then we look at its content.

Each block in this �gure represents a command, and each line of blocks represents a
possible schedule for a DDR3-1600 device. A block may contain a letter representing the
command type, and a number, representing the bank to which the command is directed.
Empty blocks represent NOP commands. Shaded blocks represent activity on the data
bus, caused by a read (R) or write (W) command. Each of those commands generates a
burst transfer, lasting multiple cycles. The size of the burst is determined by the burst
length setting (BL), which is typically 8 for DDR3, resulting in 4 clock cycles of data-
bus activity. In reality, there is a certain delay between the read or write command and
the corresponding data burst, but in Figure 4.3 the shading starts immediately at the
command for simplicity.

Activate commands are annotated with the letter A, while cycles where an auto-
precharge is executed have the letters aP written in them. We assume precharge com-
mands are always implemented using auto-precharge �ags that are attached to the �nal
read or write command to a bank, which has as advantages that they do not need to be
scheduled explicitly, and do not take up space on the command bus (we draw them as
regular commands when they happen in parallel with NOPs). Figure 4.3g illustrates this,
with the auto-precharge to bank 0, which happens in parallel with the write to bank 3.
If an explicit precharge was used, then either the write or the precharge would have to
happen one cycle later, increasing the schedule length and reducing performance.

Double-headed arrows are annotated with the timing constraints that determined the
shape of the schedules. Each schedule is extended with NOPs until it is repeatable after
itself. This is the behavior that a memory controller would exhibit in the worst case if it
used the shown schedule to service requests, since in the worst case di�erent rows in the
same banks that were used earlier are accessed by each request. Auto-precharges that
are scheduled relatively late can be pipelined with commands designated for following

4.2 predictable patterns 59

Fi
gu

re
4.3

:D
D

R3
-1

60
0

ex
am

pl
e

sc
he

du
le

s.

60 memory patterns

requests, i.e. they might be executed during the next repeat of the same schedule. In the
�gure, this is indicated by the overline on their aP annotation.

The fact that the �gure has to be tilted awkwardly to �t on the page while most
of the blocks are empty illustrates an important point: schedules are relatively long
compared to the amount of useful commands that are executed in them. In a naive
implementation, a memory controller could chop all incoming requests into atoms the
size of one burst, and issue one ACT, one RD/WR and one PRE command to service each
of them. Figure 4.3a shows what such a command schedule would look like. Due to
overhead of activating and precharging, the schedule is signi�cantly longer (46 cycles)
than the actual data transfer time (4 cycles assuming a burst length of 8), a di�erence of
more than an order of magnitude. The worst-case bandwidth is thus a lot smaller than
the peak bandwidth obtained by only considering the data rate, and this e�ciency gap
grows as the memory clock frequency increases, as later shown in Chapter 5.

4.2.1 Pattern generation with variable bank interleaving

The distribution of the bursts in the pattern across banks and the associated worst-case
performance is determined by how the memory controller groups bursts (Section 2.3).
This section introduces a command-scheduling algorithm that changes its behavior
based on a selected burst-grouping con�guration. Instead of interleaving each atom
over all banks in the memory [2, 112, 117, 125], or assuming that each atom maps only
to a single burst [82, 88], we treat the number of banks involved in executing an atom as a

free parameter. With this extra degree of freedom, we use the parameters de�ned earlier
in Section 2.3 to denote:

1. BI as the number of banks that are accessed by an atom, and

2. BC as the number of bursts per bank.

The number of bursts per atom is then equal to BI · BC. These parameters can be used
to generate a range of possible pattern con�gurations characterized by a (BI, BC) combi-
nation. BI can be equal to or smaller than the number of banks in the memory. If BI is
smaller than the number of available banks, then there are multiple ranges of BI banks
that could be accessed by a pattern, o�set by BI banks from each other. For example,
if BI=2, then the accessed banks could be { 0, 1 } or { 2, 3 }, but not { 1, 2 } or { 0, 5 }. We
require the ranges to be mutually exclusive, such that the worst-case sequence of banks
is generated by successive atoms accessing a di�erent row in the same range of BI banks.
Figure 4.4 illustrates this for a DDR3-1066. If we were to abandon that requirement, then
an atom could potentially start its pattern with the same bank the previous atom ended
its access with, e�ectively eliminating most of the (guaranteed) bank parallelism, and
requiring larger patterns to satisfy all constraints, reducing performance. Therefore, the
addresses of atoms that enter the back-end are required to be aligned at atom-sized bound-

4.2 predictable patterns 61

Figure 4.4: A (BI 2, BC 2) read pattern for a DDR3-1066.

aries. This is enforced by the atomizer in the controller’s front end. BI and BC e�ectively
de�ne the low-level memory map for bursts (see Section 4.2.5).

Figure 4.3 illustrates how the schedules change for di�erent (BI, BC) combinations for
the DDR3-1600 example (Note that each line is annotated with a (BI, BC) pair. Figure 4.3b
demonstrates the bene�t of bank interleaving. Two bursts are interleaved, i.e. BI=2. The
ACT-to-RD/WR delay (rcd) of bank 1 is (partially) hidden by the data access to bank 0.

Increasing BC enables hiding the ACT-to-ACT constraint between banks (rrd_x). This
is relevant for all memory devices for which the maximum activate command rate is
lower than the read/write command rate (rrd_x > b), a relatively common property
(Appendix B). The DDR3-1600 memory from Figure 4.3b has rrd = 6, and, this constraint
causes the two-cycle pause in the data transfer between the burst to bank 0 and bank 1.
Figure 4.3c and Figure 4.3d show how this issue is resolved when BC is increased.

For memories that have more than 4 banks, con�gurations with BI ≤ 4 are of particu-
lar interest, since they deal better with the Four Activate Window (FAW) constraint than
those that interleave over more than 4 banks. With at most 4 activate commands within
a pattern, the FAW can only play a role if multiple consecutive patterns are considered.
This allows NOPs inserted at pattern edges to satisfy the FAW constraint to overlap with
NOPs that resolve other constraints, like rc (ACT-to-ACT) and rp (PRE-to-ACT) for ex-
ample, and hence these con�gurations are more e�cient. Figure 4.3g and 4.3h illustrate
this: the schedules contain the same number of bursts, but Figure 4.3g avoids the FAW
penalty, increasing the e�ciency from 38.5% to 61.6%. E�ciency generally increases
with the number of bursts per atom, because the constant activate/precharge overhead
is amortized over more and more data. In practice, the atom size is limited by the size
of the requests the memory clients generate, since there is no point in fetching data at
high e�ciency when it has to be discarded later because the client is not interested in
it. Chapter 5 quanti�es the e�ects of BI and BC on the worst-case performance for a
set of di�erent memories in more detail. Here, we now focus on how to automatically
generate patterns, such as those shown in Figure 4.3, based on a particular BI and BC.

62 memory patterns

Figure 4.5: Example execution of the earliest function.

Figure 4.6: Example execution of the minPatternDistance function. (The commands in the ex-
ample are merely there to show the functionality, but do not resemble real patterns.)

Pa�ern-generation heuristic
The functions in Algorithm 1 and Algorithm 2 build up the pattern in the set P, of
which each element is a 3-tuple representing the type, bank, and clock cycle (cc) of a
command. Record / struct-like semantics are used to access the elements in the tuple,
i.e. x .cc accesses the clock cycle element of the tuple. The max() function executed on
a set returns the largest element within that set. Indentation delimits code blocks. We
use the bank-scheduling heuristic (BS) described in [9] as a starting point for the order
and placement of the commands, because it has been shown to perform well for DDR2/3
memories. In this heuristic, read and write patterns are created independently. Within
these patterns, read or write commands are scheduled as soon as possible, accessing
banks in ascending order. Activate commands are scheduled as late as possible, but just
in time not to delay the read or write commands. Typically, this is rcd cycles before
the �rst read or write to the associated bank, or earlier if this cycle is already taken by
another command. Patterns start with bank activation, and the �nal access to a bank has
an auto-precharge �ag. This heuristic is extended to include the new BI parameter, and
we refer to bank scheduling with variable bank interleaving as BS BI. Algorithm 2 shows
the most relevant read and write pattern generation functions, a complete executable
version can be found in [55]. For BS BI, the input argument useBsPbgi should be set to
false. (The same algorithm is reused later in Section 4.2.2 with this parameter set to true.

Algorithm 2 uses two small helper functions, shown in Algorithm 1. The earliest
function returns the earliest cycle at which a command cmdb may be scheduled, given
the location of the commands in the (partial) pattern P. It uses the d () function (Equa-
tion (4.1)), which symbolizes the lookup in Table 4.1 and Table 4.2. If the P parameter

4.2 predictable patterns 63

is an empty set, then 0 is returned (line 6). Figure 4.5 shows the function output with
an example. The minPatternDistance function �nds the smallest number of cycles
(NOPs) that must be inserted between two patterns to satisfy all constraints spanning
across them. An example for this function is shown in Figure 4.6.

Algorithm 1 Helper functions
1: function earliest(cmdb , P)
2: // d() is a lookup in Table 4.1-4.2. It returns -inf if the command combination is
3: // not mentioned.
4: pos := 0
5: for all cmd ∈ P do
6: pos := max(pos, cmd.cc + d(cmd, cmdb))
7: return pos

8: function minPatternDistance(pattLen, nextP, P)
9: // Determine the minimum distance between P and nextP,

10: // given the length of P is pattLen.
11: minDistance := 0
12: for all cmd ∈ nextP do
13: minDistance := max(minDistance, earliest(cmd, P) - cmd.cc - pattLen)
14: return minDistance

Now we move on to Algorithm 2. The nested loops (lines 4-8) generate 1 activate and
BC read or write commands per bank. The addActAndRw function schedules an acti-
vate command using addAct before the �rst burst to a bank (lines 17-18). Additionally,
it schedules the read/write commands as soon as possible (lines 16, 19).

addAct �rst �nds a range of possible locations for an ACT command. A lower bound
(lb) for the location is based on the ACT-to-ACT and FAW constraints (lines 22-23). The
de�nition of remainingFawCyclesAt can be found in Algorithm 5 in Appendix C. An
upper bound (ub) is set by the minimum distance between the planned location of the
RD/WR command (rwCc) and the ACT command (line 25). Set S contains the cycles
within this range that are not occupied by other commands (line 26). If this set is not
empty, then the largest option is chosen, scheduling the ACT as late as possible (lines 27-
28). Otherwise, the RD/WR command is postponed by a cycle, and by extension the upper
bound for the ACT shifts forward, until a suitable location is found (lines 24, 30). This
guarantees the algorithm always �nds a schedule.

What remains is to determine the location of the precharge commands (lines 9-12),
which are stored in a separate copy of the pattern (P’) since they are implemented us-
ing auto-precharge �ags and hence are not explicitly scheduled. Their location is still
relevant, because the precharges can constrain commands that follow them, within the
next incarnation of the pattern. Additionally, they are required to generate the auxiliary
patterns.

64 memory patterns

Algorithm 2 Bank scheduling heuristic for BS BI and BS PBGI

1: function patternGen(BI, BC, rdOrWr, useBsPbgi)
2: BGi := if BI > 1 and useBsPbgi == true then 2 else 1
3: P := { } // The pattern
4: for all bankPair ∈ { 0...BI/BGi − 1 }

do
5: for all burst ∈ { 0...BC − 1 } do
6: for all o�set ∈ { 0...BGi − 1 } do
7: bnk := bankPair × BGi + o�set
8: P := addActAndRw(bnk, rdOrWr, burst, P)
9: P’ := P // A copy with explicit precharges.

10: for all bnk ∈ {0...BI − 1} do
11: preCc := earliest((PRE, bnk, 0), P)
12: P’ := P’ ∪ { (type: PRE, bank: bnk, cc: preCc) }
13: return makeRepeatable(P, P’)

14: function addActAndRw(bnk, rdOrWr, burst, P)
15: rw := (type: rdOrWr, bank: bnk, cc: 0)
16: rwCc := earliest(rw, P)
17: if burst == 0 then
18: P, rwCc := addAct(rw, rwCc, P)
19: return P ∪ { (type: rdOrWr, bank: bnk, cc: rwCc) }

20: function addAct(rw, rwCc, P)
21: act := (type: ACT, bank: rw.bank, cc: 0)
22: lb := earliest(act, P)
23: lb := lb + remainingFawCyclesAt(lb, P)
24: while true do
25: ub := rwCc − d(act, rw)
26: S := {i ∈ {lb...ub − 1} | cmd.cc , i ∀ cmd ∈ P}
27: if S , ∅ then
28: P := P ∪ { (type: ACT, bank: rw.bank, cc: max(S)) }
29: return P, rwCc
30: rwCc := rwCc + 1
31: function makeRepeatable(P, P’)
32: len := max({cmd.cc ∀ cmd ∈ P}) + 1
33: len := len + minPatternDistance(len, P’, P)
34: while not fawSatisfiedAcross(len, P) do
35: len := len + 1
36: return P, len

4.2 predictable patterns 65

Figure 4.7: (Partial) DDR4-1866 read pattern. Odd and even banks are in a di�erent bank group.
Schedule a does not use (bs pbgi), while b does. c shows how the distance to the next
activate in a following pattern reduces as more bank groups are interleaved, resulting
in longer (less e�cient) patterns.

Given the commands in P’, makeRepeatable �nds the minimum length the pattern
should have to be repeatable after itself without violating regular constraints (line 33)
and the FAW constraint (lines 34-35) spanning across pattern incarnations. The de�ni-
tion of fawSatisfiedAcross can be found in Algorithm 5 in Appendix C. Each time
the length is increased, one NOP is implicitly added to the end of the pattern. Finally,
the scheduled commands and the length of the pattern are returned and the algorithm
ends.

4.2.2 bs pbgi heuristic for DDR4 pattern generation

The heuristic that was presented in the previous section works well for most contem-
porary SDRAM types, as will be shown in Section 4.4. However, due to the introduction
of bank groups in DDR4, there is room for improvement in the heuristic for this SDRAM
type, such that it works around the penalties related to accessing the same bank group
twice in a row (see Section 2.1.3.1 and [77]). To generate more e�cient DDR4 patterns
and avoid hitting the ccd_l constraints between bursts, read or write commands should
be interleaved across bank groups. To this end, we propose a pairwise bank-group inter-

leaving heuristic, as demonstrated in Figure 4.7. Two banks from di�erent bank groups
are paired together. In contrast to regular bank scheduling, which �nishes all BC bursts
to a bank before switching to the next bank, the read or write commands of such a pair
are interleaved per burst. The remaining rules of the heuristic are the same as described
in Section 4.2.1. We refer to Bank Scheduling with Pairwise Bank-Group Interleaving as
BS PBGI. Setting useBsPbgi to true in Algorithm 2 generates the proposed interleaving.
The algorithm assumes that consecutive bank ids map to di�erent bank groups (and

66 memory patterns

Algorithm 3 Creating auxiliary patterns
1: function rtwPattern(rdP, wrP, rdPLen)
2: return minPatternDistance(rdPLen, rdP, wrP)

3: function wtrPattern(rdP, wrP, wrPLen)
4: return minPatternDistance(wrPLen, wrP, rdP)

5: function refPattern(rdP, wrP, rdPLen, wrPLen)
6: // Create the refresh pattern.
7: refP := { (type: REF, bank: 0, cc: 0) }
8: pre�x := max(minPatternDistance(rdPLen, rdP, refP),
9: minPatternDistance(wrPLen, wrP, refP))

10: refP := { (type: REF, bank: 0, cc: pre�x) }
11: post�x := max(minPatternDistance(pre�x + 1, refP, rdP),
12: minPatternDistance(pre�x + 1, refP, wrP))
13: refPLen := pre�x + 1 + post�x
14: return refP, refPLen

wrap around once the bank groups run out). This can be implemented by wiring the
least signi�cant bits of the bank address (described in Section 4.2.5) to the bank-group
bits on the DDR4 interface.

In cases where BI ≥ 2, BC ≥ 2, this heuristic behaves di�erently from BS BI. Pair-
wise interleaving reduces the time between successive read or write commands from
ccd_l to ccd_s, which typically saves one or two cycles per burst pair for the currently
released DDR4 devices. In total, this could save (ccd_l − ccd_s) · BI · (BC − 1) cycles
per pattern, assuming there are no other constraints that force a separation larger than
ccd_s between (some of) the bursts.

The advantage of interleaving only two instead of, for example, four bank groups
is that the last access to the �rst bank pair happens relatively early in the pattern, as
shown in Figure 4.7. As a result, these banks can be precharged (partially) while accesses
to other banks pairs are executed, eventually allowing them to be activated earlier. In-
terleaving more than two banks reduces the overlap, and could hence lead to patterns
that require more NOPs at the end of the pattern to satisfy the constraints required to
repeat the pattern, without any bene�ts.

4.2.3 Auxiliary patterns

To �nish a pattern set, it needs auxiliary patterns, i.e. read-to-write and write-to-read
switching patterns, and a refresh pattern. These patterns are created based on the read
and write patterns (rdP, wrP), and their respective lengths (rdPLen, wrPlen), as shown
in Algorithm 3. The �rst two functions in this algorithm determine the length of the

4.2 predictable patterns 67

switching patterns, which are inserted between access patterns of the opposite type to
resolve constraints between them. Since switching patterns consists solely of NOPs, it
is su�cient to return only the length of these patterns.

The refresh pattern, generated by the third function, consists of a single refresh com-
mand, optionally surrounded by NOPs. First we determine the number of NOPs that has
to precede it, and store that in the prefix variable. The REF command is scheduled after
this pre�x. Finally, the minimum number of NOPs that has to separate the refresh com-
mand from the start of the next read or write pattern, whichever is larger, is appended
at the end of the refresh pattern.

4.2.4 ILP based pattern generation

Section 4.2.1 and Section 4.2.2 describe two heuristics, BS BI and BS PBGI, which gener-
ate close-page read and write patterns. The length of these patterns can be used as a
measure for their quality, since it determines the worst-case memory performance, as
later shown in Section 5. The commands in a pattern are chosen and �xed once a (BI,
BC) combination is selected, so we can de�ne a pattern as optimal in terms of length if

there is no other permutation of this set of commands satisfying pattern scheduling rules

and timing constraints resulting in a shorter pattern. The limitation of this de�nition is
that it considers the read and write patterns separately. When combined, it is possi-
ble (although not likely), that they might not make an optimal pattern set (in terms of
worst-case bandwidth for example), since the auxiliary patterns are not taken into ac-
count during their creation. We can, however, always use them as a lower bound on the
length of the individual read and write patterns, and contrast that with the output of
our heuristics.

This section explains how (length) optimal patterns can be generated, by using a
parameterized ILP formulation of the command scheduling problem. Based on a (BI, BC)
combination and an implementation of Equation (4.1), we create an ILP problem that,
when solved, �nds the optimal pattern size and the location of the commands within
the pattern. Any memory controller that uses a close-page policy and relies on memory
patterns in analysis or implementation, like [2, 43, 112, 117, 125] can use this formulation
to improve the schedules it uses, or to extend its scope to di�erent memory devices or
generations.

We later use the ILP formulation as a means to evaluate the BS BI and BS PBGI heuris-
tics. The translation to a formal problem de�nition is available in Appendix A, but here
we only describe the formulation in natural language: Figure 4.8 illustrates a subset of
the properties of the formulation.

1. Create a set of variables representing the locations of the commands in the pattern
that should be generated as a function of the selected (BI, BC) combination: there
are BI di�erent ACT commands, one for each bank, and BI times BC di�erent RD/WR
commands, and BI PRE commands (as auto-precharge �ags).

68 memory patterns

Figure 4.8: Example of the ILP precedence constraints. An edge between a set of commands means
that the source command has to be scheduled before the destination command. Num-
bers in round brackets refer to the associated rule in the ILP description.

2. Add variables representing the location of an extra activate command for each bank
in this set. These activate commands represent the start of a second instance of the
pattern, which should be schedulable immediately after the �rst instance, because
read/write patterns should be repeatable after themselves (Section 2.2).

3. Given this set of memory commands, assign a single location in the schedule to each
command such that:
a) An ACT to bank 0 is scheduled in cycle 0.
b) No two commands are scheduled in the same cycle. Precharges are exempted

from this rule, since they are executed using auto-precharge �ags and do not
require a slot in the schedule.

c) The relative delays between any pair of commands is at least as large as pre-
scribed by Equation (4.1), and there are at most four ACTs in each FAW window.

d) The commands for each bank are executed in the proper order, i.e. start with an
activate, followed by BC read or write commands, followed by a precharge. This
formulation allows di�erent banks to be used in parallel, i.e. one can be activat-
ing while another is used for reading or writing. The extra activate commands
added in Step 2 should happen after the precharge to the associated bank.

e) Commands for the second instance of the pattern must be scheduled after the
extra activate to bank 0, and commands for the �rst instance must be sched-
uled before the extra activate to bank 0. This activate command itself and all
precharge commands are exempt from this rule. Precharges may be (automati-
cally) pipelined across patterns, because auto-precharge �ags are used and they
are hence scheduled automatically.

f) The �rst and second instance of the pattern are the same. A set of constraints
enforces that the distance between the extra activate command to a bank and
the extra activate to bank 0 is equal to the distance between the �rst activate

4.2 predictable patterns 69

command to that bank and cycle 0. As a result, the activates appear in the same
relative position in the second pattern instance. The positions of the read or write
commands in the second instance follow from the positions of the activates, and
do not need to be scheduled explicitly.

4. To limit the search space and eliminate equivalent symmetric solutions, we add the
following constraints (see Figure 4.8):
a) The order of the read or write commands to the same bank is �xed, because we

cannot (and do not want to) distinguish between di�erent bursts to the same
bank within a pattern.

b) Banks are activated and precharged in ascending order. For DDR4, we again use
the assumption that consecutive bank ids map to di�erent bank groups (and
wrap around once the bank groups run out).

c) An upper bound on the optimal length of the pattern in cycles can be found
based on the BS BI or BS PBGI (DDR4) heuristics. Both provide a valid bound, so
we use whichever is the smallest to limit the solution space as much as possible,
and hence reduce the computation time of the solver.

d) A lower bound for the pattern length is the size of a schedule where the com-
mands for bank 0 are scheduled as soon as possible. A lower bound for the loca-
tion of the extra activate commands of other banks is derived from this bound,
since they must at least be scheduled one ACT-to-ACT constraint away from
bank 0’s activate.

5. The optimization goal is to minimize the pattern length. Therefore, we minimize
the location of the second activate to bank 0, which signi�es the start of the next
incarnation of the pattern.

The ILP formulation might create shorter patterns than BS BI and BS PBGI, because it
does not restrict the relative ordering of bursts across banks nor the placement of bursts
within the pattern, and it has no preferred location for activate commands (i.e. it could
postpone them compared to the heuristics). Section 4.4 evaluates how close to optimal
the heuristic results are.

4.2.5 Memory map implications

The order of the data bursts within a memory pattern is �xed, meaning they are mapped
to consecutive logical memory addresses by de�nition. The pattern con�guration (BI,
BC) thus has a direct in�uence on the decoding of the (least signi�cant) portion of the
logical address into a physical address, as it partially determines which bits should be
selected for the bank, row and column address. A (BI, BC) combination is hence as much a

memory map con�guration as it is a pattern or scheduler con�guration. This is illustrated

70 memory patterns

Figure 4.9: Memory map from logical to physical address. BGI refers to the degree of bank group
interleaving, which we limited to 2 in Section 4.2.2. Bits from the logical address map
to the similarly marked locations in the physical address. For example, loд2 (BI/BGI)
bits from the corresponding position in the logical address are used in the similarly
marked position in the bank address.

in Figure 4.9, which shows how the lower loд2 (BI · BC · BL · IW/8) bits of the logical
address (top row) are mapped to the column and bank address Least signi�cant Bits (LSB),
respectively. The connection to the memory map practically limits the possible values
for BI and BC to powers of two.

The address generator that was shown in the previous chapter (Figure 3.3) can extract
4 chunks of consecutive bits from an incoming logical address. Two of these chunks form
the column address, concatenating the remaining column bits and BC chunks, while forc-
ing the lower BL bits to zero, since sub-burst addressing is not supported. The address
generator can extract a portion of its bank-address bits from the command-bank pairs
that are stored in the pattern memory, as discussed in Section 3.1.3. They are combined
with the remaining bank bits chunk to complete the bank address. This feature allows
us to transparently use the more complex bank interleaving orders that the ILP formu-
lation might produce. The �nal chunk of bits simply represents the row-address. Note
that if a parameter like for example Bank Group Interleaving (BGI) has the value 1, then
its corresponding chunk disappears from the address (loд2 (1) = 0).

The remaining (white) portion of the logical address can be mapped freely to di�er-
ent physical address elements, such that for example 1) separate memory regions are
generated for di�erent clients (spatial partitioning), and 2) locality is promoted as much
as possible in case a conservative open-page policy (Chapter 6) or cache [157] is used.
This could imply di�erent things for di�erent types of clients. If incremental request
address sequences are to be expected then it makes sense to map consecutive addresses
to the same bank and row as much as possible to maximize locality. Similarly for caches,
it can be bene�cial to map addresses that map to the same cache line to the same row
and bank as much as possible.

Figure 4.10 shows three data layout examples in an extremely small 4-bank memory,
resulting from di�erent (BI, BC) and ‘useBsPbgi’ settings (written as BGI in the �gure).
We map the bits that are not bound to the pattern con�guration (the white part in
Figure 4.9) such that for consecutive logical addresses the bank changes �rst, followed
by the column, and �nally the row.

4.3 composable pattern conversion 71

Figure 4.10: Three memory map examples, showing where the bursts of requests to consecutive
logical addresses (separated by the access granularity) are written. The third con�g-
uration, using (2,1) behaves the same regardless of the BGI setting.

4.3 composable pattern conversion

The previous section discussed di�erent means to create predictable memory patterns.
These can be used within the memory controller template to o�er worst-case bandwidth
and response time guarantees to the memory clients. However, there is still interference
between memory clients, since variation exists in the amount of time it takes to process
atoms based on their types. For example, read and write patterns can be of di�erent
lengths, and switching patterns are inserted between access patterns of di�erent types,
both causing di�erences in the execution time of the sequence of commands belonging
to an atom.

Delay blocks can be added to create the cycle-level isolation required for compos-
able behavior, although they have some disadvantages, besides the obvious additional
hardware cost (Section 3.4). Delay blocks turn the actual-case performance into the an-
alytically determined worst-case performance, which additionally may be pessimistic
if computed bounds are not tight. Additionally, a delay block cannot just isolate and
eliminate variation caused by other clients, but instead removes all variation. It needs
to assume that each busy period starts one cycle after an arbitration decision has been
made, such that the client misses its �rst chance on a scheduling slot. As a result, the
bene�t generated by better-than-worst-case request arrival times of the client’s own
requests with respect to the arbitration cycle of the resource is absorbed by the delay
block, harming the client. This section introduces a new mechanism to extend the pre-
dictable pattern-based memory controller to create a composable SDRAM resource in

72 memory patterns

which requests from separate memory clients are temporally isolated, while avoiding
the previously mentioned disadvantages.

The key idea is to share the SDRAM through non-work-conserving TDM arbitration, and

tomake the start of a client’s time slots independent from other clients. In this context, ‘non-
work-conserving’ means that slots that are not claimed by their owner cannot be used
by other clients. To ensure that a slot always starts at the same time, all slot lengths have
to be equal regardless of the atom type or the presence or absence of an eligible atoms.
Also, the state of the memory must return to neutral after each atom, such that following
atoms are not constrained by previous atoms from other clients. This implies that a
close-page policy must be used. The in�uence of the atom type must also be eliminated,
meaning that the timing constraints that allow both read and write patterns must be
satis�ed at the end of the slot. To meet these requirements, the predictable memory
patterns are converted to composable patterns. Section 4.3.1 discusses that process, after
which performance bounds for these patterns are derived in Section 4.3.2.

4.3.1 Composable memory pattern generation

Composable memory patterns are constructed at design time in a similar manner as
predictable patterns. The goal is to create composable read and write patterns that can
be scheduled arbitrarily without violating timing constraints, and are equal in length.
Their length determines the length of one TDM slot.

The composable patterns are generated in three steps. The �rst step generates a pre-
dictable pattern. The last two steps make the pattern set composable. Figure 4.11 shows
the relation between a predictable pattern set and its composable counterpart. We pro-
ceed by discussing each of these steps in more detail:

1. Read and write patterns are generated based on one of the methods in Section 4.2.1.
NOPs have already been added at the end of these patterns, such that they can be
repeated after themselves without violating SDRAM timing constraints. This deter-
mines the minimum length of the predictable access patterns. Based on this, the
lengths of the switching patterns are determined.

2. Composable pattern sets cannot contain switching patterns, since they introduce
timing dependencies on the previous atom type. Instead of having separate switch-
ing patterns, the required NOPs are distributed amongst the read and write patterns.
NOPs resolving read-to-write (RTW) constraints can be added either at the end of
the read pattern or the beginning of the write pattern, while NOPs resolving write-
to-read (WTR) constraints can be added either at the end of the write pattern or the
beginning of the read pattern. A naive approach, which simply concatenates the full
switching patterns to the corresponding read or write pattern, incurs unnecessary
overhead in Step 3. Therefore, we aim to equalize the lengths of the access patterns

with all available NOPs from both switching patterns. They are distributed to balance

4.3 composable pattern conversion 73

Figure 4.11: Composable pattern generation example. The naive solution simply concatenates the
switching patterns to the access patterns and then adds NOPs to equalize the length,
while the proposed solution uses the switching patterns to balance the lengths as
much as possible before adding more NOPs, leading to shorter patterns.

the pattern lengths as much as possible, reducing the conversion overhead in terms
of e�ciency, as shown in Figure 4.11.

3. Finally, any length di�erence that still remains between the read and write pattern
has to be compensated for by adding NOPs at the end of the shortest pattern.

TDM slots that are not occupied by an atom are �lled with idle patterns consisting
of only NOPs. The idle pattern length is made equal to the composable read or write
pattern length, which guarantees that all slots always take the same number of cycles.
The refresh timer triggers the execution of refresh patterns at the end of a regular or idle
slot after every refi cycles. The actual insertion time is not in�uenced by the running
clients since all slots are equally long, meaning refresh is also composable.

“The start of a time slot” is an abstract concept, which in the hardware implemen-
tation of the memory controller is translated into valid-accept handshakes on the DTL
interface between the atom queue, which is private to a client, and the resource bus.
The resource bus experiences back-pressure from the back-end, i.e. the back-end does
not accept a new atom while it is still working on a previous one. This back-pressure is
forwarded to the port-speci�c hardware in a pipelined fashion. The hardware implemen-
tation is only composable if the timings of the valid-accept handshakes on the command,

read data, and write data channels of the bus-to-back-end DTL interface (see Figure 3.4)

74 memory patterns

do not leak information from one client to the other. This is assured in di�erent ways
for each channel:

• The command channel has a guaranteed acceptance rate, because patterns have a
known �xed length and hence a new command can be inserted at regular intervals.
At the start of a slot, that is, after a scheduling decision by the arbiter, the command
channel is guaranteed to only exert back-pressure if a refresh was inserted. This
delays new scheduling-decisions independently of the clients, creating room for the
refresh in the schedule, and all future slots shift forward in time appropriately.

• The time between the acceptance of an atom on the command channel and the ar-
rival of data on the read channel is �xed, since the SDRAM commands in a pattern
have a �xed delay with respect to the valid-accept handshake on the command chan-
nel, and read data has a �xed delay with respect to the RD commands in a pattern.
The atom bu�er is guaranteed to have space for the data (since it otherwise would
not have presented the atom to the resource bus), and hence the valid-accept hand-
shake on this channel is not client-dependent.

• The rate at which data enters the back-end is the same as the rate at which it exits
the back-end, although the time at which data leaves is shifted with respect to the
start of the pattern. This happens because the �rst few commands of a pattern are
typically not WR commands, and there is an additional required delay (write latency)
between the WR command and the associated data on the SDRAM data bus. The
write latency could theoretically span across pattern / slot boundaries for certain
memories and (BI, BC) con�gurations, and in the mean time the data is temporarily
bu�ered in the back-end. The write-data bu�er accepts all data as soon as possible
at the start of a pattern if it is empty. Since the presence or absence of bu�ered
write data connected to a slot is dependent on the type of atom that was scheduled
in it, we must make sure that this can never cause back-pressure for another slot,
since that implies there is cross-client interference. To guarantee this, the size of
the write-data bu�er in the back-end is increased such that it never causes back-
pressure at slot-edges. In practice, this means it has a capacity of 2 atoms worth of
data, assuming the maximum o�set between the command and write channel is less
than 2 slots, which holds for all SDRAMs we are aware of, including those considered
in our experiments (Appendix B).

The impact of the conversion from predictable to composable patterns on the memory
e�ciency is shown in the next section.

4.3.2 Impact on memory e�ciency

The worst-case analysis for predictable patterns is based on the notion of memory e�-
ciency, as shown in Section 3.2.1.1. To evaluate the performance of composable patterns,

4.3 composable pattern conversion 75

the e�ciency loss with respect to the corresponding predictable pattern set has to be
determined. This section derives an expression for the e�ciency loss. In Section 4.4.3.1,
we apply it to quantify the e�ciency loss for a set of relevant memories.

The lengths of the predictable read, write, write-to-read and read-to-write patterns
are denoted by t

p
r

, tp
w

, tp
wtr

and t
p
rtw

, while the composable access pattern lengths are de-
noted by tc

r
and tc

w
, respectively. We need to distinguish three di�erent cases, depending

on the length of the predictable patterns. For this purpose, we use the dominance classes

from [9]:

1. If the read pattern is longer than the write pattern plus both switching patterns, then
the worst-case request sequence consists of only read requests, and the pattern set
is read dominant. The composable access patterns are as long as the predictable read
pattern, tc

r
= tc

w
= t

p
r

.

2. If the write pattern is longer than the read pattern plus both switching patterns, then
the worst-case request sequence consists of only write requests, and the pattern set
is write dominant. The composable access patterns are as long as the predictable
write pattern, tc

r
= tc

w
= t

p
w

.

3. Pattern sets that do not �t in class 1 or 2 show worst-case behavior if read and
write requests are alternated. These pattern sets are mix dominant. The pattern set
in Figure 4.11 is an example of this class. In this case:

tc
r
= tc

w
=

t
p
r
+ t

p
w
+ t

p
wtr
+ t

p
rtw

2

(4.2)

In the worst case, only the dominant pattern of a read or write dominant pattern set
is used. Executing this pattern is the most time-consuming way to transfer one atom,
so it determines the worst-case e�ciency. Composable patterns based on read or write
dominant predictable patterns have composable read and write patterns lengths that
are equal to the dominant pattern length. This means their worst-case e�ciency is un-
a�ected by the conversion.

If the composable pattern set is based on a mix dominant pattern set, then the worst-
case e�ciency is only a�ected if the two switching patterns are smaller than the length
di�erence between the read and write pattern, and NOPs had to be added in Step 3 of the
conversion to balance the patterns. At most one NOP is required for this by de�nition, or
else the pattern set would not be mix dominant. If tp

r
+ t

p
w
+ t

p
wtr
+ t

p
rtw

is odd, then the sum
of the composable pattern lengths is equal to the sum of the predictable pattern lengths
plus 1, as a result of rounding up in Equation (4.2). In all other cases, the composable

76 memory patterns

Table 4.3: Memory speci�cations.

Name Clock Data bus Capacity Part Die
frequency width number revision

LPDDR-266 133 MHz x16 1 Gib MT46H64M16LF -75 B
LPDDR-400 200 MHz x16 1 Gib MT46H64M16LF -5 B
DDR2-800 400 MHz x16 1 Gib MT47H64M16 -25E H
DDR2-1066 533 MHz x16 1 Gib MT47H64M16 -178E H
DDR3-1066 533 MHz x16 1 Gib MT41J64M16 -178E G
DDR3L-1600 800 MHz x16 4 Gib MT41K256M16 -125 E
LPDDR2-667 333 MHz x32 2 Gib MT42L64M32D1 -3 A
LPDDR2-1066 533 MHz x32 2 Gib MT42L64M32D1 -18 A
LPDDR3-1333 667 MHz x32 4 Gib EDF8132A1MC -15 1
LPDDR3-1600 800 MHz x32 4 Gib EDF8132A1MC -125 1
DDR4-1866 933 MHz x8 4 Gib MT40A512M8 -1G9 A
DDR4-2400 1200 MHz x8 4 Gib MT40A512M8 -2G4 A

pattern set e�ciency is equal to the predictable pattern set e�ciency. The conversion
e�ciency (epc) is thus:

epc =

tp
r
+tp

w
+tp

wtr
+tp

rtw

1+tp
r
+tp

w
+tp

wtr
+tp

rtw

if mix dominant and t
p
r
+ t

p
w
+ t

p
wtr
+ t

p
rtw

is odd,

1 otherwise.
(4.3)

4.4 evaluation

This chapter presented two novel pattern-generation heuristics, an ILP formulation of
the pattern generation problem, and a conversion method to create composable patterns
out of predictable patterns. This section evaluates the e�ciency of these ideas. First,
we introduce the set of test memories that are used in the remainder of this thesis in
Section 4.4.1. For these memories, Section 4.4.2 compares the schedule lengths generated
by the two heuristics to those generated by the ILP instance, while Section 4.4.3 evaluates
the technique for converting predictable patterns into composable patterns.

4.4 evaluation 77

Figure 4.12: Exceptional non-optimal result for LPDDR3 in the (4,2) con�guration.

4.4.1 Test memories

We consider two devices per SDRAM type. Each device is part of a speed bin de�ned by
the associated JEDEC standard for that SDRAM type. We select speed bins based on the
commercial availability of the device and data sheets at the time of writing, the range
of clock frequencies they cover (we select a device from the slowest and fastest bin if
available), and comparability with speed bins of other SDRAM types (select common
speeds and data bus widths as much as possible). Table 4.3 shows the speci�cations
of the selected devices. All devices are made by the same vendor, since this makes it
more likely that consistent safety margins (σ) have been applied to the speci�cations in
the data sheet to compensate for variation [29]. This is especially important for the IDD
current measures we supply to the power model in Chapter 5, as it makes the evaluation
across devices fairer. Furthermore, it is important to note which data sheet revision and
die revision is used in the comparison, since SDRAM manufacturers frequently update
both documentation and the design of their chips. Appendix B contains timings and
currents per memory that were used for the experiments.

The access granularities we consider vary from a single SDRAM burst to multiple
grouped bursts up to a size of 256 bytes. This range thus includes typical cache miss
sizes (8 to 64 bytes), up to larger DMA or accelerator-based transactions.

4.4.2 Evaluation of pattern-generation heuristics

The lengths of the patterns determine the e�ciency of a pattern set; a shorter pattern is
preferred over a longer pattern if it transfers the same amount of data. To evaluate the
quality of the BS BI and BS PBGI heuristics, we use the ILP formulation from Section 4.2.4.

4.4.2.1 Non-DDR4 memories

The ILP formulation and the BS BI heuristics are used to generate read and write patterns
for the selected memories (Table 4.3), for all (BI, BC) combinations with access granular-
ities up to 256 bytes, and we compared the resulting pattern lengths. For the non-DDR4
memories, we conclude that the bank scheduling heuristic generates patterns of the same

78 memory patterns

1,1 1,2 1,4 1,8 1,16 2,1 2,2 2,4 2,8 2,16 4,1 4,2 4,4 4,8 8,1 8,2 8,4 16,1 16,2
(BI, BC) con�gurations (write patterns)

0

20

40

60

80

100

120

140

160

180

cy
cl
es

[c
c]

BS BI BS PBGI ILP

Figure 4.13: Comparison of write pattern lengths for DDR4-1866 using bank scheduling (BS BI),
bank scheduling with pairwise bank-group interleaving (BS PBGI), and the ILP formu-
lation (ILP). Lower is better.

length as the ILP formulation for all considered devices except LPDDR3-1333, and is hence
optimal for most devices.

For two LPDDR3-1333 con�gurations ((4,2) and (2,4)) BS BI is non-optimal; the write
patterns are 1 cycle too long in these cases. Figure 4.12 shows the patterns generated
by BS BI and the ILP formulation for the �rst of these two con�gurations. The non-
optimality is caused by an activate command that is scheduled earlier than rcd (ACT-
to-RD/WR) cycles before the write command, due to a con�ict with an earlier write
command that occupies the desired spot in the schedule. As a result, the distance be-
tween the precharge from a previous pattern incarnation and this activate shrinks a
cycle. Once all commands are scheduled, the heuristic detects that the PRE-to-ACT con-
straint for this pair is violated, and it compensates by making the pattern one cycle
longer. An alternative con�ict resolution strategy, which postpones both the write com-
mand and the activate, leads to the optimal solution, but this cannot be determined at
the time the heuristic makes the decision without introducing cycles in the algorithm.
Given how exceptional this e�ect is (2 out of 120 non-DDR4 con�gurations are a�ected),
and its relatively low cost (<2% length increase), we do not explore this further.

4.4.2.2 DDR4 memories

For the DDR4 memories, we generate patterns using both the BS BI and BS PBGI heuris-
tics and the ILP formulation. Figure 4.13 displays the resulting write pattern lengths for
a DDR4-1866 memory (the trends for the read patterns and the DDR4-2400 look the same).

4.4 evaluation 79

For access granularities where BI and BC are both larger than 1 (and could hence use
bank-group interleaving), BS BI generates patterns that are on average 8% longer than
the optimal length. If we consider both BS BI and BS PBGI then there are only two con-
�gurations left where neither BS BI or BS PBGI are optimal (the trends look similar for
DDR4-2400).

(4,2) su�ers from the same e�ect as the LPDDR3-1333 pattern that was discussed earlier.
The remaining con�guration, (2,16), uses a complex bank interleaving order in the ILP’s
solution. Consider, for example, the generated interleavings (target bank id of a burst is
given by the number in the list) and pattern lengths for the (2,16) write patterns:

BS BI(2,16) → {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 168 cc
BS PBGI(2,16) → {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, 174 cc

ILP(2,16) → {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1}, 153 cc

The ILP solution behaves almost like a hybrid of the two heuristics, although its exact
properties are dependent on the particular numerical values of the timing constraints
for the memory device under consideration.

Since the run-time of both heuristics is negligible (it takes less than a second to gen-
erate all heuristic-based patterns in Figure 4.13), it is feasible to execute them both for
con�gurations where BI and BC are larger than one, and then select the best result.
Cases may exist where the read pattern is smaller in BS PBGI, while the write pattern
is smaller in BS BI or vice versa. We propose to select the pattern set that delivers most

worst-case bandwidth in those cases. Note that the read and the write pattern have to
use the same bank interleaving order to avoid permuting the data when sequentially
reading and writing the same address.

For access granularities where BI and BC are both larger than 1, the average pattern
generated by this procedure is 1.1% larger than optimal. Since the potential gains of cre-
ating a more re�ned heuristic that mimics the ILP solutions more closely are quite small,
and because it is not straight-forward to de�ne it generically, we propose to use a com-

bination of BS BI and BS PBGI as a fast way to generate patterns, i.e. run both algorithms,
and select the shortest patterns. This also keeps the heuristic simple enough to allow
online implementations, although pre-computing and storing the relevant pattern sets
instead of the heuristic would generally be more space-e�cient.

As one might expect, generating a solution through the ILP formulation is signi�-
cantly more time consuming than using the heuristics. The number of variables and
constraints in each problem is a function of the number of commands to schedule
(3 · BI + BI · BC), and of the upper bound on the optimal length. The largest problem we
generated is the (16,2) con�guration for DDR4-1866, which contains 14780 variables and
2848 constraints, while the average size for this memory is 3431 variables and 1083 con-
straints. It takes about a second to generate one small pattern with just a single burst,
and about an hour for the biggest patterns with 32 bursts. Using the ILP solution of-
�ine may therefore be feasible if the access granularity and thus the number of bursts
is small enough, and the required number of iterations over di�erent con�gurations

80 memory patterns

Table 4.4: epc (Equation (4.3)) for a range of SDRAM x16 devices

BI 1 1 1 1 2 4 1 2 4 8
BC 1 2 2 4 2 1 8 4 2 1

LPDDR-266 1.00 1.00 1.00 1.00 0.97 0.98 1.00 0.99 0.99 -
LPDDR-400 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -
DDR2-800 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
DDR2-1066 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDR3-1066 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
DDR3L-1600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LPDDR2-667 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LPDDR2-1066 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
LPDDR3-1333 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
LPDDR3-1600 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
DDR4-1866 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDR4-2400 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

and SDRAM types is limited. The selected read and write patterns should use the same
bank interleaving order, for the same reason mentioned earlier. Extra constraints may
be added to the formulation to force a matching order once one of the two patterns is
generated, although we did not explore this option. Overall, this experiment shows that
e�cient patterns can be generated in reasonable time, either optimally within hours, or

near-optimally in a second.

4.4.3 Composable patterns

This section evaluates the composable pattern conversion that was introduced in Sec-
tion 4.3.1. Section 4.4.3.1 evaluates the e�ciency loss with respect to predictable pattern
sets. Section 4.4.3.2 demonstrates that the VHDL instance of the proposed controller
delivers composable performance to its clients through the application of composable
patterns.

4.4.3.1 Conversion e�ciency

In this experiment, we �rst generate predictable patterns for the same set of SDRAM
devices we used earlier, using our heuristic approach. We then apply the composable
pattern conversion, and show the conversion e�ciencies (epc , Equation (4.3)) in Table 4.4.

4.4 evaluation 81

Con�gurations containing up to 8 bursts per pattern considered, i.e. the maximum prod-
uct of BI and BC is 8. There are no BI 8 results for LPDDR memories since they only have
4 banks. The maximum e�ciency loss is observed for LPDDR-266 (2.6%). Only pattern
sets that require switching patterns are susceptible to e�ciency loss. Switching patterns
are usually required when the pattern set implements a large access granularity and, as a
result, has a higher inherent e�ciency (a more in-depth discussion on pattern e�ciency
can be found in Chapter 5). The slower the memory, the smaller the access granularity
has to be to reach high e�ciency, which explains why the slower memories are rela-
tively more likely to su�er. However, the timing constraints on which the patterns are
based determine the actual losses. On average, the e�ciency decreases by 0.12% due
to the conversion, so the loss is typically negligible. Including con�gurations with up
to 16 bursts changes this number to 0.14%. We conclude composable patterns are a low-

overhead alternative to delay blocks for real-time clients. The strength of delay blocks
is that they can be enabled or disabled per client (providing predictable performance
when switched o�), while composable patterns are by de�nition used by all clients at
once. Composable patterns are hence best used in use-cases where all clients require
composable performance.

4.4.3.2 Composable memory operation

Experiments that demonstrate composability usually rely on the repeatability of an exe-

cution trace. First we discuss how such an experiment is generally structured. After that,
we explain why we need to deviate slightly from this approach in our experiment.

1. An application A is �rst executed in isolation, where a complete characterization of
its behavior is recorded.

2. The execution platform is reset for a second run, where application A is combined
with another interfering application B, with which it shares common resources.

3. The platform and application A are assumed to be deterministic, i.e. when the same
code (with the same inputs) executes in the second run, the same outputs are pro-
duced as in the �rst run, at the same (relative) times.

4. The reset operation of the execution platform is assumed to be perfect, such that it
is in exactly the same state in both the �rst and the second run when application A

starts.

5. Given these assumptions, a change in the recorded behavior of application A in the
second run relative to �rst run is likely to be caused by application B, which would
indicate that at least one component in the execution platform is not composable.
When no changes are observed, the platform might be composable.

Note that there are many caveats related to the experiment, and no hard conclusions
can be drawn from its outcome alone: for example, the absence of change does not

82 memory patterns

Figure 4.14: Setup of the composability experiment. To simplify the drawing, we combine the
atomizer, width converter and atom bu�er into a single block called AWB. Three ports
on the controller are not used and grayed out. The (logical) con�guration connections
are drawn in gray, but their exact path is not shown for simplicity.

prove that a repeat of the experiment with a di�erent interfering application will have
the same result. Similarly, delaying the start of application B by as little as one cycle
could reveal or hide changes in the execution trace of A. A single experiment is simply
not enough to prove that in all reachable system states and for all possible inputs com-
posability is maintained. Therefore, it can only be supplementary to a larger argument
based on the design of the execution platform, which by construction should be con-
vincingly composable. Chapter 3 and Section 4.3.1 contain that argument in the form of
the description of the memory controller combined with composable patterns, and we
demonstrate its workings here with an experiment that follows the same principles as
described above.

Experimental setup
The experiment uses a �ve-port VHDL instance of the Raptor memory controller, as
shown in Figure 4.14. Two MicroBlaze [151] processors (MB1 and MB2) are connected
to the controller through their private DMAs modules, using the �rst 2 controller ports.
Both MicroBlazes also have an (unused) Memory Mapped I/O (MMIO) connection to the
controller that runs through the NoC, occupying 2 more ports. The �fth port is meant
for debugging, and is also not used in the experiment. The MicroBlazes run in a sin-
gle 100 MHz clock domain, while the controller front-end uses a 150 MHz clock. An
additional monitor MicroBlaze can communicate with the host PC, and also con�gures
the memory controller through the con�guration port. A timeline of events that hap-

4.4 evaluation 83

pen during each experiment is shown in Figure 4.15. We now discuss the experimental
procedure in detail.

Each run begins with programming the FPGA (loading bitstream). This acts as a nearly
perfect reset operation, since most hardware the FPGA contains is fully re-initialized
to a �xed state each time it is reprogrammed. Once programming is done, the master

reset of the FPGA board is raised. At this time, the clock generators for the controller
and MicroBlaze clock domains start their initialization procedure. This involves locking
a PLL to a reference clock, which take a variable amount of time per generator, and
therefore inserts non-determinism into the system. The e�ect it has on execution traces
is minimized, because amaster soft-reset, which is part of the synthesized architecture, is
not released until they are all locked. This reset signal is synchronized to each individual
clock domain through a 1-bit Clock Domain Crossing (CDC), and within each domain
only synchronously reset hardware (based on the domain-speci�c reset) is used. All
clock domains hence starts functioning at approximately the same time, but there is no
�xed or enforced phase relation between their clocks.

The connections between the clock domains use special-purpose CDC components
(containing an asynchronous FIFO) to ensure coherency of multi-bit values as they are
passed from one domain into the other. Because the phase relation between the commu-
nicating domains can be di�erent every run, and crossing clock domains is inherently
non-deterministic [140], the CDCs act as non-deterministic components. This violates
one of the assumptions (3) required for the experiment to work �awlessly. Even an exe-

cution trace of an application running in isolation should hence not be expected to be repeat-

able in our experiment. However, as the results will show later, we can still with reason-
able certainty distinguish changes in the execution trace related to non-composability
from this inherent non-determinism, since the former’s relative amplitude in this spe-
ci�c setup is much larger.

When the per-domain reset is raised, the PHY begins to initialize, and in parallel the
MicroBlazes start executing their code. The monitor MicroBlaze waits for a �xed num-
ber of cycles (much greater than the PHY initialization time), and then con�gures the
memory controller front-end and back-end. It then posts a message to MB2 through a
debug (Fast Simplex Link (FSL)) link: the contents of the message determines if MB2 will
be actively using the SDRAM in the remainder of the experiment. Both MB1 and MB2
are equipped with a 64-bit hardware counter. They both wait until a �xed time after
their local reset based on their counter. This time is chosen to be (much) greater than
the PHY initialization time plus the time the monitor needs to con�gure the controller.
As a result, the connection to the SDRAM is initialized before these MicroBlazes become
active, thus eliminating the in�uence of the variable initialization time of the PHY on
the experiment.

After its �xed waiting period, MB2 reads the message from the monitor, and con-
ditionally activates a loop that generates DMA requests for the SDRAM. Each iteration
generates two 128-byte write requests, followed by two read requests of the same size.

84 memory patterns

Figure 4.15: Timeline of events during the experiment. The timeline splits when a new parallel
group of hardware components is activated. Timelines end when there are no more
changes in the behavior of the associated process.

4.4 evaluation 85

MB1 executes a similar loop, but does this unconditionally. It keeps track of the comple-
tion time of each loop iteration in a local memory, and reports them to the host of the
FPGA (through the monitor) at the end of each experiment. This trace of timestamps is
used as a substitute for the complete behavioral characterization an ideal experiment
would record.

A pattern set with BI 2 and BC 2 is used, corresponding to an atom size of 256 bytes.
The DTL requests that are sent by the DMAs are only half of that size, being 128 bytes
each, which means that atomizer needs to pad them to �ll an entire atom. This in e�ect
exploits the atomizer as a local ampli�er of the amount of tra�c that each DMA gener-
ates, compensating for the bandwidth gap that exists between the 32-bit DMA running
at 100 MHz, and the controller back-end that can process more than 1.2 GB/s in this
con�guration. This makes it easier to generate contention with MB2 that has a visible
e�ect on MB1’s timestamp trace.

The predictable pattern set with this con�guration has read and write patterns of
22 and 32 cycles, respectively, and 0 cycle switching patterns. The composable pattern
set has read and write patterns of 32 cycles. A non-work-conserving TDM arbiter deter-
mines which port gets access to the memory. Its slot table size is set to 20. MB1 has 10
slots in the table, while MB2 has only 1 slot, and 9 slots are empty (and cannot be used
MB1 or MB2). This creates a bottleneck for MB2, making it more likely for it to be using
its slot while MB1 is also present, and hence to generate noticeable interference. The
time between scheduling decisions by the arbiter (scheduling interval) is set to 22 cycles
if the predictable patterns are used, and to 32 cycles when the composable patterns are
used. Four di�erent types (k) of runs are performed:

1. Predictable patterns, only MB1 accesses the SDRAM

2. Predictable patterns, both MB1 and MB2 access the SDRAM

3. Composable patterns, only MB1 accesses the SDRAM

4. Composable patterns, both MB1 and MB2 access the SDRAM

Each type is executed 122 times, for a total of 488 experiments. Each experiment gener-
ates a trace of 100 timestamps expressed in tile clock cycles (at 100 MHz), one for each
loop iteration of MB1. The �rst timestamp is collected right after the �rst read DMA
request completes.

Results
To refer to the timestamps that were recorded in the experiments we use the function
S jk (i). It returns the i’th timestamp (

i ∈ [1..100]) in run j ∈ [1..122] of type k ∈ [1, 2, 3, 4].
The absolute values of the timestamps relate to the initial time o�set by which we delay
the start of the experiment, and are thus relatively uninteresting. Therefore, we choose
the �rst experiment from run type 4 as the baseline trace, and point-wise subtract its

86 memory patterns

Table 4.5: The number of runs of a speci�c type that follow the gray (x) or black plotted trace.

Run type k 1 2 3 4

Gray (x) runs 58 67 57 60
Black runs 64 55 65 62

results from all traces. To refer to these relative timestamps we use the function s jk (i),
which is de�ned as follows:

s jk (i) = S jk (i) − S1
4 (i) (4.4)

All the composable runs (s j3 (i) and s j4 (i)) would contain only zeros if the experiments
were run on a deterministic composable platform. However, di�erent runs can generate
di�erent traces, even if they are of the same type, since repeatability is not guaranteed
on our non-deterministic platform. Within our window of 100 timestamps, we observed
two distinct traces for each run type (marked as “gray (x)” and “black”), present in almost
equal numbers, as shown in Table 4.5. To visualize this, Figure 4.16 plots these two
unique traces per type in a graph. Note that the vertical axis range of the top and bottom
graphs are di�erent.

Starting with the graph in the upper-left corner (1), we see two di�erent and slowly
diverging execution traces for MB1 in di�erent runs. When MB2 is enabled in graph
(2), the behavior of MB1 is in�uenced signi�cantly, indicated by the change in times-
tamp distribution compared to (1), which again shows two distinct but di�erent traces.
However, when comparing (3) to (4), there is no observable change in the behavior of MB1

as a result of enabling MB2, hence indicating that the memory controller is composable

when composable patterns are used. Table 4.5 shows slight di�erences in the number of
traces that take the path with zero di�erence from the baseline trace when comparing
(3) and (4). This can be attributed to the �nite number of samples we took from what is
essentially a random distribution of possible phase-o�sets between the di�erent clock
domains.

The timestamps in s j2 (i) (graph (2)) are smaller than in s j1 (i) (graph (1)) for most itera-
tions, which means that the execution time of MB1 in scenario 2 is smaller, even though
the load on the memory controller has increased. This can be explained by considering
that each write request by MB2 shifts the relative alignment between the TDM slots
in the memory controller and the arrival time of requests from MB1, since writes take
longer than the default 22 cycle scheduling interval. These changes could have a net
positive e�ect on MB1 in this experiment, because it may cause its requests to capture
a slot in an earlier TDM iteration, instead of having to wait for the next one. Another
possible explanation originates from the interaction between the DMA and the Micro-
Blaze. The MicroBlaze polls a status register in the DMA for the completion of requests

4.4 evaluation 87

0 20 40 60 80 100
−1500

−1000

−500

0

500 k = 1. Predictable, only MB1

0 20 40 60 80 100
−1500

−1000

−500

0

500 k = 2. Predictable, both MB1 and MB2

0 20 40 60 80 100
−30

−20

−10

0

10

20

30 k = 3. Composable, only MB1

0 20 40 60 80 100
−30

−20

−10

0

10

20

30 k = 4. Composable, both MB1 and MB2

Loop iteration (i)

sj k
(i
)
(d
i�
er
en
ce

w
.r.
t.
ba
se
lin

e
tra

ce
)[
clo

ck
cy
cle

s]

Figure 4.16: Di�erence in the execution trace of MB1 in di�erent run types k compared to the
baseline trace (S1

4 (i), which corresponds to the gray �atline in graph (4)). In 122 runs,
two unique traces are observed for each scenario, drawn as one gray line with ‘x’-
markers, and one black line per graph.

88 memory patterns

in a software loop. This loop has a certain length, and polling thus happens at �xed in-
tervals. Changes in the alignment between this loop and the arrival of responses from
the memory controller caused by MB2 might again positively or negatively in�uence
the execution time. In short, the actual-case behavior of the described system is not per-

formance monotonic, i.e. if one event within the system (like polling the status register)
happens sooner compared to a reference run, it might cause another event (like the com-
pletion detection in the MicroBlaze) to happen later with respect to that same reference.
Note that with a proper analysis model [109], the worst-case behavior is performance
monotonic.

What is not visible in the graphs is that the total execution time of the �rst 100 iter-
ations of the baseline trace, S1

4 (100), is 467552 cycles. This means that even the largest
visible deviations from the baseline are still relatively small compared to the absolute ex-
ecution time. One might argue that there is hence no signi�cant di�erence in the demon-
strated results, and predictable performance is su�cient to be able to verify MB1’s be-
havior is correct. However, there is a large di�erence between the conclusions that can
be drawn from graphs (1) and (2) versus graph (3), because there is no guarantee or

mechanism that limits the impact of interference on MB1 to the di�erence between (1)
and (2). Changing application MB2 (or its input if was data dependent), or adding a
third application to the system would require additional veri�cation runs for MB1. The
only conclusion that we can draw based on (1) and (2), is that in the currently tested
conditions, the application behaves as shown. In contrast, (3) provides a snapshot of the
behavior of MB1 that is independent of the behavior of MB2 or other potential applica-
tions, and is therefore a much more general and useful result.

Finally, one might expect the two observed execution traces in (3) or (4) to diverge
after the initial 20 cycle di�erence happens. However, the presence of periodically trig-
gered events, like for example the edges of the TDM slots and the polling loop in the
MicroBlaze, can actually hide the visible e�ects of these (relatively small) timing dif-
ferences in the starting time of an application loop iteration. This happens because
progress halts until such events happen regardless of the precise arrival time of requests.
Therefore, a request from MB1 arriving 20 cycles (200 ns) earlier could still be processed
by the memory controller at the exact same time as a later request, considering there is
a period of 10 slots in the TDM table (2133 ns) where no service is o�ered to MB1. Note
that there is no guarantee that these two traces will not diverge when the experiment
length is increased, nor that only two traces exist. However, the set of possible traces in
scenarios (3) and (4) will always be the same, and given enough runs, they should have
the same frequency, because the controller is composable.

4.5 conclusion

The SDRAM controller that is the central theme of this thesis uses memory patterns,
both for its worst-case performance analysis, and in its implementation. This chapter

4.5 conclusion 89

discussed the generation of predictable patterns sets, and a conversion method which
turns them into composable pattern sets. Two heuristic methods that generate patterns
are described, applicable to a wide range of contemporary SDRAM types, including DDR4.
Even though the generation of patterns can be seen as a special case of the (old) memory
command scheduling problem, we innovated on multiple aspects of its solution in the
context of real-time memory controllers. Firstly, we introduce a notational abstraction
that allows us to write down our scheduling algorithms in a general fashion, that is,
without speci�cally having to target one SDRAM type. This improves portability, and
makes it easier to compare scheduling algorithms across SDRAM generations. Secondly,
we exploit the available degrees of freedom in the low-level memory map within the
scheduling algorithm, which determines the distribution of bursts across banks. Both
the number of banks a request is interleaved over (BI) and the number of bursts per
bank (BC) are parameterized, generating a range of possible pattern con�gurations. By
means of an ILP formulation, we evaluated the quality the pattern-generation heuristics
for a range of 12 memory devices, and concluded that their output is close to optimal,
while being orders of magnitude faster in terms of generation time.

To create a composable memory resource, we introduced a simple method that turns
a predictable pattern set into a composable pattern set. We showed that this conver-
sion has a negligible impact on the predictable performance bounds. Experimentally,
we demonstrated the timing-isolating e�ect of using composable patterns in contrast to
using predictable patterns on our FPGA memory controller instance, even in the pres-
ence of non-deterministic hardware components.

Now these points of data make a beautiful line.

And we’re out of beta; we’re releasing on time.

— GLaDOS (Genetic Lifeform and Disk Operating System), Portal, 2007

5
P O W E R / P E R F O R M A N C E T R A D E - O F F S

A range of possible memory patterns can be generated within the design space provided
by the BI and BC parameters that were discussed in the previous chapter. This imme-
diately raises a very obvious question: how should we choose which (BI, BC) to use?
Unfortunately, there is no clear-cut answer to this question. This chapter tries to ex-
plain why this is so by means of a discussion of the in�uence of the (BI, BC) parameters
on the worst-case power and memory performance. There is not much that can be said
about these metrics analytically; simply looking at the applied command scheduling
algorithms will provide one with very few hints on the sensitivity of their outputs to
the two parameters in question. Once the algorithms are concretized with the numeri-
cal values of the involved timing constraints it is possible to evaluate their output, but
then generality is lost. Our approach is to evaluate a large number of di�erent memory
devices, and describe the observed trends.

This chapter �rst describes how the worst-case bandwidth, energy and power met-
rics are calculated in Section 5.1. Section 5.2 applies these calculations to twelve memo-
ries from six SDRAM generations. The observed trends and trade-o�s between di�erent
pattern con�gurations and memory modules, both within and across generations, are
discussed here as well. Section 5.3 looks at the in�uence of (BI, BC) on the worst-case
response time of an atom. Finally, in Section 5.4, we apply the worst-case bandwidth
analysis to the Raptor instance of the memory controller, and we experimentally show
that its behavior accurately matches the worst-case model.
This chapter is partially based on our article in Transactions on Computers [60].

5.1 worst-case bandwidth, energy, and power metrics

The worst-case analysis of memory patterns in terms of bandwidth has been extensively
discussed in related work [1, 3, 7]. We apply the same procedure to derive our results
as described in those works, as shown earlier in Section 3.2.1.1. To determine the power

90

5.1 worst-case bandwidth, energy, and power metrics 91

and energy costs of a pattern set, we rely on the open-source DRAMPower tool [31],
which implements the power model described in [27]. Section 5.1.1 explains how it is
used in detail.

5.1.1 Calculating worst-case power and energy e�ciency

To estimate the power and energy associated with each pattern con�guration, we use
the open-source DRAMPower tool [27, 31]. DRAMPower implements a command-level
power model that was veri�ed using real hardware measurements [26]. DRAMPower
was found to be more accurate than the (conventionally used) Micron’s System Power
Calculator [97], which is why we selected it for our experiments.

DRAMPower takes a trace of SDRAM commands and a description of the modeled
memory device as input. It determines the energy state of the memory in each cycle,
based on the executed commands. The description of the memory device contains the
IDD current values as speci�ed in the device’s datasheet, which represent the current
that is drawn on the power-supply pins of the device when certain SDRAM operations
are performed, i.e. they relate IDD currents to the state of the memory. Combining these
IDD currents with cycle-level energy-state information and the operating voltages of the
memory allows DRAMPower to accurately estimate the energy usage of a trace.

For each pattern set, we generate a write and a read trace by concatenating 1000 read
or write patterns, respectively, interleaved with a periodic refresh pattern according
to the refresh period requirement (refi) of the memory device, and then supply these
traces to DRAMPower. It uses these traces to estimate the average power consumed
when continuously serving read or write requests, denoted as pr

wc
and pw

wc
, respectively.

This procedure generates an upper bound for the average power, under the assumption
that alternating between read and write patterns never consumes more energy than
sticking to a single pattern type. Alternating between read or write patterns could only
introduce more NOPs into the command stream in the form of switching patterns, and
since they do not incur an additional energy penalty (not larger than read or write
commands), this assumption holds. The larger of the read and write power is selected
as our worst-case power metric, pwc :

pwc = max(pr
wc

,pw
wc
) (5.1)

Dividing the energy consumption of a trace by the amount of data it transports yields
a measure of the memory’s (inverse) energy e�ciency for that trace. The energy e�-
ciency can be arbitrarily small; the more idle time a trace contains, the lower its utiliza-
tion is, and the smaller its energy e�ciency will be, since there is a static background
power component that is not tra�c dependent. To attach any meaning to an energy
e�ciency number, we need to exclude, or at least constrain the amount of idle time,
similar to the worst-case bandwidth, where idle patterns were excluded from the worst-
case analysis. Dividing pwc (J/s) by bwc (B/s) yields a number that also has joule/byte

92 power/performance trade-offs

as unit, although the interpretation for it is less straight-forward. In general, the worst
case for bandwidth is not the same as for power, because the command sequences in the
worst case for bandwidth have a relatively low command and data bus utilization, while
the worst case for power has high utilization. If p ′ represents the power consumed by
a worst-case bandwidth trace, and b ′ is the bandwidth delivered by a worst-case power
trace, the following relations must hold:

assuming pwc , bwc , p ′, b ′ > 0

pwc ≥ p ′ ∧bwc ≤ b ′ ⇒
pwc
bwc
≥ p ′

bwc
∧ pwc
bwc
≥ pwc

b ′
(5.2)

This means that the value pwc/bwc can underestimate (but not overestimate) the energy
e�ciency of both a worst-case power and worst-case bandwidth trace, and hence we
interpret it as a lower bound on the energy e�ciency for these two modes of operation.

In the following sections, we refer to the e�ciency metric from Section 3.2.1.1 as
(memory) e�ciency, while energy e�ciency is always explicitly called energy e�ciency.

5.2 worst-case bandwidth / power trends

This section uses the pattern generation heuristics from Chapter 4 to generate pattern
sets for the 12 memory devices we used earlier (Table 4.3). Appendix B contains their
detailed speci�cations. Based on the generated pattern sets, we determine bwc and pwc ,
and plot the results in Figure 5.1a and Figure 5.1b. The vertical axis displays bwc , ex-
pressed in GB/s, with each vertical tick representing a 20% increase in e�ciency, such
that the graph covers a range from 0% to 100% memory e�ciency. The horizontal axis
represents pwc , expressed in mW, starting at 50 mW for each graph.

Each pattern con�guration is identi�ed by two numbers, BI and BC. The data points
in Figure 5.1 are annotated with these two numbers. Con�gurations are grouped by
access granularity (using the marker shape), ranging from 8 to 256 bytes per pattern.
The minimum access granularity di�ers based on the width of the data bus, and hence
certain access granularities are not available for all memories.

The diagonal isolines in Figure 5.1 connect points with equal pwc/bwc quotients, in-
dicative of the energy e�ciency of a pattern set (with the caveats mentioned in the
previous section). Labels at the top and right of the graphs are associated with the clos-
est isoline, showing the energy cost per bit in [pJ] (125 divided by these labels yields
gigabytes per joule). Note that this is the only numerical value in the graphs that can
be fairly compared across all memories, since it removes the dependence on the clock
frequency and the data bus width.

There are many ways to read this graph. Ideally, a con�guration should be as close to
the upper-left corner as possible, i.e. have high bandwidth and energy e�ciency, and low
power. Within one graph, comparing con�gurations with the same access granularity
(marker) shows the e�ect of trading BI for BC. In the DDR3-1066 graph, for example, (4,2)

5.2 worst-case bandwidth / power trends 93

50 100 150 200 250 300 350 400 450
0.00

0.11

0.21

0.32

0.43

0.53

1,1

1,2

2,11,4

2,2 4,1
1,8

2,4 4,21,16
2,8 4,4

600

293

187

131

95694831

20 %

40 %

60 %

80 %

100 %

LPDDR-266 x16, 1 Gb (B)

100 200 300 400 500 600 700
0.00

0.16

0.32

0.48

0.64

0.80

1,1

1,2
2,11,4

2,2 4,1
1,8

2,4 4,21,16
2,8 4,4

596

291

185

130

94694831

20 %

40 %

60 %

80 %

100 %

LPDDR-400 x16, 1 Gb (B)

100 200 300 400 500 600 700
0.00

0.32

0.64

0.96

1.28

1.60

1,1
1,2 2,1
1,4

2,2
4,11,8

2,4 4,2 8,1
1,16

2,8 4,4 8,2

323

157

100

70

51372617

20 %

40 %

60 %

80 %

100 %

DDR2-800 x16, 1 Gb (H)

100 200 300 400 500 600 700
0.00

0.43

0.85

1.28

1.71

2.13

1,1
1,2 2,1

1,4
2,2

4,11,8

2,4
4,2

8,1
1,16

2,8 4,4 8,2

242

118

75

53

38282012

20 %

40 %

60 %

80 %

100 %

DDR2-1066 x16, 1 Gb (H)

50 100 150 200 250 300 350 400
0.00

0.43

0.85

1.28

1.71

2.13

1,1
1,2 2,1

1,4
2,2

4,11,8

2,4
4,2

8,1

1,16

2,8 4,4 8,2

131

64

41

29

2115117

20 %

40 %

60 %

80 %

100 %

DDR3-1066 x16, 1 Gb (G)

50 100 150 200 250 300 350 400
0.00

0.64

1.28

1.92

2.56

3.20

1,1
1,2 2,1

1,4 2,2 4,1
1,8

2,4
4,2

8,1

1,16

2,8 4,4
8,2

87

43

27

19

141074

20 %

40 %

60 %

80 %

100 %

DDR3L-1600 x16, 4 Gb (E)

16 B 32 B 64 B 128 B 256 B
Worst-case power [mW]

W
or
st
-c
as
e
ba
nd

w
id
th

[G
B/
s]
,a
nd

e�
ci
en
cy

[%
]

(a)

Figure 5.1: Worst-case bandwidth vs. worst-case power (part 1). Graph titles contain the type, data
bus width in bits, capacity, and die revision (Appendix B). Labels at the top and right
of the graphs are associated with the closest isoline, showing the energy cost per bit
in [pJ] (125 divided by these labels yields gigabytes per joule).

94 power/performance trade-offs

100 200 300 400 500 600
0.00

0.53

1.07

1.60

2.13

2.66

1,1
1,2 2,1
1,4

2,2
4,11,8

2,4 4,2 8,1

149

73

46

33

2417128

20 %

40 %

60 %

80 %

100 %

LPDDR2-667 x32, 2 Gb (A)

100 200 300 400 500 600
0.00

0.85

1.71

2.56

3.41

4.26

1,1
1,2 2,1

1,4
2,2 4,1

1,8

2,4
4,2

8,1

103

50

32

22

161285

20 %

40 %

60 %

80 %

100 %

LPDDR2-1066 x32, 2 Gb (A)

50 100 150 200 250 300 350 400
0.00

1.07

2.13

3.20

4.27

5.34

1,1
1,2 2,1

1,4 2,2 4,1
1,8

2,4
4,2

8,1

52

26

16

11

8643

20 %

40 %

60 %

80 %

100 %

LPDDR3-1333 x32, 4 Gb (1)

50 100 150 200 250 300 350 400
0.00

1.28

2.56

3.84

5.12

6.40

1,1
1,2 2,1

1,4 2,2 4,1
1,8

2,4
4,2

8,1

44

21

14

10

7542

20 %

40 %

60 %

80 %

100 %

LPDDR3-1600 x32, 4 Gb (1)

50 100 150 200 250
0.00

0.37

0.75

1.12

1.49

1.87

1,1
1,2 2,1

1,4 2,2 4,1
1,8

2,4 4,2
8,1

1,16

2,8
4,4 8,2

16,1
2,16

4,8 8,4 16,2

91

44

28

20
141075

20 %

40 %

60 %

80 %

100 %

DDR4-1866 x8, 4 Gb (A)

50 100 150 200 250 300
0.00

0.48

0.96

1.44

1.92

2.40

1,11,2
2,1

1,4 2,2 4,1
1,8

2,4
4,2 8,1

1,16
2,8

4,4
8,2

16,1
2,16

4,8 8,4 16,2

84

41

26

18

131074

20 %

40 %

60 %

80 %

100 %

DDR4-2400 x8, 4 Gb (A)

8 B 16 B 32 B 64 B 128 B 256 B
Worst-case power [mW]

W
or
st
-c
as
e
ba
nd

w
id
th

[G
B/
s]
,a
nd

e�
ci
en
cy

[%
]

(b)

Figure 5.1: Worst-case bandwidth vs. worst-case power (part 2). Graph titles contain the type, data
bus width in bits, capacity, and die revision (Appendix B). Labels at the top and right
of the graphs are associated with the closest isoline, showing the energy cost per bit
in [pJ] (125 divided by these labels yields gigabytes per joule).

5.2 worst-case bandwidth / power trends 95

is objectively better than the (8,1), since they are transparently interchangeable from
the client’s point of view, but (4,2) is better in the three plotted performance metrics.

Pairs of graphs that belong to the same SDRAM type have their data points in approxi-
mately the same relative position, but both the power axis and bandwidth axis are scaled
up with frequency. Comparing DDR2-1066 with DDR3-1066 shows a signi�cant drop in
power usage on a con�guration-by-con�guration basis, while the bandwidth remains
almost constant, indicating that their timing constraints are very similar.

The graphs primarily show the trade-o�s between worst-case power and worst-case
bandwidth (as will be discussed in the next sections), but can also be interpreted di�er-
ently, outside of the worst-case context. Doing so requires considering what a pattern
consists of at the burst level: BI is a measure for the amount of bank-parallelism that
is exploited, while BC is a measure for the page hit/miss ratio: there are (BC − 1) hits
per BC bursts even in the worst case. Each con�guration can thus be interpreted as an
operating point of the memory as a function of the burst-level bank-parallelism and
page hit/miss ratio, for which the graphs (coarsely) estimate the delivered bandwidth
and power consumption.

5.2.1 Comparing pattern con�gurations of a single memory device

In this initial evaluation, we compare the relative performance of the con�gurations in
Figure 5.1 on a per-memory basis. Four trends are identi�ed:

1. For all SDRAM types except DDR4: con�gurations interleaving over more than 4 banks

(BI > 4) are always worse in terms of bandwidth and energy e�ciency than another

con�guration with a similar access granularity, and hence BI > 4 should not be used.

The ine�ciency is caused by the relatively large Four Activate Window constraint
having to be resolved within the pattern instead of across patterns where it overlaps
with other constraints. If BI ≥ 8, then a pattern contains 8 or more ACT commands.
Consequently it needs to be at least 2 · FAW long to be valid, which is always larger
than rc for all de�ned speed bins, and thus more restrictive and unnecessarily ex-
pensive compared to using smaller BI with a larger BC instead.

2. For DDR4, a similar e�ect is visible if BI > 8. This can be explained using similar
reasoning, considering that a pattern with 16 ACT commands is at least 4 · FAW long,
which is at least twice as large as rc for the currently de�ned speed bins. The FAW
timing (in nanoseconds) is slowly reducing as SDRAM technology progresses [101].
Since DDR4 sits on the modern end of the spectrum, it is possible to successfully
interleave over more banks in DDR4 compared to the other SDRAM types.

3. For a constant BI, increasing the access granularity (by increasing BC) improves the

worst-case bandwidth and the energy e�ciency, since the energy cost of opening and
closing a page is amortized over a larger number of bytes.

96 power/performance trade-offs

4. For a constant access granularity, interleaving over more banks improves the worst-

case bandwidth at the cost of more power. In most cases, the energy e�ciency reduces

as a result. The reuse distance per bank increases as bank parallelism is exploited, im-
proving memory e�ciency because fewer NOPs need to be added between or within
patterns to resolve intra-bank constraints (see Section 4.2.1). Energy e�ciency re-
duces in all but 10 pairs of con�gurations, because the relative number of ACT and
PRE commands increases, and they consume energy. In the 10 exceptional cases
(DDR3L-1600 (1,16) and (2,8) for example), the bandwidth gain is high enough to
compensate for the power growth. This trend is also overruled by trend 1 and 2.

A consequence of trends 3 and 4 is that for a given access granularity, BI can be traded

for BC, which corresponds to trading o� worst-case bandwidth for energy e�ciency.

5.2.2 Comparing multiple speed bins and SDRAM types

By comparing the same con�gurations across speed bins, we can see that for the same

SDRAM type and access granularity, the faster bins generally have a higher energy e�-

ciency, because the proportional growth of the worst-case bandwidth when switching
to a higher speed bin is generally bigger than the proportional growth of the worst-case
power within the observed frequency ranges. The (1,8) con�gurations for LPDDR2-667
and LPDDR2-1066 demonstrate this (with data points conveniently left and right of an
isoline in Figure 5.1), for example, where the slower device requires more than 17 pJ/bit
and the faster device uses less than 16 pJ/bit.

There are 3 reasons the worst-case bandwidth tends to grow when the frequency
increases. The �rst reason is the most obvious: at a higher frequency, each data burst
requires less time, thus potentially reducing the pattern length if the data bursts are on
the “critical path” through the pattern. The second reason is that manufacturers design
the devices in the higher speed bins to run at the higher clock frequency of that bin, and
as a result their analog timings in nanoseconds are also smaller, reducing the pattern
lengths in cycles. The third reason arises from the conservative discretization of mem-
ory timings that are speci�ed in nanoseconds in the datasheet into clock cycles that the
controller can use. Even though the maximum error in the cycle-level approximation of
the timing monotonically decreases with an increasing clock frequency (the maximum
deviation from the intended delay is always less than one clock period), the actual error
does not, such that a higher frequency might occasionally result in a bigger approxi-
mation error compared to a smaller frequency that just happens to �t better. The net
e�ect of increasing the clock frequency on the approximation error rarely impacts the
worst-case bandwidth negatively1. However, in the exceptional cases where it does, it
makes no sense to run at these higher frequencies from a worst-case performance point
of view.

1 In the set of experiments presented in Figure 5.1, only the pair of DDR2 memories shows a bandwidth reduction
in a higher speed bin, when BC = 1 and BI ∈ {1, 2, 4, 8}. The maximum reduction is less than 4 percent.

5.2 worst-case bandwidth / power trends 97

8 16 32 64 128 256
Access granularity [bytes]

0

2

4

6

8

10

12
M
ax
im

um
en
er
gy

e�
ci
en
cy

[G
B/
J] DDR2

DDR3
DDR4
LPDDR
LPDDR2
LPDDR3

Figure 5.2: Maximum energy e�ciency achieved by the considered pattern sets and memories in
Figure 5.1 at di�erent access granularities.

The worst-case power generally increases as well when a higher clock frequency is
used, but because a signi�cant fraction of it is static (related to leakage) and una�ected
by the clock frequency, the energy e�ciency generally improves.
Increasing the clock frequency has diminishing returns in terms of memory e�ciency.

The clock period shrinks faster than the pattern lengths, which implies a smaller fraction
of the time is spent actually transferring data, assuming the number of bursts (BI · BC)
in the pattern remains constant. The fraction of time spent waiting for nanosecond-
based constraints, for example related to activating and precharging, increases. This
means that the required (BI, BC) product (equivalent to number the of bursts in a pattern)

to reach a certain memory e�ciency grows with the clock frequency; this e�ect is visible
in Figure 5.1, where the same con�guration per SDRAM type has a higher e�ciency in
the slower speed bin than in the faster speed bin.

The e�ects of increasing the width of the data bus on e�ciency mirror those of in-
creasing the clock frequency, since it also reduces fraction of time spent transferring
data. Increasing the data bus width thus also has diminishing returns in terms of memory

e�ciency. If the pin and wiring costs are of key importance in a particular design, then
it may make sense to prefer devices with a smaller data bus width if they can sustain
the required bandwidth and are su�ciently energy e�cient.

The SDRAM types that are shown in Figure 5.1 are not all used in the same applica-
tion area, and some are older than others. Mostly driven by power constraints, the sup-
ply voltage has come down over the years, and speci�c low-power standards (LPDDRX)
that typically use a wide data bus have emerged. This move is clearly visible when the

98 power/performance trade-offs

0

100

200

300

400

500

Pa
tte

rn
ex
ec
ut
io
n
tim

e
[n
s]

1
1

1
2

2
1

1
4

2
2

4
1

1
1

1
2

2
1

1
4

2
2

4
1

1
4

2
2

4
1

1
4

2
2

4
1

1
4

2
2

4
1

1
2

2
1

1
8

2
4

4
2

8
1

LPDDR2
667

LPDDR2
1066

LPDDR
400

DDR2
1066

DDR3L
1600

LPDDR3
1600

DDR4
2400

BI
BC

t
p
re f

t
p
r

t
p
rtw

t
p
w

t
p
wtr

o�set

Figure 5.3: Request WCRT components. From bottom to top, the stacked bar order is: o�set, tp
wtr

(zero in most con�gurations), tp
w

, tp
rtw

(zero in most con�gurations), tp
r

, and t
p
ref

.

memories are ranked by maximum energy e�ciency per access granularity, as shown
in Figure 5.2. For the commonly used access granularity of 64 bytes for example, the
old LPDDR memories perform the worst, followed by DDR2, DDR3, LPDDR2, DDR4 and
LPDDR3. The last four types from this series, but especially LPDDR3, can theoretically do
signi�cantly better both in terms of energy e�ciency and worst-case bandwidth when
the access granularity is increased even further. Without restrictions on the granularity,
refresh eventually becomes the only remaining limitation for e�ciency. However, it is
questionable if these con�gurations have any practical application. It makes more sense
to consider only a limited range of granularities, based on realistic request sizes that a
memory client like a cache, Direct Memory Access (DMA), or accelerator, may generate.

5.3 worst-case response time of an atom

The WCSI of an atom, i.e. the maximum time it occupies the SDRAM command bus,
is solely dependent on the length of the patterns (assuming the size of the request is
not larger than the access granularity of the pattern). The WCRT, i.e. the di�erence
between the arrival of a request in the controller and the departure of the response,
depends on more factors, as discussed in Section 3.2. It is in�uenced by the arbitration
policy that selects the order in which clients get to use the memory, the number of
interfering refreshes, and the number of outstanding (posted) requests the client already
has, which is unknown in the general case. An accurate WCRT analysis is thus always
a system-speci�c point-solution, and since this chapter focuses on the general trends

5.3 worst-case response time of an atom 99

across memory con�gurations and types, it is out of its scope. The reader can refer to
[7, 43, 82, 112, 126] or Section 3.2 for a more detailed look into WCRT analysis, while
here we focus on the ingredients that the memory command scheduler inserts into that
analysis in the form of memory patterns.

Figure 5.3 shows the execution time of the memory patterns for various SDRAM types
and con�gurations (ordered by access granularity and BI). The �rst two groups of bars
represent the entire con�guration space for access granularities of 32, 64 and 128 bytes
for the two LPDDR2 memories. The other groups show the 64-byte con�gurations of
the fastest memories in our set for the remaining SDRAM types. The o�set bar shows
the time it takes from the start of a read pattern until the �nal data word is put on the
data bus by the memory (∆r + BI · BC · BL/2). This may happen after the end of the
read pattern, because commands are pipelined in the memory, and thus the o�set bar is
sometimes larger than the read bar. The total stacked length of the bars per con�gura-
tion can be interpreted as the WCRT2 of a read request that has to wait for a refresh (tp

ref
),

an interfering read and write pattern (tp
r

and t
p
w

) and the associated switching patterns
(tp
rtw

and t
p
wtr

), and �nally its own data o�set.
Comparing the con�gurations for LPDDR2-667, we can see that the pattern execution

times grow as expected (Figure 4.3) when the access granularity grows. The length of
the refresh pattern increases as patterns become more e�cient. This happens because
a refresh command can only be issued once all banks have been precharged, and NOPs
are inserted at the start of the refresh pattern to ensure this. E�cient pattern con�gura-
tions exploit bank-parallelism and have their �nal read or write burst relatively close to
the end of the associated pattern, thus increasing the required number of NOPs before
the refresh command. The switching patterns grow with e�ciency for similar reasons;
they insert NOPs between the bursts of patterns of opposing types where they would
otherwise be too near each other. At high e�ciencies, bursts are scheduled relatively
close to the pattern edges, and the switching patterns grow as a result. Note that ex-
changing read and write pattern duration for longer refresh and switching patterns is
not a zero-sum game, because refresh patterns have to be issued infrequently relative
to read or write patterns, and the switching patterns are not always in the worst-case
sequence of patterns that determines the e�ciency3.

Comparing similar con�gurations (same (BI, BC)) across the LPDDR2 memories, re-
veals that increasing the clock frequency reduces the execution time (in seconds) of the
patterns, in line with the bandwidth trends. Switching patterns disappear, because the
data-bus timings that dictate their length are speci�ed in clock cycles and thus shrink
in comparison to the analog timings that are based on nanoseconds, which dominate
the read and write pattern length at higher clock frequencies.

2 The pipeline latency of the controller hardware, including the PHY calibration o�set (see Section 3.1.4) would
also have to be added for completion.

3 70% of the tested con�gurations have only write (and refresh) patterns in their worst-case sequence, and 30%
alternate between read and write (and refresh) patterns.

100 power/performance trade-offs

The refresh pattern length for DDR3 and DDR4 is roughly twice as big as that of the
LPDDR3 memory, but LPDDR2/3 memories need to be refreshed twice as often (refi is
half as long, as shown in Appendix B), and hence still have approximately the same
refresh e�ciency.

Finally, it is interesting to look at the global picture, considering the sensitivity of
the pattern execution times to the clock frequency. For example, when comparing the
LPDDR2-677 and LPDDR3-1600 (2,2) con�guration, the frequency grows with 140%, while
the duration of a read-write-o�set sequence (tp

r
+ t

p
w

+ o�set) reduces by only 49 ns or
20%. This highlights that both new memory technologies and higher clock frequencies
do not give much bene�t yet in terms of reducing the WCRT of a request.

5.4 evaluation

This chapter relies on the correctness of the worst-case bandwidth and power analysis
to predict the performance of various memory modules. Experimentally showing that
this analysis model is accurate for all these modules is impractical, due to the large
variety of specialized (PHY) hardware that would be involved. However, we can at least
show that the analysis holds for our VHDL instance. Power measurement requires a
relatively complex setup, and has been extensively done in [26] with the same memory
modules and FPGA board we use, so we will not repeat that e�ort. Instead, we focus on
the worst-case bandwidth.

Since this chapter primarily considers back-end performance, this experiment will do
the same: the resource front-end is omitted in the experimental setup, and all measure-
ments are done directly on the back-end input port. A memory client is connected to
this port, it transmits a �xed workload of requests into the controller, and we measure
the amount of time required to process them. If the workload is large enough, then the
artifacts of starting and stopping the experiment are negligible, and an accurate approx-
imation of the bandwidth can be obtained.

A complicating factor for the experiment is that we can only measure an actual-case

bandwidth to compare with the outcome of a worst-case analysis. We hence try to ap-
proach the assumed worst-case conditions as closely as possible by making sure that:

1. The memory is fully utilized. Not doing so would yield a measured bandwidth that
is too low, simply because the client is not requesting fast enough.

2. The worst-case sequence of requests is executed continuously. This implies switch-
ing between read and write requests for mix-dominant pattern sets, or continuously
reading or writing for read-dominant or write-dominant pattern sets, respectively.

Satisfying the �rst condition using a MicroBlaze processor as a client is not viable, since
it does not have the capacity to generate tra�c in the required large volumes. Instead,
we use a con�gurable tra�c generator hardware module, similar to the one that was
used in our experiments of [30]. The tra�c generator keeps track of the number of

5.4 evaluation 101

Table 5.1: Raptor worst-case bandwidth (bwc) [MB/s] for an MT4JSF6464H DIMM [98] with
f = 400 MHz and IW = 4 bytes for access granularities up to 256 bytes.

↓ BC, BI→ 1 2 4 8

1 467 933 1862 2360
2 814 1624 2639 -
4 1294 2575 - -
8 1835 - - -

cycles it takes to complete a con�gurable number of requests. The types of the generated
requests can be con�gured to exercise the controller with the three di�erent required
sequences of patterns, that is: 1) only writes, 2) only reads, or 3) alternating writes and
reads.

The Raptor memory controller instance in this experiment uses a 400 MHz command
clock, and has a 32-bit data bus. We generate memory patterns for its memory module in
this con�guration, and run the worst-case bandwidth analysis. The access granularity
that is used by the tra�c generator is restricted between its minimum value of 32 bytes
(1 burst per pattern), and 256 bytes, corresponding to 8 bursts per pattern, to capture a
reasonable range of possible request sizes. The controller is always con�gured to match
this access granularity. Refresh patterns are automatically issued by the controller.

Table 5.1 shows the results of the worst-case bandwidth analysis. The numbers in the
table should be a lower bound on the bandwidth that we measure for all request-type
sequences in the associated experiment, and should match exactly when the worst-case
sequence of requests for a particular pattern set is used. In each experiment, we transfer
128 MB worth of data, such that even the fastest con�guration experiences close to
6000 refresh periods, and hence the e�ect of refresh patterns is su�ciently present in
the measurements.

Figure 5.4 shows the results of the experiment as a collection of bar graphs for each
(BI, BC) con�guration. The �rst bar in each group represents the (analytical) worst-case
bandwidth (bwc), the second, third and fourth show the measured bandwidth when con-
tinuously reading (bmeasured

r), writing (bmeasured

w) or alternating read and write requests
(bmeasured

rw
), respectively. The �gure shows that the worst-case bounds are valid: the mea-

sured bandwidth is always slightly larger than predicted (although this is di�cult to see
in the graph), while the largest deviation from the bound when a worst-case request se-
quence is executed is only 0.09%. Intentionally miscon�guring the memory controller
such that a pattern is one cycle longer than expected, leads to a violation of the worst-
case bound that is at least an order of magnitude larger than this deviation, supporting
this conclusion. The dominance class of each con�guration can also clearly be observed

102 power/performance trade-offs

1,1 1,2 1,4 1,8 2,1 2,2 2,4 4,1 4,2 8,1
(BI, BC) con�gurations

0

500

1000

1500

2000

2500

3000

Ba
nd

w
id
th

[M
B/
s]

bwc
bmeasured
w

bmeasured
r

bmeasured
rw

Figure 5.4: Worst-case and measured bandwidth for di�erent pattern con�gurations.

in the graph by �nding the bar of the request sequence that best matches the worst-case
bar (the last two sets are mix dominant, the others are all write dominant).

5.5 conclusion

This chapter discussed the in�uence of memory pattern con�gurations ((BI, BC) combi-
nations) on the worst-case performance of twelve memory modules from six di�erent
memory generations. We have shown that memory e�ciency scales with the access
granularity by which it is used. The maximum granularity is limited by the request size
of the clients that use the memory, so there is only a limited range of con�gurations
that is practically useful.

For a �xed access granularity, we observed that the BI and BC parameters can be used
to trade worst-case bandwidth for energy e�ciency. Additionally, we showed that in-
terleaving over more than 4 banks (or 8 banks for DDR4) is never a good idea, since
there is always a better con�guration available in terms of worst-case bandwidth or en-
ergy e�ciency at the same granularity. These observations can be used as rudimentary
guidelines for the con�guration of a scheduling algorithm or the selection of a pattern
set, although the �ne-grained decision will always depend on the mix of requirements
from the memory clients.

Comparing speed bins and di�erent SDRAM types showed that both faster bins, and
(not unexpectedly) newer memory generations tend to be more energy e�cient. We
also see that modern memories with wider interfaces and / or higher clock frequencies
require larger access granularities to reach the same level of memory e�ciency (data

5.5 conclusion 103

bus utilization) as slower / narrower memories, respectively. This trend may be a reason
for concern, since it implies that worst-case e�ciency will fall even further as memories
get wider and faster, unless structural changes are made to reduce SDRAM timings, or
clients increase their access granularity to compensate.

Finally, we validated the bound on worst-case bandwidth for our memory controller
implementation, and showed that it is tight in the worst case.

Your task is not to foresee the future, but to enable it.

— Antoine de Saint Exupéry, The Wisdom of the Sands (Citadelle), 1948

6
C O N S E R VAT I V E O P E N - PA G E P O L I C Y

The overarching theme in this thesis is mixed time-criticality memory controllers. So far,
the focus has been mostly on the worst-case aspects of such a controller. This chapter
changes that by introducing a mechanism that improves its average-case performance.

Memory controllers that use a close-page policy immediately precharge (close) a page
when a request is completed. The alternative to a close-page policy is an open-page pol-
icy that attempts to exploit locality of reference. It keeps the page open after a request,
speculating that a following request wants to access the same page again. If this bet pays
o�, then no time is spent precharging and subsequently activating the same page again
(as would be done in a close-page policy), and instead data can be accessed immediately,
improving e�ciency. If it does not, then the request experiences the full precharge and
activate penalty once it arrives. A close-page policy could have avoided this penalty at
least partially, because it can start precharging the page before the request arrives. In sys-
tems where multiple independent processors share a single memory resource, requests
from di�erent clients are interleaved in an unpredictable manner, making it impossible
to guarantee that any locality remains to be exploited (without resorting to bank pri-
vatization, discussed in Section 8.1.2.3). This is why worst-case oriented controllers in
such systems often use a close-page policy.

In this chapter, we will introduce a version of the open-page policy that does not com-
promise on worst-case guarantees, and can hence be freely used by controllers that care
about both worst-case and average-case performance. Section 6.1 explains the intuition
behind it, and introduces terminology. Section 6.2 discusses the impact of the policy on
the previously introduced controller architecture. The implementation of the policy is
re�ned in Section 6.3, such that the average-case performance gains are improved. Sec-
tion 6.4 evaluates the e�ectiveness of the policy through experiments with the SystemC
instance of the memory controller, followed by conclusions in Section 6.5.
This chapter is partially based on our earlier work that was published at DATE 2013 [57].

104

6.1 conservative open-page policy 105

Figure 6.1: Response time of a hit versus a miss. A miss may have a longer response time in a
speculative policy, while the conservative policy behaves similar to a close-page policy.

6.1 conservative open-page policy

Exploiting locality is bene�cial for the average-case performance of a memory con-
troller, but speculative open-page policies increase worst-case response times. Figure 6.1
shows exactly why this happens: it can take longer to read all the data of a request in
a speculative open-page policy than in a close-page policy. In a mixed-time criticality
system, certain applications may be bound by tight real-time requirements, and there-
fore it is undesirable to tamper with the worst-case guarantees. We hence propose a
conservative open-page policy that exploits part of the available locality without sacri�c-
ing worst-case performance. The core idea is to remove the speculation that is normally
inherent to the policy by only allowing a page to remain open after an access when it is
certain that the next request targets the same page. This is conservative with respect to
the worst-case guarantees if this decision is made before the page would traditionally
be precharged by the controller in a close-page policy. The policy can be adopted by
all real-time close-page command schedulers, although the implementation e�ort may
vary based on the (original) scheduler.

When the conservative open-page policy is used, the controller executes the follow-
ing four steps while it serves a request:

1. Commands are executed as normal, as if it were using a close-page policy, until the
point where a close-page controller would commit to precharging. Assuming the
command schedule is generated by an algorithm similar to those from Chapter 4,
this commitment is made when the auto-precharge �ag is attached to the last read
or write command of the �rst bank in the pattern.

2. The target address for the next request is now inspected. If the next request is not
available yet, or if it targets a di�erent row or set of banks, then the execution of the
commands continues as if a close-page policy was used.

106 conservative open-page policy

Figure 6.2: Read schedules for the DDR3-1600 memory in four di�erent modes, for BI 2, BC 2. Each
block represents a command, empty blocks represent NOPs. The tinted commands have
auto-precharge �ags. The timing constraints that dictate the length of the schedule are
shown on the arrows.

3. If the next request targets the same row in the same set of banks, then a hit is
detected. The auto-precharge �ags are omitted, as are the NOPs that are normally
scheduled after the RD or WR commands. These NOPs are normally there to satisfy
the PRE-to-ACT and ACT-to-ACT constraints.

4. The command schedule for the next memory access does not incorporate any acti-
vate commands, and the NOPs required to satisfy the ACT-to-RD/WR constraint are
also omitted.

As a motivating example, consider the �rst schedule in Figure 6.2, targeted at a 16-bit
DDR3-1600 (Appendix B), the memory that will be used as the running example through-
out this chapter. It shows that for BI 2, BC 2, a read atom needs 39 cycles in the close-page
policy, of which only 16 cycles are used to transfer data. 59% of the cycles is spent wait-
ing for ACT and PRE related constraints. The average cost of opening and closing a page
(i.e. the time not spent transferring data in the pattern) in all con�gurations up to a gran-
ularity of 64 bytes for this memory is 71% and 77% for reads and writes, respectively.
This shows that our policy (and open-page policies in general) can have a signi�cant
impact on the (average-case) e�ciency with which the memory is used. Note that the
proposed mechanism merely creates the opportunity for locality exploitation, but it does
not guarantee that it will actually happen, because the client is not considered anywhere
in our approach, and is hence an average-case optimization.

6.1 conservative open-page policy 107

Figure 6.3: Allowed mode transitions. Schedules in dotted modes are not always executed start to
�nish, but instead begin where the connected mode on their incoming vertex left o�
when the hit was detected.

The conservative open-page policy can use four di�erent modes to process an atom.
Figure 6.2 shows an example of the read schedules in each possible mode, applied to the
DDR3-1600 memory we used before:

1. AP: Activates and Precharges a page. This mode is used if a closed page is accessed,
and the next atom needs di�erent page. A close-page policy always uses this mode.

2. ANP: contains an Activate, but No-Precharge. A transition from AP to this mode is
made while the schedule is being executed, if the next access is a page hit and it is
detected in time.

3. NAP: No-Activate, and Precharge. This mode is used if the current atom was a hit,
but the next atom is not known to be a hit.

4. NANP: No-Activate, No-Precharge. A mode that contains only RD or WR commands.
A transition from NAP to this mode is made while the schedule is being executed, if
the previous and next atom are both page hits.

Figure 6.3 shows the relation between the modes graphically. A transition to a dotted
mode can be regarded as the memory controller equivalent of a conditional jump in-
struction to a di�erent schedule, based on the detection of a page hit. The transition is
made instantly when the transition condition is satis�ed. For example, if the n’th com-
mand from a pattern is executed in AP mode and a hit is detected in cycle x , then the
n + 1’th command of the same type of pattern in ANP mode is executed in cycle x + 1.

The memory controller has to inspect the address of the next atom that is selected by
the resource arbiter to detect hits. This address has to be known before the �rst precharge

would be executed in the AP or NAP schedules. If the address for the next access is not
known by that time, then the controller has to assume a miss to prevent sacri�cing
worst-case guarantees. This implies that there is a limited time-window in which local-
ity can be exploited. In a naive implementation, based on a close-page schedule with
auto-precharge commands, the size of this window depends on the time required to
activate a row, plus the time required to access all bursts from the �rst bank in the

108 conservative open-page policy

Figure 6.4: Mapping of patterns to the pattern memory.

access. The greater BC is, the more time exists between the start of an access and the
decision moment. Section 6.3 describes a method to increase the size of the window by
exchanging auto-precharge commands for explicit precharges that are scheduled as late
as possible.

Similarly, there also exists an address window in which locality can be exploited, the
size of which depends on BI. Each bank has its own row bu�er, so the number of bits that
is activated by a pattern is BI times the size of the row bu�er per bank. The number of
distinct atoms that might be a hit is equal to the total number of activated bits, divided
by the access granularity, which for a constant access granularity grows linearly with
BI.

6.2 impact on pattern-based controller

The conservative open-page policy impacts both the memory patterns and the support-
ing architecture of our controller. At �rst sight, the introduction of di�erent modes for
each of the patterns leads to four-fold expansion of the number of patterns that need
to be stored. Fortunately, the di�erences between patterns in each mode are small by
de�nition: to allow seamless transitions from AP to ANP, and from NAP to NANP, the re-
spective schedule-pairs have to be the same at least until the precharge decision is made.
After the decision-point, they di�er in terms of length, and in whether or not they ex-
ecute precharge commands. The di�erences compared to the template architecture in
Chapter 3 (Figure 3.2) are limited. We take advantage of this in the pattern memory
encoding, limiting the required space at the cost of a slightly more complex controller.

Two versions of each original pattern are stored in the pattern memory instead of one.
The �rst version contains commands shared by AP and ANP, while the second version is
shared by NAP and NANP. Figure 6.4 shows what the pattern memory and its entry and
exit points look like when the conservative open-page policy is used. When deciding
on which pattern to execute next, the pattern selector indexes an entry in the pattern

6.2 impact on pattern-based controller 109

Figure 6.5: Example of the relation between modes, executed patterns and the predication of
precharge commands. Detected hits only change the mode if they are detected before
the time-window closes.

LUT. In addition to the incoming atom type and the previously executed pattern type,
it now also needs to consider the mode in which the previous pattern was executed (the
LUT gets more entries). For misses, the previous mode was either AP or NAP. In that
case, it selects the entry containing a base address in the (gray) AP / ANP range for the
next atom. For hits, the previous mode was either ANP or NANP, which means the next
atom needs a pattern from the (white) NAP / NANP base address range.

If a hit is detected during the execution of a pattern and before the �rst precharge,
then its active mode changes. The command player is noti�ed, such that it can update
the pattern’s exit point to re�ect the length of the pattern in the appropriate (NP) mode.
The possible exit points per active mode are shown in Figure 6.4. The execution of
precharge commands, either explicitly (Section 6.3) or in the form of auto-precharge
�ags, is predicated by the active mode in which the pattern is executed: in ANP or NANP
mode, they are not forwarded to the SDRAM. Figure 6.5 shows the transitions between
modes for an example with three write and two read atoms. The example starts o�
with all banks closed. A write atom arrives, and is serviced by the gray write pattern
in AP mode from Figure 6.4. While it is executing, but before the �rst precharge, the
next write atom arrives. It is a hit, so the active mode changes to ANP. The exit point
changes correspondingly to ANP, allowing for an earlier termination of the pattern, as
shown in Figure 6.4. Since the mode at the end of the �rst write was ANP, the second
write pattern uses the ANP/NANP entry point in the white pattern range.

The refresh pattern always follows a mode that precharges (AP or NAP). The number
of required leading NOPs before the REF command may vary depending on the preceding
mode, and hence the entry point changes based on it.

Figure 6.2 and Figure 6.4 suggest that patterns in modes containing no precharges are
shorter than those that do, but this is not necessarily the case, as shown in Figure 6.6.
Read and write patterns in ANP or NANP mode have to contain trailing NOPs to resolve
the RD-to-RD or WR-to-WR (data bus) constraints across patterns. In AP or ANP mode,
these constraints overlap with the start of the following patterns, which generally con-
tain no additional data bus activity, and hence no NOPs are required. Note that for the
presented storage scheme and pattern transition mechanism, it does not matter which

110 conservative open-page policy

Figure 6.6: Example where an ANP pattern is longer than an AP pattern. Note that each individual
read burst still completes at the same time or earlier when the NP patterns are used.

of the modes contains the longest pattern, as long as the entry and exit points in the
pattern LUT are con�gured accordingly.

6.3 using explicit precharge commands

The conservative open-page patterns have a limited time window in which they can
transition to a NP mode. The time-window size has to be as large as possible to maxi-
mize the exploited locality. To maximize the window size, the decision to precharge must
be made as late as possible. For this purpose, we propose to replace the auto-precharge

�ags with explicit precharges that happen later in the schedule, e�ectively postponing
the decision. To maintain the same worst-case guarantees, we do not allow the read and
write schedule lengths to increase as a result of the replacement. This section presents
a greedy heuristic that generates schedules that use this principle for our pattern-based
memory controller, based on the existing patterns that use auto-precharges. After ap-
plying the heuristic, the size of the time-window is larger than or equal to the original
window size, with no in�uence on the read or write pattern length. Therefore, it is al-
ways recommended to apply this heuristic when using the policy.

Algorithm 4 shows the heuristic, reusing the semantics and some of the functions
that were used earlier to describe Algorithm 2 in Chapter 4. The top-level function in
the heuristic is increaseWindowSize. As its inputs, it needs the read or write pattern
for which the time-window should be extended (P), its length including trailing NOPs
(pattLen), and the pattern that should be schedulable after this pattern (nextP). The AP
and NAP pattern should be processed separately, and hence P can be either of these
patterns. nextP can either be an AP or ANP pattern (it has to start with an activate). In
practice, running the heuristic with either of these patterns as nextP yields the same
result, since they both contain the same commands except for the precharges, (as can

6.3 using explicit precharge commands 111

be seen in Figure 6.2), and no PRE-to-PRE-command constraints exist for the considered
SDRAM types.

Algorithm 4 Heuristic to increase the time window size
1: function increaseWindowSize(pattLen, nextP, P)
2: while true do
3: P’ := P // A copy, to restore the pattern if this iteration fails
4: �rstPre := getFirstPre(P) // Returned by reference
5: if �rstPre.autoPrechargeFlag == true then
6: startAt := earliest((type: PRE, bank: �rstPre.bank, cc: 0), P)
7: preCc := firstFreeCycle(startAt, P)
8: P := P ∪ { (type: PRE, bank: �rstPre.bank, cc: preCc) }
9: �rstPre.autoPrechargeFlag := false

10: else
11: preCc := firstFreeCycle(�rstPre.cc + 1, P)
12: �rstPre.cc := preCc
13: if preCc >= pattLen or minPatternDistance(pattLen, nextP, P) > 0 then
14: return P’
15: function firstFreeCycle(startAt, P)
16: // Determine the �rst free cycle in P starting at and including startAt.
17: while { cmd ∈ P | cmd.cc == startAt } , ∅ do
18: startAt := startAt + 1
19: return startAt

The heuristics iteratively increases the size of the window, considering one precharge
at a time. The �rst auto or explicit precharge in the schedule is greedily selected as
a conversion or move candidate, since it is the critical command that determines the
window size. The getFirstPre function returns a reference to this command (line 4).
Note that it is always possible to uniquely identify the �rst precharge, since there is
only one command per cycle, which could either be a RD or WR with an auto-precharge
�ag, or an explicit precharge.

In each iteration, the heuristic can either 1) convert an auto-precharge into an explicit
precharge (lines 5-9), or 2) move an earlier converted explicit precharge command to a
later cycle in the schedule (lines 10-12). The initial conversion results in a relatively
large jump of the precharge decision for a bank, since it needs to satisfy the RD/WR-to-
PRE constraint (Table 4.2). We attempt to move explicit precharge commands one cycle
per iteration of the heuristic.

Adding or moving a PRE command is only possible if the cycle we try to place it in
is not already taken, which is ensured by the firstFreeCycle function. If a cycle is
already occupied, then this function will consider all following cycles, until it �nds an
empty one. We do not consider the option of moving other commands (ACTs, RDs or
WRs) to make room for the PRE command, since this would require re-evaluation of all

112 conservative open-page policy

Figure 6.7: Resulting patterns after converting auto-precharges to explicit precharges (DDR3-1600,
(2,2)).

other constraints related to these commands, and the result is likely to a�ect the pattern
length and worst-case performance negatively.

Line 13 and 14 evaluate the result of a conversion or move. The minPatternDistance
function, de�ned earlier in Algorithm 1 (Section 4.2.1), is used to determine the minimal
distance between nextP and P. If the modi�ed precharge command is not scheduled
within the pattern, or if the next pattern cannot be scheduled immediately after the
current pattern anymore as a result of the modi�cation, then the heuristic terminates
returning P′, the last successfully modi�ed copy of the pattern. In all other cases, we
select a new candidate precharge (line 4), and repeat the procedure.

Algorithm 4 is greedy in its selection of which precharge to move �rst. It might place
this precharge in a cycle that makes future moves of other precharges impossible, ter-
minating at a non-optimal solution, in the sense that a larger window would have been
possible if another order was chosen. In Section 6.4.1, we bound the di�erence between
the heuristic’s output and the optimal window size.

Figure 6.7 shows the results of the heuristic when applied to the example from Fig-
ure 6.2. A more extensive evaluation of the heuristic can be found in Section 6.4.1. The
precharge decision is postponed by 14 and 6 cycles in the AP and NAP modes, respec-
tively. Another way to put this is to say the window size increased by 100% and 150%,
although that probably paints a more dramatic picture than warranted by the absolute
numbers. The windows in NAP patterns are relatively small compared to the AP pattern,
since they immediately start with RD or WR commands, leaving out the initial ACT-to-
RD/WR cycles that add to the window size in an AP pattern.

Note that a time-window of 10 cycles does not imply that a client’s atoms have to
arrive at 10 cycle intervals to successfully exploit locality. Instead, it means that the
arbiter in the resource bus has 10 additional cycles before it needs to settle on the next
atom to send to the back-end, while the atoms themselves are can already be queued up
in the client’s atom queue in the front-end.

The heuristic ensures that the sizes of the read and write patterns do not increase as
a result of moving the precharge commands, but it has no guards preventing the auxil-
iary patterns from growing. Switching patterns are not impacted by the location of PRE
commands, since there are no PRE-to-RD/WR constraints (see Table 4.1 and Table 4.2).

6.4 evaluation 113

Refresh commands, however, need to respect a non-zero PRE-to-REF constraint, and
their patterns may thus be impacted. There are multiple ways to approach this issue:

1. The refresh pattern can be re-generated based on the modi�ed read and write pat-
terns. After evaluating the impact on the worst-case guarantees, a decision to accept
the change or to use option 2 or 3 can be made.

2. A fairly trivial modi�cation to line 13 of the heuristic, adding the refresh pattern
as an additional minPatternDistance check, could terminate it once the refresh
pattern starts to be a�ected.

3. Manual refresh schemes like shown in [19, 117] can avoid refresh patterns and the
associated issue completely.

6.4 evaluation

The evaluation of the conservative open-page policy is done in two steps. First, we
generate conservative open-page patterns for our test memories, apply Algorithm 4,
and discuss its e�ectiveness in Section 6.4.1. Second, Section 6.4.2 shows the average-
case performance improvement the policy o�ers in various scenarios.

6.4.1 Time-window size

Table 6.1 focuses on the 16-bit DDR3-1600 device from before, containing results for
pattern con�gurations up to an access granularity of 64 bytes. Read and write pattern
related numbers are shown on separate lines, in both the AP and NAP mode. For each
con�guration, it shows three columns per pattern:

1. PS, the pattern size.

2. WS, representing the time-window size after applying Algorithm 4.

3. A, representing the number of cycles added to the time-window by Algorithm 4
relative to the naive solution that only uses auto-precharge �ags.

Postponing the precharge-decision by increasing BC increases the size of the time-
window as predicted earlier in Section 6.1, and hence the largest window sizes at a
speci�c access granularity are found at the largest BC value. The table also shows Algo-
rithm 4 usually increases the window size by 50% in this result set. The time-window in
a write pattern is always at least as large as in the corresponding read pattern, because
the WR-to-PRE constraints are greater than the RD-to-PRE constraints for this memory
(and for all other memories in Appendix B as well). This causes write patterns in general
to be larger than read patterns, and hence there are more potential locations for explicit
PRE commands, while at the same time they are forced to be scheduled relatively late

114 conservative open-page policy

Table 6.1: Time-window sizes using the conservative open-page policy and the number of cycles
contributed by the heuristic for the schedules containing precharges (DDR3-1600).

BI 1 1 2 1 2 4
BC 1 2 1 4 2 1
AG [bytes] 16 32 32 64 64 64

PS WS A PS WS A PS WS A PS WS A PS WS A PS WS A
AP-RD [cc] 39 28 17 39 28 13 39 28 17 40 29 6 39 28 13 40 23 12
AP-WR [cc] 46 35 24 50 39 24 46 35 24 58 47 24 50 39 24 46 23 12
NAP-RD [cc] 24 13 13 21 10 6 18 7 7 29 18 6 21 10 6 17 6 6
NAP-WR [cc] 35 24 24 39 28 24 35 24 24 47 36 24 39 28 24 35 12 12

due to the same constraint. NAP patterns have smaller time windows than AP patterns
in the same con�guration, since they are simply smaller (which is the whole point of
creating them), and immediately start with read or write bursts. The accessed banks in
NAP patterns can typically be precharged earlier, because the ACT-to-PRE constraints
are (partially) resolved during the preceding ANP pattern.

Next, the scope is expanded to con�gurations up to an access granularity of 256 bytes,
and we also include all the other test memories (Appendix B). In this result set (visualized
in Figure 6.8), the time-window spans on average 39% of the AP pattern and 35% of
the NAP pattern before applying Algorithm 4, versus 76% and 65% after, respectively.
We also observe that none of the refresh patterns are a�ected by the moved precharge
commands, so we do not have to select a method to deal with this.

Figure 6.8 contains histograms of the relative time-window size with respect to the
pattern size for the same result set, both before (left graphs) and after (right graphs)
Algorithm 4 is used, for patterns in AP (top graphs) and NAP (bottom graphs) mode.
The y-axis is normalized and represents the fraction of patterns that �t in a certain bin
(there are 316 patterns and 50 bins in each graph). The graphs shows that the heuristic
shifts the distribution signi�cantly to the right, in line with the growth of the average
window size we saw earlier.

To bound the di�erence between the heuristic output and the global optimum, we
sabotage the firstFreeCycle function such that it regards cycles containing explicit
precharge commands as empty. As a result, multiple precharge commands are allowed
to happen within the same cycle, which eliminates the e�ect of the greediness of the
heuristic, although it does potentially introduce command con�icts. The window size
produced by this modi�ed heuristic is an upper bound for the optimal window size.

We apply the modi�ed heuristic to our set of test memories (Appendix B) and take
note of the di�erences in window sizes compared to our previous result. The results
show that Algorithm 4 generates the optimal result for at least 90% of the tested patterns.
On average, the optimal window size is not more than 1% larger than the size produced
by the heuristic. The largest percentual di�erence from the upper bound in a single

6.4 evaluation 115

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
AP without Alg. 4

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
AP with Alg. 4

0 20 40 60 80 100
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

NAP without Alg. 4

0 20 40 60 80 100
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

NAP with Alg. 4

Time-window size in % of pattern size

Fr
ac
tio

n
of

co
n�

gu
ra
tio

ns

Figure 6.8: Relative time-window size histogram (the height of a bar represents the fraction of
patterns in the result set having a time-window in the bin corresponding to the value
on the x-axis).

Figure 6.9: We use an upper bound on the optimal window size to determine how far Algorithm 4
can maximally be from the real optimum.

116 conservative open-page policy

Table 6.2: CHStone trace characteristics.

Trace adpcm aes bf gsm jpeg mips motion sha

Avg. bandwidth [MB/s] 846 878 253 1910 100 1577 2426 236
Number of requests 645 742 873 644 1685 541 617 791

con�guration is 29%, although a manual (not generally applicable) inspection shows
that in this case the bound is not tight, and Algorithm 4 actually produced the optimal
window size. Given these results, we conclude that the heuristic is e�ective in achieving
its goal.

6.4.2 Stall time reduction

The conservative open-page policy theoretically improves the average-case performance
of memory clients. To evaluate this claim, we set up an experiment with the SystemC
model of our memory controller, connected to a model of the DDR3-1600 SDRAM (Ap-
pendix B). We compare the performance of a set of memory traces, �rst using a close-
page policy, and later using the conservative open-page policy. The corresponding ap-
plications are drawn from the CHStone benchmark set [63], and traces are generated
using the SimpleScalar 3.0 processor simulator [15].

The selection of a benchmark set is often a compromise between (arguably) con�ict-
ing requirements, this experiment being no exception. Code and the associated input
sets need to be available, the e�ort involved in porting and compilation should be lim-
ited, the mix of applications has to be relevant with respect to the application area of the
research, run-time on the target architecture needs to be reasonable, and the functional
correctness of the applications should be maintained, while the overarching goal is to
prove a point based on the results of the experiments. CHStone meets most of these
requirements, as it comes with integrated input data and reference output, while being
mostly compatible with the target processor. Eight out of the twelve applications in the
benchmark are used, the four applications that are left out use 64-bit �oating-point op-
erations that are not supported by the SimpleScalar compiler. What remains is the set
shown in Table 6.2. It consists of various audio and image coding / decoding applica-
tions (adpcm, gsm, jpeg, motion), cryptographic algorithms (aes, bf, sha) and a small
mips simulator, all of which (except for perhaps the mips simulator) could plausibly run
on a mixed time-criticality embedded system.

For each application in the benchmark, a memory-trace �le is generated using a
slightly modi�ed version of the SimpleScalar simulator. It records the time and address
of each L2 cache miss, resulting in a trace �le containing all requests that go to the
SDRAM. We use the out-of-order execution engine (sim-outorder) with default settings

6.4 evaluation 117

Figure 6.10: Setup of the conservative open-page experiments.

except for the cache setup, for which we select half the size compared to its defaults.
We use a uni�ed 128 KB L2 cache with 64-byte cache lines, 512 sets and an associativ-
ity of 4. Each request in the trace thus corresponds to a cache miss of 64 bytes. There
are two reasons to reduce the cache size: 1) the traces are later used to model tra�c in
a 4 core system with partitioned L2 caches, and hence we limit the total cache size to
more realistic proportions for an embedded system. 2) The smaller cache size increases
the load on the SDRAM, and biases the applications’ performance towards being more
memory bound. Applications that are not in�uenced by the memory performance, do
not bene�t from improvements made on the SDRAM side, and would generate valid but
trivial results, and hence we try to avoid them. The reader should keep this in mind
when evaluating the results of the experiment.

The memory controller front-end is included such that the SDRAM can be shared
amongst multiple clients. Its arbiter con�guration only matters in the multi-application
experiment Section 6.4.2.3, and will be introduced there. We use a setup with four input
ports, each of which is connected to a trace-based tra�c player by means of a (compos-
able) NoC [52], as shown in Figure 6.10. A tra�c player generates requests at the times
(clock cycles) indicated by the trace �le assigned to it. Each player emulates a processor
running at 1400 MHz, which means that a clock cycle in the trace corresponds to 0.71 ns.
Table 6.2 shows the resulting average requested bandwidth, i.e. the total amount of data
requested in the trace, divided by the time of the last request. Note that the actual tra�c
intensity varies over time during the trace execution. Each application has its own mem-
ory range, such that they do not share rows in the memory. The controller is con�gured
with pattern sets that o�ers a 64-byte granularity (atom size) to match the request size
of the traces.

A tra�c player allows a maximum of four outstanding read-requests before it stalls.
When this happens, it stops executing, i.e. halts its cycle counter, and does not issue any
more requests until a response arrives. It further assumes that all requests are indepen-
dent. Note that a real processor could potentially stall due to dependencies, but that it
is not uncommon for multiple cache misses to arrive at a memory controller in a rela-

118 conservative open-page policy

adpcm aes bf gsm jpeg mips motion sha
0

20

40

60

80

100
M
ax
im

um
hi
tp

er
ce
nt
ag
e
[%
]

BI 1, BC 4 BI 2, BC 2 BI 4, BC 1

Figure 6.11: Available spatial locality per trace for three pattern con�gurations, from left to right:
(BI 1, BC 4), (BI 2, BC 2) and (BI 4, BC 1).

tively short interval [158], and that techniques exist to improve the available memory
parallelism [40, 110]. Support for multiple outstanding requests is a feature found in the
higher-end embedded processors, for example, the PowerPC e500v2 [47] supports �ve
outstanding load misses.

Three factors determine the number of page hits for an application. In the following
sections, the consequences of each of these factors are evaluated for the proposed policy.

1. Spatial locality has to be present within an application (Section 6.4.2.1). If a request
targets the same row and bank as its predecessor, then it is a potential hit, otherwise
it is a guaranteed miss.

2. Temporal locality (Section 6.4.2.2): a request containing spatial locality has to arrive
at the memory controller before the time window closes.

3. Interference from requests by other clients (Section 6.4.2.3). Requests streams from
di�erent clients might be interleaved, destroying their locality.

6.4.2.1 Spatial locality

The spatial locality of a trace, i.e. the fraction of consecutive requests that target the
same page, can be determined by analyzing the sequence of accessed addresses. Which
bits from the address are used to determine the bank and row addresses depends on
the address decoder con�guration (Section 4.2.5), which is a result of the selected pat-
tern con�guration. The likelihood of two consecutive requests targeting the same banks
increases with a growing BI, as discussed earlier in Section 6.1, resulting in more hits.

6.4 evaluation 119

adpcm aes bf gsm jpeg mips motion sha
0

20

40

60

80

100
[%
]

1. Exploited locality (% of max)
2. Stall time reduction
3. Fraction stalled
4. Exec. time reduction

Figure 6.12: Single-application experiment results. Bar 1 represents the exploited locality during
the conservative open-page run, bars 2 and 4 are relative numbers given the close-
page and conservative open-page runs, and 3 is the fraction of time the tra�c gener-
ator was stalled during the close-page run. All runs use (BI 2, BC 2).

We analyze the traces for the three di�erent pattern con�gurations that o�er a 64-
byte access granularity. Figure 6.11 shows the spatial locality per trace. At least 57%
of the requests in each trace can potentially bene�t from an open-page policy, with a
variation of at most 8% points caused by the di�erent con�gurations.

6.4.2.2 Single-application performance

In the single-application experiment, only one of the four tra�c players is active, run-
ning each of the application traces independently. This implies that both spatial and
temporal locality play a role, but interference is still left out of the equation.

We run each trace two times, �rst using a close-page policy and then using the conser-
vative open-page policy in the BI 2, BC 2 con�guration. The results of these experiments
are shown in Figure 6.12, through 4 bars per experiment, which we now discuss one by
one.

First, we determine the fraction of requests containing spatial locality (identi�ed in
Figure 6.11) that is captured within the time-window by simply counting the number of
hits in the memory controller. This is plotted on the �rst bar in the graph as a percentage
of the maximum number of hits identi�ed in Figure 6.11. 70% of the requests which
contained spatial locality actually result in a hit on average.

The execution time of a trace consists of two parts, 1) the time spent on computation,
which is memory performance independent, and 2) the time spent stalled waiting for a
response from the SDRAM. Optimizations on the memory side can only reduce the stall

120 conservative open-page policy

time. The percentage by which the stall time is reduced by the conservative open-page
policy is plotted on the second bar in Figure 6.12. Results vary between 58% (bf) and
86% (sha) reduction. These numbers may appear relatively high at �rst, considering
that in the best case, the conservative open-page policy replaces an AP pattern by an
NANP pattern compared to the close-page policy, resulting in “only” a 59% time saving
(see Figure 6.2). However, the tra�c generator only stalls once it reaches its maximum
outstanding request limit, and hence there is not a one-to-one translation of memory
response time to stall time. A small reduction of the memory response time can thus
reduce the stall time by a relatively larger factor.

Bar three in Figure 6.12 shows the ratio between the stall time and the computation
time for the trace while using the close-page policy. The higher this ratio is, the more the
execution time of an trace will reduce as a result of a stall-time reduction. This number
is directly correlated to the average requested bandwidth for a trace, previously shown
in Table 6.2. Based on this statistic, motion is expected to receive most bene�t, while
jpeg bene�ts the least.

Next, we look at the execution-time di�erence, shown in the fourth bar. Here, results
vary wildly based on the used application: jpeg’s execution time is reduced by only 1%,
while that of motion is reduced by 33%, as expected based on the previously discussed
ratio. The average execution-time reduction across all applications is 17%, so we con-
clude that our proposed technique works well given the stall-time reduction, and that
the bene�t for an application scales with how memory intensive it is.

Pa�ern configuration influence
The pattern con�guration has a large impact on the worst-case guarantees, as discussed
in Chapter 5. To quantify its interaction with the conservative open-page policy, we
repeat the single-application experiment for di�erent con�gurations.

The considered con�gurations in this experiment all have a granularity of 64 bytes:
interleaving over either 1, 2 or 4 banks, while doing 4, 2 or 1 burst per bank, respectively.
Table 6.3 shows the worst-case bandwidth delivered by those con�gurations, calculated
as described in Section 3.2.1.1. It increases with BI, with a 21% di�erence between BI 1
and BI 4. Figure 6.11 shows a trend in the same direction; the higher BI, the higher the
spatial locality. A trend in the opposite direction is visible for the window size (see
Table 6.1). This leads to the observation that for an increasing BI, both worst-case band-
width and spatial locality increase, but the size of the time-window decreases.

Table 6.3 also shows the (measured) average fraction of exploited locality and the
average execution time for the eight benchmark applications. The conservative open-
page policy captures the largest fraction of potential locality in the con�guration with
the largest window-size (BI 1, BC 4). However, the execution-time reduction is largest
for the (BI 2, BC 2) con�guration. In absolute numbers, the average execution time for
(BI 2, BC 2) is only 0.3% smaller than that of (BI 1, BC 4). We conclude that the (open-page
related) performance di�erences across con�gurations are so small that they are insignif-

icant, so the selection of a con�guration can be made based on the real-time guarantees

6.4 evaluation 121

Table 6.3: Pattern con�guration in�uence on single application performance when using the con-
servative open-page policy.

Banks Interleaving (BI) 1 2 4
Burst Count (BC) 4 2 1

Worst-case bandwidth (bwc) [MB/s] 901 1050 1144
Average exploited locality [%] 78.7 70.6 70.1
Average exec. time reduction [%] 16.1 17.2 17.0

(and power consumption) that it o�ers, without signi�cantly impacting the e�ectiveness of

the conservative open-page policy.

6.4.2.3 Multi-application performance

To show the e�ect of multi-application interference on locality exploitation, we run an
experiment with four simultaneously active applications on four separate tra�c play-
ers. Two high-load and two low-load applications (mips, motion, jpeg and bf) compete
for the memory resource. Work-conserving TDM is used as the arbitration scheme in the
front-end, which means that unclaimed slots from one application can be used by an-
other application. If a slot is not used by its designated owner, then the arbiter simply
selects the next application in the table that has a request available. A (BI 2, BC 2) con-
�guration is used. Two variations of this experiment with di�erent arbiter settings are
performed, annotated with multi-tdm-1 and multi-tdm-2.

In the multi-tdm-1 experiment, each application is allocated one out of four slots in
the TDM table (e�ectively creating a round-robin arbiter). This means each application
can get at least a quarter of the memory bandwidth. The downside of this scheme is
that it allows for �ne-grained interleaving of requests from di�erent applications, which
destroys locality that was present in the original memory trace. This e�ect is visible in
Figure 6.13: only 25% of the potential locality is captured (bar 1), which is signi�cantly
lower than the average captured locality in the single application case. The reduction of
the sum of the stall cycles of all applications when the conservative open-page policy is
switched on, shown in the second bar, is 6%, and consequently the total execution-time
reduction (third bar) is also small.

Looking at the stall-time reduction for the individual applications (bar 4-7), motion
and mips hardly bene�t at all, with mips even showing a small increase of its stall time.
An explanation for this is that both of these traces are short with respect to the other
two, and require a relatively large amount of bandwidth (Table 6.2). As a result, they
interfere with all other applications and with each other during the short period where
they are active, almost nullifying the bene�ts of the conservative open-page policy. bf
and jpeg run signi�cantly longer, and produce fewer requests while doing so, which

122 conservative open-page policy

multi-tdm-1 multi-tdm-2

0

20

40

60

80

100

[%
]

1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5. 6. 7.

1. Total exploited locality
2. Total stall time reduction
3. Total exec. time reduction
4. Motion stall reduction
5. Mips stall reduction
6. Bf stall reduction
7. Jpeg stall reduction

Figure 6.13: Multi-application experiment results.

means they rarely actually try to use the memory at the same time, and hence manage
to obtain some bene�t from the policy once motion and mips are done.

To retain more of the locality in the request stream, the arbiter in the multi-tdm-2
experiment is modi�ed: each application gets two consecutive slots in a TDM table of
eight slots in total. Note that this has implications for the worst-case response time;
in the �rst TDM-schedule there were at most three interfering slots for an application,
while in the second there are at most six interfering slots, and hence Θ

arb
grows.

Figure 6.13 shows that giving each application two consecutive slots has a large im-
pact on the fraction of exploited locality: 54% of it is captured, more than 2 times as
much as in the multi-tdm-1 experiment, resulting in a total stall-time reduction of 35%.
The individual stall time drop is between 31% (motion) and 40% (jpeg). We can con-
clude that successfully applying the conservative open-page policy in a multi-application

use-case is possible, under the condition that the arbiter allows at least part of the consec-

utive requests from an application to be scheduled consecutively, potentially at the cost of

a larger WCRT, but equal throughput.

MRT performance
The previous experiments used a setup in which the tested applications themselves had
an inherent degree of memory parallelism: each could issue 4 requests before stalling.
In this experiment, we demonstrate that all applications bene�t from the conservative
open-page policy even if they do not all have this property, based on the notion that the
policy improves the overall memory performance by exploiting locality. This is a rele-
vant scenario, especially in a mixed-time criticality context, where real-time streaming
applications co-run with best-e�ort applications.

6.5 conclusion 123

Two tra�c players are active in the experiment: the �rst one runs one of the bench-
mark applications and is con�gured to block immediately when a request is issued,
and unblock once the response arrives. As a result, the application cannot bene�t from
any of its own locality. This models what happens in case an in-order processor is
used to execute the application. The second tra�c player generates a synthetic tra�c
stream that models a (�ctional) real-time video IP. It requires a bandwidth of 270 MB/s,
which is the combined read and write rate required to transport 60 frames per second of
1024 · 786 pixels from and to the memory, assuming 3 bytes/pixel. We assume all of its
requests are independent, such that a high degree of locality is available in this stream,
i.e. the IP running the application is fully pipelined.

16 runs are performed in total: two for each benchmark applications, �rst with the
close-page policy, and later with the conservative open-page policy. The objective of
this experiment is twofold: 1) it allows us to experimentally verify that the real-time
bandwidth constraint of the video IP is always satis�ed, regardless of the used page
policy, and 2) it quanti�es the impact of the locality exploitation by the pipelined video
application on the execution time of the non-pipelined application.

Compared to a close-page policy, the average execution time of the benchmark appli-
cations is reduced by 7.9% when using the conservative open-page, while still satisfying
the constraints of the video IP. Using the policy, the controller manages to serve the
video application faster, allowing more time to be spent on the benchmark application
which hence bene�ts indirectly. The motion benchmark again gains most in terms of
execution-time reduction (13.4%), while jpeg shows the smallest improvement (1.9%).
Based on these results, we conclude that if there is at least one application that exploits

locality, then all the other applications that share the memory can bene�t and the overall

average-case performance increases.

6.5 conclusion

This chapter deals with the problem of mixed time-criticality workloads for SDRAM
controllers. Existing controllers typically optimize for either worst-case or average-case
performance, but not for the combination of the two. We proposed a conservative open-
page policy that improves the average-case performance without sacri�cing real-time
guarantees. It exploits a portion of the locality in the request stream, reducing the
average-case response time. We showed how existing close-page patterns can be con-
verted to their conservative open-page counterparts, and presented an algorithm that
replaces auto-precharge �ags by explicit precharge commands, which improves the ef-
fectiveness of the policy.

The stall-time and execution-time reduction in single- and multi-application use-
cases are quanti�ed for a set of benchmark traces. The average-case performance is
improved by the conservative open-page policy in both of these scenarios. Interference
between applications largely determines the degree to which locality is successfully

124 conservative open-page policy

exploited. Arbiter con�gurations that encourage requests of the same application to be
scheduled consecutively by the back-end are signi�cantly more e�ective than those that
do not. It therefore makes sense to try and use those if the (unavoidable) impact on the
worst-case performance can be tolerated. Fortunately, the average-case performance
bene�ts obtained by using the policy is not very sensitive to changes in the controller
con�guration, and hence BI and BC can be selected based on their e�ect on the worst-
case properties of the memory only. Finally, we showed that as long as least one of the
memory clients bene�ts from the policy, the overall memory performance for all clients
improves.

The problem is, or rather one of the problems, for there are many,

a sizeable proportion of which are continually clogging up the civil,

commercial, and criminal courts in all areas of the Galaxy,

and especially, where possible, the more corrupt ones, this.

The previous sentence makes sense. That is not the problem. This is:

Change.

Read it through again and you’ll get it.

— Douglas Adams, So Long, and Thanks for All the Fish, 1984

7
R E C O N F I G U R AT I O N

One keyword in the title of this thesis remains undiscussed up until now, so it should
come as no surprise that is chapter deals with this topic of recon�guration. It has been
alluded to in several places already, most prominently in Chapter 3, where the recon�g-
uration infrastructure was shown from an architectural point of view. The focus in this
current chapter lies more on the process of memory controller recon�guration, its mer-
its and limitations in the context of a predictable and composable SoC, and the e�ects it
has on the associated performance guarantees.

So far, the controller runs we have shown used the same con�guration from boot time
until �nish, merely using the recon�guration infrastructure for initialization. The value
of this software-based programmability is the �exibility it o�ers: the same hardware
may be deployed with multiple di�erent con�gurations. This enables customization of
its behavior to 1) the memory device, 2) the power / performance trade-o� provided
by the patterns, and 3) di�erent sets of clients. However, systems generally operate in
dynamic environments where the mix of active applications or use-case is not constant
during the execution. As a result, the requirements of the controller’s clients change,
and it is unlikely that a single con�guration �ts all use-cases perfectly, creating a need
for recon�guration during operation.

This chapter starts with an overview of the recon�guration options o�ered by our
architecture in Section 7.1. Section 7.2 describes how predictable and composable per-
formance guarantees are de�ned for clients that remain active during recon�guration,
and Section 7.3 discusses the implication this has on the recon�guration options we can
safely use for these clients. Recon�guring an arbiter while retaining predictable perfor-
mance guarantees is not trivial: Section 7.4 shows how to construct and use a TDM

125

126 reconfiguration

Figure 7.1: Overview of recon�gurable components and their interdependencies.

arbiter that has this property. Section 7.5 evaluates the contributions in this chapter
through experiments with our SystemC model and the VHDL instance of our controller.
This chapter is based on our publication at CODES+ISSS 2013 [59].

7.1 reconfiguration options

The controller architecture template from Chapter 3 contains multiple components that
are recon�gurable at run-time. They are con�gured at least once, at boot time, to setup
the controller for its �rst use-case, i.e. the initial set of clients. The memory controller’s
con�guration determines how the SDRAM is used (i.e. which commands it executes),
and what the memory performance looks like from the viewpoint of a client. Later re-
con�guration might be desired as a result of a use-case switch: clients may be started
or stopped, or the application behind a client might change. This leads to a change in
the system state that is typically coordinated by a resource manager [54, 127], which
could be either part of an operating system running on a processor in the SoC, or a ded-
icated hardware module, depending on the required �exibility. The requirements that
the memory controller has to satisfy in this new state may be di�erent from what they
were earlier. A use-case switch leads to recon�guration if the required con�guration
changes with the use-case.

The individual recon�gurable components of the controller are connected by depen-
dencies, limiting how they may be con�gured. Figure 7.1 visualizes these dependencies.
A continuous arrow between two nodes means that if the source node changes its value,
then the destination node has to change accordingly. A dotted arrow means a change

7.1 reconfiguration options 127

in the source node might warrant a change in the destination node, although this is
not always necessary. The controller front-end contains the following recon�gurable
components:

1. Atomizers: the atom size should be set equal to access granularity of the back-end.

2. Delay blocks: when composable performance for the client is required, a set of tim-
ing registers has to be con�gured in the delay block, such that can emulate a client’s
worst-case latency-rate curve (Section 2.5).

3. Arbiter: the arbiter has to be programmed with the allocated resource budget for an
application.

Even though the delay blocks and the arbiter may use di�erent con�gurations per client,
the atomizer may not, since the atom size has to match with the back-end. There is hence
a distinction between con�guration parameters that are shared by (and the same for) all
clients, and those that are private. The back-end solely contains shared con�gurable
components:

4. Patterns: the contents of the pattern memory, the pattern LUT, refresh timer and the
pattern set o�set need to be con�gured.

5. Address generator: the masks and shift amounts should be set, such that memory
mapping corresponds to the pattern con�guration, as discussed in Section 4.2.5.

When recon�guring, two scenarios can be distinguished. 1) In the �rst scenario, no
clients remain active during recon�guration, and no data has to be retained. This is
essentially the same as the initial con�guration after reset, and we can hence trivially
change all settings in this scenario. 2) In the second scenario, at least one client remains
active while the controller is recon�gured. We will call such clients persistent.

If we consider changing BI and BC while persistent clients continue to use the con-
troller, then two structural problems appear:

• Modi�cations of BI and BC that retain a constant access granularity permute the
relative burst order before and after recon�guration, both within and across atoms,
as shown in Figure 7.2. Bursts that were written by a single atom before recon�gu-
ration are spread across multiple atoms after BI and BC are changed1. This makes it
impossible to (transparently) retrieve the original data for persistent clients.

• Changing the access granularity requires cooperation of the atomizers of persistent
clients, since they all have to start using the new atom size before the patterns can
actually be changed. This cooperation generally cannot be guaranteed, a client may
for example delay the completion of one of its old-sized atoms by not delivering the
required data to its atom bu�er, potentially delaying the recon�guration inde�nitely.

1 We recognize that it may be bene�cial to apply such permutations for certain applications with regular but
non-linear addressing strides, but in general the data that a client reads should match the data that it wrote
earlier.

128 reconfiguration

Figure 7.2: An example of the placement of bursts in the memory using two di�erent pattern
sets with the same access granularity. Consecutive bursts have consecutive numbers /
characters, and each cell contains a burst. Retrieving the data that was written using
(BI 4, BC 2) would require two atoms and reordering when using (BI 2, BC 4).

These issues make it infeasible to change BI and BC in this scenario, and thus the entire
shared con�guration cannot be recon�gured in the presence of persistent applications, be-
cause all its components are dependent on these parameters. However, recon�guration
of the private con�guration per client is not hindered by structural issues, and hence
modifying the delay block or arbiter con�guration is possible. The next section bounds
the extent to which we can use these options, depending on the performance guarantee
of the associated client.

7.2 performance guarantees during a use-case switch

In this section, we describe how predictable and composable performance for persistent
clients is de�ned, and we outline how the use-case switching process is orchestrated for
the di�erent types of clients in the system (Figure 7.3).
Non-persistent clients receive no performance guarantees during recon�guration, be-

cause they are switched o� before it happens. During a use-case switch, this type of client
is handled �rst. The resource manager stops the �ow of requests for these clients at
the source side (processor or peripheral). This can be done forcefully, or in cooperation
with the source. It then triggers a �nal dummy-read request on the client’s front-end
port and waits for the response to ensure that no requests for the client are left in the
controller. Alternatively, the client’s WCRT bound could be used to determine when the
�nal request that the client made is fully processed. Since requests are never reordered
per client, quiescence is thus ensured [87] before recon�guration is initiated.

Next, we consider persistent clients that require predictable or composable perfor-
mance, and have the same requirements before and after the use-case switch. Their

7.3 delay block / arbiter reconfiguration with persistent clients 129

Figure 7.3: Client type hierarchy.

con�guration might have to change as a side-e�ect of other recon�guration actions. If
a TDM arbiter is used, for example, then we might want to move their slots to a dif-
ferent position in the TDM table to make room for another (new) client that requires a
large contiguous allocation. Recon�guration of this type of client can start once all non-
persistent clients have been stopped. Our goal is to not change the guarantees that are
given to persistent clients as a result of recon�guration, so we de�ne them as follows:

• The worst-case requirements of a persistent predictable client should always be satis�ed,

i.e. its guaranteed performance before, during and after a use-case switch is always

equal to or higher than its required performance.

• The (actual-case) behavior of a persistent composable client should not be in�uenced by

the use-case switch in any way, i.e. for the client, it is impossible to determine whether

or not recon�guration took place by observing data, timings or a combination of the

two.

These de�nitions allow the veri�cation process of these types of clients to remain un-
changed, regardless of the possible recon�gurations they might experience during their
lifetime. Note that it is possible to combine the two guarantees for clients that need to
be both predictable and composable. However, the composable guarantee is stronger
and enforces predictability during recon�guration, assuming the client was receiving
predictable performance before the use-case switch.

Finally, the newly starting clients in the use-case we transitioned to can be enabled
to complete the recon�guration process.

7.3 delay block / arbiter reconfiguration with persistent clients

Delay blocks and the arbiter are recon�gurable in the presence of persistent clients,
as discussed in Section 7.1. We now evaluate under which conditions we actually can

recon�gure, given the e�ect it has on the performance guarantees de�ned in Section 7.2.
Clients receiving predictable performance do not require a delay block. The memory

controller may use composable patterns and TDM arbitration to provide composable per-

130 reconfiguration

Table 7.1: Components we can recon�gure for persistent clients

Client type Delay block Arbiter

Persistent predictable clients:

not used yes, if transition is safe (shown for TDM in Section 7.4)

Persistent composable clients:

Composable patterns + TDM not used no (composability)
Predictable patterns + delay block no (composability) yes, if transition is safe (shown for TDM in Section 7.4)

formance, or it can use predictable patterns and delay blocks. In the latter case, the delay
block may not be recon�gured by de�nition, since that alters the actual-case behavior
of the client. Instead, their delay blocks should always be con�gured to emulate the
worst-case performance across all use-cases in which the client is active. We conclude
that even though recon�guring the delay blocks for persistent clients is not structurally

impossible, it is never allowed or useful.

A client’s predictable performance guarantees depend on the con�guration of the
arbiter. The arbiter may therefore only be recon�gured if the guaranteed performance
for all persistent clients is higher than or equal to their respective requirement before,
during and after recon�guration. If we assume the arbiter is only recon�gured to switch

between valid con�gurations that individually satisfy the client’s requirements, then we

only have to ensure that the transition, i.e. the process of recon�guration itself does not

cause requirement violations. If this is the case, then we call the recon�guration process
safe. Composable clients that use delay blocks need the same assertion to assure their
(single) delay block con�guration is conservative. Proving this assertion holds for an
arbiter, even if we restrict ourselves to predictable arbiters, is not trivial. Section 7.4
discusses the challenges, and how it can be done for a TDM arbiter.

Finally, we consider the options for persistent composable clients using composable
patterns with TDM arbitration. Their private arbiter con�guration, i.e. their slots in the
slot-table, may not be changed, since they rely on these to be constant for composability
(Section 4.3.1). However, the other slots that are not owned by clients of this kind are
still recon�gurable.
The results of this section are summarized in Table 7.1.

7.4 reconfigurable tdm arbiter

Arbiters make run-time scheduling decisions based on their state variables, their con-
�guration, and the availability of new requests from clients. When the con�guration
is changed through recon�guration, it has to remain consistent with the state variables
at the time of recon�guration. What consistent means in this context depends on the
arbiter type: for example, if a TDM arbiter is recon�gured from a slot-table size of 10 to a

7.4 reconfigurable tdm arbiter 131

size of 5, then the state is only consistent if the current slot-table pointer lies within the
new slot-table range. The more of these variables there are to consider, the tougher this
becomes, and hence it is easier to safely recon�gure for example a TDM arbiter, which
only holds its slot-table position as state variable, compared to a CCSP arbiter [5], which
has individual credit counters for each client.

In this section, we focus on (work-conserving and non-work-conserving) TDM ar-
biters, and limit recon�guration to the allocation of slots to clients, leaving the table
size untouched to avoid consistency issues. Recon�guration might change a predictable
persistent client’s allocation by adding, removing, or moving its slots. Adding slots is al-
ways safe, since it can only improve the performance of a client. Removing slots is also
safe within our performance guarantee de�nitions (Section 7.2): a transition to a con-
�guration with fewer slots is only allowed if this con�guration also satis�es the client’s
requirements, and hence the slots that are removed can be considered over-allocation.
This only leaves the case where slots are moved within the table.

Section 7.4.1 �rst describes how a slot allocation can be translated into a (latency-
rate) performance guarantee. Section 7.4.2 explores the slot-moving scenario further
by �rst showing how an (atomic) move operation leads to temporarily reduced perfor-
mance. It then derives a recon�guration protocol for TDM arbiters that preserves the
guaranteed performance of persistent predictable clients during recon�guration. Sec-
tion 7.4.3 shows the architecture of a TDM arbiter that satis�es the protocol constraints.
Section 7.4.4 formalizes our approach to prove its correctness.

7.4.1 Latency-rate parameters for TDM arbiters

A TDM arbiter divides the resource time into slots that are distributed to multiple clients.
Each slot represents a time slice in which one client can use the resource. A slot is non-
preemptive, but its duration can be bounded by the WCIAT (Section 3.2.2). We assume
allocation of slots to clients is done at design time, yielding a slot table that maps each
slot to a certain client. The length of the slot table (or frame) T , de�nes the period of
the arbiter in number of slots. Each slot corresponds to a fraction 1/T of the worst-case
bandwidth (bwc), such that a client c that receives ϕc slots has a (normalized) allocated
rate of:

ρc
tdm
=
ϕc

T (7.1)

Intuitively, the service latency for a client c using a TDM arbiter expressed in slots(
Θc
tdm

)
is the worst-case number of slots this client has to wait until the arbiter reaches

one of its slots. If a TDM arbiter uses contiguous (greedy) allocation, this is equal to T
times the rate not allocated to this client

(
1 − ρc

tdm

)
, plus one, as shown in Equation (7.2).

The plus one accounts for the misalignment of the arrival of a atom with the arbitration

132 reconfiguration

Figure 7.4: Example of potentially violated LR guarantees for client A during recon�guration.
The �gure shows 3 TDM-table iterations of 5 slots each. A letter in a slot indicates the
slots belongs to the client corresponding to that letter.

moments. In the worst case, a decision has been made one cycle before the arrival, and
the client is too late to claim its slot.

Θc
tdm
= T · (1 − ρc

tdm
) + 1 = T −ϕc + 1 (7.2)

We only discuss the arbiter’sLR abstraction in the remainder of this chapter. To simplify
our notation, we use (

Θ, ρ) to represent
(
Θc
tdm

, ρc
tdm

)
.

7.4.2 Safe TDM arbiter recon�guration protocol

Each memory controller client receives a LR performance guarantee based on its al-
located slots in the TDM arbiter. When the arbiter is recon�gured to switch between
di�erent slot allocations, the number of slots the client receives over a period of T slots
may reduce temporarily, even if the number of allocated slots within each table itera-
tion remains constant, as shown by example in Figure 7.4. Three of such table iterations
are shown in the �gure. A letter in a slot indicates the slots belongs to the client cor-
responding to that letter, and that it can claim that slot, if it has a request available. In
this example, we consider the case where the request from A arrives just after its slot
in the �rst iteration has started, which means it is too late to claim it. If the same slot
allocation had been used in the second iteration of the table, then A’s response time
would have been 6 slots. However, the arbiter is recon�gured, and A’s slot is moved to
the end of the table. Instead of 6 slots, it now sees a response time of 10 slots. This could
mean its LR guarantees are violated, depending on the tightness of its service bound.
This section discusses a recon�guration protocol that prevents bound violations.

Co�ee machine analogy
Consider a simple �lter co�ee machine in a university kitchen. The �rst PhD student
who arrives in the morning �nds the machine in a non-operational state. This is not
unexpected, and the student knows how to deal with this problem. After a certain ini-
tial service latency (adding the �lter, water and ground co�ee), the machine produces
a stream of co�ee at a steady rate. Once the water is depleted, the machine no longer
provides the service until someone replenishes its resources, recon�guring it for con-
tinued operation. A ca�eine seeker arriving right after this recon�guration takes place

7.4 reconfigurable tdm arbiter 133

Figure 7.5: Recon�gurable TDM arbiter architecture.

will be unexpectedly disappointed by the provided service of the co�ee machine. Not
being the �rst one in the o�ce, he or she would expect to get co�ee immediately, but
this is not the case now. Clearly something must be done to �x this issue.

Adding a second co�ee machine intuitively provides a solution to this problem, since
the additional capacity can compensate for the temporary loss of service. A recon�g-
uration protocol is quickly established: a set time before the �rst machine runs out of
resources, the second machine needs to be prepared for operation. Once the �rst runs
out of co�ee, the second is ready to take over, such that a steady rate of co�ee is guar-
anteed.

Our TDM arbiter uses the same principle that the co�ee drinkers applied in the anal-
ogy to ensure that moving slots does not lead to a reduction of the service guarantee.
It knows that slots will be removed at some time in the future due to recon�guration,
and compensates by activating the slots that will replace them early enough. The key in-
sights are thatmoving slots should not be an atomic action, but should instead be broken up

in the removal and subsequent addition of slots, and that these operations can be reversed.

Section 7.4.4 derives what the minimum amount of time between these operations has
to be in order to retain the original LR guarantees during recon�guration.

7.4.3 Arbiter architecture

A schematic representation of the TDM arbiter architecture we propose is shown in
Figure 7.5. It contains of a set of registers that represents the active TDM slot table. Each
slot contains the bus-port id of the client to which the slot belongs. An incrementing
wrapping index counter selects the next client to be scheduled from the slot table. The
wrap-around value is con�gurable, such that multiple table lengths can be implemented
by the same hardware.

A copy of the slot table is kept in the shadow table, which can be reprogrammed
through a (DTL) con�guration port. All slot recon�gurations are �rst applied to the
shadow table. One con�guration message can reassign a contiguous slot range in the

134 reconfiguration

Figure 7.6: Splitting the recon�guration in two steps that take place in separate table iterations
guarantees that the provided service is always greater than the guaranteed service.

shadow table to a di�erent client. The shadow table is locked from further updates after
each con�guration message until its contents is copied to the slot table. While it is
locked, the recon�guration module does not accept new recon�guration messages.

The purpose of the recon�guration module is to implement our safe recon�guration
protocol. It delays the actual recon�guration of the slot table until the index counter
wraps around. Only then is the content of the shadow table copied to the slot table, and
hence the new con�guration immediately takes e�ect. If a predictable client is recon�g-
ured to a di�erent set of contiguous slots, then two con�guration messages are used: the
�rst one enables the new slots, while the second one disables the old slots. As a result,
the module forces the transition phase where both the new and old allocation are given
to be at least one table iteration. Figure 7.6 shows what this mechanism looks like in an
example. For arbitrary allocations, two con�guration messages are required to add and
remove each contiguous block of slots.

7.4.4 Latency-rate guarantees during recon�guration

We evaluate recon�guration e�ects at the slot granularity. We formally prove that the
LR guarantees at this level of abstraction are not invalidated if our recon�guration
protocol is used. This is a su�cient condition to guarantee that the LR bound expressed
in clock cycles is also valid, since the transformation function from slots to clock cycles
is monotonically increasing [2].

A LR server o�ers a linear lower bound on the provided service within a busy pe-
riod [132], and is de�ned as follows:

De�nition 1 (LR server). Let τ be the starting time of a busy period [τ ,τ ′] for server si
with a service latency Θi and allocated rate ρi. For all times t during this busy period, a

lower bound on the provided service by si is given by:

wi (t) = max (0, ρi · (t − τ −Θi)) ∀t ∈ [τ ,τ ′] (7.3)

The lower bound on provided service by a LR server is maximal if the client keeps
the server continuously busy. If recon�guration does not lead to a violation of the bound

7.4 reconfigurable tdm arbiter 135

Figure 7.7: Example of the latency-rate guarantees during recon�guration.

under this condition, then it is also safe in all other cases. If a LR server is recon�gured,
for example by changing the underlying TDM slot allocation, its Θ and ρ may change.
We assume the allocations before and after recon�guration are chosen such that they
satisfy the LR requirements of the client, as mentioned earlier in Section 7.3.

De�nition 2. The required LR service bound of the client ,wr (t), in a busy period [τ ,τ ′]
is given by:

wr (t) = max(0, ρr · (t − τ −Θr)) ∀t ∈ [τ ,τ ′] (7.4)

where (Θr , ρr) represent the client’s LR requirements.

We model recon�guration as the handover of a client between two independent LR
servers. The �rst and second server are characterized by the allocation before and after
recon�guration, respectively.

De�nition 3. Let c1 and c2 be two independent and distinct allocations for a client. The

corresponding LR parameters for allocation c1 and c2 are denoted by (Θ1, ρ1) and (Θ2 , ρ2),
respectively. Both of these parameter sets satisfy the client’s LR requirements, such that

ρr ≤ min(ρ1, ρ2) and Θr ≥ max(Θ1,Θ2).

The important words in this de�nition are independent and distinct: it should be possi-
ble to enable or disable one of theLR servers corresponding to these allocations without
a�ecting the other’s service bound (their respective worst-case performance guarantees
should be independent). For a TDM arbiter this implies that c1 and c2 may not have over-
lapping slots. We will relax this requirement later.

We assume that c1 is initially active, and through recon�guration, the client is handed
over to c2. To model this behavior, we de�ne two time instances: tA is the time at which
allocation c2 is fully enabled in the slot table, and tR is the time at which allocation c1 is
fully disabled in the slot table.

The total service guaranteed to a TDM client is conservatively bounded by the sum
of the service provided by each slot that is allocated to it, because ρ and Θ monotoni-

136 reconfiguration

cally increase and decrease, respectively, with the number of allocated slots (see Equa-
tion (7.1) and Equation (7.2)). This property allows us to (lower) bound the guaranteed
service during recon�guration as the sum of the service provided by allocations c1 and
c2 (because there are no overlapping slots). Combining De�nition 1 and 3 yields:

De�nition 4. For a time t during a busy period [τ ,τ ′], the service guarantee wд (t) of a

server that is recon�gured from c1 to c2 is given by:

wд (t) ≥max(0, ρ1 · (min(t , tR) − τ −Θ1))

+max(0, ρ2 · (t −max(τ , tA) −Θ2)) ∀t ∈ [τ ,τ ′]

The required LR service bound may not be violated before, during or after recon�g-
uration. In other words, wд (t) has to be larger than or equal to wr (t) for all t ∈ [τ ,τ ′].
This is formally proven in Theorem 1.

Theorem 1. If tR − tA ≥ max(Θ1,Θ2) then ∀t ∈ [τ ,τ ′],wд (t) ≥ wr (t).

Proof. We have to conservatively assume there is no over-allocation, such that ρ1 =
ρ2 = ρr . We can also conservatively substitute Θ1 and Θ2 by Θ′ = max(Θ1,Θ2). This
means that:

max (0, ρr · (min(t , tR) − τ −Θ′)) + (7.5)
max (0, ρr · (t −max(τ , tA) −Θ′)) ≥ (7.6)
max (0, ρr · (t − τ −Θ′)) (7.7)

has to hold for all t . There are 4 cases that can be distinguished. Case 1, 3 and 4 are
visualized in Figure 7.7:

1. τ ≤ t ≤ tR :
As long as c1 is not disabled, then Equation (7.5-7.7) is satis�ed by c1’s contribution
to the total service, expressed by Equation (7.5). In Figure 7.7, the requirement line
wr (t) overlaps with c1’s contribution while t ≤ tR .

2. tA ≤ τ :
Similarly, if the busy period starts after allocation c2 is enabled, then Equation (7.5-
7.7) is satis�ed by c2’s contribution, expressed by Equation (7.6).

3. τ ≤ t ≤ τ +Θ′:
As long aswr (t) is 0, i.e. before the rate phase of the server begins, then Equation (7.5-
7.7) is also trivially satis�ed. In Figure 7.7, this corresponds to the �at line portion
of wr (t) marked with Θ1.

7.4 reconfigurable tdm arbiter 137

4. t > τ and t > tR and tA > τ and t > τ +Θ′:
This only leaves the complement of the union of the previous three cases: c1 has
been removed, c2 is activated after the start of the busy period, and the rate phase
of the server has started. Applying these case constraints to Equation (7.5-7.7), and
dividing by ρr yields:

max (0, tR − τ −Θ′) +max (0, t − tA −Θ′) ≥ t − τ −Θ′ (7.8)

Because t > tR in this case, the �rst max-term alone does not satisfy the inequality,
and hence the second max-term needs to contribute, so we additionally require:

t > tA +Θ
′ (7.9)

to hold. Eliminating common terms in Equation (7.8) given Equation (7.9) yields:

max (0, tR − τ −Θ′) ≥ tA − τ (7.10)

Because tA > τ in this case, we now know the left-hand side should yield a non-zero
result and hence:

tR > τ +Θ
′ (7.11)

has to hold. Removing the common terms from Equation (7.10) and rearranging
leaves:

tR − tA ≥ Θ′ = max(Θ1,Θ2) (7.12)

If we assert that Equation (7.12) holds, then wд (t) ≥ wr (t) holds in Case 4 given
that (7.9) and (7.11) are true. Combining Equation (7.12) with case constraint t > tR
yields (7.9), and combining Equation (7.12) with case constraint tA > τ yields (7.11),
con�rming these assumptions.

This means that if Equation (7.12) holds, then wд (t) ≥ wr (t) holds for all t ∈ [τ ,τ ′]
which concludes the proof. �

Equation (7.12) enforces a minimum interval of max(Θ1,Θ2) where both the c1 and c2
have to be provided by the server. During that transition period, the server temporarily
assigns both slot allocations to the client. Figure 7.6 and 7.7 illustrate this. Considering
what happens when tR moves further to the left (i.e. removing the original allocation
earlier), we see the interval in which wд is larger than wr get smaller until tR − tA =
max(Θ1,Θ2), where the guarantee completely overlaps the requirement.

138 reconfiguration

7.4.4.1 Overlapping slots

De�nition 3 stated that c1 and c2 had to be distinct allocations, and re-using slots in
the TDM table across the corresponding con�gurations was hence not allowed. The
reason for this limitation is that we sum the contribution of c1 (Equation (7.5)) and c2
(Equation (7.6)) in Equation (7.7). If we relax this requirement, and allow c1 and c2 to
have overlapping slots, then we need to make sure we only count each slot once in all
cases. At tR , we now only remove the non-overlapping slots of c1.

De�nition 5. Let ϕol be the number of overlapping slots in allocation c1 and c2. The
corresponding rate of those slots is denoted with ρol .

Theorem 2. If c1 and c2 contain ϕol overlapping slots, then tR − tA ≥ Θ′ + ρol
ρr
· (tR − tA −

Θ′) should be satis�ed to assert that ∀t ∈ [τ ,τ ′],wд (t) ≥ wr (t).

Proof. The �rst three cases of Theorem 1 remain unmodi�ed, since only c1 or c2 is ac-
tive in those cases, leaving only Case 4. We can narrow down Case 4 further by using
tR > tA, as required by Theorem 1 for safe recon�guration when there are no overlap-
ping slots. Case 4 then turns into: t > tR > tA > τ and t > τ + Θ′. The contribution
of the overlapping slots is counted twice in the interval [tA, tR], and for that we need
to compensate by subtracting ρol · (tR − tA −Θ′) service units from wд (t). Adding this
term to Equations (7.5-7.7) yields:

ρr · (tR − τ −Θ′) + ρr · (t − tA −Θ′) − ρol · (tR − tA −Θ′) ≥ ρr · (t − τ −Θ′)
(7.13)

Dividing both sides of Equation (7.13) by ρr and removing common terms yields:

tR − tA ≥ Θ′ +
ρol
ρr
· (tR − tA −Θ′) (7.14)

�

This result is similar to Equation (7.12), although it constrains tR − tA further, since there
is an extra term on the right-hand side accounting for the overlap.

7.4.4.2 Application to our arbiter

The arbiter we introduced in Section 7.4.3 forces the transition phase where both the
new and old allocation are given to be at least one table iteration, so tR − tA ≥ T .

Theorem 3. If tR − tA ≥ T , then recon�guration is guaranteed not to violate the latency-

rate guarantees of the client for our TDM arbiter.

Proof. Recon�guration is guaranteed to not violate the latency-rate guarantees of the
client if tR − tA ≥ Θ′ + ρol

ρr
· (tR − tA − Θ′), satisfying Equation (7.14). Substituting Θ′

7.4 reconfigurable tdm arbiter 139

with the service latency equation for TDM arbiters (Equation (7.2)), and tR − tA with T
in this equation yields:

T ≥ T −min (ϕ1,ϕ2) + 1 + ρol
min (ρ1, ρ2)

· (T − (T −min (ϕ1,ϕ2) + 1)) (7.15)

After removing the common terms and rearranging, we have:

min (ϕ1,ϕ2) ≥ 1 + ρol
min (ρ1, ρ2)

· (min (ϕ1,ϕ2) − 1) (7.16)

The allocated rate in a slot-based TDM arbiter is equal to the number of allocated slots
divided by the table length, ρc

tdm
=

ϕc

T (Equation (7.1)). Applying this to Equation (7.16):

min (ϕ1,ϕ2) ≥ 1 + ϕol
min (ϕ1,ϕ2)

· (min (ϕ1,ϕ2) − 1) = 1 +ϕol − ϕol
min (ϕ1,ϕ2)

(7.17)

We distinguish three cases:

1. ϕol = 0:
In cases where ϕol = 0, we use the fact that the minimum allocation is 1 slot, so
min (ϕ1,ϕ2) ≥ 1, which satis�es Equation (7.17).

2. ϕol = min (ϕ1,ϕ2):
In this case, all slots from the �rst con�guration are also used in the second, meaning
we are removing or adding over-allocated slots, since ρr ≤ min (ρ1, ρ2) (De�nition 3).
This can not violate the latency-rate guarantees of the client. Applying this case
constraint in Equation (7.17) con�rms this.

3. min (ϕ1,ϕ2) > ϕol > 0:
The number of allocated slots cannot be negative, and the overlap can at most be
as large as the minimum number of allocated slots, so for the rightmost term of
Equation (7.17) we know:

0 ≤ ϕol
min (ϕ1,ϕ2)

≤ 1 (7.18)

In cases not captured by case 1 and 2, min (ϕ1,ϕ2) is at least one slot larger than ϕol ,
satisfying Equation (7.17).

�

With this proof, we have shown that the LR guarantees of the arbiter are una�ected
when it is recon�gured, and therefore the WCRT guarantees derived in Section 3.2 that
are based on these guarantees remain valid.

140 reconfiguration

Figure 7.8: Experimental setup for Section 7.5.1. Labels on the arrows correspond to the client
name(s) that use the connection.

7.5 evaluation

This chapter presented the various recon�guration options o�ered by our memory con-
troller and showed in which context they can be used. It also presented a TDM recon-
�guration protocol and associated arbiter architecture that enable moving the slots of
persistent predictable clients, while asserting their performance guarantees are not vio-
lated. The cost of the recon�guration-related hardware has been evaluated in Section 3.4,
which showed the relative overhead is negligible. In the current section, we evaluate the
performance guarantees o�ered during recon�guration by means of two experiments.
The �rst experiment, Section 7.5.1, uses the SystemC model of the controller, while the
second experiment, Section 7.5.2, uses the VHDL instance.

7.5.1 Predictable performance during recon�guration

In this experiment, we demonstrate that the controller o�ers predictable performance
to its clients during recon�guration through simulations with the SystemC model. The
experimental setup is shown in Figure 7.8. A four-port instance of the controller is used,
connected to a model of a 32-bit DDR3-800 device using a (default) 400 MHz command
clock.

Seven synthetic clients (denotedA−G) share the SDRAM resource in this experiment.
Figure 7.9 shows the compositions of active clients and their properties over the course
of the experiment. Each bar represents a client and is annotated with its name, band-
width requirement, and the type of performance it requires (either predictable, or pre-
dictable and composable). The controller uses composable patterns and TDM arbitration
to provide composable performance. For simplicity of the example, we assume all clients
have a relaxed WCRT requirement of 2000 ns. Clients generate requests of 128 bytes, half
of these are reads, and half are writes.

7.5 evaluation 141

Figure 7.9: Active clients over time. Three use-cases are visited: U 1 (A,B,C ,D), U 2 (A,D, F ,G),
and U 3 (A,E, F ,G).

Figure 7.10: Slot allocation results.

Four synthetic tra�c generators represent the clients. Each is connected to sepa-
rate ports on the memory controller. The generators can have an unlimited number
of outstanding requests, and will hence issue requests at the rate dictated by their band-
width requirement, as long as no back-pressure is applied by the memory controller.
The atom bu�ers in the controller are over-dimensioned, such that they do not cause
back-pressure during normal operation, and hence the arrival times of requests are in-
dependent from the memory controller’s behavior. This allows us to focus purely on
the variations in the response time of each individual atom, without having to take the
e�ect on the arrival times of later requests into account.

Clients on the same horizontal line in Figure 7.9 are mutually exclusive and share a
port and tra�c generator. Clients on the same vertical line are active simultaneously,
resulting in three distinct use-cases, annotated with U 1 (A,B,C ,D), U 2 (A,D, F ,G) and
U 3 (A,E, F ,G). At T 1 and T 2, use-case transitions take place.

The controller uses a (BI 1, BC 4) pattern con�guration with a worst-case bandwidth
(bwc) of 1862 MB/s. The conversion to composable patterns does not impact the memory
e�ciency for this con�guration, because it is write-dominant (Section 4.3.2). The slot
table size T in the arbiter is set to 20 slots, such that each slot corresponds to 1862/20 =
93 MB/s.

Slots are assigned to clients in contiguous blocks using a greedy allocation algorithm,
considering one use-case at a time. Because clients A and D require composable per-
formance, they require the same slot allocation in all use-cases where they are active,
and are allocated �rst, similar to [61]. This is re�ected in the allocation algorithms’ out-
put, which is shown in Figure 7.10. Note that without recon�guration support, the slots
for client F and G would not be movable and client E would be unmappable due to

142 reconfiguration

20 30 40 50 60 70 80 90 100
Arrival time [µs]

0

500

1000

1500

2000

2500

Re
sp
on

se
tim

e
[n
s]

WCRT bound
Unsafe recon�guration
Safe recon�guration

Figure 7.11: Response times with and without predictable recon�guration, generated by the Sys-
temC simulation.

fragmentation, although one could argue this is a limitation of the allocation algorithm.
Several more advanced slot-allocation strategies that consider real-time constraints ex-
ist [10, 130, 135]. The �exibility to move slots, as o�ered by our arbiter, enables the use
of such algorithms in case they are not capable of considering multiple use-cases at once.
In general, it reduces the number of constraints they have to take into account, which
may lead to more successful allocations. However, for the purpose of this experiment,
we stick to our basic greedy algorithm.

Figure 7.11 shows the temporal behavior of read requests at the atom bu�ers for
clients B and F . The position on the x-axis of the bars corresponds to the time at which
a read atom arrives in the atom bu�er of the client. The height of the bar corresponds
to the measured response time, i.e. the time until the data corresponding to the atom is
fully received by the atom bu�er. Two runs of the experiment are shown, drawn with
black and white bars, respectively. The white bars are mostly hidden behind the black
bars, and equal in size in those cases. Based on the LR guarantee resulting from the slot
allocation (Equation (7.1) and Equation (7.2)), we determine a WCRT bound per request,
which is drawn as x-markers in the graph. It varies slightly due to self-interference (i.e.
the client having to wait on its own previous request(s)).

Initially, client B is active, shown in the interval from 20 to 30 µs . At approximately
31 µs (T 1), the �rst use-case transition and associated recon�guration takes place. Client
F , becomes active now, which requests at a lower rate, and hence the bars are spaced
further apart from here on.

7.5 evaluation 143

In the �rst experiment (white bars), the safe recon�guration mechanism in the TDM
arbiter is switched o�, and transitions between di�erent con�gurations happen instan-
taneously, i.e. new slots are added and old slots are removed at the same time. At 68 µs
(T 2), the transition from U 2 to U 3 takes place. The WCRT bounds of some requests are
violated as a consequence of recon�guring the arbiter, which is unacceptable. It shows
that unconstrained recon�guration is not safe.

A second run (black bars) is performed with the safe recon�guration mechanism
switched on. Here the WCRT bound is valid during recon�guration, and the measured
response times are slightly lower, since the client temporarily gets more slots. This ex-
periment suggests that our recon�guration protocol is safe.

7.5.2 Composable performance during recon�guration

The second experiment demonstrates that the controller o�ers composable performance
using composable patterns and TDM arbitration to clients that require this, even while
the arbiter is recon�gured. This is contrasted to a run where predictable patterns are
used, where we demonstrate that the inter-application interference changes as a result
of recon�guration.

We use a two-port VHDL instance of the (Raptor) controller, and hence perform the
experiments on our FPGA. A pattern set with (BI 1, BC 2) is used, which guarantees a
worst-case bandwidth (bwc) of 933 MB/s. The TDM slot table size is set to 8 slots.

Two MicroBlaze processors (MB1 and MB2) are connected to our memory controller
through a DMA. Each MicroBlaze runs one application, referred to by the name of the
MicroBlaze. The applications consist of a simple loop that generates bursts of memory
requests at an average rate of 90 MB/s. Each application maps to a single client and thus
single port on the memory controller.

The atom bu�ers are instrumented with timers that keep track of the arrival and re-
sponse times of the requests, similar to the SystemC setup from the previous experiment.
These timestamps are recorded and read out after the experiment. For each experiment,
we wait until the PHY �nishes its initialization, and then program the initial con�gu-
ration in the memory controller. For the purpose of this experiment, the start of the
refresh timer and the �rst arbiter iteration are synchronized, making behavior across
multiple runs more likely to be repeatable, although some non-determinism remains,
as discussed earlier in detail in Section 4.4.3.2. We plot the most commonly observed
timestamp series per run.

Six di�erent runs are performed, divided into two groups, one using predictable pat-
terns and the other using composable patterns, doing three runs per group. In all runs,
MB1 gets 4 slots in the table.

1. Reference run: Only MB1 runs its application, while MB2 remains idle.

144 reconfiguration

0 10 20 30 40 50 60
Request arrival time [µs]

0

500

1000

1500

2000

Re
sp
on

se
tim

e
[n
s]

MB1 reference run
MB1 interference run
MB1 recon�guration run
MB2 interference run
MB2 recon�guration run

Figure 7.12: Predictable patterns runs. Note how the response times in the MB1 interference and
recon�guration runs are di�erent with respect to the reference run, indicating MB2
in�uences the (actual-case) performance of MB1.

0 10 20 30 40 50 60
Request arrival time [µs]

0

500

1000

1500

2000

Re
sp
on

se
tim

e
[n
s]

MB1 reference run
MB1 interference run
MB1 recon�guration run
MB2 interference run
MB2 recon�guration run

Figure 7.13: Composable patterns runs.

7.6 conclusion 145

2. Interference run: Both MB1 and MB2 are active. MB2 generates an interfering stream
of write requests and gets 4 slots in the TDM table.

3. Recon�guration run: Both MB1 and MB2 are active. MB2 initially has 1 slot in the
TDM table, but is recon�gured to 2 slots after 32 µs .

Figure 7.12 shows the measured arrival and response times of the MicroBlazes in the
�rst three runs. Predictable patterns are used, i.e. the slot length varies with the request
that is executed. Even though application MB1 is not changed across the three runs,
practically none of its timestamps overlap. Its behavior is hence a�ected by the interfer-
ence from MB2. In the recon�guration run, there is a di�erence in the behavior of MB1,
even though we only change the allocation of MB2.

The second group of runs uses composable patterns (Figure 7.13) to e�ectively elim-
inate all interference across the two applications in a use-case, and during use-case
switches. The �gure illustrates that MB1 is not a�ected by any of the actions of MB2,
nor by the recon�guration of the arbiter, and its behavior is constant. The reference
run is thus representative for the behavior after integration, thus enabling independent
veri�cation of the application in isolation.

7.6 conclusion

This chapter showed that our memory controller has a �exible architecture with various
recon�gurable components. There is, however, a crucial di�erence between its con�gu-
ration options at boot time, and its recon�gurability at run-time. In the latter case, we
need to make sure that state that was built up in the SDRAM and controller by persistent
clients is retained, and that the new con�guration is consistent with it, which limits the
options. Resisting timing variations is an inherent part of predictable and composable
performance guarantees. Recon�guring the very components that facilitate these guar-
antees is hence often not possible in the presence of persistent clients, although the re-
source arbiter remains recon�gurable under certain conditions. We showed how a TDM
arbiter can satisfy these conditions, and prove that safely recon�guring it between valid
con�gurations without degrading its LR guarantees is possible. An implementation of
this arbiter and recon�guration scheme, both in SystemC and VHDL, demonstrated its
e�ectiveness.

Every procedure for getting a cat to take a pill works �ne – once.

Like the Borg, they learn...

— Terry Pratchett, alt.fan.pratchett

8
R E L AT E D W O R K

This related work chapter is split into three main sections. The �rst one, Section 8.1, dis-
cusses various approaches towards the construction and analysis of SDRAM controllers.
Section 8.2 considers performance-overviews for SDRAM memories, while Section 8.3
discusses other approaches towards run-time recon�guration of (shared) resources un-
der real-time constraints.

8.1 sdram controllers

Many SDRAM command schedulers and/or controllers have been proposed in related
work, employing a range of methods to improve di�erent performance aspects. First,
we discuss the works that focus on average-case performance in Section 8.1.1. We dis-
tinguish papers that introduce new techniques or hardware, and those that analyze ex-
isting (COTS) memory controllers. Later, in Section 8.1.2, we show an extensive overview
of controllers that are speci�cally constructed to be analyzable, or are otherwise meant
to be used in a (mixed-)real-time application area.

8.1.1 Average-case oriented controllers

Methods that improve average-case performance of SDRAM are abundant, exploiting
locality [41, 119], grouping requests per thread [105], exchanging more information
with the cache [134] and even using reinforcement learning to adapt the scheduling
policy at run-time [66]. These techniques interact with the command scheduling in
complex ways, relying on unpredictable request reordering schemes that are e�ectively
impossible to analyze, which means no useful bounds on the real-time performance can
be derived. This makes it very challenging to use them in a real-time context.

Certain works analyze COTS memory controllers, in order to derive the worst-case
performance estimates for them. These approaches are by design fairly coarse-grained

146

8.1 sdram controllers 147

in terms of the guarantees they can satisfy, since the visibility on the cycle-by-cycle
hardware behavior is limited. [125] shows a technique to bound the WCET of applica-
tions that use the SDRAM. The technique is tested on an Altera FPGA platform, where the
worst-case parameters of the associated memory controller are empirically determined.
Each request is interleaved over all banks in the memory device. [155] �rst measures
the worst-case bandwidth, and then applies an OS-based bandwidth reservation system
to distribute it amongst di�erent cores. The focus of [82] is First-Ready First-Come First-

Served (FR-FCFS) arbitration, where the authors perform a WCRT analysis based on a
parameterizable system model. The model requires assumptions on the per-bank arbi-
tration policy, the command scheduler, and a maximum number of outstanding requests
per core. It furthermore assumes each request maps to only a single memory burst, and
that the number of re-orderings by the “�rst ready” mechanism is known and �nite. If
the used COTS cores are timing compositional [145], and used for sporadic tasks with
constrained deadlines, then it may be possible to calculate conservative WCRT bounds.
As a necessary requirement, the right numbers should be fed into the system model such
that it corresponds to the actual hardware implementation in the investigated COTS sys-
tem. Often this may not possible, since the exact properties of a COTS component are
generally not disclosed by the manufacturers.

8.1.2 Real-time oriented controllers

In this section, we take a closer look at the works on real-time and mixed-time-criticality
SDRAM controllers. First, we focus mostly on the back-ends of these controller. We iden-
tify 8 basic properties are shared by practically all of them. These traits are then used as
a coarse-grained characterization system, shown in Table 8.1. We consider the following
properties in its columns:

1. The target memory or target-SDRAM type of the work: the authors of the publication
usually have a certain type of memory in mind when they design or evaluate a
memory controller. Although the di�erences between SDRAM generations are usu-
ally small, they are relevant when it comes to the quanti�cation of the performance
of the proposed controllers. For example, the designer of a controller that is focused
on slow devices is less concerned about write-read switching overhead compared to
someone considering fast devices. The reason being that the relative size of the WR-
to-RD timing constraint compared to one data burst is much smaller1. These kinds
of di�erences in�uence which design decisions are reasonable.

2. Page policy: A memory controller may use a close-page policy, an open-page policy,
or a hybrid policy, like a conservative open-page policy (Chapter 6) for example. The
values in this column of Table 8.1 refer to the implementation of the controllers, but

1 WR-to-RD in the same bank requires 11 cycles for DDR2-800, or the equivalent time of 2.75 bursts, vs. 29 cycles
or 7.25 bursts for a DDR4-2400 (Section 4.1, Appendix B), assuming a data burst takes 4 cycles.

148 related work

not necessarily their worst-case analysis. [71] for example uses an open-page policy,
but assumes all requests are misses in its analysis.

3. Device or DIMM focused: Some works on memory controllers use individual SDRAM
devices. The interface width of the SDRAM is then relatively small, equal to the data
bus width of a one or two devices, as discussed in Section 2.1.4. As a result, the
amount of data per burst is also relatively small compared to the size of the requests
they process. This allows them to work at access granularities larger than one burst.
Works that focus on DIMMs assume the interface width is much wider. As a result,
they can usually �t an entire request into just one burst. This makes it practically
impossible to exploit bank-level parallelism within requests for such controllers in
the worst case, which impacts the design of their command and request-level sched-
ulers.

4. Command scheduler granularity: A memory controller has a component that sched-
ules commands. In our work, the smallest granularity at which commands are sched-
uled at run-time is a pattern. Some related controllers also use pre-scheduled se-
quences in the implementation or analysis of their scheduler. Other controllers make
all scheduling decisions at run-time, on a per-command basis. We refer to such con-
trollers as being dynamically scheduled.

5. Burst order: Some controllers limit or enforce to which banks consecutive bursts are
directed to improve the memory e�ciency, as discussed conceptually in Section 2.3.
Other controllers direct bursts to distinct ranks [43, 88, 117], improving e�ciency
when read and write bursts are interleaved at a small granularity.

6. Refresh mechanism: SDRAM controllers need a way to handle refresh. In this the-
sis, refresh is assumed to be triggered automatically by an internal refresh timer,
which inserts a refresh pattern in the schedule when required. Variations on this
scheme [19, 117] aimed at reducing the cost of refresh within a worst-case analysis
are used by some of the mentioned controllers.

7. Predictable and/or composable performance: A memory controller can be built to of-
fer predictable and / or composable performance. Note that the addition of a delay
block [6] can make most predictable controllers composable under the assumption
that a suitable latency-rate abstraction of their performance can be derived.
Note that when we label a memory controller “non-composable”, it sometimes con-
tradict what is stated in the related paper, due to di�erences in the interpretation of
what composability means. In particular, many papers use isolation of WCETs (com-
positionality) rather than the de�nition we described in Section 1.4.4 [8], which
implies isolation of actual-case execution times.

8. (Smallest) spatial mapping granularity: When the SDRAM is shared amongst multiple
clients, they are each assigned a certain fraction of the memory space. The memory

8.1 sdram controllers 149

controller design in�uences the minimum granularity at which this space can be
distributed. We assume assignment of space is done in multiples of memory rows (1-
2KiB), i.e. column-level distribution is not considered. Taking our Raptor controller
as an example, we interleave a request over BI banks, and hence the smallest possible
mapping granularity is a single row in BI banks.

The following sections discuss the controllers in mentioned in Table 8.1 in more de-
tail. We categorize these controllers further by the command scheduler granularity they
use, starting with very coarse-grained static command schedulers, and ending with dy-
namically scheduled solutions.

8.1.2.1 Static command schedulers

Bayliss
Within the group of real-time oriented controllers we consider, the amount of a priori
information that is assumed to be available and exploitable by the command scheduler
varies. Bayliss [16] requires every single request to be known at design time to compute
a static command schedule at design time. It is hence completely analyzable, but has
limited �exibility, since obtaining this information in a multi-core system is not possible
in the general case due to non-determinism (Section 4.4.3.2) and dynamism in use-cases,
leading to unpredictable interleaving of request from independent applications.

SMC
The StreamingMemory Controller (SMC) [23] focuses on real-time steaming tra�c, which
allows the memory controller to deal with relatively large requests, up to the size of an
entire page (1 KB for their device). This is equivalent to choosing BC such that the ac-
cess granularity is 1 page, with BI 1. Their target device is a DDR1 memory, which we
did not consider in this thesis, but their results relating a larger access granularity to
lower power usage are in line with the trends we observed in Chapter 5. Arbitration
across streams is done through a credit-based system, which guarantees a certain num-
ber of requests within a �xed period is processed for each client. This suggest that the
controller is predictable, although a detailed analysis is not provided. It is grouped here
with [16] since its large scheduling granularity e�ectively also gives it a static command
schedule, even though it is not pre-computed.

8.1.2.2 Semi-static (pattern-like) command schedulers

Predator
The Predator controller [4] dynamically schedules precomputed sequences of SDRAM
commands (patterns) according to a �xed set of scheduling rules, creating a predictable
pattern-based memory controller, implementing a close-page policy. Through a design-
time analysis, a latency-rate bound [132] on the performance provided to each appli-
cation is determined. [2] combines the controller with a front-end containing delay

150 related work
Table

8.1:Related
m

em
ory

controllers(in
chronologicalorderofpublication).

N
am

e
1.Target

2.Page
policy

3.D
evice

/
D

IM
M

4.Schedule
granularity

5.Burstorder
6.Refresh
m

echanism
7.Predictable

/
com

posable
8.M

apping
granularity

[23]SM
C

D
D

R(1)
close

D
evice

Static,1
page

Consecutive
colum

ns
in

a
row

N
otpublished

Predictable
(analysisis

super�cial)
1

row

[2,4]Predator
D

D
R2/D

D
R3

close
D

evice
Sem

i-static,1-n
bursts

to
allbanks

Interleave
allbanks,

n-burstsperbank
Internaltim

er
Predictable,
com

posable
w

ith
delay

block

1
row

in
allbanks

[16](Bayliss)
D

D
R2-533

-
N

ot
published

Static,1
application

Fully
staticschedule

N
otpublished

Predictable
and

com
posable

N
otapplicable

[111,112]A
M

C,
RTCM

C
D

D
R2/D

D
R3

close
D

evice
Sem

i-static,1
burstto

allbanks
Interleave

allbanks
Internaltim

er
Predictable

1
row

in
allbanks

[117]PRET
D

D
R2-400

close
D

IM
M

Sem
i-static,1

burstto
halfthe

banks
Interleave

independent
resources,interleave
ranks

M
anual

Predictable
w

ithin,and
com

posable
across

independentresources

1
row

in
an

independentresource
(2

banks)

[148](W
u)

D
D

R2/D
D

R3
open

D
IM

M
D

ynam
ic

N
o

enforcem
ent

Internaltim
er

Predictable
1

bank

[43]M
CM

C
D

D
R3-1333H

close
D

IM
M

Sem
i-static,1

burstto
halfofallbanks

Interleave
virtual

devices,interleave
ranks

M
anual(like

[117])
Com

posable
across

virtualdevices
1

row
in

a
virtual

device
(2

banks)

[71]D
Cm

c
D

D
R2-667

open
D

IM
M

D
ynam

ic
N

o
enforcem

ent
N

otfully
speci�ed.

Refersto
[19]

Predictable
1

row
in

a
bank

[88]RO
C

D
D

R2/D
D

R3
open

D
IM

M
D

ynam
ic

Interleave
ranks

Refersto
[148]

Predictable
1

bank

[90,91]RTM
em

-
Controller

D
D

R3
close

D
evice

D
ynam

ic(single
requestgets
consecutive

bursts)

Interleave
over

BI
banksw

ith
BC

bursts
perbank.BIand

BC
m

ay
vary

perrequest

Internaltim
er

Predictable
1

row
in

BIbanks

[64]PM
C

D
D

R3-1333
hybrid

D
evice

Sem
i-static(single

requestgets
consecutive

bursts)

Interleave
overall

banks,1
burstperbank

Refersto
[82]

Predictable
1

row
in

allbanks

[83]
(cm

d-priority)
D

D
R2/LPD

D
R2

open
D

IM
M

D
ynam

ic
N

o
enforcem

ent
Internaltim

er
Predictable

2Kirow
sforcritical

tasks,1
row

in
a

bank
fornon-criticaltasks

Thisw
ork

(Raptor)
D

D
R2/3/4

LPD
D

R1/2/3
hybrid

D
evice

Sem
i-static,BC

bursts
to

BIbanks
Program

m
able

BI,BC
Internaltim

er
Predictable,
com

posable
w

ith
delay

block
orcom

posable
patterns

1
row

in
BIbanks

8.1 sdram controllers 151

blocks [6], turning it into composable controller. The combined template is documented
in [3], and forms the jumping-o� point of the controller proposed in this thesis, as men-
tioned earlier in Section 2.2.

AMC and RTCMC
The Analyzable Memory Controller (AMC) [111] or, by its new name, Real-time Capable

Memory Controller (RTCMC) controller [112] dynamically schedules commands at run-
time, but is e�ectively semi-static in its worst-case analysis. It interleaves requests over
all (4) banks in the devices it considers, issuing one burst per bank (i.e. like a (4,1) con-
�guration). The work distinguishes HRT and Non Hard Real-time Tasks (NHRT) (tasks
map to clients in our terminology, and NHRT maps to SRT or best-e�ort). Arbitration
across tasks is done through a round-robin arbiter, which �rst considers all HRTs before
the NHRTs. A request from a HRTs can preempt an executing NHRT request by taking
over its remaining bursts. The NHRT request is continued once the HRT’s request is com-
pleted. Both the arbiter type (round-robin) and this preemption mechanism make the
controller non-composable, since the presence or absence of requests from competing
clients in�uences the timings of other clients.

The worst-case behavior of the controller is bounded by evaluating what command
schedules it uses in the worst case. This analysis is very similar to the pattern-based
analysis that we applied in this work, since it essentially involves scheduling access pat-
terns and switching patterns, and then using their (worst-case) concatenated lengths.
The controller in [111] has a special mode where request of a task running in isolation
can be delayed until their (analytical) worst-case starting time. This mode is used when
estimating the WCET of a task by simulation, under the assumption that the process-
ing platform is performance monotonic. However, as illustrated in Section 4.4.3.2 and
Section 7.5.2, real applications and systems are not (by default) performance monotonic.
It can only be guaranteed by adhering to many restrictions in terms of programming
model and system architecture such as done in CompSOC [53], for example.

PRET and MCMC
The PREcision Timed (PRET) memory controller [117] partitions the SDRAM into pairs of
banks which they call independent resources, each consisting of two banks in the same
rank. The controller executes a static periodic command schedule, in which banks are
accessed with one burst at a time (i.e. with a BC of 1), and all independent resources are
visited once. Consecutive bursts are guaranteed to be interleaved across di�erent in-
dependent resources and ranks, and a close-page policy is used. This paper e�ectively
introduces the concept of bank privatization (partitioning), where the independent re-
sources o�er composable performance as long as they are not shared.

Another novel feature in [117] is the application of a manual refresh scheme. The
controller periodically uses its regular command schedule to activate and precharge a
row in each bank, which refreshes those rows, as described in Section 2.4.

152 related work

PRET uses a relatively slow DDR2 device that has a relatively small read-write switch-
ing timing constraint. When combined with rank interleaving, it allows read and write
burst to be alternated every 2 bursts without prohibitively large penalties. This does not
scale well to faster memories as the read-to-write and write-to-read constraints grow
and start to dominate the schedule length. The rrd (ACT-to-ACT) constraint for these
memories is also small enough, such that even with BC = 1 the e�ciency is still reason-
able, but this again changes when faster memories are considered. An implementation
of the PRET controller on a Xilinx Virtex 5 FPGA is shown in [92].

The Mixed Critical Memory Controller (MCMC) [43] is similar to PRET in almost every
aspect, although the independent resources have been renamed to virtual devices. PRET
allowed its independent resources to be optionally shared through round-robin arbi-
tration, while MCMC allows two clients, one critical and the other non-critical, to share
one of its virtual devices through a �xed-priority arbiter. The critical client is prioritized
over the other non-critical client it shares a virtual device with. This allows the critical
client to have a relatively low WCRT, while slack can be used by the non-critical client.
The non-critical client receives non-predictable performance, since it can be blocked by
the critical client inde�nitely, causing starvation. The critical client receives composable
performance.

PMC
The Programmable Memory Controller (PMC) [64] uses a variation on the conservative
open-page patterns we introduced in Chapter 6. The controller generates statically
scheduled command sequences, which are very similar to the conservative open-page
patterns. In the terminology of [64], patterns are called bundles. Bundles e�ectively im-
plement the access patterns2 corresponding to the four modes we de�ned in Chapter 6.
Each bundle always interleaves bursts over 8 banks (an (8,1) equivalent). Our patterns
implement just 1 �xed granularity under the assumption all clients produce the same
size requests, or are atomized down to this �xed size. Large request from di�erent clients
may thus be chopped up and interleaved by the arbiter, destroying their inherent local-
ity, and hence the worst-case analysis has to assume no locality is present. PMC allows
large requests to stay mostly intact even after arbitration (up to a certain threshold),
preserving the locality. It issues a concatenation of bundles to execute the required com-
mands for such a variable sized request.

The e�ect this has is comparable to the multi-tdm-2 experiment in Section 6.4.2.3,
where we provide more than one consecutive TDM slot to a client, assuming clients gen-
erate requests that are larger than an atom. The di�erence is that, in order to guarantee
a request is served as consecutive patterns, it should be fully bu�ered before the arbiter
may schedule it, where previously we only had to bu�er an atom worth of data. PMC
(presumably) guarantees this behavior, and can hence use the reduced request WCRT
this creates in its analysis. The trade-o� is that each interfering client potentially oc-

2 Data bus switches are taken into account separately in their worst-case analysis, but it not clear from [64] if
there are bundle counterparts of switching patterns.

8.1 sdram controllers 153

cupies the back-end for a longer time in this scheme, proportional to the maximum
request size instead of a �xed (typically smaller) atom size. The experiments in [64]
show improved bandwidth and reduced latency when requests are very large (512 B
and up), while the gains for typical requests (64 B) are modest compared to a solution
with close-page patterns.

The name PMC refers to the programmability of its TDM arbiter. Programming is done
at boot time, and recon�guration is not considered. It is combined with a slot-allocation
algorithm that guarantees periodicity within the TDM table it generates, allowing them
to be stored e�ciently, while still implementing a relatively large frame size.

8.1.2.3 Dynamic command schedulers

Statically or semi-statically scheduled controllers reduce the number of variables on
which the (run-time) command schedule depends. This acts as an abstraction layer for
the worst-case analysis, simplifying it. Dynamically scheduled controllers do not do
this. Instead, the sequences of commands they can execute emerge directly from the
interaction of the SDRAM timing constraints with the incoming request streams. Their
worst-case analyses rely purely on knowledge of the behavior that the controller is
capable of exhibiting based on its architecture.

Wu and ROC
Wu et al. [148] propose an analysis model for a dynamically scheduled memory con-
troller. The focus is on analysis and not on architecture, but the paper does explain the
hardware structure of the memory controller it assumes. Its main feature is that it is
an open-page controller using bank privatization. When multiple clients share a bank,
their requests are interleaved in an (at design time) unpredictable manner, due to the
interaction between the client arbiter and the arrival times of requests, as discussed
earlier in Chapter 6. When an open-page policy is used in such a system, each new
request �nds its bank(s) in a potentially di�erent state than the client left it in, since
another client might have used it in the mean time. Any locality information obtained
at the client side is hence not usable in a worst-case analysis. However, private banks
have consistent state from the client’s point of view, which allows [148] to incorporate
hit / miss information in the worst-case analysis, when it is available. Bene�ting from
the use of an open-page policy in terms of lower worst-case bounds is only possible
when bank privatization is used, as far as we are aware. RTCMC [112] analyses a similar
privatization-based open-page approach, but concludes that giving a complete bank to
each application (or thread) leads to scalability issues (the number of banks is limited),
and therefore drops the idea in favor of a close-page (4,1) con�guration.

The Rank-switching Open-row Controller (ROC) [88] builds upon the work in [148],
adding an enforced rank-interleaving mechanism. Similar to [43, 117], this (partially)
hides the data bus direction-switching overhead of one rank with accesses to another
rank.

154 related work

The underlying assumption in [88, 148] is that hit/miss information can be derived
for a client’s tra�c stream. This requires a bank-aware mapping of data for clients [156],
and static analysis or measurements of the request address sequences after address map-
ping. This analysis may not always be possible, especially if the application is dependent
on inputs that are unknown at design time. Another assumption is that distributing the
memory capacity (space) across cores at the granularity of banks is feasible, i.e. that
over-allocation is limited. Sharing data across cores is also non-trivial in this privatized
scheme: when two clients communicate through a shared bank, the worst-case analysis
problem for a general open-page policy emerges again. The authors suggest designating
a separate set of banks for shared data might be an option.

Rank interleaving is used in [43, 88, 117] to limit read-write switching overhead. A
hypothetical extension of our controller could apply rank interleaving, for example by
ensuring the �rst burst in a pattern maps to a di�erent rank than the last burst. This
would make it easier to satisfy read-write switching constraints across patterns. How-
ever, we estimate the bene�ts of such a scheme would be limited. The reason is that
switching patterns do not contribute to the worst-case pattern sequence when a close-
page policy is used in 70% of the con�gurations that were evaluated in Section 5.2, and
is hence not relevant for worst-case performance in those cases. In the remaining 30% of
the con�gurations, the average overhead (in terms of worst-case bandwidth) is 5%, with
a maximum of 16% for the slowest LPDDR memory. Taking into account that switching
ranks has a penalty of about 2 cycles, which replaces a switching pattern with a length
of the same order of magnitude, we estimate the e�ciency improvement obtained from
applying rank interleaving is only 2 to 3% on average, within the 30% of the con�g-
urations that would bene�t at all. The main reason [43, 88, 117] derive bene�t from
rank-interleaving is their focus on DIMMs. Using more than one burst per request in
such controllers is not possible, since a single burst typically ful�lls the data needs of
a (reasonable sized, i.e. 64 byte) request. Consecutive bursts hence potentially originate
from di�erent clients for them, and swap the bus direction every other burst in the worst
case, which is very expensive.

RTMemController
The memory controller proposed by [90, 91] uses a close-page policy and uses dynamic
command scheduling. The �exibility this o�ers is used to e�ciently serve requests of
variable sizes. A (BI, BC) combination for a range of request sizes is stored in a LUT,
which is used at run time to steer the bursts into banks. The selection of BI and BC is
based on our work in [56]. [90] focuses only on the back-end, while [91] also describes
the interaction with a TDM arbiter in the front-end.

Similarly to Predator, RTCMC, PMC, and our work, the RTMemController keeps the
bursts that belong to one request (or atom) together as one scheduling unit. However,
it works actively towards completing multiple requests at the same time by using bank
parallelism to pipeline ACT and PRE commands across requests.

8.1 sdram controllers 155

The controller is characterized in great detail, and the appropriate worst-case situa-
tions are derived in a traceable manner. This forms the basis of the (analytical) WCRT
analysis. [91] compares the performance of RTMemController with a (BI, BC)-aware ver-
sion of Predator, which is comparable to our work. When serving requests of �xed size,
the execution times of Predator and RTMemController are found to be identical, while
RTMemController deals better with variable request sizes.

DCmc and CMD-Priority
The Dual-Criticality Memory Controller (DCmc) [71] aims to o�er high performance to
some clients, while giving real-time guarantees to others. It uses an open-page policy,
but when deriving worst-case bounds, it assumes all requests are misses. Banks pri-
vatization separates the high-performance clients from the real-time clients. Multiple
clients of the same class can share a bank. For high-performance banks, the inter-client
arbitration is based on FR-FCFS, while the real-time banks are shared through round-
robin arbitration. Commands are generated per bank and forwarded to the memory in
a round-robin-like fashion, although commands from real-time banks get priority over
the high-performance banks. The WCRT of requests from real-time clients is analytically
determined.

The most recent work we discuss here is theCMD-Priority controller from [83], which
has many similarities with DCmc. Requests are �rst split into per-bank queues. As the
name suggests, this controller incorporates a priority-based arbitration mechanism. Re-
quest that are critical, can always take a priority slot at the head of the bank queues.
Non-critical requests are reordered using a FR-FCFS arbiter, just like in DCmc. Commands
in [83] are generated for the requests that are at the head of the queue for each bank.
Critical request can overtake non-critical requests mid-way through their service, for
example after their ACT command already has been scheduled but before the associated
RD or WR command (the then useless ACT command of the non-critical request has to
be repeated later). Banks forward their command to the SDRAM when they are selected
by a round-robin-like arbiter, which prioritizes commands from critical requests above
non-critical request, just like DCmc does. Both [71] and [83] potentially starve their re-
spective high-performance and non-critical clients due to this mechanism. The WCRT
analysis for critical requests involves a full search of the possible interfering command
combinations and their associated latency as a function of the number of critical clients.
Scalability may be an issue, but at least up until 8 critical clients the run-time is reason-
able (several hours), as shown in their paper.

[83] compare their work with a version of our pattern-based back-end paired with
both a non-work-conserving and work-conserving TDM arbiter, loosely based on [59].
Since composability is not considered, the work-conserving version is the most appro-
priate comparison. The patterns that are used have a (8,1) con�guration3. WCRT bounds
of the two approaches are derived. [83] does slightly better in cases with 1-3 critical
clients, while our approach produces slightly smaller bounds for 4-8 critical clients (each

3 Based on Chapter 5, a (4,2) or (2,4) con�guration would be preferable for the DDR2-800 memory that is used.

156 related work

client receives 1 slot in the TDM arbiter, and there is a single slot for all non-critical
clients). In a trace-based experiment, the average response time for high-performance
clients is smaller for [83]’s controller, which is mainly attributed to use of an open-
page policy and the associated FR-FCFS arbitration. We estimate that the conservative
open-page version of our controller would be more competitive, although it might still
struggle to keep up. The limiting factor is the �nite time-window in which locality can
be exploited, and the single address windows in which hits can be found. In contrast,
[83] has 8 individual windows (one for each bank) and a (practically4) unlimited time-
window that has at its disposal.

8.1.2.4 Distinguishing aspects of our work

None of the related memory controller we discussed (except [23]) take power into ac-
count, despite it being an important design constraint [67]. Also, the (BI, BC) trade-o�
is usually not explored ([90, 91] of our colleagues is the exception), and the analysis
in each of the papers is limited to one or two memory generations, while we show a
much broader range of memories and a suitable abstraction to deal with their relative
di�erences. The real-time implications of the introduction of bank groups in DDR4 have
also not been evaluated in related work. The conservative open-page policy predates
the other works in Table 8.1 that apply open-page policies in a mixed-real-time context.

Furthermore, we have demonstrated our controller in a full system implementation
through our FPGA prototype, in contrast to the works in Table 8.1 (except for PRET [117]),
which at most show VHDL simulation results. Our controller is integrated into the
CompSOC platform [53] and the associated design �ow [58], where it o�ers predictable
and composable performance to its clients.

8.2 sdram performance overviews

A few memory-generation overview papers, comparable to Chapter 5 exist. [101] dis-
cusses some of the di�erences in memory timings across DDR2/3/4, but does not show
the e�ect on worst-case performance. The authors in [94] shows the bandwidth/energy
e�ciency trade-o�s for di�erent SDRAM when applied in data centers, but it consid-
ers a smaller set of memory generations compared to Chapter 5, and does not focus
on worst-case performance. Power is estimated based on Micron’s power model, which
is less accurate than the DRAMPower model we use [26]. However, they show DIMM
level power usage and thus include I/O power in their comparison. We show power
at the device level. [36] compares several (asynchronous) DRAM architectures and con-
siders SDRAM as one special case within this family, but does not zoom in further. In
[51], the focus lies on selecting a suitable memory for a design rather than giving a gen-

4 Banks have to close occasionally for refresh.

8.3 reconfiguration 157

eral performance overview, and it only considers LPDDRx and pre-datasheet WIDE I/O
memories.

8.3 reconfiguration

Related work on the recon�gurability of memory controllers is scarce. Even though it is
quite common for COTS [48] and custom [144] memory controllers to have con�gurable
registers that control SDRAM timings, they are generally only meant to be programmed
at boot time, and o�er limited control over the behavior of the controller.

The PARDIS programmable memory controller [21] is recon�gurable in several re-
spects. Two small processors with custom instruction set architectures take the role of
memory controller, their �rmware determining the command scheduling policy, address
mapping, refresh scheduling and power management. However, no bounds on perfor-
mance are given, so it is not clear how to apply it in a real-time system. This holds for
most best-e�ort memory controllers.

Focusing on high-level problem of recon�guration of resources with real-time per-
formance guarantees, two strategies can be distinguished. The �rst strategy requires
knowledge of the frequency of recon�guration events to analytically bound their inter-
ference [49, 107]. The second strategy constrains the recon�guration process such that
the guaranteed performance during recon�guration is not worse than during regular
operation [133].

In [107], task-level WCRT analysis for multi-mode applications that share resources
in multi-core systems is discussed. Mode changes are de�ned as changes in the set of
active tasks or applications, which we refer to as use-cases switches in this thesis. The
resource arbitration mechanism that is used involves software-based critical sections
combined with priorities. Interference due to recon�guration is bounded by limiting
the number of simultaneous mode changes to one.

[49] presents a recon�guration method for soft real-time applications. Recon�gura-
tion is interpreted as a change of the active set of tasks, or a change in their con�g-
uration in the resources they are using. The hardware o�ers no performance during
recon�guration, but the recon�guration time is bounded at design time. This suggests
that predictable performance bounds can be derived based on this technique, but it can
not be composable, since recon�guration in�uences all running applications.

The work presented in [133] describes recon�guration algorithms for TDM-based
servers while guaranteeing schedulability of the client applications. The algorithms as-
sume server time can be continuously allocated, and by carefully choosing the location
of the unallocated server time and the length of transition periods, predictable perfor-
mance bounds are given. The algorithms are not applicable to composable resources
that rely on constant slot times, because the starting time of all slots varies as a result
of recon�guration.

158 related work

The recon�gurable TDM-based network-on-chip proposed in [61] provides compos-
able performance to selected clients during recon�guration, basically by not changing
their time-slots and the frame size, similar to our approach in Chapter 7. However, the
notion of predictable (but not composable) performance during recon�guration does
not exist in [61]. Our TDM arbiter recon�guration strategy provides an additional pre-
dictable performance level with worst-case bounds even during recon�guration.

In contrast to related work, this thesis presented a recon�gurable SDRAM controller
suitable for mixed time-criticality systems. By programming new patterns into the pat-
tern memory, a suitable (BI, BC) combination can be selected based on the active use-case.
We analyzed which con�guration parameters can be adapted under the assumption that
some clients continuously use the memory controller. Both predictable and composable
performance can be o�ered during recon�guration when a TDM arbiter is used. The
SDRAM resource is modeled as a latency-rate server, and we formally prove that behav-
ior during recon�guration is not worse than during regular operation.

Segal’s law: A man with a watch knows what time it is.

A man with two watches is never sure.

— Arthur Bloch, Murphy’s Law, 2003

9
C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter, we look back at what we have done in this thesis. Section 9.1 brie�y
discussed the motivation behind the work, and lists the main contributions from Chap-
ter 3-7. Additionally, we provide a slightly broader perspective on the presented content
and its relation to the research �eld in which we operate. This leads to suggestions for
future research directions in Section 9.2.

9.1 conclusions

The improvements in CMOS technology enabled the creation of large, and typically
power-constrained SoCs that host many di�erent applications. Typically, these appli-
cations load and store data on an SDRAM. Since the SDRAM interface is a scarce re-
source that cannot be replicated without signi�cant expenses, more and more applica-
tions share the same SDRAM controller. Resource sharing leads to undesired interaction
between otherwise unrelated applications in the form of interference, which changes
their performance in unpredictable ways. This is problematic for real-time applications,
that require their timing constraints to always be satis�ed, regardless of the co-running
applications. At the same time, there are applications that use the (same) SDRAM, and
bene�t from improved average-case (typical) performance. Therefore, a memory con-
troller should deliver su�cient real-time performance, while improving the average
case as much as possible.

The mix of active applications using the memory controller changes over time, as
they are started and stopped. To e�ectively deal with these varying requirements, the
controller’s con�guration needs to be adaptable to the di�erent use-cases it is subjected
to. At a relatively larger timescale, we observe another type of variation, as SDRAM tech-
nology rapidly evolves with the development of new standards. A memory controller
should be �exible enough to keep up with these changes, such that the best SDRAM for
a speci�c products can be selected. This thesis showed what a mixed-time-criticality
controller that satis�es these requirements could look like.

159

160 conclusions and future work

Chapter 3 presented an SDRAM controller architecture template, capable of delivering
predictable and composable performance. It can hence guarantee that the worst-case
or actual-case behavior of real-time applications is una�ected by interference. In some
sense, this controller is a major update of the pattern-based memory controller from [3],
with a strong focus on enabling recon�gurability and the design of the controller’s back-
end, which was previously unexplored.
The development of Raptor, the instance of the controller which is currently a part of
the CompSOC platform [53] and design �ow [58], provided valuable insights into the
inner workings of SDRAM controllers. Some of these re�ected back onto its worst-case
performance analysis. For example, the realization that the parallel read / write port
on the back-end, in combination with non-equal read and write latencies may lead to
cases where service accumulates non-intuitively fast, as shown in Figure 3.8, is obvious
when considering a real implementation, but easily missed in an analysis model. As
another example, consider that the PHY introduces a variable latency component as a
consequence of the calibration process that ensures byte-alignment at boot-time, and
we should take into account in the WCRT. As a memory controller that o�ers very �ne-
grained software-controlled con�gurability of the commands it schedules, Raptor has
been used to research SDRAM power consumption [26], timing process variation [30],
and retention time [143].

Chapter 4 discussed memory patterns, which are pre-scheduled sequences of SDRAM
commands. These patterns are programmed into in the back-end, and scheduled at run-
time by the controller. Patterns serve as an abstraction layer, both at the (worst-case)
analysis level, and within the hardware architecture. Both become less complex, since
they do not have to consider the low-level command-to-command constraints, but in-
stead deal with (far fewer) pattern-to-pattern constraints.
Chapter 4 introduced a pattern generation heuristic that is straight-forwardly applica-
ble to a large range of contemporary SDRAM generations. To achieve this generality,
we proposed a new abstraction layer that can sit before any command scheduling al-
gorithm. It converts SDRAM timings and timing constraints, which are generation spe-
ci�c, into command-to-command constraints, which are not. The scheduling algorithm
only has to refer back to these high-level constraints, and can hence remain generation-
agnostic. DDR4 is exceptional, in the sense that an architectural change with respect
to the other considered SDRAM generations, in the form of bank groups, impacts the
command scheduling process. A small modi�cation of our heuristic allows us to exploit
this new feature to generate more e�cient patterns.
The pattern generation heuristic is parameterized with Bank Interleaving (BI) and Burst

Count (BC), which describe the mapping of consecutive bursts to the di�erent banks in
the memory. Especially the notion that BI is not necessarily either “one” or “all banks of
the SDRAM” is innovative with respect to related work. Varying both BI and BC reveals
a spectrum of possible command scheduler con�gurations, and we found that both pa-
rameters are useful in describing the behavior of both our own controller and (perhaps

9.1 conclusions 161

unexpectedly) those of others, as demonstrated in Chapter 8. A comparison with an ILP
pattern generator showed that our heuristic creates near-optimal results.

Chapter 5 puts the pattern generation heuristic to work on 12 di�erent memories
from 6 SDRAM generations. Combined with the power model from [31], it shows the con-
�guration trade-o�s in terms of worst-case bandwidth, power (energy e�ciency), and
(indirectly) the WCRT as a function of BI and BC for each of these memories. Figure 5.1,
which plots worst-case power versus worst-case bandwidth, shows that the shapes of
the plotted constellations across di�erent generations are very similar. This indicates
that an understanding of the in�uence of BI and BC on the relative performance of an
SDRAM device is useful and generally applicable to identify e�cient command scheduler
con�gurations.
We observed that newer memory generations typically use less power and deliver higher
worst-case bandwidth. These e�ects can be attributed to the growth of their data bus
width and the increase in operating frequency. The latency components that feed into
the WCRT analysis are a�ected to a much smaller degree. This underlines the memory-
wall problem in the context of worst-case performance: handling a series of page misses
simply has not gotten much faster over the years.

In Chapter 6, we introduced the conservative open-page policy. From a worst-case
perspective, it is a close-page policy, but with a twist: the controller can change its
mind about precharging when it is certainly bene�cial to keep the row open. Where
possible, we substitute auto-precharges by explicit precharge commands to postpone
the precharge decision, increasing the size of the time-window in which locality can be
exploited. The presented policy ensures that worst-case guarantees are una�ected.
The conservativeness of this approach comes at a price: the latency (stall-time) reduc-
tion the policy achieves is modest, and relies on non-blocking processors and coopera-
tion from the client-level arbiter in multi-application scenarios to be e�ective. When a
slight WCRT penalty is tolerable, a speculative policy might be signi�cantly more e�ec-
tive at improving average-case performance, as explored more recently by [71, 83, 88],
for example.

Finally, in Chapter 7, we investigated how the memory controller’s behavior can be
adapted when its set of active clients changes, by recon�guring the various recon�g-
urable components its architecture exposes. At boot-time, when no clients are active
yet, its �exibility de�nitely pays o� in the sense that both the patterns and all arbiter
settings can be freely customized for the use-case in which the controller will be used.
This means it can be customized for di�erent memories, and for di�erent power / per-
formance operating points (in the form of (BI, BC) con�gurations) and application sets.
Maintaining predictability and composability for running clients while recon�guring
to accommodate others is signi�cantly harder, and hence only possible in a more re-
stricted fashion. The direct link between the patterns and the memory-map prohibits
(useful) changes in the patterns, since they would scramble the data clients stored be-
fore recon�guration. This means we are limited to recon�guration of the arbiter. We

162 conclusions and future work

demonstrated a TDM arbiter and associated safe recon�guration protocol, allowing us
to move slots of an active application without violating its Latency-rate (LR) guaran-
tees. The memory controller provides predictable performance before, during, and after
recon�guration to the target of the recon�guration as a result, while composable clients
are completely una�ected by the process. Repeating this e�ort for di�erent (more state-
ful) arbiters, like CCSP for example, does not seem to be fundamentally impossible, but
could be signi�cantly harder.

9.2 future work

This section highlights three concrete opportunities for extensions of the pattern-based
controller concept, based on the lessons learned through this thesis.

Dealing with large interface widths
The request size limits the range of usable (BI, BC) con�gurations, and with that, the
attainable memory e�ciency, as shown in Chapter 5. If the SDRAM has a large interface
width, in cases where a DIMM is used for example, one request may only be big enough
to �ll a single burst, limiting BI and BC to 1, which is not desirable. Sub-dividing the
interface width of a DIMM into smaller ranks has been considered in the context of
power saving [45], and would help to alleviate the issue. Unfortunately, this requires
changes in the SDRAM architecture, and is hence not much more than �ction at the
moment, so we consider a di�erent solution at the controller level.

A viable strategy could be to share a single pattern amongst multiple atoms at the
granularity of banks, for example by scheduling (4,1) patterns, but �lling each burst
with a di�erent request (from potentially a di�erent client). This leads to a scheduling
scheme that looks somewhat similar to PRET [117] or MCMC [43], the di�erence being
that commands for di�erent banks can still be interleaved within the pattern, as opposed
to PRET and MCMC which use a strict TDM arbitration of the command bus across banks.
One of the challenges in this scheme is dealing read-write switches, which preferably
should happen per pattern as opposed to per burst to reduce their overhead [88].

Conservative open-page policy with improved slack exploitation
The conservative open-page policy might be too conservative for the reasons we high-
lighted earlier. It is possible to leave banks in an open state at the end of a pattern, if
we accept an increase in WCRT. Page hits would result in NANP patterns, while misses
would require a new Precharge and Activate (PA) pattern. The PA pattern is potentially
longer than the AP patterns we currently use, since the precharges are no longer exe-
cuted in a pipelined fashion across pattern boundaries. Other than the e�ects on the
worst-case performance, operation should be relatively similar to the current approach.

The conservative open-page policy tried to improve average-case performance while
retaining a clean separation between the front-end and back-end. Letting go of this re-
striction can result in better average-case performance by borrowing ideas from FR-FCFS

9.2 future work 163

arbiters. Pattern lengths are known at design time, so we know exactly how many cy-
cles are saved when a NANP pattern is issued, compared to a PA pattern. This (proven)
slack can be used to schedule additional atoms that are also page hits from best-e�ort
clients, as long as the arbiter is made aware of the amount of time that is available.

Verification of the Raptor instance to the WCRT model, CompSOC integration
The LR-based WCRT model that was presented in Section 3.2 covers the presented con-
troller architecture template. However, the veri�cation of the model with respect to the
Raptor instance of the controller only covers the worst-case bandwidth (Section 5.4),
but not the WCRT. A logical next step is to characterize the Raptor instance, to extract
the various parameters that the model requires, and then experimentally check that
the delivered performance is bounded by it. The model can then be integrated in the
larger CompSOC platform model [109] to derive (more) accurate application-level WCRT
guarantees.

B I B L I O G R A P H Y

[1] B. Akesson. Predictable and Composable System-on-ChipMemory Controllers. PhD
thesis, Eindhoven University of Technology, 2010. (Cited on pages 37 and 90.)

[2] B. Akesson and K. Goossens. Architectures and modeling of predictable memory
controllers for improved system integration. In Design, Automation & Test in

Europe Conf. & Exhibition (DATE), pages 1–6, 2011. (Cited on pages 22, 26, 33, 60,
67, 134, 149, and 150.)

[3] B. Akesson and K. Goossens. Memory Controllers for Real-Time Embedded Systems.
Embedded Systems Series. Springer, 2011. (Cited on pages 14, 21, 22, 25, 27, 28,
36, 37, 90, 151, and 160.)

[4] B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM mem-
ory controller. In Proc. CODES+ISSS, 2007. (Cited on pages 47, 149, and 150.)

[5] B. Akesson, L. Ste�ens, E. Strooisma, and K. Goossens. Real-time scheduling
using credit-controlled static-priority arbitration. In Embedded and Real-Time

Computing Syst. and Applicat. (RTCSA), pages 3–14, 2008. (Cited on pages 32, 45,
and 131.)

[6] B. Akesson, A. Hansson, and K. Goossens. Composable resource sharing based
on latency-rate servers. In Digital System Design (DSD), 2009. (Cited on pages 23,
24, 32, 148, and 151.)

[7] B. Akesson, W. Hayes Jr, and K. Goossens. Classi�cation and analysis of pre-
dictable memory patterns. In Embedded and Real-Time Computing Syst. and Ap-

plicat. (RTCSA), pages 367–376, 2010. (Cited on pages 37, 90, and 99.)

[8] B. Akesson, A. Molnos, A. Hansson, J. Ambrose Angelo, and K. Goossens. Com-
posability and predictability for independent application development, veri�ca-
tion, and execution. In M. Hübner and J. Becker, editors, Multiprocessor System-

on-Chip — Hardware Design and Tool Integration, Circuits and Systems, chapter 2.
Springer, dec 2010. ISBN 978-1-4419-6459-5. (Cited on pages 7, 8, 23, and 148.)

[9] B. Akesson, W. Hayes Jr, and K. Goossens. Automatic generation of e�cient
predictable memory patterns. In Embedded and Real-Time Computing Syst. and

Applicat. (RTCSA), pages 177–184, 2011. (Cited on pages 62 and 75.)

[10] B. Akesson, A. Minaeva, P. Sucha, A. Nelson, and Z. Hanzalek. An e�cient con�g-
uration methodology for time-division multiplexed single resources. In Real-Time

164

bibliography 165

and Embedded Technology and Applicat. Symp. (RTAS), 2015. (Cited on pages 45
and 142.)

[11] Amsterdam Internet Exchange. Historical monthly tra�c volume. h�ps://ams-ix.
net/technical/statistics/historical-tra�ic-data?year=2015, 2015. Online; accessed
15-Oct-2015. (Cited on pages 15 and 197.)

[12] anandtech.com. Apple a8x SOC. h�p://www.anandtech.com/show/8716/
apple-a8xs-gpu-gxa6850-even-be�er-than-i-thought, 2014. (Cited on page 4.)

[13] Application Note 179 Cortex - M3 Embedded Software Development. ARM Limited,
2007. (Cited on page 7.)

[14] AMBAAXI and ACE Protocol Speci�cation. ARM Limited, 2011. (Cited on page 31.)

[15] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer
system modeling. Computer, 35(2):59–67, 2002. (Cited on page 116.)

[16] S. Bayliss and G. Constantinides. Methodology for designing statically scheduled
application-speci�c SDRAM controllers using constrained local search. In Field-

Programmable Technology, Int. Conf. on, pages 304–307, 2009. (Cited on pages 149
and 150.)

[17] E. M. L. Beale and J. A. Tomlin. Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables. In
Proc. of the 5th Int. Conf. on Operations Research, 1969. (Cited on page 181.)

[18] M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and composable mul-
tiprocessor system design: A constructive approach. In Bits&Chips Symp. on Em-

bedded Syst. and Software, 2007. (Cited on page 6.)

[19] B. Bhat and F. Mueller. Making DRAM refresh predictable. Real-Time Syst., 47(5):
430–453, 2011. (Cited on pages 27, 35, 113, 148, and 150.)

[20] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob. Flexible auto-refresh: Enabling scalable
and energy-e�cient DRAM refresh reductions. InComput. Architecture, Int. Symp.

(ISCA), 2015. (Cited on page 27.)

[21] M. Bojnordi and E. Ipek. Pardis: A programmable memory controller for the
DDRx interfacing standards. In Comput. Architecture, Int. Symp. (ISCA), pages
13–24, 2012. (Cited on page 157.)

[22] M. Broy. Challenges in automotive software engineering. In Int. Conf. on Software

Engineering, pages 3–42, 2006. (Cited on page 5.)

[23] A. Burchardt, E. Hekstra-Nowacka, and A. Chauhan. A real-time streaming mem-
ory controller. In Design, Automation & Test in Europe Conf. & Exhibition (DATE),
pages 20–25, 2005. (Cited on pages 149, 150, and 156.)

https://ams-ix.net/technical/statistics/historical-traffic-data?year=2015
https://ams-ix.net/technical/statistics/historical-traffic-data?year=2015
http://www.anandtech.com/show/8716/apple-a8xs-gpu-gxa6850-even-better-than-i-thought
http://www.anandtech.com/show/8716/apple-a8xs-gpu-gxa6850-even-better-than-i-thought

166 bibliography

[24] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-Time Systems: Pre-

dictability vs. E�ciency. Series: Series in Computer Science. Springer, 2005. (Cited
on page 6.)

[25] Cadence Design Systems Inc. Multi-protocol LPDDR4/3/DDR4/3 con-
troller and PHY subsystem IP. h�p://ip.cadence.com/uploads/file/1021/638/
Cadence_Multi-Protocol_LPDDR4_3_DDR4_3_Subsystem_ds.pdf, 2014. (Cited
on page 47.)

[26] K. Chandrasekar. High-Level Power Estimation and Optimization of DRAMs. PhD
thesis, Delft University of Technology, 2014. (Cited on pages 91, 100, 156, and 160.)

[27] K. Chandrasekar, B. Akesson, and K. Goossens. Improved power modeling of
DDR SDRAMs. In Digital System Design (DSD), pages 99–108, 2011. (Cited on
page 91.)

[28] K. Chandrasekar, B. Akesson, and K. Goossens. Run-time power-down strategies
for real-time SDRAM memory controllers. In Design Automation Conf. (DAC),
pages 988 –993, 2012. (Cited on page 22.)

[29] K. Chandrasekar, C. Weis, B. Akesson, N. Wehn, and K. Goossens. Towards
variation-aware system-level power estimation of DRAMs: an empirical ap-
proach. In Design Automation Conf. (DAC), pages 23:1–23:8, 2013. (Cited on
page 77.)

[30] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and
K. Goossens. Exploiting expendable process-margins in DRAMs for run-time per-
formance optimization. In Design, Automation & Test in Europe Conf. & Exhibition

(DATE), pages 1–6, 2014. (Cited on pages 100 and 160.)

[31] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens. Dram-
power: Open-source DRAM power & energy estimation tool. h�p://www.
drampower.info, 2014. (Cited on pages 11, 47, 91, and 161.)

[32] K. Chang, H. Lee, J.-H. Chun, T. Wu, T. Chin, K. Kaviani, J. Shen, X. Shi, W. Beyene,
Y. Frans, B. Leibowitz, N. Nguyen, F. Quan, J. Zerbe, R. Perego, and F. Assaderaghi.
A 16Gb/s/link, 64GB/s bidirectional asymmetric memory interface cell. In VLSI

Circuits, 2008 IEEE Symp. on, pages 126–127, 2008. (Cited on page 48.)

[33] A. Cosoroaba. Achieving high performance DDR3 data rates, Xilinx, WP383 (v1.2)
August 29, 2013. White paper. (Cited on page 47.)

[34] R. L. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE
Transactions on Information Theory, 37(1), 1991. (Cited on page 8.)

http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_LPDDR4_3_DDR4_3_Subsystem_ds.pdf
http://ip.cadence.com/uploads/file/1021/638/Cadence_Multi-Protocol_LPDDR4_3_DDR4_3_Subsystem_ds.pdf
http://www.drampower.info
http://www.drampower.info

bibliography 167

[35] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke, B. Triquet,
S. Wegener, and R. Wilhelm. Predictability considerations in the design of multi-
core embedded systems. Ingénieurs de l’Automobile, 807:36–42, 2010. (Cited on
page 7.)

[36] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of con-
temporary DRAM architectures. SIGARCH Comput. Archit. News, 27(2):222–233,
1999. (Cited on page 156.)

[37] Denali. DDR PHY interface (DFI) speci�cation version 2.1.1, 2010. (Cited on
pages 35 and 47.)

[38] R. H. Dennard. Field-e�ect transistor memory, 1968. US Patent 3,387,286. (Cited
on page 15.)

[39] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. De-
sign of ion-implanted MOSFET’s with very small physical dimensions. Solid-State
Circuits, IEEE Journal of, 9(5):256–268, 1974. (Cited on page 1.)

[40] W. Ding, D. Guttman, and M. Kandemir. Compiler support for optimizing memory
bank-level parallelism. In Int. Symp. onMicroarchitecture (MICRO), pages 571–582,
2014. (Cited on page 118.)

[41] J. Dodd. Adaptive page management, 2006. US Patent 7,076,617. (Cited on
page 146.)

[42] DRAMExchange. Monthly worldwide DRAM output in 2015. h�p://www.
dramexchange.com/Market/Market_Activity, 2015. Online; accessed 15-Oct-
2015. (Cited on pages 15 and 197.)

[43] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst. A mixed critical memory controller
using bank privatization and �xed priority scheduling. In Embedded and Real-

Time Computing Syst. and Applicat. (RTCSA), 2014. (Cited on pages 22, 26, 27, 67,
99, 148, 150, 152, 153, 154, and 162.)

[44] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In Comput. Architecture (ISCA), 2011 38th

Annu. Int. Symp. on, pages 365–376, 2011. (Cited on page 1.)

[45] K. Fang, H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Mini-rank: A power-e�cient
DDRx DRAM memory architecture. Computers, IEEE Transactions on, 63(6):1500–
1512, 2014. (Cited on page 162.)

[46] A. Festag. Cooperative intelligent transport systems standards in Europe. Com-

munications Magazine, IEEE, 52(12):166–172, 2014. (Cited on page 5.)

http://www.dramexchange.com/Market/Market_Activity
http://www.dramexchange.com/Market/Market_Activity

168 bibliography

[47] PowerPC e500 Core Family Reference Manual Reference Manual. Freescale Semi-
conductor, 2005. (Cited on page 118.)

[48] PowerQUICC and QorIQ DDR3 SDRAM Controller Register Setting Considerations

AN4039 Rev. 4. Freescale Semiconductor, 2014. (Cited on page 157.)

[49] M. Garcia-Valls, P. Basanta-Val, and I. Estevez-Ayres. Real-time recon�guration
in multimedia embedded systems. Consumer Electronics, IEEE Transactions on, 57
(3):1280 –1287, 2011. (Cited on page 157.)

[50] A. Ghosal, T. A. Henzinger, C. M. Kirsch, and M. A. Sanvido. Event-driven pro-
gramming with logical execution times. In Hybrid Systems: Computation and

Control, pages 357–371. Springer, 2004. (Cited on page 24.)

[51] M. Gomony, C. Weis, B. Akesson, N. Wehn, and K. Goossens. DRAM selection
and con�guration for real-time mobile systems. In Design, Automation & Test in

Europe Conf. & Exhibition (DATE), pages 51 –56, 2012. (Cited on page 156.)

[52] K. Goossens and A. Hansson. The Aethereal network on chip after ten years:
Goals, evolution, lessons, and future. In Design Automation Conf. (DAC), 2010.
(Cited on page 117.)

[53] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony, S. Goossens,
M. Koedam, Y. Li, D. Mirzoyan, A. Molnos, A. B. Nejad, A. Nelson, and S. Sinha.
Virtual execution platforms for mixed-time-criticality systems: The CompSOC
architecture and design �ow. SIGBED Rev., 10(3):23–34, 2013. (Cited on pages 8,
23, 30, 46, 53, 151, 156, and 160.)

[54] K. Goossens, M. Koedam, S. Sinha, A. Nelson, and M. Geilen. Run-time middle-
ware to support real-time system scenarios. In Proc. European Conf. on Circuit

Theory and Design (ECCTD), 2015. (Cited on page 126.)

[55] S. Goossens. Power/performance trade-o�s in real-time SDRAM controllers -
code and datasets. h�p://www.es.ele.tue.nl/~sgoossens/sdram_trade_o�s, 2014.
(Cited on page 62.)

[56] S. Goossens, T. Kouters, B. Akesson, and K. Goossens. Memory-map selection for
�rm real-time SDRAM controllers. In Design, Automation & Test in Europe Conf.

& Exhibition (DATE), pages 828–831, 2012. (Cited on pages 55 and 154.)

[57] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for
mixed time-criticality memory controllers. InDesign, Automation & Test in Europe

Conf. & Exhibition (DATE), pages 525–530, 2013. (Cited on page 104.)

[58] S. Goossens, B. Akesson, M. Koedam, A. B. Nejad, A. Nelson, and K. Goossens.
The CompSOC design �ow for virtual execution platforms. In Proc. of the 10th

FPGAworld Conf., pages 7:1–7:6, 2013. (Cited on pages 32, 46, 156, and 160.)

http://www.es.ele.tue.nl/~sgoossens/sdram_trade_offs

bibliography 169

[59] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A recon�gurable real-
time SDRAM controller for mixed time-criticality systems. In Hardware/Software

Codesign and System Synthesis (CODES+ISSS), 2013 Int. Conf. on, pages 1–10, 2013.
(Cited on pages 30, 51, 55, 126, and 155.)

[60] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens. Power/performance
trade-o�s in real-time SDRAM command scheduling. Computers, IEEE Transac-

tions on, PP(99):1–1, 2015. (Cited on pages 55 and 90.)

[61] A. Hansson, M. Coenen, and K. Goossens. Undisrupted quality-of-service dur-
ing recon�guration of multiple applications in networks on chip. In Design, Au-

tomation & Test in Europe Conf. & Exhibition (DATE), 2007. (Cited on pages 141
and 158.)

[62] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. CompSOC: A template for
composable and predictable multi-processor system on chips. ACM TODAES, 14
(1), 2009. (Cited on pages 8 and 23.)

[63] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and quantitative analy-
sis of the chstone benchmark program suite for practical C-based high-level syn-
thesis. Journal of Information Processing, 17(0):242–254, 2009. (Cited on page 116.)

[64] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling DRAM mem-
ory accesses for multi-core mixed-time critical systems. In Real-Time and Em-

bedded Technology and Applicat. Symp. (RTAS), pages 307–316, 2015. (Cited on
pages 22, 150, 152, and 153.)

[65] J. Henkel. Closing the SOC design gap. Computer, 36(9):119–121, 2003. (Cited on
page 2.)

[66] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self-optimizing memory con-
trollers: A reinforcement learning approach. In Comput. Architecture, Int. Symp.

(ISCA), pages 39–50, 2008. (Cited on page 146.)

[67] ITRS. International technology roadmap for semiconductors (ITRS) - system
drivers, 2011. http://www.itrs.net/reports.html. (Cited on page 156.)

[68] ITRS. International technology roadmap for semiconductors (ITRS) - assembly
& packaging, 2012 tables, 2012. (Cited on page 2.)

[69] ITRS. International technology roadmap for semiconductors (ITRS) - system
drivers abstract, 2013. (Cited on page 1.)

[70] B. Jacob, S. Ng, and D. Wang. Memory systems: cache, DRAM, disk. Morgan Kauf-
mann Pub, 2007. (Cited on pages 6 and 15.)

170 bibliography

[71] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F. Cazorla. A dual-
criticality memory controller (DCmc): Proposal and evaluation of a space case
study. In Real-Time Syst. Symp., pages 207–217, 2014. (Cited on pages 148, 150,
155, and 161.)

[72] J. Jeddeloh and B. Keeth. Hybrid memory cube new DRAM architecture increases
density and performance. In VLSI Technology (VLSIT), 2012 Symp. on, pages 87–88,
2012. (Cited on page 3.)

[73] JEDEC. DDR2 SDRAM speci�cation JESD79-2F, 2009. (Cited on pages 16, 18, 19,
23, 55, 56, and 178.)

[74] JEDEC. Low power double data rate speci�cation JESD209B, 2009. (Cited on
page 19.)

[75] JEDEC. DDR3 SDRAM speci�cation JESD79-3E, 2010. (Cited on page 19.)

[76] JEDEC. Low power double data rate 2 speci�cation JESD209-2D, 2010.

[77] JEDEC. DDR4 SDRAM speci�cation JESD79-4, 2012. (Cited on pages 19, 56,
and 65.)

[78] JEDEC. Low power double data rate 3 speci�cation JESD209-3B, 2013. (Cited on
pages 16, 18, 19, 23, 55, 56, and 178.)

[79] JEDEC. 240 pin DDR3 DIMM, 1.00mm pitch MO-269J, 2014. (Cited on page 21.)

[80] JEDEC. DDR3 unbu�ered SODIMM reference design speci�cation 4.20.18, revi-
sion 2.8, release 24, 2014. (Cited on page 21.)

[81] K. Kaviani, T. Wu, J. Wei, A. Amirkhany, J. Shen, T. Chin, C. Thakkar,
W. Beyene, N. Chan, C. Chen, B. R. Chuang, D. Dressler, V. Gadde, M. Hekmat,
E. Ho, C. Huang, P. Le, Mahabaleshwara, C. Madden, N. Mishra, L. Raghavan,
K. Saito, R. Schmitt, D. Secker, X. Shi, S. Fazeel, G. Srinivas, S. Zhang, C. Tran,
A. Vaidyanath, K. Vyas, M. Jain, K.-Y. K. Chang, and X. Yuan. A tri-modal 20-
Gbps/Link di�erential/DDR3/GDDR5 memory interface. Solid-State Circuits, IEEE
Journal of, 47(4):926–937, 2012. (Cited on pages 35 and 48.)

[82] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding
memory interference delay in COTS-based multi-core systems. In Real-Time and

Embedded Technology and Applicat. Symp. (RTAS), pages 145–154, 2014. (Cited on
pages 26, 60, 99, 147, and 150.)

[83] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A pre-
dictable and command-level priority-based DRAM controller for mixed-criticality
systems. In Real-Time and Embedded Technology and Applicat. Symp. (RTAS), 2015.
(Cited on pages 150, 155, 156, and 161.)

bibliography 171

[84] P. Kollig, C. Osborne, and T. Henriksson. Heterogeneous multi-core platform for
consumer multimedia applications. In Design, Automation & Test in Europe Conf.

& Exhibition (DATE), pages 1254–1259, 2009. (Cited on page 20.)

[85] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-

cations. Springer, 1997. (Cited on page 24.)

[86] H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and C. Paukovits. Compos-
ability in the time-triggered system-on-chip architecture. In SOC Conf., 2008 IEEE

Int., pages 87–90, 2008. (Cited on page 8.)

[87] J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change
management. Software Engineering, IEEE Transactions on, 16(11):1293–1306, 1990.
(Cited on page 128.)

[88] Y. Krishnapillai, Z. Pei Wu, and R. Pellizzoni. ROC: A rank-switching, open-row
DRAM controller for time-predictable systems. In Euromicro Conf. on Real-Time

Syst. (ECRTS), pages 27–38, 2014. (Cited on pages 26, 27, 28, 48, 60, 148, 150, 153,
154, 161, and 162.)

[89] E. Lakis and M. Schoeberl. An SDRAM controller for real-time systems.
In Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),

2013 IEEE 16th Int. Symp. on, pages 1–8, 2013. (Cited on page 49.)

[90] Y. Li, B. Akesson, and K. Goossens. Dynamic command scheduling for real-time
memory controllers. In Euromicro Conf. on Real-Time Syst. (ECRTS), pages 3–14,
2014. (Cited on pages 150, 154, and 156.)

[91] Y. Li, B. Akesson, and K. Goossens. Architecture and analysis of a dynamically-
scheduled real-time memory controller. Real-Time Systems, pages 1–55, 2015.
(Cited on pages 150, 154, 155, and 156.)

[92] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. Lee. A PRET microarchitecture
implementation with repeatable timing and competitive performance. In Comput.

Design (ICCD), 2012 IEEE 30th Int. Conf. on, pages 87–93, 2012. (Cited on page 152.)

[93] K. Lyne. Cellular handset integration - sip vs. SOC and best design practices
for SIP. In Custom Integrated Circuits Conf., 2005. Proc. of the IEEE 2005, pages
765–770, 2005. (Cited on pages 2 and 5.)

[94] K. Malladi, F. Nothaft, K. Periyathambi, B. Lee, C. Kozyrakis, and M. Horowitz.
Towards energy-proportional datacenter memory with mobile DRAM. InComput.

Architecture, Int. Symp. (ISCA), pages 37–48, 2012. (Cited on page 156.)

[95] R. Matick and S. Schuster. Logic-based eDRAM: Origins and rationale for use.
IBM Journal of Research and Development, 49(1):145–165, 2005. (Cited on page 2.)

172 bibliography

[96] S. McKee. Re�ections on the memory wall. In Proc. Conf. on Computing frontiers,
pages 162–167, 2004. (Cited on page 3.)

[97] Micron. Calculating memory system power for DDR3. Technical report, Micron
Technology Inc., 2007. TN-41-01. (Cited on page 91.)

[98] DDR3 SDRAM SODIMM -MT4JSF6464H - 512MB JSF4C64_64x64HY.fm - Rev. B 3/08

EN. Micron, 2007. (Cited on pages 47 and 101.)

[99] Mobile LPDDR2 SDRAM 2gb_mobile_lpddr2_s4_g69a.pdf - Rev. N 3/12 EN. Micron,
2010. (Cited on page 19.)

[100] DDR3L SDRAM 4Gb_DDR3L.pdf - Rev. I 9/13 EN. Micron, 2011. (Cited on page 19.)

[101] Micron Technology Inc. DDR4 networking design guide introduction, 2014. TN-
40-03. (Cited on pages 95 and 156.)

[102] G. A. Miller. The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review, 63(2):81, 1956. (Cited
on page 1.)

[103] G. Moore. Cramming more components onto integrated circuits. Electronics Mag-

azine, 38, 1965. (Cited on page 1.)

[104] O. Mutlu and T. Moscibroda. Memory performance attacks: Denial of memory
service in multi-core systems. In USENIX Security, 2007. (Cited on page 7.)

[105] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both
performance and fairness of shared DRAM systems. SIGARCH Comput. Archit.

News, 36(3), 2008. (Cited on page 146.)

[106] J. B. Nagle. On packet switches with in�nite storage. IEEE Transactions on Com-

munications, COM-35(4), 1987. (Cited on pages 32 and 45.)

[107] M. Negrean, S. Klawitter, and R. Ernst. Timing analysis of multi-mode applica-
tions on AUTOSAR conform multi-core systems. In Design, Automation & Test in

Europe Conf. & Exhibition (DATE), 2013. (Cited on page 157.)

[108] A. Nelson, A. Molnos, A. B. Nejad, D. Mirzoyan, S. Cotofana, and K. Goossens.
Embedded computer architecture laboratory: A hands-on experience program-
ming embedded systems with resource and energy constraints. In Proc. of the

Workshop on Embedded and Cyber-Physical Syst. Education, pages 7:1–7:8, 2013.
(Cited on page 53.)

[109] A. Nelson, K. Goossens, and B. Akesson. Data�ow formalisation of real-time
streaming applications on a composable and predictable multi-processor SOC.
Systems Architecture, Journal of, 2015. (Cited on pages 8, 46, 88, and 163.)

bibliography 173

[110] V. Pai and S. Adve. Code transformations to improve memory parallelism. In Int.

Symp. on Micro-Architecture, pages 147–155, 1999. (Cited on page 118.)

[111] M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero. An analyzable memory con-
troller for hard real-time CMPs. Embedded Systems Letters, IEEE, 1(4), 2009. (Cited
on pages 150 and 151.)

[112] M. Paolieri, E. Quiñones, and F. J. Cazorla. Timing e�ects of DDR memory sys-
tems in hard real-time multicore architectures: Issues and solutions. ACM Trans.

Embedded Comput. Syst., 12(1s):64, 2013. (Cited on pages 22, 26, 27, 28, 60, 67, 99,
150, 151, and 153.)

[113] Device Transaction Level (DTL) Protocol Speci�cation. Version 3.2. Philips Semicon-
ductors, 2002. (Cited on page 31.)

[114] Memory Transaction Level (MTL) Protocol Speci�cation. CoReUse 3.2.1. Philips
Semiconductors, 2002. (Cited on page 32.)

[115] P. Puschner, R. Kirner, and R. Pettit. Towards composable timing for real-time
programs. In Future Dependable Distributed Syst., 2009 Software Technologies for,
pages 1–5, 2009. (Cited on page 8.)

[116] U. Ramacher. Software-de�ned radio prospects for multistandard mobile phones.
Computer, 40(10):62–69, 2007. (Cited on page 5.)

[117] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. PRET DRAM controller:
Bank privatization for predictability and temporal isolation. In Proc. CODES+ISSS,
pages 99–108, 2011. (Cited on pages 22, 26, 27, 35, 60, 67, 113, 148, 150, 151, 153,
154, 156, and 162.)

[118] K. Richter, M. Jersak, and R. Ernst. A formal approach to MPSOC performance
veri�cation. Computer, 36(4):60–67, 2003. (Cited on page 8.)

[119] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory ac-
cess scheduling. In Comput. Architecture, Int. Symp. (ISCA), pages 128–138, 2000.
(Cited on pages 11, 18, and 146.)

[120] P. E. Ross. Europe’s smart highway will shepherd cars from Rotter-
dam to Vienna. h�p://spectrum.ieee.org/transportation/advanced-cars/
europes-smart-highway-will-shepherd-cars-from-ro�erdam-to-vienna, 2014.
(Cited on page 5.)

[121] B. Rumpler. Complexity management for composable real-time systems. In Proc.

ISORC, 2006. (Cited on page 8.)

http://spectrum.ieee.org/transportation/advanced-cars/europes-smart-highway-will-shepherd-cars-from-rotterdam-to-vienna
http://spectrum.ieee.org/transportation/advanced-cars/europes-smart-highway-will-shepherd-cars-from-rotterdam-to-vienna

174 bibliography

[122] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande,
C. Grecu, and A. Ivanov. System-on-chip: Reuse and integration. Proceedings of
the IEEE, 94(6):1050–1069, 2006. (Cited on page 8.)

[123] DM-D Large-size Commercial LED LCD Displays. Samsung Electronics America
Inc., 2015. (Cited on page 5.)

[124] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside,
K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jor-
dan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Pu�tsch, P. Puschner, A. Rocha,
C. Silva, J. Sparsø, and A. Tocchi. T-CREST: Time-predictable multi-core archi-
tecture for embedded systems. Journal of Systems Architecture, (0):–, 2015. (Cited
on page 53.)

[125] H. Shah, A. Raabe, and A. Knoll. Bounding WCET of applications using SDRAM
with priority based budget scheduling in MPSOCs. In Design, Automation & Test

in Europe Conf. & Exhibition (DATE), pages 665–670, 2012. (Cited on pages 22, 26,
60, 67, and 147.)

[126] H. Shah, A. Knoll, and B. Akesson. Bounding SDRAM interference: Detailed anal-
ysis vs. latency-rate analysis. In Design, Automation & Test in Europe Conf. &

Exhibition (DATE), pages 308–313, 2013. (Cited on pages 27, 28, and 99.)

[127] S. Sinha, M. Koedam, G. Breaban, A. Nelson, A. B. Nejad, M. Geilen, and
K. Goossens. Composable and predictable dynamic loading for time-critical par-
titioned systems on multiprocessor architectures. Microprocessors and Microsys-

tems, pages –, 2015. (Cited on page 126.)

[128] Snapdragon 800. Snapdragon 800 processor specs. h�ps://www.qualcomm.
com/products/snapdragon/processors/800, 2015. Online; accessed 30-Mar-2015.
(Cited on pages xi, 4, 5, and 20.)

[129] S. Sriram and S. Bhattacharyya. Embedded multiprocessors: Scheduling and syn-

chronization. CRC, 2000. (Cited on pages 8 and 46.)

[130] R. Stefan and K. Goossens. An improved algorithm for slot selection in the æthe-
real network-on-chip. In Proc. of the Fifth Int. Workshop on Interconnection Net-

work Architecture: On-Chip, Multi-Chip (INA-OCMC), pages 7–10, 2011. (Cited on
page 142.)

[131] L. Ste�ens, M. Agarwal, and P. v. der Wolf. Real-time analysis for memory access
in media processing SOCs: A practical approach. In Euromicro Conf. on Real-Time

Syst. (ECRTS), pages 255–265, 2008. (Cited on page 6.)

https://www.qualcomm.com/products/snapdragon/processors/800
https://www.qualcomm.com/products/snapdragon/processors/800

bibliography 175

[132] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis
of tra�c scheduling algorithms. IEEE/ACM Trans. Netw., 6(5), 1998. (Cited on
pages 23, 24, 28, 45, 46, 134, and 149.)

[133] N. Stoimenov, L. Thiele, L. Santinelli, and G. Buttazzo. Resource adaptations with
servers for hard real-time systems. In Proc. of the tenth ACM Int. Conf. on Embed-

ded software, pages 269–278, 2010. (Cited on page 157.)

[134] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John. The virtual write
queue: coordinating DRAM and last-level cache policies. SIGARCH Comput. Ar-

chit. News, 38(3):72–82, 2010. (Cited on page 146.)

[135] S. Stuijk, T. Basten, M. Geilen, A. H. Ghamarian, and B. Theelen. Resource-
e�cient routing and scheduling of time-constrained streaming communication
on networks-on-chip. Journal of Systems Architecture, 54(3):411–426, 2008. (Cited
on page 142.)

[136] RM57L843 16- and 32-Bit RISC Flash Microcontroller. Texas Instruments Inc., 2014.
(Cited on pages 7 and 20.)

[137] R. Tummala. Moore’s law meets its match (system-on-package). Spectrum, IEEE,
43(6):44–49, 2006. (Cited on page 4.)

[138] C. van Berkel. Multi-core for mobile phones. In Design, Automation & Test in

Europe Conf. & Exhibition (DATE), 2009. (Cited on pages 5 and 11.)

[139] P. van der Wolf and J. Geuzebroek. SOC infrastructures for predictable system
integration. In Design, Automation & Test in Europe Conf. & Exhibition (DATE),
pages 1–6, 2011. (Cited on page 20.)

[140] B. Vermeulen and K. Goossens. Interactive debugging of systems on chip with
multiple clocks. IEEE Design and Test of Computers, 5, 2011. (Cited on page 83.)

[141] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In Real-Time Syst. Symp., pages 239–243, 2007. (Cited
on page 10.)

[142] L. Ward and M. Simon. Intelligent transportation systems using IEEE 802.11p
(application note 6.2015 - 1MA153_4e), 2015. (Cited on page 5.)

[143] C. Weis, M. Jung, P. Ehses, C. Santos, P. Vivet, S. Goossens, M. Koedam, and
N. Wehn. Retention time measurements and modelling of bit error rates of wide
I/O DRAM in MPSOCs. In Design, Automation & Test in Europe Conf. & Exhibition

(DATE), pages 495–500, 2015. (Cited on page 160.)

176 bibliography

[144] S. Whitty and R. Ernst. A bandwidth optimized SDRAM controller for the mor-
pheus recon�gurable architecture. In Proc. of the Parallel and Distributed Process-

ing Symp. (IPDPS), 2008. (Cited on page 157.)

[145] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand.
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 28(7), 2009. (Cited on page 147.)

[146] M. V. Wilkes. Hardware support for memory protection: Capability implemen-
tations. In Proc. of the 1st Int. Symp. on Architectural Support for Programming

Languages and Operating Syst., pages 107–116, 1982. (Cited on page 7.)

[147] D. Wu, Y. T. Hou, and Y.-Q. Zhang. Scalable video coding and transport over
broadband wireless networks. Proceedings of the IEEE, 89(1):6–20, 2001. (Cited on
page 9.)

[148] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst case analysis of DRAM latency in
multi-requestor systems. In Real-Time Syst. Symp., pages 372–383, 2013. (Cited
on pages 27, 28, 150, 153, and 154.)

[149] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News, 23(1), 1995. (Cited on page 3.)

[150] Y. Xie. Future memory and interconnect technologies. In Design, Automation &

Test in Europe Conf. & Exhibition (DATE), pages 964–969, 2013. (Cited on page 3.)

[151] Xilinx. Microblaze processor reference guide. h�p://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf, 2011. (Cited on
pages 7 and 82.)

[152] Xilinx. ML605 documentation UG533. h�p://www.xilinx.com/support/
documentation/boards_and_kits/ug533.pdf, 2011. (Cited on page 47.)

[153] Xilinx. Virtex-6 FPGA memory interface solutions - user guide UG406, 2011.
(Cited on page 47.)

[154] Xilinx. LogiCORE IP - multi-port memory controller DS643, 2011. (Cited on
page 49.)

[155] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory band-
width reservation system for e�cient performance isolation in multi-core plat-
forms. In Real-Time and Embedded Technology and Applicat. Symp. (RTAS), pages
55–64, 2013. (Cited on page 147.)

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_3/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf

bibliography 177

[156] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: DRAM bank-aware mem-
ory allocator for performance isolation on multicore platforms. In Real-Time and

Embedded Technology and Applicat. Symp. (RTAS), pages 155–166, 2014. (Cited on
page 154.)

[157] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page interleaving scheme
to reduce row-bu�er con�icts and exploit data locality. In Int. Symp. on Microar-

chitecture (MICRO), pages 32–41, 2000. (Cited on page 70.)

[158] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory system op-
timizations for SMT processors. In High-Performance Comput. Architecture, 2005.

HPCA-11. 11th Int. Symp. on, pages 213–224, 2005. (Cited on page 118.)

A
I L P P R O B L E M F O R M U L AT I O N

Chapter 4 describes a parameterized ILP formulation that can generate read and write
patterns. This appendix formalizes the ILP formulation.

a.1 high-level goal

The ILP formulation should generate a command schedule that satis�es the following
high-level constraints:

1. the schedule is a valid SDRAM command schedule for the memory device under
consideration, i.e. it follows the basic SDRAM state machine (�rst ACT, then RD/WR,
then PRE), and the timing constraints within this schedule are not violated, and

2. the schedule can be repeated after itself without violating timing constraints.

We make a distinction between ILP constraints, i.e. the linear equations that are part of
the ILP description, and timing constraints, which are de�ned by JEDEC and specify the
minimum distance between pairs of SDRAM commands [73–78], as introduced earlier
in Section 2.1.2.

a.2 variables

Which commands are included in a memory pattern is de�ned by:

1. the type of the pattern, i.e. either read or write. Refresh and switching patterns can
be derived later based on the read and write pattern, as described in Section 4.2.3.

2. the number of banks interleaved, BI.

3. the number of bursts per bank, BC.

Each pattern contains BI activates, BI precharges, and BI · BC read or write commands,
for read and write patterns, respectively. The ILP problem schedules two incarnations of
the pattern, of which the �rst is complete, and the second is not. The second incarnation
consists only of ACT commands and is used to express constraints regarding activate and

178

ilp problem formulation 179

precharge commands that span across patterns. We use this partial pattern to simplify
the formulation. Note that by doing this, we ignore potential constraints related to read
and write commands in the �rst incarnation that in�uence the second incarnation. This
only works if the following two assumptions hold:

• The ACT-to-RD/WR constraint is always greater than or equal to the RD-to-RD and
WR-to-WR constraints, which has been true for all memories introduced up to now.

• Switching patterns resolve all remaining constraints across read-to-write and write-
to-read patterns boundaries. This assumption also holds since we construct switch-
ing patterns for this purpose.

For the purpose of this description, we regard commands as 3-tuples (ct , cb , cn), con-
sisting of a type ct ∈ {ACT, RD, WR, PRE}, a bank cb ∈ {0...BI − 1} and an incarnation
id cn ∈ {0, 1}. The set of all commands in the pattern is called C . All commands have
cn set to 0, except for the extra ACT commands representing the start of the second
incarnation of the pattern. For those commands cn = 1.

CACT = {(ACT, cb , cn) | cb ∈ {0...BI − 1}, cn ∈ {0, 1}}
CPRE = {(PRE, cb , 0) | cb ∈ {0...BI − 1}}
Crw =

⋃
0≤i<BC

{(RD/WR, cb , 0) | cb ∈ {0...BI − 1}}

C = CACT ∪CPRE ∪Crw

The algorithm that generates the ILP formulation determines a conservative lower
bound (Lc) and upper bound (Uc) on the position of each command c in the pattern,
as further explained in Section A.3. A set of ILP variables (Vc) is created for each com-
mand. It contains one boolean variable X c

i for each integer position i in the interval
[Lc ,Uc). If the variable X c

i is true, then this means that the command c is scheduled in
position or cycle i:

∀c ∈ C , Vc = {X c
i | i ∈ Z,Lc ≤ i < Uc }

One way to visualize this set of variables is like a matrix, where each column corre-
sponds to a command, and each row to a position in the pattern (see Figure A.1). The
goal of the ILP formulation is to mark exactly one variable in each column as true. After
‘graying out’ the options we know are invalid based on the lower and upper bounds, all
remaining variables in a command column are contained in theVc set of that command.

The ILP constraints and objective function are constructed as linear equations based
on these variables. For ease of notation, we de�ne a function pos (Vc), which returns
a sub-expression representing the position of a command c in the pattern. The pos ()

function works based on the assumption that only one of the variables in each setVc can

180 ilp problem formulation

Figure A.1: Visualization of the ILP variables in matrix form. Gray boxes represent variables that
cannot be true in a valid solution of the problem.

be true in a valid solution. In Section A.4, we show how this is enforced with additional
constraints:

pos (Vc) =
∑

X c
i ∈Vc

i ·X c
i i ∈ Z,Lc ≤ i < Uc

a.3 determining lower and upper bounds

It is essential to bound the number of possible positions for each command to reasonable
ranges to limit the problem size, and with that, the computation time of the ILP solver.
Figure A.2 shows how the bounds of a command are determined. Based on Algorithm 2,
an upper bound Nheuristic on the optimal pattern length can be found. The ILP problem
schedules two incarnations of the pattern (one complete, one partial consisting only of
ACT commands), and hence the range of command positions that has to be considered
is twice as large as Nheuristic .

We further limit the range on a per-command basis by considering which other com-
mands have to precede it based on the pattern generation rules and the SDRAM state ma-
chine, and which commands directed towards the same bank still need to be scheduled
after it. Lower bounds on how many cycles it takes to schedule a series of commands are
determined based on a very simplistic As Soon As Possible (ASAP) scheduler. Considering
just two commands at a time, it sums the SDRAM timing constraints between each com-
mand pair, until it reaches the end of the series. The scheduler fails to spot constraints
between commands separated by other commands, and is hence too optimistic, but it
is su�cient to quickly �nd a lower bound on the duration of a sub-schedule. Note that

ilp problem formulation 181

Figure A.2: Finding lower and upper bounds on the position of a command.

these bounds do not have to be tight for correctness of the solution, although the tighter
they are, the smaller the computation time of the solver will be.

Tighter lower and upper bounds could be potentially be found by improving this
ASAP scheduler, and by using Nheuristic as a secondary reference point for commands
that necessarily happen in the �rst incarnation of the pattern, further reducing the
computation time of the solver. However, the bounds that are currently derived limit
the problem size su�ciently such that the largest problems we consider (32 bursts to
8 di�erent banks) are solved within an hour.

a.4 constraints

This section reiterates the list of constraints from Section 4.2.4, and describes how each
of them translates into an ILP constraint.

1. An ACT to bank 0 is scheduled in cycle 0.

X c
0 = 1 | c = (ACT, 0, 0)

2. At most one command may be scheduled in each cycle. Precharge commands are ex-
empted from this rule, since they are executed using auto precharge �ags and do
not require a slot in the schedule:

∀i ∈ Z,
∑

X c
i ∈Vc

X c
i ≤ 1 | c ∈ C , c < CPRE

3. Each command is scheduled exactly once:

∀c ∈ C ,∀i ∈ Z,
∑

X c
i ∈Vc

X c
i = 1

Based on these constraints, all setsVc are Special Ordered Sets (SOS) of type 1 [17], i.e.
a set of variables of which at most one can take the value true. These constraints are
explicitly described as an SOS in the ILP formulation, since this helps guide the ILP
solver in �nding a solution more quickly. Each variable in such a set needs a relative
weight that represents its costs. We assign weights to the elements according to the
position (i) within the pattern the element corresponds to.

182 ilp problem formulation

4. Two of the constraints in Section 4.2.4 are related to timing constraints:
a) The relative delays between any pair of commands is at least as large as prescribed

by the timing constraints of the SDRAM.

b) There are at most four ACT commands in each FAW window.

The ILP constraints required to implement 4a can be split in two categories: those
for which the ordering of the commands involved is irrelevant for the timing con-
straint, and those for which the order matters. Starting with the �rst category, the
possible command combinations are limited to: 1) two activate, 2) two read or 3)
two write commands. Since commands for the same bank are required to happen
in a �xed order according to the bank state machine (i.e. activate, then read/write
bursts, followed by a precharge), we discard constraints that only apply when the
associated commands target the same bank for now, and treat them later when we
enforce the command ordering at Constraint 5.
This only leaves the three previously mentioned pairs, directed at di�erent banks
and potentially di�erent bank groups, i.e. six di�erent timing constraints. Each tim-
ing constraint related to (pairs of) commands of the same type can be interpreted as
a window in which only a speci�c number K of those commands may be scheduled.
We use this interpretation to capture both the FAW constraint (where K = 4) and
the narrow set of order-agnostic constraints (K = 1) within the same ILP constraint
template. The window sizes are equal to the values in the constraint Table 4.1 and
4.2.
First, we deal with timing constraints for which the bank group to which the com-
mand is sent does not in�uence the constraint value. For all considered memory
types except DDR4, no constraints care about the bank group. For DDR4, in the con-
straints with an _x post�x, _x is substituted by _L, since the long constraints have
to be satis�ed across all bank groups. The values of the timing constraints between
two commands of type tp, tp ∈ {ACT, RD, WR}, are denoted as TCtp. Each TCtp is an
integer number of clock cycles, TCtp ∈ Z.
A constraint has to be added for all windows of size TCtp in the valid command
range, i.e. between 0 and 2 · Nheuristic :

∀j ∈ {0..2 · Nheuristic − 1} ,∀ tp ∈ {ACT, RD, WR},∑
X c
i ∈Vc

X c
i ≤ K | c ∈ C , ct = tp, j ≤ i < j +TCtp (A.1)

For DDR4, certain timing constraints only need to be satis�ed when the associated
commands target the same bank group. We refer to them as TC ′

tp
, and to the total

number of bank groups as nbд. We again iterate over all possible windows, but addi-

ilp problem formulation 183

Figure A.3: Visualization of window-based constraints. Only the white boxes in each window are
included in the sum in Equation (A.2).

tionally limit the commands we include in the ILP constraints by their bank group,
which is given by their bank id cb modulo nbд:

∀ j ∈ {0..2 · Nheuristic − 1},∀ bд ∈ {0..nbд − 1},∀ tp ∈ {ACT, RD, WR},∑
X c
i ∈Vc

X c
i ≤ K | c ∈ C , ct = tp, mod (cb ,nbд) = bд, j ≤ i < j +TC ′

tp
(A.2)

In the implementation, constraints that are trivially satis�ed because the number of
selected X c

i variables in the equation is smaller than K are not added to the problem
description. Figure A.2 shows an example of the variables that are selected for each
window based on Equation (A.1) or Equation (A.2).

5. The commands for each bank are executed in the proper order, i.e. start with an activate,

followed by BC read or write commands, followed by a precharge, followed by the acti-

vate in the second pattern instance. For each pair of commands c0 and c1 ∈ C , which
are constrained by a timing constraint T ∈ Z, and for which the required order is
known, such that pos (

Vc1
)
> pos

(
Vc0

) in a valid solution of the ILP problem, we add
the following ILP constraints:

pos
(
Vc1

) −pos (
Vc0

) ≥ T (A.3)

6. The relative order of commands across pattern incarnations is constrained by the
following rules:
a) Commands for the second instance of the pattern cannot be scheduled before the

extra activate to bank 0. This constraint only refers to the activate commands in
the second pattern incarnation. They are dealt with in Constraint 7.

184 ilp problem formulation

b) Commands for the �rst instance need to be scheduled before the extra activate to

bank 0.
Since Constraint 5 enforces commands per bank to be ordered, it is su�cient to en-
force that the last read or write command to each bank happens before the extra
activate command to bank 0. Because Constraint 5 already asserts this property for
bank 0, we further limit the set of commands by only including read or writes to
banks > 0. We then simply use the template given by Equation (A.3) on all com-
mands �tting these criteria, substituting them for c1, and using c0 = (ACT, 0, 1) and
T = 0.

7. The �rst and second incarnation of the pattern should be the same. A set of constraints
enforces that the distance between the extra activate command to a bank larger than
0, pos

(
V(ACT,cb ,1)

)
, and the start of the second pattern incarnation pos

(
V(ACT,0,1)

)
, is

equal to the distance between the �rst activate command to that bank (V(ACT,cb ,0))
and cycle 0.

∀ cb ∈ {1...BI − 1}, pos
(
V(ACT,cb ,1)

)
− pos

(
V(ACT,0,1)

)
= pos

(
V(ACT,cb ,0)

)
− 0

Note that this constraint is stronger than Constraint 6 since pos
(
V(ACT,cb ,0)

)
is guar-

anteed to be greater than 0, and hence it forces all (remaining) commands of the
second instance of the pattern to happen after the second activate to bank 0.

a.5 objective function

The objective of the ILP formulation is to minimize the pattern length. This can be
achieved by minimizing pos

(
V(ACT,0,1)

)
. There may be more than one possible optimal

pattern; all commands in the pattern could be postponed as long as the pattern length is
not in�uenced by it. To eliminate some equivalent optimal solutions, we add an extra el-
ement to the objective function which attempts to minimize the unnecessary postpone-
ment of commands by adding the position of the last precharge in the pattern to the cost
function. This makes it easier to visually compare the output to that of Algorithm 2. A
helper variable ˆPRE is introduced to represent the position of the last precharge in the
pattern. We force it to be greater than or equal to the position of the last precharge in
the pattern:

∀c ∈ CPRE, ˆPRE −pos (Vc) ≥ 0

A su�ciently large scaling factor s is applied to make sure the pattern length remains
the primary optimization goal. The optimization goal is then set to:

minimize s · pos
(
V(ACT,0,1)

)
+ ˆPRE

B
M E M O R Y S P E C I F I C AT I O N S

The following three tables describe the properties of the memories that are used in this
thesis. All the devices we used are made by Micron. The �nal row in Table B.1 refers
to the SO-DIMM of the ML605 development board. The associated timings in Table B.2
for this memory are derived based on a 400 MHz clock. The same timings are also used
in experiments when the memory is operates at the (lower) 300 MHz frequency in Sec-
tion 4.4.3.2, even though some of them could technically be reduced then.

Table B.1: Memory device datasheets.

Name Part number Datasheet

LPDDR-400 MT46H64M16LF -5 t68m_auto_lpddr.pdf - Rev. E 2 14 EN.pdf
LPDDR-266 MT46H64M16LF -75 t68m_auto_lpddr.pdf - Rev. E 2 14 EN.pdf
DDR2-800 MT47H64M16 -25E 1GbDDR2.pdf – Rev. Z 03 14 EN.pdf
DDR2-1066 MT47H64M16 -178E 1GbDDR2.pdf – Rev. Z 03 14 EN.pdf
DDR3-1066 MT41J64M16 -178E 1Gb_DDR3_SDRAM.pdf - Rev. L 03 13 EN.pdf
DDR3L-1600 MT41K256M16 -125 4Gb_DDR3L.pdf - Rev. I 9 13 EN.pdf
LPDDR2-667 MT42L64M32D1 -3 2gb_mobile_lpddr2_s4_g69a – Rev. N 3 12 EN.pdf
LPDDR2-1066 MT42L64M32D1 -18 2gb_mobile_lpddr2_s4_g69a – Rev. N 3 12 EN.pdf
LPDDR3-1333 EDF8132A1MC -15 178b_30nm_mobile_lpddr3 – Rev. A 3 14 EN.pdf
LPDDR3-1600 EDF8132A1MC -125 178b_30nm_mobile_lpddr3 – Rev. A 3 14 EN.pdf
DDR4-1866 MT40A512M8 -107E 4gb_ddr4_dram - Rev. B 10/14 EN.pdf
DDR4-2400 MT40A512M8 -083E 4gb_ddr4_dram - Rev. B 10/14 EN.pdf
ML605 SO-DIMM MT4JSF6464H – 512MB (1G1) JSF4C64_64x64HY.fm - Rev. B 3/08 EN.pdf
(DDR3-1066)

185

186 memory specifications

Table
B.2:M

em
ory

device
tim

ingsin
clock

cycles.ForD
D

R4,the
shortand

long
tim

ingsare
show

n
asa

pair(
s
h
o
r
t,
l
o
n
g).

N
am

e
ccd

cl
cw

l
dqss

dqsck
faw

ras
rc

rcd
refi

rfc
rp

rl
rrd

rtp
w

l
w

r
w

tr

LPD
D

R-266
-

3
-

1
-

1
6

9
3

1040
10

3
-

2
-

-
2

1
LPD

D
R-400

-
3

-
1

-
1

8
11

3
1560

15
3

-
2

-
-

3
2

D
D

R2-800
-

5
-

-
-

18
16

22
5

3120
51

5
-

4
3

4
6

3
D

D
R2-1066

-
7

-
-

-
24

22
29

7
4160

68
7

-
6

4
6

8
4

D
D

R3-1066
-

7
6

-
-

27
20

27
7

4160
59

7
-

6
4

-
8

4
D

D
R3L-1600

-
11

8
-

-
40

28
39

11
6240

208
11

-
6

6
-

12
6

LPD
D

R2-667
-

-
-

-
2

17
14

20
6

1300
44

6
5

4
3

2
5

3
LPD

D
R2-1066

-
-

-
-

3
27

23
32

10
2080

70
10

8
6

4
4

8
4

LPD
D

R3-1333
-

-
-

-
4

34
28

40
12

2600
87

12
10

7
5

6
10

5
LPD

D
R3-1600

-
-

-
-

5
40

34
48

15
3120

104
15

12
8

6
6

12
6

D
D

R4-1866
(4,5)

13
10

-
-

22
32

45
13

7283
243

13
-

(4,5)
7

-
14

(3,7)
D

D
R4-2400

(4,6)
16

12
-

-
26

39
55

16
9364

313
16

-
(4,6)

9
-

18
(3,9)

M
L605

-
6

5
-

-
20

15
21

6
3120

44
6

-
4

4
-

6
4

memory specifications 187

Table B.3: IDD [mA] / VDD [V] parameters for DRAMPower.

Name LPDDR LPDDR DDR2 DDR2 DDR3 DDR3L LPDDR2 LPDDR2 LPDDR3 LPDDR3 DDR4 DDR4
266 400 800 1066 1066 1600 667 1066 1333 1600 1866 2400

idd0 70 95 80 90 75 66 20 20 8 8 58 64
idd02 0 0 0 0 0 0 53 71 63 63 4 4
idd2n 12 18 30 36 35 32 1.7 1.7 0.8 0.8 44 50

idd2n2 0 0 0 0 0 0 21 22 28 32 0 0
idd2p0 0.6 0.6 7 7 12 18 0.5 0.5 0.8 0.8 30 32

idd2p02 0 0 0 0 0 0 1.7 1.7 2 2 0 0
idd2p1 0.6 0.6 7 7 25 32 0.5 0.5 0.8 0.8 30 32

idd2p12 0 0 0 0 0 0 1.7 1.7 2 2 0 0
idd3n 16 20 35 42 45 47 1.2 1.2 2 2 61 67

idd3n2 0 0 0 0 0 0 29 30 36 40 0 0
idd3p0 3.6 3.6 10 10 30 38 1.2 1.2 1.4 1.4 44 44

idd3p02 0 0 0 0 0 0 4.12 4.12 11.2 11.2 0 0
idd3p1 3.6 3.6 20 23 30 38 1.2 1.2 1.4 1.4 44 44

idd3p12 0 0 0 0 0 0 4.12 4.12 11.2 11.2 0 0
idd4r 110 135 150 180 140 235 5 5 2 2 140 160

idd4r2 0 0 0 0 0 0 206 226 203 230 0 0
idd4w 110 135 160 185 155 171 10 10 2 2 156 196

idd4w2 0 0 0 0 0 0 203 213 213 243 0 0
idd5 100 100 150 160 160 235 15 15 28 28 190 192

idd52 0 0 0 0 0 0 136 136 153 153 0 0
idd6 0.45 0.45 7 7 8 20 1.2 1.2 0.460 0.460 20 20

idd62 0 0 0 0 0 0 2.6 2.6 1.780 1.780 0 0
vdd 1.8 1.8 1.8 1.8 1.5 1.35 1.8 1.8 1.8 1.8 1.2 1.2

vdd2 0 0 0 0 0 0 1.2 1.2 1.2 1.2 2.5 2.5

C
C O D E L I S T I N G S

Algorithm 5 Pattern generation helper functions
1: function actCycles(P)
2: // Returns a set of cycles at which ACT commands happen in P
3: return

{ cmd.cc | cmd.type == ACT ∀ cmd ∈ P }
4: function remainingFawCyclesAt(i, P)
5: actCycles := actCycles(P)
6: if |actCycles| >= 4 then
7: // The current FAW started at the 4’th biggest ACT cycle.
8: return max(0, FAW − (i−4thBiggest(actCycles)))
9: return 0

10: function fawSatisfiedAcross(pattLen, P)
11: // Returns true if the FAW constraint is satis�ed across multiple
12: // iterations of P. FAW is a constant in clock cycles, its value depends
13: // on the memory device.
14: if FAW == 0 or pattLen == 0 then
15: return true
16: if FAW < pattLen then
17: // Check the FAW windows that span the end of the pattern and
18: // the start of its next incarnation.
19: lbRng := { pattLen - FAW, pattLen }
20: else
21: // Check 1 single FAW window, �lled with a wrapping pattern.
22: lbRng := { 0 }
23: actCycles := actCycles(P)
24: for all lb ∈ lbRng do
25: if actsInWindow(pattLen, lb, lb + FAW, actCycles) > 4 then
26: return false
27: return true

188

code listings 189

Algorithm 6 Pattern generation helper functions, cont.
1: function actsInWindow(wrapAt, lb, ub, actCycles)
2: // Return the number of act commands in the window [lb .. up].
3: // The pattern repeats itself every wrapAt cycles.
4: nAct := 0
5: for all i ∈ { lb...ub } do
6: for all actCycle ∈ actCycles do
7: if actCycle == (i % wrapAt) then
8: nAct := nAct + 1
9: return nAct

Algorithm 7 Conservative open-page functions
1: function getFirstPre(P)
2: cc :=∞
3: �rst :=None
4: for all cmd ∈ P do
5: if (cmd.autoPrechargeFlag or cmd.type == PRE) and cmd.cc < cc then
6: cc := cmd.cc
7: �rst := cmd
8: return �rst

D
L I S T O F A C R O N Y M S

ACT Activate . 16
AG Access granularity . 26
ANP Activate, No Precharge mode . 107
AP Activate and Precharge mode . 107
ASIC Application-Speci�c Integrated Circuit . 48
AXI4 Advanced eXtensible Interface 4 . 31
BC Burst Count . 25
BI Bank Interleaving . 25
BGI Bank Group Interleaving . 70
BL Burst Length . 16
BRAM Block RAM . 47
BS Bank Scheduling . 62
BS BI Bank Scheduling, variable BI . 62
BS PBGI Bank Scheduling with Pairwise Bank-Group Interleaving 65
CCSP Credit-Controlled Static-Priority . 32
CDC Clock Domain Crossing . 83
CompSOC Composable System-on-Chip . 30
COTS Commercial-O�-the-Shelf . 20
DDR Double Data Rate . 15
DFI DDR PHY Interface . 35
DIMM Dual Inline Memory Module . 21
DMA Direct Memory Access . 98
DRAM Dynamic Random-Access Memory . 2
DTL Device Transaction Layer . 31
FAW Four Activate Window . 56
FIFO First-in First-out . 51
FPGA Field Programmable Gate Array . 30

190

list of acronyms 191

FR-FCFS First-Ready First-Come First-Served . 147
FSL Fast Simplex Link . 83
IDD Current �ow in power supply lines. 77
ILP Integer Linear Programming . 11
IP Intellectual Property . 35
IW Interface Width . 20
JEDEC Joint Electron Device Engineering Council 19
LR Latency-rate . 23
LSB Least signi�cant Bits . 70
LUT Look-Up Table . 33
MMIO Memory Mapped I/O . 82
MPMC Multi-Port Memory Controller . 49
MTL Memory Transaction Layer . 37
NoC Network-on-Chip . 82
NAP No Activate, Precharge mode . 107
NANP No Activate, No Precharge mode . 107
NOP No operation . 16
NP No Precharge mode . 109
PHY Physical interface . 22
PLB Processor Local Bus . 49
PLL Phase Locked Loop . 83
PRE Precharge . 16
RAM Random-Access Memory . 1
RD Read . 16
REF Refresh . 16
RTW Read-to-write (pattern) . 24
SDRAM Synchronous Dynamic Random-Access Memory 1
SI Scheduling Interval . 24
SRAM Static Random-Access Memory . 15
SRL Shift-Register Lookup . 49
SoC System-on-Chip . 2
SO-DIMM Small Outline DIMM . 21
SOS Special Ordered Sets . 181
TDM Time-Division Multiplexing . 13
VDD Voltage on power supply lines . 187
VHDL VHSIC Hardware Description Language . 47

192 list of acronyms

WCET Worst-Case Execution Time . 27
WCRT Worst-Case Response Time . 24
WCSI Worst-Case Scheduling Interval . 43
WCIAT Worst-Case Inter-Atom Time . 43
WR Write . 16
WTR Write-to-read (pattern) . 24

E
L I S T O F S Y M B O L S

general

bwc Worst-case bandwidth in MB/s or GB/s . 36
b
peak

Peak bandwidth in MB/s or GB/s . 38
e
ref

Refresh e�ciency (0 < eref ≤ 1) . 27
e Memory e�ciency (0 < e ≤ 1) . 38
f Clock frequency in MHz . 38
pwc max(pr

wc
,pw

wc
) in mW . 91

ρ LR (allocated) rate . 28
t time . 28
t
p
r

Predictable read pattern length in #cycles . 24
t
p
rtw

Predictable read-to-write pattern length in #cycles 24
t
p
ref

Predictable refresh pattern length in #cycles 24
t
p
w

Predictable write pattern length in #cycles . 24
t
p
wtr

Predictable write-to-read pattern length in #cycles 24
Θ LR service latency . 28

in pattern figures

aP Cycle where an auto-precharge is executed. 58
A Activate (command) . 58
R Read (command) . 58
W Write (command) . 58

chapter 3

c Client . 44
δ
f

be
Pipeline latency of back-end on request path in #cycles 39

193

194 list of symbols

δ
f

PHY Pipeline latency of PHY on request path in #cycles 39
δb
be

Pipeline latency of back-end on response path in #cycles 39
δbPHY Pipeline latency of PHY on response path in #cycles 39
δ f Pipeline latency of back-end and PHY on request path in #cycles 39
δb Pipeline latency of back-end and PHY on response path in #cycles 39
δ
fe

Pipeline latency of front-end on combined request / response path in
#cycles . 45

∆r #cycles from �rst read pattern command on the SDRAM command bus and
�rst data on the SDRAM data bus . 39

∆w #cycles from �rst write pattern command on the SDRAM command bus and
�rst data on the SDRAM data bus . 39

∆′
r

#cycles from �rst read pattern command on the SDRAM command bus and
the �rst data handshakes on the back-end interface 41

∆′
w

#cycles from �rst write pattern command on the SDRAM command bus and
the �rst data handshakes on the back-end interface 41

m0 −m3 Address decoder masks . 34
ρ
be

Rate of back-end LR server in MB/s . 37
ρc
arb

Rate of arbiter LR server for client c as a fraction of the total server
bandwidth

(
0 ≤ ρc

arb
≤ 1

)
. 44

ρc
fe

Rate of front-end LR server for client c in MB/s 45
ρc
ctrl

Rate of combined front-end / back-end LR server for client c in MB/s . . 46
s0 − s3 Address decoder shift amounts . 34
θr #cycles until service for a read atom that starts a busy period 41
θw #cycles until service for a write atom that starts a busy period 41
Θ
be

Service latency of back-end LR server in #cycles 37
Θc
arb

Service latency of arbiter LR server for client c in #scheduling slots 44
Θc
fe

Service latency of front-end LR server for client c in #cycles 45
Θc
ctrl

Service latency of combined front-end / back-end LR server for client c in
#cycles . 46

chapter 4

d (cmda , cmdb) Function that returns the minimum relative delay between cmda and
cmdb in #cycles . 56

epc Conversion e�ciency from predictable to composable patterns
(0 < epc ≤ 1) . 76

list of symbols 195

S
j
k (i) Function that returns the i’th timestamp (

i ∈ [1..100]) in run
j ∈ [1..122] of type k ∈ [1, 2, 3, 4] of the experiment 85

s
j
k (i) Function that returns the relative timestamp S jk (i) − S1

4 (i) 86
tc
r

Composable read pattern length in #cycles 75
tc
w

Composable write pattern length in #cycles 75

chapter 5

b ′ Bandwidth delivered by a worst-case power trace in MB/s or GB/s 92
bmeasured

r Measured bandwidth when continuously reading in MB/s 101
bmeasured

w Measured bandwidth when continuously writing in MB/s 101
bmeasured

rw
Measured bandwidth when continuously alternating read and write
requests in MB/s . 101

p′ Power in mW of a worst-case bandwidth trace 92
pr
wc

Average power in mW used when continuously serving read requests . . . 91
pw
wc

Average power in mW used when continuously serving write requests . . 91

chapter 6

A #cycles added to time-window by Algorithm 4 113
PS Pattern size in #cycles . 113
WS Time-window size in #cycles after applying Algorithm 4 113

chapter 7

c Client . 44
c1, c2 Two independent and distinct allocations for a client. 135
(Θ1, ρ1) LR parameters corresponding to allocation c1 135
(Θ2 , ρ2) LR parameters corresponding to allocation c2 135
(Θr , ρr) LR parameters corresponding to the client’s requirements 135
ϕc Number of slots

(
∈ N+0

)
allocated to client c 131

ϕ1 Number of slots
(
∈ N+0

)
allocated to client c in allocation c1 139

ϕ2 Number of slots
(
∈ N+0

)
allocated to client c in allocation c2 139

ϕ
ol

Number of overlapping slots
(
∈ N+0

)
across c1 and c2 138

ρc
tdm

Rate of TDM arbiter LR server for client c as a fraction of the total server
bandwidth

(
0 ≤ ρc

tdm
≤ 1

)
. 131

196 list of symbols

ρ
ol

Rate corresponding to the overlapping slots across c1 and c2 as a fraction of
the total server bandwidth (0 ≤ ρol ≤ 1) . 138

Θc
tdm

Service latency of TDM arbiter LR server for client c in #scheduling
slots . 132

Θ′ max(Θ1,Θ2) . 136
τ Start of a busy period . 134
τ ′ End of a busy period . 134
tA The time at which allocation c2 is fully enabled in the slot table 135
tR The time at which allocation c1 is fully disabled in the slot table 135
T Length of the slot table in a TDM arbiter

(
∈ N+>0

)
. 131

wr (t) Required LR service bound of the client . 135
wд (t) LR service guarantee given to the client . 136

appendix a

c A command 3-tuple (ct , cb , cn) . 179
ct Command type, ct ∈ {ACT, RD, WR, PRE} . 179
cb Command bank, cb ∈ {0...BI − 1} . 179
cn Command incarnation, cn ∈ {0, 1} . 179
CACT Set of activate commands . 179
CPRE Set of (auto) precharge commands . 179
Crw Set of read / write commands . 179
C Set of all commands . 179
K Number of commands of a speci�c type allowed within a window 182
Lc Lower bound on the position of command c 179
nbд The number of bank groups in the considered SDRAM device. 182
N
heuristic

Upper bound on the pattern length based on Algorithm 2 180
ˆPRE ILP variable representing the position of the last precharge in the pattern 184

pos (Vc) Returns a sub-expression representing the position of a command c in the
pattern . 180

s Scaling factor to make pattern length the primary optimization goal . . . 184
TCtp The value of the timing constraints in #cycles between two commands of

type tp, tp ∈ {ACT, RD, WR} . 182
Uc Upper bound on the position of command c 179
Vc Set of boolean variables in the ILP related to command c 179
X c
i Boolean variable. true if command c is scheduled in cycle i , false

otherwise . 179

F
W O R L D W I D E D R A M P R O D U C T I O N

Jan 2015 Feb 2015 Mar 2015 Apr 2015 May 2015 Jun 2015 Jul 2015 Aug 2015
Month

150

200

250

300

350

Ba
nd

w
id
th

[G
B/
s]

DRAM production
AMS-IX ISP tra�c totals (In)

Figure F.1: Worldwide DRAM production according to DRAMExchange, [42], plotted against the
tra�c �owing into the Amsterdam Internet Exchange (AMS-IX) in the same month [11].

197

G
A B O U T T H E A U T H O R

Sven Goossens was born in Wouw, The Netherlands, on November 19, 1986. He received
a B.Sc. in Electrical Engineering from the Eindhoven University of Technology in 2008,
and a M.Sc. in Embedded Systems from the same university in 2010. The focus of his
Master’s thesis was the development of a hardware accelerator for digital front-end
processing on an SIMD processor in collaboration with ST-Ericsson (Eindhoven), and
the project resulted in a patent. He worked as a researcher in the Electronic Systems
group at Eindhoven University of Technology until 2011, and then started as a Ph.D.
student in the same group. He did a 5-month internship at Sonics Inc. (Milpitas, CA,
USA) in 2013, where he worked on a con�gurable SystemC-based SDRAM controller
model. His research interests include mixed time-criticality systems, composability and
SDRAM controllers.

198

L I S T O F P U B L I C AT I O N S

[1] S. Goossens, T. Kouters, B. Akesson, and K. Goossens. Memory-map selection for
�rm real-time SDRAM controllers. In Design, Automation & Test in Europe Conf. &

Exhibition (DATE), pages 828–831, 2012.

[2] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for mixed
time-criticality memory controllers. In Design, Automation & Test in Europe Conf.

& Exhibition (DATE), pages 525–530, 2013.

[3] S. Goossens, B. Akesson, M. Koedam, A. Beyranvand Nejad, A. Nelson, and
K. Goossens. The CompSOC design �ow for virtual execution platforms. In Proc. of

the 10th FPGAworld Conf., pages 7:1–7:6, 2013.

[4] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A recon�gurable real-time
SDRAM controller for mixed time-criticality systems. In Hardware/Software Code-

sign and System Synthesis (CODES+ISSS), 2013 Int. Conf. on, pages 1–10, 2013.

[5] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens. Power/performance
trade-o�s in real-time SDRAM controllers. Computers, IEEE Transactions on, PP(99):
(99):1–1, 2015.

[6] K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam,
Y. Li, D. Mirzoyan, A. Molnos, A. Beyranvand Nejad, A. Nelson, and S. Sinha. Virtual
execution platforms for mixed-time-criticality systems: The CompSOC architecture
and design �ow. SIGBED Rev., 10(3):23–34, 2013.

[7] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and
K. Goossens. Exploiting expendable process-margins in DRAMs for run-time per-
formance optimization. In Design, Automation & Test in Europe Conf. & Exhibition

(DATE), pages 1–6, 2014.

[8] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside,
K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan,
E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Pu�tsch, P. Puschner, A. Rocha, C. Silva,
J. Sparsø, and A. Tocchi. T-CREST: Time-predictable multi-core architecture for em-
bedded systems. Journal of Systems Architecture, (0):–, 2015.

[9] C. Weis, M. Jung, P. Ehses, C. Santos, P. Vivet, S. Goossens, M. Koedam, and N. Wehn.
Retention time measurements and modelling of bit error rates of wide I/O DRAM in
MPSOCs. In Design, Automation & Test in Europe Conf. & Exhibition (DATE), pages
495–500, 2015.

199

	Title
	Colophon
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The SoC - SDRAM interface
	1.2 SDRAM Controllers
	1.3 Cramming more applications onto (power-constrained) SoCs
	1.4 Performance
	1.5 Requirements for SDRAM controllers in modern SoCs
	1.6 Problem statement and contributions
	1.7 Thesis outline

	2 Background and terminology
	2.1 SDRAM
	2.2 Pattern-based SDRAM controller
	2.3 Burst grouping
	2.4 Refresh
	2.5 Latency-rate servers

	3 Reconfigurable real-time memory controller architecture
	3.1 Architecture template
	3.2 Worst-case performance analysis
	3.3 CompSOC controller instance
	3.4 Evaluation
	3.5 Conclusion

	4 Memory patterns
	4.1 Generalized command scheduling rules
	4.2 Predictable patterns
	4.3 Composable pattern conversion
	4.4 Evaluation
	4.5 Conclusion

	5 Power/Performance Trade-offs
	5.1 Worst-case bandwidth, energy, and power metrics
	5.2 Worst-case bandwidth / power trends
	5.3 Worst-case response time of an atom
	5.4 Evaluation
	5.5 Conclusion

	6 Conservative open-page policy
	6.1 Conservative open-page policy
	6.2 Impact on pattern-based controller
	6.3 Using explicit precharge commands
	6.4 Evaluation
	6.5 Conclusion

	7 Reconfiguration
	7.1 Reconfiguration options
	7.2 Performance guarantees during a use-case switch
	7.3 Delay block / arbiter reconfiguration with persistent clients
	7.4 Reconfigurable TDM arbiter
	7.5 Evaluation
	7.6 Conclusion

	8 Related work
	8.1 SDRAM Controllers
	8.2 SDRAM Performance overviews
	8.3 Reconfiguration

	9 Conclusions and future work
	9.1 Conclusions
	9.2 Future work

	Bibliography
	A ILP problem formulation
	A.1 High-level goal
	A.2 Variables
	A.3 Determining lower and upper bounds
	A.4 Constraints
	A.5 Objective function

	B Memory specifications
	C Code listings
	D List of Acronyms
	E List of Symbols
	F Worldwide DRAM production
	G About the Author
	List of Publications

