
Embedded Systems

Den Dolech 2,
5600 MB Eindhoven

The Netherlands
http://w3.win.tue.nl/en/

2009

MSc THESIS

Memory Pattern Generation based on

Specification and Environment

Williston Sterchi Hayes Jr.

Abstract

Faculty of Mathematics and Computer Science

ES-MS-2009-0614000

Guaranteeing hard real-time requirements in systems with multiple
requestors accessing a single memory is a difficult task due to vari-
able access times of SDRAMs. This problem has been solved with
the use of the Predator memory controller, which is able to put a
bound on worst-case latency and worst-case bandwidth. This con-
troller uses precomputed sequences of SDRAM commands, called
memory access patterns, in order to interact with SDRAMs. How-
ever, these patterns are difficult to construct due the complexity of
SDRAM timing parameters and constraints. Thus, three heuristic-
based pattern generation algorithms are developed that explore the
trade-offs between run time and bandwidth offered. In the end, the
approach selected provides adequate bandwidth while still offering a
low run time. This pattern generator has been integrated into the
Predator memory controller design flow.

Memory Pattern Generation based on

Specification and Environment

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Williston Sterchi Hayes Jr.

born in San Francisco, The United States of America

Embedded Systems
Department of Computer Science and Engineering
Faculty of Mathematics and Computer Science
Eindhoven University of Technology

Memory Pattern Generation based on

Specification and Environment

by Williston Sterchi Hayes Jr.

Abstract

G
uaranteeing hard real-time requirements in systems with multiple requestors accessing a
single memory is a difficult task due to variable access times of SDRAMs. This problem has
been solved with the use of the Predator memory controller, which is able to put a bound

on worst-case latency and worst-case bandwidth. This controller uses precomputed sequences of
SDRAM commands, called memory access patterns, in order to interact with SDRAMs. However,
these patterns are difficult to construct due the complexity of SDRAM timing parameters and
constraints. Thus, three heuristic-based pattern generation algorithms are developed that explore
the trade-offs between run time and bandwidth offered. In the end, the approach selected provides
adequate bandwidth while still offering a low run time. This pattern generator has been integrated
into the Predator memory controller design flow.

Laboratory : Embedded Systems

Committee Members :

Advisor: Henk Corporaal, Electronic Systems, TU\e

Member: Benny Åkesson, Electronic Systems, TU\e

Member: Kees Goossens, SAI, NXP

i

ii

iii

iv

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Application Requirements . 1

1.2 Considered Systems - Platform . 2

1.3 Problem Statement . 3

1.4 Goal . 4

1.5 Contributions . 4

1.6 Outline . 4

2 SDRAM 7

2.1 Architecture . 7

2.2 Commands . 8

2.3 Timing Constraints . 10

3 Memory Efficiency 13

3.1 Peak Bandwidth . 13

3.2 Data Efficiency . 13

3.3 Bank Efficiency . 14

3.4 Switching Efficiency . 15

3.5 Refresh Efficiency . 15

3.6 Net Bandwidth . 15

4 Memory Controllers 17

4.1 Arbiter . 17

4.2 Memory Mapping . 18

4.3 Command Generator . 21

4.4 Types of Memory Controllers . 21

5 Memory Patterns 25

5.1 Pattern Overview . 25

5.2 Types of Patterns . 26

5.3 Pattern Dominance . 27

5.4 Efficiency Calculations . 29

5.5 Latency Calculation . 31

5.6 Optimality . 32

v

6 Algorithm Approaches 35
6.1 Pattern Generation Design Decisions . 35
6.2 Branch and Bound . 39
6.3 As Soon As Possible Scheduling . 43
6.4 Bank Scheduling . 45
6.5 Results . 46

7 Algorithm Context 49
7.1 Tooling Flow Overview . 49
7.2 Integration of Pattern Generator . 51
7.3 Non-allocated Bandwidth Calculations . 54
7.4 Experimental Results . 55

8 Conclusion 61

9 Future Work 63
9.1 3D Stacking . 63
9.2 Optimal Pattern Generation . 63
9.3 Low Power Considerations . 63
9.4 Future SDRAM Iterations . 64

Bibliography 65

A List of relevant DDR timing constraints and parameters 67

B Glossary 69

C Latency Equation Derivations 71

D Requestor Specification 73

E DDR Memory Specification 75

vi

List of Figures

1.1 General overview of the considered system. 2

2.1 SDRAM Bank Architecture . 8

2.2 SDRAM Activate and Precharge Loop. 9

2.3 Example of a command sequence. 9

2.4 Example of tRRD , tRCD , BurstSize, and DataRate requirements and
parameters. 10

3.1 Visual representation of bank efficiency. Blank slots in the command bus
represent NOP commands. 14

4.1 Architecture of a memory controller. 17

4.2 Illustration of a continuous memory map. 18

4.3 Example of commands generated for a continuous memory map (top) and
an interleaving map (bottom). The data bus has been wrapped back onto
itself. 19

4.4 Illustration of an interleaving memory map 20

4.5 Illustration of best-case scenario when using a continuous memory map
(top) compared to an interleaving memory map (bottom) 21

4.6 Illustration of worst-case scenario when using a continuous memory map
(top) compared to an interleaving memory map (bottom) 21

4.7 Illustration showing reordering of commands to reduce data bus direction
changes. The top figure shows the requests in order, the bottom figure
shows the requests reordered. 22

5.1 Sequence of various patterns. 25

5.2 Read pattern for DDR2-400 SDRAM. Blank schedule slots indicate NOP
commands. 26

5.3 Write pattern for DDR2-400 SDRAM. 26

5.4 Switching patterns being used between read and write patterns. 27

5.5 Illustration of read dominance. 27

5.6 Illustration of write dominance. 28

5.7 Illustration of mix dominance. 28

5.8 Dominance scale viewed on a line. 29

6.1 Illustration of moving NOPs from back to front of pattern. 37

6.2 Example of command tree. 40

6.3 Flow diagram of the branch and bound algorithm. 41

6.4 Pseudo-code of sanity check optimization. 42

6.5 Number of valid patterns at BurstCount 2 for a DDR2-400 SDRAM device 43

6.6 Pseudo-code of ASAP algorithm . 44

6.7 Flowchart of the ASAP algorithm . 44

vii

6.8 Example of a pattern generated by the ASAP algorithm (top), and a
pattern generated by the branch and bound algorithm (bottom). 44

6.9 Pseudo-code of bank scheduling algorithm 45
6.10 Flow diagram of the bank scheduling algorithm 46
6.11 Comparison of net bandwidth guaranteed by algorithms for a DDR2-400

SDRAM. 47
6.12 Comparison of net bandwidth guaranteed by algorithms for a DDR2-800

SDRAM. 47
6.13 Comparison of net bandwidth guaranteed by algorithms for a DDR3-800

SDRAM. 48
6.14 Comparison of net bandwidth guaranteed by algorithms for a DDR3-1600

SDRAM. 48

7.1 Pseudo-code of integrated pattern generator. 52
7.2 Trade-off between edata and ebank. 53
7.3 Flow of integrated pattern generator . 53
7.4 Illustration of Predator architecture. 54
7.5 Comparison of fixed BurstCount generator and an iterating generator with

large request size. The memory specification used is DDR2-400. 57
7.6 Comparison of fixed BurstCount generator and an iterating generator with

large request size. The memory specification used is DDR2-400. 57
7.7 Comparison of fixed BurstCount generator and an iterating generator with

small request size. The memory specification used is DDR2-400. 58
7.8 Comparison of fixed BurstCount generator and an iterating generator with

small request size. The memory specification used is DDR2-400. 58
7.9 Average bandwidth over time for a DDR2-400 device by simulation. . . . 59
7.10 Average bandwidth over time for a DDR2-800 device by simulation. . . . 59
7.11 Average bandwidth over time for a DDR3-800 device by simulation. . . . 60
7.12 Average bandwidth over time for a DDR3-1600 device by simulation. . . . 60

viii

List of Tables

2.1 Typical characteristics of a DDR SDRAM device. 8
2.2 Comparison of timing constraints in nanoseconds and clock cycles for two

SDRAM devices. 10

4.1 Comparison of characteristics of different memory controllers. 23

7.1 Example of normalized bandwidth changing with BurstCount. 55
7.2 Values of load, request size, and latency requirement. 56

ix

x

Acknowledgements

This project has been offered through NXP Semiconductors with cooperation from the
Eindhoven University of Technology. I would like to thank Kees Goossens and Benny
Åkesson for allowing me to join their team in the System-On-Chip Architecture & In-
frastructure group (SAI). I am very grateful to Benny Åkesson for his excellent guidance
and help during the course of this project. Without him this project would not have
been possible. I am also grateful to Kees Goossens as he provided a lot of insight into
the project that allowed me to continually gain a new outlook on the thesis.

I would also like to thank Henk Corporaal for his valuable remarks and considerations
made on the project. He always provided an interesting perspective, and encouraged the
project’s movement.

Additionally, Ad Siereveld and Roelof Salters at NXP are held in gratitude for sharing
their deep knowledge of SDRAMs and SDRAM controllers with me. The information
received from them helped clarify many problems I encountered in this project.

I would like to thank all of my colleagues at NXP for the various discussions we held
and coffees we drank. Matteo Scordino, Ulf Winberg, Frank Ophelders, Dongrui She,
Getachew Teshome, Pim Ritzen, Anna Kosek, Tion Kusumo, Jing Jing, Fabio Pania,
and Adriano Sanches, you made this a great experience for me.

Williston Sterchi Hayes Jr.
Eindhoven, The Netherlands
August 31, 2009

xi

xii

Introduction 1
In this thesis we present a problem in the domain of real-time embedded systems that
utilize SDRAM devices. In Section 1.1, we introduce requirements that applications with
real-time requirements running on System-on-Chips (SoCs) have. This will be followed by
Section 1.2, where we discuss the platform considered for this thesis. Section 1.3 details
the problem of using SDRAM devices with the requirements specified in Section 1.1.
Section 1.4 presents our solution to the problem. This is followed by sections detailing
our contributions as well as the outline of this thesis.

1.1 Application Requirements

As transistors have gotten smaller due to advances in technology, now entire systems
can be implemented on a single chip [13]. These SoCs typically have multiple IP blocks,
and the gain offered by using SoCs is that the interconnect distance between IP blocks
is typically much smaller than that of a traditional system. These shorter interconnects
reduce time needed to transfer information from one IP block to another. Additionally,
these systems use less power, which is also of great importance to embedded systems
as power is a limited resource. We will now discuss the requirements of applications
running on SoCs.

Applications running on real-time systems are used in a variety of situations, with
each situation requiring different behavior. The first type of application requirements is
soft requirements, meaning that if a deadline is not met, there still might be some useful
information to be gained [5]. An example of an application with soft real-time require-
ments is an MPEG-2 decoder. This type of application would require good average-case
bandwidth. If frames are not fully processed in time then the picture may appear pix-
ilated or blocky. Yet, one can imagine that a viewer would still prefer to see a blurry
picture over no picture at all.

The second type of requirements is hard-real time requirements. Applications which
have hard real-time requirements cannot miss their deadlines under any circumstances
[10,16]. An example of a system with hard real-time requirements is an anti-lock braking
system found in automobiles. These systems require a low worst-case latency. If this
latency requirement is not met, then the automobile’s wheels may lock up resulting in
skidding, and loss of control of the vehicle.

Another aspect of applications running on SoCs is their latency requirements. Some
applications have very tight latency deadlines that must be respected, while other types
of applications have more lenient deadlines. Both must be accounted for.

In this thesis we focus on applications which have hard real-time requirements. Addi-
tionally, we assume that we know nothing about the traffic that is generated, except for
bandwidth and latency requirements. Finally, we state that we want to give guarantees

1

2 CHAPTER 1. INTRODUCTION

on worst-case latency and worst-case bandwidth that are analytically provable.

1.2 Considered Systems - Platform

This section details the system that is modeled. We have chosen to represent our system
as multiple processing elements utilizing a single memory controller. We define the
requesting service from these processing elements to the memory controller as requestors.
We consider the case where the memory controller is controlling a DDR-SDRAM [2]. The
entire overview can be seen in Figure 1.1.

The reason we represent our system as multiple processing elements using a single
memory controller is because this is often required in practical cases. Having multiple
memories is not a cost effective way to store data, because it increases power consumption
and may require more expensive packaging. Thus, sharing memory decreases chip real
estate and power usage, and results in a low cost-per-bit.

Memory Controller
Network
On
Chip

Processing

Processing

Processing

Element 1

Element 2

Element 3

DDR−SDRAM

Figure 1.1: General overview of the considered system.

1.2.1 Predictability

All SDRAMs are predictable in the sense that they have ranges of times in which data
is accessed, however, these ranges are not indicative of normal performance. We hope
to place bounds on bandwidth and latency such that we can prove the exact value and
make the value useful, i.e. the bounds we place are improved over the absolute worst-
case values listed in the specification. The reason why we are concerned about improving
worst-case values is that bandwidth is a shared, scarce resource, and has been proven to
be a main bottleneck in SoCs [6,12]. Thus, any improvement that can be determined in
the worst-case is very useful.

Definition 1.1 (Predictability) A predictable resource is one that has a known, use-

ful, worst-case bound.

The way a controller interacts with an SDRAM is by sending commands. These
commands take the form of a read command, a write command, and a few other auxiliary
commands. These read and write commands return a few words of data, the amount of
which depends on a memory parameter.

1.3. PROBLEM STATEMENT 3

The reason that placing bounds on latency and bandwidth is difficult is due to the
fact that SDRAMs have varying access times depending on the sequence of commands.
The amount of time it takes to access a word of data from an SDRAM depends on the
current state of the memory. This results in variable bandwidth and latency.

Most memory controllers handle the problem of variable bandwidth and latency in
two ways. Statically scheduled controllers work by using a fixed, precomputed schedule,
in which the bandwidth and latency can be computed at design time, as long as the
system is rigid. Dynamically scheduled controllers attempt to improve the average-case
performance as much as possible, and they do this by creating their schedules at run
time, and thus allow for a more flexible environment, at the cost of not being able to place
analytic bounds on worst-case latency and bandwidth. Therefore in order to guarantee
bounds that are known and useful in the case when we only know the bandwidth and
latency requirements of applications, we need a new type of memory controller.

The memory controller we use is called Predator. It is a hybrid memory controller
and as such it shares qualities of both statically scheduled and dynamically scheduled
controllers, and is being developed at NXP [2]. The benefits of this controller are that
it offers a predictable arbitration scheme which allows the bounding of latency. Ad-
ditionally, it uses memory patterns that allow for the net bandwidth to be bounded.
The details of this controller are discussed in Section 4.4.3. An important aspect of this
memory controller is the way it interacts with the memory. It does not send individ-
ual commands to the memory, but rather it sends fixed-length sequences of commands,
called memory patterns, to the memory. There exists one type of pattern for reading,
one for writing, and 3 others that are introduced in Section 5. The read pattern is used
whenever a requestor wishes to retrieve data from the memory, and the write pattern is
used when a requestor wishes to store data to the memory.

1.3 Problem Statement

The problem that arises from the use of the memory controller mentioned above is that
the patterns it uses to interact with the memory are difficult to compute, for numerous
reasons.

There are many timing constraints and parameters that must be observed when
creating a pattern [8, 9]. Some of these constraints are independent of each other, and
some are dependent. Therefore, due to the complexity of the constraints, creating these
patterns by hand is error prone and time consuming.

A second problem that arises is that we would like to use the same controller on a
variety of different SDRAM devices. Incidentally, the timing parameters and constraints
listed above are different for every device type. Additionally, the timing parameters are
based on the speed of clock being used to time the device. To further complicate the
issue, every device has multiple configurations, which also influences the parameters.
Therefore this problem further reinforces the idea that creating these patterns by hand
is time consuming.

Another issue that occurs is that we must take into account requestor requirements.
As we shall see in Section 3, the amount of data being requested by a requestor compared

4 CHAPTER 1. INTRODUCTION

to the amount of data returned by a memory pattern has a significant effect on the overall
efficiency, and thus the bandwidth provided by the memory controller.

To address the problems detailed above, we present our goal for this thesis in the
following section.

1.4 Goal

The goal of this thesis is to create an algorithm that runs at design time, which produces
memory patterns that are utilized by Predator. This algorithm should allow for the
generation of multiple patterns such that different combinations of patterns can be eval-
uated for efficiency. The algorithm generates patterns based on a memory specification
and requestor bandwidth and latency requirements.

The requirements of the algorithm are that it should take as input a memory specifi-
cation and requestor requirements. The algorithm should produce memory patterns that
provide as much bandwidth as possible, and that the production time of these patterns
should not exceed 48 hours.

The benefits of this approach are that it removes the time-consumption and mistake
factors out of the pattern generation. Furthermore, having an algorithm instead of
performing the computations by hand allows us to apply the generator to future iterations
of SDRAM, such as DDR4 and beyond.

1.5 Contributions

The contributions offered are that of creating a memory pattern generator which provides
high-bandwidth patterns for many different memory types. This generator is integrated
into the Predator configuration flow and is used by the hardware implementation.

The work of Eelke Strooisma on the Predator architecture is extended to include the
notion of pattern dominance [17].

Three heuristic based approaches were developed for the memory pattern generator
and compared against eachother. These approaches explore trade-offs between run time
and bandwidth provided.

This pattern generator was integrated into the existing design flow of Predator, and
new algorithms were developed to allow the configuration tools to work with any pattern
set for any memory.

1.6 Outline

This thesis begins by discussing the architecture and run time operation of SDRAM
devices in Section 2. In Section 3, concepts for measuring the efficiency of memories are
discussed. This is followed by a general discussion of memory controllers, which includes
their architecture, operation, and the state of the art in Section 4. Section 5 provides an
in-depth look at the definition of memory patterns, how they are used by Predator, and
how they may be used to determine the bandwidth provided by the memory controller.
Section 6 details the 3 heuristic-based approaches that were created. The Predator design

1.6. OUTLINE 5

flow, and how the generator is integrated into that flow, is described in Section 7. In the
remaining two sections, conclusions derived from the thesis are discussed, and possible
future work is detailed.

6 CHAPTER 1. INTRODUCTION

SDRAM 2
Prior to SDRAMs, data was stored in magnetic rings, which stored bits as the polarity of
the magnetic field. This technology was slow and expensive, and thus Robert Dennard
began the search for a faster memory type at IBM in 1967 [1].

His idea for improving this older design was to develop a memory cell which was
composed of a capacitor and transistor, where the value of a bit is stored as charge in
the capacitor. Today, SDRAMs are used in a huge variety of systems such as personal
computers, automobiles, and mobile phones. They are used in so many places due to
their cost-effectiveness in storing volatile data, as well as their speed.

Over time more modifications were made to the SDRAM to improve its effectiveness.
The most significant of these was the introduction of DDR SDRAM. DDR memories
provide a word of information twice per clock cycle, thus doubling the maximum rate of
data transfer.

2.1 Architecture

An SDRAM device is composed of multiple banks. Each bank contains an array of
memory cells, along with a row buffer, as shown in Figure 2.1. When an incoming request
is sent to the SDRAM, the address is decoded into the bank address, row address, and
column address based on a memory map. If the request is a read, then the row of data
cells specified by the address is loaded into the row buffer. Once it is there, the data
can then be read by an external resource. Conversely, if the request is a write, then the
address is decoded as before, but the data is sent into the row buffer. After the write
has finished loading data into the buffer, it is committed into the actual memory cells.

Using a bank architecture allows for a high degree of parallelism when accessing the
SDRAM. Each bank can be considered as a separate memory that happens to share
output pins. Each bank can be prepared for reading and writing in a pipelined fashion,
which increases bandwidth. Additionally, due to the sharing of pins, the overall output
pin count is lower than that of an equivalent capacity memory that does not share pins.
Also, as a result of sharing output pins, less power is consumed.

There are two buses in an SDRAM that allow for interaction with other components.
The first is the command bus, and it is an input into the SDRAM that is used to
specify which type of action the SDRAM should perform. The second bus is a shared,
bidirectional data bus. Any data that is transferred to or from the SDRAM must go
through this bus.

Typical numbers for current DDR SDRAM memories are shown in Table 2.1.

7

8 CHAPTER 2. SDRAM

Row Buffer

Ban
ks

R
ow

s

Columns

Figure 2.1: SDRAM Bank Architecture

Table 2.1: Typical characteristics of a DDR SDRAM device.
Number of banks 4 or 8

Capacity 256MB - 8GB

Word widths 4, 8, 16 bits

Column bits ∼10

Row bits ∼15

2.2 Commands

In order to interact with the SDRAM, some atomic commands are used. Most impor-
tantly, these commands allow for data to be read from the memory and written to the
memory, as well some auxiliary commands that are required for proper operation.

The activate command takes a row and bank address as its argument, and then loads
the specified row at the specified bank into the row buffer. Once data has been loaded
into the row buffer it is allowed to be modified or read from.

The read command retrieves one burst of data from an activated row, and a write

command sends one burst of data to the activated row. This use of these two commands
is the only way data may be transferred to or from the memory.

The precharge command is the converse of the activate command. It accepts a row
and bank address, and commits the row buffer in the specified bank into the specified row
in the cell array. There is a special case concerning the read and write commands above,
and that is they may be combined with an auto-precharge. The way auto-precharge
works is that after a read or write command has been submitted to the memory, the
bank will be precharged automatically at the earliest opportunity without any explicit
command. An example of the activate-precharge loop is shown in Figure 2.2.

Due to the fact that bits in an SDRAM are represented by the charge in a capacitor,

2.2. COMMANDS 9

ACTIVATE

Row Buffer

Columns

R
ow

s

PRECHARGE

WRITE READ

Figure 2.2: SDRAM Activate and Precharge Loop.

and that capacitors are not perfect and leak charge over time, a mechanism for keeping
the data valid had to be invented. Hence, a refresh command was designed. This
command ’refreshes’ the data stored in the memory cell arrays of bank by recharging
the capacitors that are storing data. This command may only be issued when all banks
in the memory have had their row buffers precharged.

There are many timing constraints, as we shall see in the next section, that prevent
two commands from being executed directly after each other. This space is then taken
up by NOP commands, which stand for no operation. These commands essentially let
the memory idle while waiting for another command to be scheduled. For clarification in
figures, NOP commands are shown as blanks. The remaining commands are abbreviated
as follows:

• Activate(Bank, Row) = ACT-Bank

• Read(Bank, Row, Column) = RD-Bank

• Write(Bank, Row, Column) = WR-Bank

• Refresh = REF

• Precharge(Bank, Row) = PRE-Bank

ACT 0 RD 0 ACT 1 RD 1PRE 0 PRE 1

Figure 2.3: Example of a command sequence.

Also noteworthy is that row and column addresses are dropped from commands in
their abbreviated form. This is due to the fact that the row and column addresses are

10 CHAPTER 2. SDRAM

not significant with respect to timings and constraints. Only the bank has any effect in
this regard.

2.3 Timing Constraints

There are many timing constraints and parameters that restrict the commands allowed
to be scheduled at a given time. A memory specification lists all constraints for a given
SDRAM device. The constraints specify the minimum amount of time that must pass
between two commands. These constraints are listed in Appendix A. A small example
is outlined below.

Four of the constraints and parameters are demonstrated in Figure 2.4. When we
would like to send an activate command to two different banks, tRRD specifies the
minimum amount of time that must pass after the first activate has been executed until
the second one may be executed. tRCD specifies the minimum amount of time between
an activate command and a read or write command. BurstSize refers to the number
of words produced or consumed by the memory per read or write command, and thus
is used to determine the granularity of a memory access. DataRate is the number of
words on the data bus per clock cycle.

ACT 0 ACT 1 RD 0 RD 1

≥ tRRD

≥ tRCD

≥ BurstSize

DataRate

Figure 2.4: Example of tRRD , tRCD , BurstSize, and DataRate requirements and
parameters.

As we see in Figure 2.4, the second activate may not be scheduled until tRRD cycles
after the first activate, and the read command to bank 0 must be tRCD cycles after the
activate to bank 0. The minimal delay between read commands is specified as such as
we must make sure that a new read command does not interrupt data already being put
on the data bus by a previous read command.

Table 2.2: Comparison of timing constraints in nanoseconds and clock cycles for two
SDRAM devices.

DDR2-400 DDR3-1600

Constraint ns cc ns cc

tCK 5 1 1.25 1

tRC 55 11 45 36

tRCD 15 3 10 8

tRRD 7.5 2 6 5

tRP 15 3 10 8

2.3. TIMING CONSTRAINTS 11

An interesting point to take away from these parameters is that they are specified in
nanoseconds, and that they do not change very much with successively newer SDRAM
devices. This means that as the clock speed increases, the number of cycles needed to
satisfy constraints also increases. This is demonstrated in Table 2.2 by listing a small
sample of actual constraint values for different memory devices. The DDR2-400 device
is assumed to be clocked at its maximum frequency of 200MHz, and the DDR3-1600
device is also assumed to be clocked at its maximum of frequency of 800MHz, which
yields a clock cycle of 5ns and 1.25ns respectively.

12 CHAPTER 2. SDRAM

Memory Efficiency 3
To make sensible calculations regarding latency and bandwidth, we need to establish a
method for determining how efficiently a memory behaves. In this section the efficiency
model of Woltjer [18] is presented. This model is used to differentiate types of efficiencies.
Once these efficiencies are known, they may be used to calculate the amount of bandwidth
provided by an SDRAM memory controller.

3.1 Peak Bandwidth

Definition 3.1 (Peak Bandwidth) Peak bandwidth is the maximum number of bytes

per second that can be transferred on the data bus.

Computing the peak bandwidth is important as this number represents the maximum
bandwidth offered by a memory. Inefficiencies introduced by physical characteristics of an
SDRAM can significantly lower the actual amount of bandwidth provided to a resource.

If we let DataBusWidth equal the width in bits of the data bus, and ClockFrequency
be the frequency of the clock, then we have

bandwidthpeak =
ClockFrequency cycles

second
∗

2 bursts

cycle
∗

DataBusWidth bits

burst
∗

1 byte

8 bits
(3.1)

As an example, if we had a DDR2-400 SDRAM device running at 200MHz with a 16
bit data bus we have

bandwidthpeak =
200M cycles

second
∗

2 bursts

cycle
∗

16 bits

burst
∗

1 byte

8 bits
= 800 MB/s

Most memory controllers are unable to provide this amount of bandwidth due to
physical characteristics of an SDRAM, such as refresh. In order to properly calculate
the worst-case bandwidth offered by a given memory, we must examine areas of SDRAM
operation where efficiency is lost.

3.2 Data Efficiency

Definition 3.2 (Data Efficiency) Data efficiency is the amount of data requested by

a component compared to the actual amount of data returned by the memory controller.

Data efficiency is traffic dependent, and therefore cannot be computed at design time
unless we know some information about the requestors using the memory controller.
Specifically, we need to know the granularity of the memory, as well as the sizes of
requests of the resources.

13

14 CHAPTER 3. MEMORY EFFICIENCY

Often, the amount of data requested does not exactly match the amount of data ac-
tually returned by a memory. This occurs because there can be many types of processing
elements performing different actions, that share one memory. Because the requestors’
application requirements may be very different, it is possible that the amount of data
being requested may also be very different. Thus, frequently a requestor is given more
data than it requires, and must throw away the excess. This data that is thrown away
is representative of the data efficiency.

As seen in Equation (3.2), the severity of the loss in efficiency is dependent on the
request size. Requestors with a small request size using a memory with a large granularity
will have extremely poor data efficiency. As we see later in Section 3.6, this translates to
poor actual bandwidth as well. Thus, data efficiency can change significantly depending
on the resources using the memory controller. Experimentally, it has been observed that
a data efficiency of 75% is expected for an MPEG-2 stream [18].

edata =
sizerequest

granularitymemory

(3.2)

As an example, we examine Figure 3.1 and assume a requestor wants to read 6 words.
However, the granularity of this memory is such that it provides 4 words per read burst.
Thus, in order to provide 6 words to the requestor, 2 read commands must be sent.
Therefore edata in this case is 6/8, or 75%.

BUS
DATA DO DODODODODODODO

BUS
COMMAND ACT 0 RD 0 RD 0

time

Figure 3.1: Visual representation of bank efficiency. Blank slots in the command bus
represent NOP commands.

3.3 Bank Efficiency

The time taken to access a memory cell is highly variable for SDRAMs. If a read
command is sent to a bank which currently has a different row already activated, the
controller must first precharge the current row, activate the new row, and then send
the read command. This penalty is captured in the bank efficiency. By examining
the amount of cycles that data is on the bus, compared to the total number of cycles
taken to get that data on the bus, we are able to compute this value. Bank efficiency
is dependent on the memory map chosen, as we shall see in Section 4.2. As the bank
efficiency is dependent on the addresses of requests, which are not known at design time,
we cannot place a useful bound on bank efficiency.

If we examine Figure 3.1, we are also able to compute the bank efficiency of this
pattern. In this particular period, we see 4 cycles where there is data on the bus, and
that the entire length of this group of commands is 10 cycles long. Therefore the bank
efficiency is 40%.

3.4. SWITCHING EFFICIENCY 15

ebank =
DataCycles

TotalCycles
(3.3)

3.4 Switching Efficiency

SDRAMs require a time buffer between a read and write command, such that the direc-
tion of the data bus can be reversed. This often results in cycles where no data can be
on the bus. Thus, we must take this drop in efficiency into account by examining the
difference between the time taken for a read and write command, compared to the time
taken for a read and write commands, plus their respective switching costs. According to
Woltjer [18], traffic consisting of 70% reads and 30% writes yields a switching efficiency
of 93.8%.

In general, the switching efficiency is not possible to compute at design time as the
read to write switching frequency is not known at design time. However, in Section 5 we
see how some design decisions allow us to compute this value.

3.5 Refresh Efficiency

Every SDRAM must be refreshed periodically in order to maintain the integrity of the
stored data. However, in order for a refresh to occur, all activity must cease, and all banks
must be precharged. Refresh efficiency is used to determine how much the effectiveness
of the memory is changed due to the lost time introduced by the refresh command.

Therefore we compute erefresh as the amount of time in a period where the memory
is not busy with refresh commands. tref refers to the amount of time taken for a refresh
command to be executed, and tperiod is the period in which refreshes are executed.

erefresh = 1−
tref

tperiod

(3.4)

Refresh efficiency is not traffic dependent and therefore can be calculated at design
time. Due to the very long refresh period (7.8 µs at normal operating temperatures)
compared to the time taken to execute a refresh command (on the order of 100 ns), the
refresh efficiency is usually around 99%.

3.6 Net Bandwidth

Definition 3.3 (Net Bandwidth) Net bandwidth is the actual amount of bandwidth

provided by the memory to requestors.

The concern of applications using this memory controller is directed at the net band-
width, as this is the amount of bandwidth they are actually provided. It is calculated
by simply finding the product of the above efficiencies and the peak bandwidth, with
one exception. edata is not taken into account due to the way bandwidth allocation
and requestor requirements are handled by our memory controller. As we shall see in

16 CHAPTER 3. MEMORY EFFICIENCY

Section 7.1.1, edata is factored into the requestor’s requirements. Thus, the equation for
calculating bandwidthnet becomes,

bandwidthnet = ebank ∗ eswitch ∗ erefresh ∗ bandwidthpeak (3.5)

Memory Controllers 4
A memory controller is the interface between an SDRAM and the system. By having it
as a separate unit, the system utilizing the SDRAM does not need to worry about timing
constraints and other details of a specific SDRAM, and can simply treat the device as a
general memory.

Specifically, a memory controller is responsible for the following tasks:

• Memory Mapping

• Command Generation

• Command Scheduling

Physical
Address

SDRAM
Commands

Logical
Address

M
U
X

Data
Bus

Command
Bus

Network
On
Chip

Memory

Memory
Mapping

Command
Generator

M
U
X

Memory Controller

Write Data

Read Data

Requestor

Requestor

Requestor

Arbiter

Response
Buffer

Request
Buffer

Figure 4.1: Architecture of a memory controller.

The controller works by first accepting some requests from external IP blocks, and
then storing them into request buffers. The addresses are then translated into the phys-
ical address space by means of a memory map, after which they are scheduled by the
arbiter, and converted to memory commands by the command generator. The response
from the memory is then sent back to the response buffer, and from there it will be sent
back to the requestor.

4.1 Arbiter

The arbiter is responsible for determining which outstanding request is allowed to be sent
to the memory controller. The logic for choosing which request ought to be scheduled

17

18 CHAPTER 4. MEMORY CONTROLLERS

depends on the type of system in which the controller is used. Some systems value low
power use, some value high efficiency, and some value soft or hard real-time requirements.
The characteristics of requests that the arbiter looks at are the requirements of the
requestor, and optionally, the current state of the memory device.

4.2 Memory Mapping

A memory map provides a translation between logical memory and physical memory
addresses. Thus, to a requestor, a memory looks like one large continuous array, while
in reality the memory is organized into separate banks, rows, and columns. The choice
of memory mapping is important as it has a large effect on latency and bandwidth, as
seen in the following sections.

4.2.1 Continuous Memory Map

One type of translation used is called the continuous memory map. It is called such
because successive addresses in the logical space are mapped to successive addresses in
a single row in a single bank. Thus, the same row is accessed over and over again until
the end of the row is met. At this point the mapping may switch to a new bank or to
a new row in the same bank. As a result, row activation cost needs only to be incurred
once in order to access a significant amount of successive data.

A continuously mapped address space can be seen in Figure 4.2. The memory pre-
sented is a highly simplified design for clarity. The memory has 4 banks, each with a 2
by 2 array of memory cells. Therefore 1 bit is needed to represent the column and row
respectively, and 2 bits for the bank address. Thus, in total 4 bits are required for the
logical address. As can be seen, if the least significant bit of the logical address is mapped
to the column address, the next 2 significant bits are mapped to the bank address, and
the final bit is mapped to the row address, we achieve a continuous memory map.

Column

Logical Address

Memory Map

Row

0

1

0 1

Bank 0 Bank 1 Bank 2 Bank 3

10

2 3

11 12 13

4 5 6

14 15

7

R[0] B[1] B[0] C[0]

3 2 1 0

98

0 1

Figure 4.2: Illustration of a continuous memory map.

This type of mapping can be very beneficial to bandwidth and latency when the
system has a low number of requestors, and the data being considered exhibits data

4.2. MEMORY MAPPING 19

locality. Consider a system with a single requestor, who requests data from consecutive
logical addresses, as seen in Figure 4.2. If this requestor wants to send 4 read commands
starting at bank 0, row 0, column 0, then we see that the memory controller needs to
send an activate command to bank 0, and an activate to bank 1, and 2 reads to each
bank. The resulting group of commands is shown in the top graphic in Figure 4.3.

BUS
DATA

BUS
COMMAND

BUS
DATA

BUS
COMMAND RD 0 RD 0ACT 1 RD 1 RD 1

D1 D1 D1 D1 D1 D1 D1 D1

D2 D2 D2 D2D3 D3 D3 D3

time

ACT 0

DODODODO D1 D1 D1 D1

time

ACT 0

DODODODODODODODO

RD 0 ACT 1 RD 1 ACT 2 RD 2 ACT 3 RD 3

Figure 4.3: Example of commands generated for a continuous memory map (top) and
an interleaving map (bottom). The data bus has been wrapped back onto itself.

A significant problem occurs when we examine the sequence of commands generated
in the worst-case scenario. We see in the top graphic of Figure 4.6 that when a requestor
is trying to access different rows in the same bank, the efficiency of the memory controller
drops significantly. This occurs because the minimum time between sending an activate
command to the same bank is quite large.

Another issue occurs when the number of requestors begins to grow. The effectiveness
drops significantly because of different requestors all sharing the same row buffer in a
bank. With high numbers of requestors, the frequency of overwriting a given bank’s row
buffer increases, and this type of mapping becomes less viable.

As mentioned above, the use of continuous memory maps are limited to use cases
where there are a low number of requestors. However, there is a method that may
be employed to alleviate this problem, called bank partitioning. Bank partitioning is
achieved by funneling requests from different requestors statically into different banks.
In this way, the row buffers are not scrambled by interfering requestors assuming there
are fewer requestors than the number of banks. However, to do this we must make
assumptions regarding the number of requestors. A design goal of this thesis is to not
make any assumptions regarding the number of requestors in the system, and thus we
have chosen to not employ bank partitioning.

4.2.2 Interleaving Memory Map

The alternative type of translation to a continuous memory map is called an interleaving
memory map, and is shown in Figure 4.4. This style of translation is called interleaving
because successive bursts of accesses in the logical address space are mapped to different
banks in the physical address space. Initially, we might expect a performance reduction
as every bank must now be activated before it is accessed. However, there is a memory
requirement that prevents a read or write command from being issued to the memory
immediately after an activate command. Thus, there are some wasted cycles. In an

20 CHAPTER 4. MEMORY CONTROLLERS

interleaving memory map we can insert an activate command to a different bank while
waiting to be allowed to schedule a read or write command. If the requested size of
data is large enough, the cost of activating all banks can be ameliorated. Thus, the
effectiveness of the interleaving memory map increases as the granularity of the accesses
increases.

14

Logical Address

Memory Map

3 2 1 0

C[0] R[0] B[1] B[0]

Row

Column
0 1

0

1

0

4 12

8

Bank 0 Bank 1

1

5

9

13

Bank 2

6

2 10 3

7

11

15

Bank 3

Figure 4.4: Illustration of an interleaving memory map

Another benefit of great importance to the goals of this thesis is that we want to place
a useful bound on worst-case bandwidth. The problem that the continuous memory map
suffered from in the worst-case scenario was that the activate to activate constraint on
the same bank creates large gaps between the access commands. With the interleaving
memory map, we are not concerned about activating the same bank repeatedly, but
rather activate different banks. The constraints governing the minimum time between
activates to different banks is much less strict than its same bank counterpart, therefore
the number of cycles to produce the same amount of data in the worst-case is significantly
less when using an interleaving pattern.

Therefore the benefits of this approach are that the latency to access a word is not
dependent on the state of the SDRAM, and activate command costs can be reduced.
Because this mapping makes no assumptions about the type of data being used, or
about the number of requestors in the system, and for the benefits detailed above, the
interleaving map has been chosen as the type of memory map to be used.

To demonstrate this benefit we examine two examples. If we compare the length
of time for sending 4 read commands with a continuous memory map in the best-case
scenario, compared to an interleaving memory map, we see that the continuous map pro-
duces the same amount of data with many fewer clock cycles. This is seen in Figure 4.5.
This shorter pattern sequence translates to a higher bandwidth for the continuous mem-
ory map due to a higher bank efficiency, as shown in Equation (3.3).

However, in Figure 4.6 we compare the length of time for executing 4 read commands
with a continuous memory map in the worst-case scenario, against an interleaving mem-
ory map, we see a much different result. The worst-case scenario occurs when requests
coming into the memory controller wish to read from different rows in the same bank.
As we stated in our goals for the thesis, we want to place useful bounds on worst-case

4.3. COMMAND GENERATOR 21

bandwidth, therefore we have chosen to use the interleaving memory map, as it provides
better worst-case performance.

time

BUS
COMMAND ACT 0 RD 0 ACT 1 RD 1 ACT 2 RD 2 ACT 3 RD 3

BUS
COMMAND RD 0 RD 0 RD 0 RD 0ACT 0

10 Cycles

16 Cycles

Figure 4.5: Illustration of best-case scenario when using a continuous memory map (top)
compared to an interleaving memory map (bottom)

.

BUS
COMMAND ACT 0 RD 0ACT 0 RD 0 7 CyclesACT 0 RD 0 7 Cycles ACT 0 RD 0 7 Cycles

37 Cycles

BUS
COMMAND ACT 0 RD 0 ACT 1 RD 1 ACT 2 RD 2 ACT 3 RD 3

16 Cyclestime

Figure 4.6: Illustration of worst-case scenario when using a continuous memory map
(top) compared to an interleaving memory map (bottom)

.

4.3 Command Generator

The command generator is responsible for producing SDRAM memory commands based
on requests in the request buffer, depending on the memory map chosen. The generator
may need to be aware of the current state of the SDRAM device. If a requestor is trying
to read a word of data from a bank, often the row in the bank is not already in the row
buffer, therefore the controller must first activate the row in the bank, and then it may
send the actual read command to retrieve the data. The generator must be configured
to type of SDRAM device being used, as each type requires different amounts of time
between commands.

4.4 Types of Memory Controllers

Based on the memory controller components defined previously, this section gives an
overview of the various types of memory controllers used today.

4.4.1 Statically Scheduled Memory Controllers

Statically scheduled controllers work by having a predefined order of commands pro-
grammed at design time. These controllers are used in systems where there is no unpre-
dictability in the traffic, and thus everything is static. If there is any variation in the read
to write ratio of commands, or if the bandwidth requirements change, then the current
schedule becomes invalid. In order to remedy this, one can consider creating a static

22 CHAPTER 4. MEMORY CONTROLLERS

schedule for every use case that the system may encounter, however this number may
become very large. To overcome these problems, a new type of controller was developed,
and we examine it in the next section.

4.4.2 Dynamically Scheduled Memory Controllers

In the above section, we saw that statically scheduled controllers cannot perform well
when the traffic in question varies over time. Thus, a new type of controller was invented;
the dynamically scheduled memory controller. This controller works by generating com-
mands at run time depending on requests. It then attempts to optimize the actual
command schedules based on the current outstanding requests, and this can be done
with command reordering [14], a self-optimizing controller [7], and other techniques [15].

Command reordering is mechanism by which a memory controller attempts to im-
prove average-case efficiency. It can accomplish this with command grouping, where the
controller groups similar commands together to reduce the number of data bus direction
changes, and bank grouping, which means the controller separates requests by bank.
Then, each bank determines when it should schedule an outstanding request depending
on a selectable policy. Bank reordering has been shown to improve sustained bandwidth
by up to 144% over a system without reordering when applied to realistic synthetic
benchmarks [14]. An example of command grouping in shown in Figure 4.7. This ex-
ample demonstrates how two commands can be reordered to improve efficiency. In the
upper figure we see that if the controller were to execute these requests in order, that
there would be 3 changes in data bus direction, whereas after commands are reordered,
there is only one change in direction. This offers a significant increase in bandwidth,
however, the amount of time until command 2 is executed has now been increased.

RD 0 WR 3RD 2 WR 1

RD 0 WR 1 WR 3RD 2

1 432

In order execution

Reordered execution

Figure 4.7: Illustration showing reordering of commands to reduce data bus direction
changes. The top figure shows the requests in order, the bottom figure shows the requests
reordered.

Another method of improvement mentioned above was a self-optimizing controller.
During the operation of this controller, it is constantly examining the long term impacts
its schedules have on memory efficiency. If it begins to see a shift in the incoming
requests, it optimizes the schedules to produce the best possible patterns. It has been
shown to increase the net bandwidth of a multiprocessor system by 30% over a system
with in-order scheduling [7].

4.4. TYPES OF MEMORY CONTROLLERS 23

These optimizations can greatly increase the average-case latency and bandwidth
at the cost of the worst-case latency and bandwidth. Because commands are possibly
reordered during runtime, it becomes very difficult to analytically determine the absolute
worst-case latency and net bandwidth. As such, simulations are the only way to try and
verify if bounds are met. As a result, only ranges and averages are returned as verification
for system traces that have been simulated. In a system with hard real-time deadlines
this type of verification could be unacceptable, and therefore these dynamically scheduled
memory controllers are not suitable for this thesis.

4.4.3 Hybrid Memory Controllers

To provide useful performance to a system with variable traffic without sacrificing hard
real-time requirements, a new memory controller has been proposed [2].

This controller works by combining aspects of both the statically scheduled controller
and dynamically scheduled controllers. A set of groups of commands are utilized by the
controller to interact with the memory. Each one of these groups of commands, referred
to as a pattern, is responsible for one type of interaction. There is a read pattern, a
write pattern, a read to write switching pattern, a write to read switching pattern, and
a refresh pattern. These patterns are generated at design time, and their construction
is governed by the constraints in the memory specification and limited by requestor
requirements.

The idea that separates this controller from a statically scheduled controller, is that
this controller schedules these precomputed patterns dynamically, using a predictable
arbiter.

Dynamic scheduling with a predictable arbiter allows us to bound the worst-case
latency, while knowing the patterns in advance lets us bound the worst-case bandwidth.
Another benefit of this approach is that by placing the commands into larger groups, we
simplify the amount of constraints present. The patterns generated at design time are
explored in Section 5. A demonstration of the differences among the memory controllers
introduced above is shown in Table 4.1.

Table 4.1: Comparison of characteristics of different memory controllers.
Controller Commands Arbiter Predictability Cost Complexity

Dynamic Dynamic Dynamic No Bad Worst-Case High

Predator Static Dynamic Yes Dependent on edata Medium

Static Static Static Yes Rigid Design Low

24 CHAPTER 4. MEMORY CONTROLLERS

Memory Patterns 5
Memory patterns are sequences of SDRAM commands, and are used by the hybrid
memory controller proposed in Section 4.4.3. In this section, we present an overview
of the patterns, followed by descriptions of the individual patterns themselves. Later,
we discuss how these patterns can be evaluated in terms of their efficiency, latency, and
bandwidth.

5.1 Pattern Overview

Patterns provide the only mode of interaction between a memory controller and the
memory itself. We have divided the types of patterns into two groups: access patterns
and auxiliary patterns.

Read patterns and write patterns are grouped under access patterns as they are the
only patterns that can actually access the contents of the memory. Once the access
patterns have been determined, they are used to compute the lengths of the auxiliary
patterns.

The remaining patterns are auxiliary patterns. These patterns consist of the read

to write switching pattern, the write to read switching pattern, and the refresh pattern.
These patterns perform more of a support role, and are responsible for giving the data
bus time to switch direction, and keeping the data cells in the memory charged.

5.1.1 Scheduling Rules

The patterns are constructed in such a way that a read pattern may be immediately
scheduled after itself. Similarly, write patterns are also constructed in such a manner.
The reason this is done is to reduce the number of patterns required to interact with a
memory device.

When a switch occurs from a write pattern to a read pattern, a write to read switching
pattern must be executed. This provides the SDRAM with the required time to alter the
direction of the data bus. Similarly, a read to write switching pattern must be executed
when the memory controller wants to execute a write pattern when a read pattern has
just finished. A refresh pattern may be executed after read and write patterns. Switching
patterns are not required after a refresh. An example of a sequence of patterns can be
observed in Figure 5.1.

READ READ RTW WRITE WTR READ REFRESH WRITE

Figure 5.1: Sequence of various patterns.

25

26 CHAPTER 5. MEMORY PATTERNS

5.2 Types of Patterns

Detailed in this section are the types of patterns used by the Predator memory controller.

5.2.1 Access Patterns

A read pattern is used to retrieve data from the SDRAM. There is one activate command
per bank. Each activate is followed by BurstCount read commands to each bank, in an
interleaved fashion. BurstCount is defined in Definition 5.2. Wherever there are gaps
remaining, they are filled with NOP commands. Similarly, a write pattern is constructed
the same way with write commands instead of read commands.

In Figures 5.2 and 5.3, we see two examples of valid patterns for a DDR2-400 SDRAM
device. The definition of a valid pattern is seen in Definition 5.1.

Definition 5.1 (Valid Pattern) Valid patterns are defined as patterns that do not vi-

olate any of the constraint timings of a given SDRAM.

Definition 5.2 (BurstCount) BurstCount is the number of read or write commands

per bank present in a read or write pattern.

ACT 0 RD 0 ACT 1 RD 1 ACT 2 RD 2 ACT 3 RD 3

16 Cycles

Figure 5.2: Read pattern for DDR2-400 SDRAM. Blank schedule slots indicate NOP
commands.

ACT 0 ACT 1 ACT 2 ACT 3WR 0 WR 1 WR 2 WR 3

16 Cycles

Figure 5.3: Write pattern for DDR2-400 SDRAM.

5.2.2 Auxiliary Patterns

The read to write switching pattern is used to provide time to the SDRAM so that it
may change the direction of its data bus. This pattern only contains NOP commands,
the number of which is dependent on the required distance between a read and write
command as stated by the memory specification. The write to read switching pattern is
constructed in the same way, except it is used in the transition between a write pattern
and a read pattern.

As a side note, sometimes this switching time may be completely mitigated depending
on the SDRAM specification and the pattern chosen.

The refresh pattern contains one refresh command, along with a number of NOP com-
mands. The number of NOP commands, and the exact location of the REF command,
are governed by the read and write pattern construction.

5.3. PATTERN DOMINANCE 27

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

PREAD READ WRITE WRITE READ

RTW WTR

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

Figure 5.4: Switching patterns being used between read and write patterns.

Definition 5.3 (Pattern Set) A pattern set is the collection of read, write, read to

write switching, write to read switching, and refresh patterns that are generated for a

particular memory specification and BurstCount.

5.3 Pattern Dominance

When computing the various types of efficiencies and latencies for a given pattern set, it
is important to determine which sequence of patterns will produce the worst-case latency
and bandwidth. There are 4 categories into which a pattern set may fall. These are, read
dominance, write dominance, mix read dominance, and mix write dominance. Below,
we have outlined how to calculate the different dominance types. tread, twrite, trtw, twtr,
and tref refer to the amount of time taken to execute the respective pattern in a set.

5.3.1 Read Dominance

Read dominance is said to occur when the length of a read pattern is greater than the
sum of the read to write switch, write, and write to read switch patterns. Thus, when
attempting to compute the worst-case latency of a pattern, one should assume that only
read patterns are being executed by the controller. An example of a read dominant
pattern set is shown in Figure 5.5

tread > twrite + twtr + trtw (5.1)

RTW WRITE WTR

READ

Figure 5.5: Illustration of read dominance.

5.3.2 Write Dominance

Write dominance is the converse of read dominance. When calculating worst-case latency
or bandwidth, one should assume that only write patterns are being executed. An
example of this can be seen in Figure 5.6.

twrite > tread + twtr + trtw

(5.2)

28 CHAPTER 5. MEMORY PATTERNS

This may be rewritten as

tread < twrite − twtr − trtw (5.3)

WRITE

READ RTWWTR

Figure 5.6: Illustration of write dominance.

5.3.3 Mix Dominance

When a set of patterns does not fall into the read or write dominance areas, it must fall
into the mixed dominance area. This area is reached when alternating between read and
write patterns provides the worst-case scenario.

tread + trtw + twrite + twtr ≥ 2 ∗ tread ∧

tread + trtw + twrite + twtr ≥ 2 ∗ twrite

This may be rewritten as

twrite − twtr − trtw ≤ tread ≤ twrite + twtr + trtw (5.4)

WRITE

READ RTWWTR

READ

WRITERTW WTR

Figure 5.7: Illustration of mix dominance.

Mixed dominance is further subdivided into two more areas; mixed read and mixed
write dominance, in order to further simplify the calculations needed to determine worst-
case latency and bandwidth. Mix read dominance means that the sum of lengths of read
and write to read switch patterns is larger than the sum of write and read to write switch
patterns. The bandwidth offered by a pattern set of mix read or mix write dominance
does not change, as the sum of the lengths of the patterns remains constant, however the
latency calculations may produce different results depending on which dominance type
the pattern exhibits.

5.4. EFFICIENCY CALCULATIONS 29

twtr + tread ≥ trtw + twrite

tread ≥ twrite − twtr + trtw (5.5)

Mix write dominance means that the sum of write and read to write switch patterns
is larger than the sum of read and write to read switch patterns.

trtw + twrite > twtr + tread

tread < twrite − twtr + trtw (5.6)

Figure 5.8 shows the range of dominance types on a line. In this figure tread is scaled
up and down while keeping twrite, twtr, and trtw fixed.

Mix Write Dominant Mix Read DominantWrite Dominant Read Dominant

Mix Dominant

tread = twrite − twtr − trtw

tread = twrite − twtr + trtw

tread = twrite + twtr + trtw

tread + +tread −−

Figure 5.8: Dominance scale viewed on a line.

5.4 Efficiency Calculations

As mentioned in Section 3, the efficiency of a memory controller is very important. It is
a major component of the net bandwidth equation shown in Equation (3.5). Therefore,
in order to accurately calculate the bandwidth provided by the memory controller, we
need to know the efficiency values. Now that we have defined the tools used by a memory
controller to interact with an SDRAM, we can precisely compute the various efficiencies.
Additionally, the efficiency model of Woltjer that is used by Predator is extended to
accommodate pattern sets where the read and write patterns are of different lengths. In
Section 3, we concluded that it was difficult to compute some of the efficiencies at design
time due to not knowing the traffic. We bypass this restriction now because we have
interleaving patterns with fixed access granularity, and shift all uncertainty into data
efficiency.

5.4.1 Bank Efficiency

From Section 3.3, we saw that the bank efficiency was a way to incorporate the loss in
cycles incurred as a result of SDRAM access time variability.

30 CHAPTER 5. MEMORY PATTERNS

The bank efficiency is now computed as the number of cycles that there is data
on the bus (TransferCycles), as defined in Equation (5.7), divided by a pattern length
determined by the pattern set dominance type as seen in Equation (5.8). DataRate is
the number of words per clock cycle, BurstSize is the number of words per read or write
command, and BurstCount is the number of read or write bursts sent to a particular
bank. The reason that we divide by the average pattern length in Equation (5.8) in the
case of mix dominance is because in the worst-case we will have equal amounts of both
types of patterns being executed.

TransferCycles =
BurstCount ∗BurstSize ∗NumberOfBanks

DataRate
(5.7)

ebank =































TransferCycles
tread

if read dominant

TransferCycles
twrite

if write dominant

TransferCycles
tread+twrite

2

if mix read or mix write dominant

(5.8)

The calculations are now possible because the addresses of requests coming into the
memory controller do not affect access times. Due to the interleaving nature of our
patterns, every access will activate all banks before data is read, and all banks are in
an idle state when a pattern begins to execute. Thus, access times become static per
pattern.

5.4.2 Data Efficiency

As shown in Section 3.2, the equation for determining the data efficiency is dependent on
the request size of a requestor and the granularity of the memory access pattern. Now
that the read and write pattern has been defined, and considering that it is the only way
in which a requestor may access data, we can compute specifically the data efficiency.

granularitypattern = BurstCount ∗NumberOfBanks

∗BurstSize ∗DataBusWidth (5.9)

Therefore Equation (3.2) becomes

edata =
sizerequest

granularitypattern

(5.10)

5.4.3 Switching Efficiency

When a pattern set exhibits read dominance or write dominance, it implies that the
worst-case scenario occurs when only read patterns or only write patterns are being
executed. This means that there will be no switches in the worst-case, and therefore the
switching efficiency will be 100%.

5.5. LATENCY CALCULATION 31

If the pattern is mix dominant, the switching efficiency is computed as the time it
takes to execute a read and write pattern divided by the time taken to execute a read,
read to write switch, write, and write to read switch patterns. This is due to the fact
that in the worst-case read and write patterns are alternated at every opportunity.

eswitch =







1 if read or write dominant

tread+twrite

tread+twrite+twtr+trtw
if mix read or mix write dominant

(5.11)

5.4.4 Refresh Efficiency

In order to compute the refresh efficiency, we need to know the worst-case request time
that can occur. Now that this value is easily computable, we can determine the refresh
efficiency by taking the amount of time it takes for a refresh pattern to execute, and
dividing it by how frequently that refresh actually occurs. All current DDR-SDRAMs
have a refresh interval (tREFI) of 7800ns at normal operating temperatures. However,
to compute the refresh efficiency, we need to know the worst-case request time that
can occur. The reason we need to calculate LongestRequestT ime is that a refresh
pattern may need to be scheduled right after a read or write pattern has been scheduled.
LongestRequestT ime is defined to be the sum of a switching pattern and an access
pattern because in the worst-case, the opposite access pattern has just been executed
and thus be must switched. To make sure that the refresh interval is not violated, we
rewrite the refresh interval to be LongestRequestT ime nanoseconds shorter, as shown
in Equation (5.12).

LongestRequestT ime = max(tread + twtr, twrite + trtw)

RefreshPeriod = tREFI − LongestRequestT ime + tref (5.12)

erefresh = 1−
tref

RefreshPeriod
(5.13)

5.5 Latency Calculation

As mentioned in the problem statement in Section 1.3, we also want to guarantee a bound
on worst-case latency. Now that we have precisely defined what the memory patterns
are, we may now use them to analytically derive the worst-case latency.

The first latency equations that will be shown will compute the worst-case latency
assuming that there are α other requests interfering.

32 CHAPTER 5. MEMORY PATTERNS

latency(α) =







































tread ∗ α if read dominant

twrite ∗ α if write dominant

⌈

α+1
2

⌉

∗ twtr +
⌈

α
2

⌉

∗ tread +
⌈

α
2

⌉

∗ trtw +
⌊

α
2

⌋

∗ twrite if mix read dominant

⌈

α+1
2

⌉

∗ trtw +
⌈

α
2

⌉

∗ twrite +
⌈

α
2

⌉

∗ twtr +
⌊

α
2

⌋

∗ tread if mix write dominant
(5.14)

However, the above equations assume that no refreshes will occur, and this is not a
valid assumption while using DRAMs. Therefore the equations are transformed below
to account for refreshes, with φ defined in Equation (5.18) for clarity.

Equation (5.17) specifies the maximum number of refreshes that can occur with α
requestors interfering. It is broken up into 4 pieces as the worst-case scenario changes
with dominance. Once this equation is obtained, we can multiply it with tref as shown
in Equation (5.16) to determine how much time refreshes by themselves can take. We
then add this to the latency calculated in Equation (5.14) to obtain the final latency
equation, shown in Equation (5.15).

TotalLatency(α) = RefreshTime(α) + latency(α) (5.15)

RefreshTime(α) = tref ∗NumberRefreshes(α) (5.16)

NumberRefreshes(α) =

⌈

latency(α)

φ

⌉

(5.17)

φ =







































RefreshPeriod− tread if read dominant

RefreshPeriod− twrite if write dominant

RefreshPeriod− tread − twtr if mix read dominant

RefreshPeriod− twrite − trtw if mix write dominant

(5.18)

5.6 Optimality

Now that we have defined how to calculate various efficiencies, latencies, and net band-
width, we need to define what an optimal pattern set is.

Definition 5.4 (Optimality) An optimal pattern set for a given memory specification

is the set of valid patterns that provide the maximum net bandwidth.

The reason why net bandwidth is chosen is two-fold. The first benefit of using this is
that the system can support the addition of new requestors more easily, as there is more

5.6. OPTIMALITY 33

net bandwidth to distribute. Alternatively, the extra net bandwidth can be redistributed
to the requestors with the idea that with more bandwidth allotted to them, they can
complete their tasks sooner. In Section 6.2, we see precisely how these patterns are
determined.

34 CHAPTER 5. MEMORY PATTERNS

Algorithm Approaches 6
Three heuristic algorithm approaches are explored in this section: branch and bound,
as-soon-as-possible scheduling (ASAP), and bank scheduling. These approaches explore
the trade-offs between execution time of the algorithm and amount of net bandwidth
offered by the resulting patterns. They are all heuristics as computing optimal patterns
is too time intensive. The usefulness of the algorithms is measured by the following
aspects.

• Speed of the algorithm

• Net bandwidth offered by the resulting patterns

6.1 Pattern Generation Design Decisions

When generating the patterns as shown in the following sections, we made 4 design
decisions regarding pattern construction. First, we assume that shorter access patterns
offer more bandwidth than longer patterns. Secondly, the algorithms will only focus on
creating access patterns without regard for auxiliary patterns. Thirdly, we always place
an activate command in the first pattern slot. Lastly, we let the algorithms treat all
banks equally.

1. We justify the first decision by examining how pattern dominance is related to
worst-case scenarios.

(a) Most importantly, shorter access patterns are always better in terms of latency
and bandwidth, when a pattern set exhibits read or write dominance. For
latency, a shorter pattern means that we can have more interfering requestors
without missing deadlines. For the bandwidth aspect, we see that shorter
patterns are better due to the effect of bank efficiency on net bandwidth as
shown in Equations (5.7) and (3.5). When we have a fixed BurstCount, there
is always the same amount of transfer cycles, and therefore having a shorter
pattern length always results in higher bank efficiency, and thus a higher net
bandwidth.

(b) In the case where a pattern exhibits mix dominance, we use the fact that
shorter patterns are better as a heuristic. The reason why we cannot guar-
antee that the shortest access patterns provide the most bandwidth in mix
dominance pattern sets is that it is theoretically possible for a pattern set to
have an increase in access pattern lengths that results in a larger decrease
in the switching pattern lengths. In the experimental cases where this phe-
nomenon has been observed, the pattern set has always been read or write
dominant.

35

36 CHAPTER 6. ALGORITHM APPROACHES

2. Due to the above decision regarding shortest access patterns offering more band-
width, the algorithms will focus only on creating shortest possible access patterns
without regard for auxiliary patterns. In order to create optimal pattern sets for
mix dominant patterns we would need to compute the auxiliary patterns for every
combination of access patterns at all pattern lengths. This would take an inor-
dinate amount of time, which violates our requirement for algorithms to produce
pattern sets within 48 hours.

3. The third decision we motivate with the following.

(a) First, we consider the case where we have NOP commands before any activate
commands present in a pattern, and the NOP commands are not necessary for
the pattern to be valid. In this case, we would remove the NOP commands
with the justification given above regarding shorter patterns always being
better.

(b) In the second case, we consider the situation where we have NOP commands
before any activate commands in a pattern, and without the NOP commands
present the pattern is no longer considered valid. In this case the only possible
reason why the removal of NOPs causes pattern invalidity is because the tRC

requirement is no longer met, or the precharge to activate constraint is no
longer met.

i. In the case where tRC is no longer met, by shifting these NOP commands
to the end of pattern, we have not altered the length of the pattern, while
still maintaining the requirement of tRC .

ii. If the pattern invalidity would be caused by the precharge to activate
constraint being violated, we see that by shifting NOPs to the end of the
pattern also does not violate the constraint for the same reason as the
case for tRC .

The effect of moving NOP commands from the back of an access pattern to the
front of an access pattern can change the size of individual switching patterns as
seen in Figure 6.1. Here, we enforce a minimum delay of 12 NOP cycles between
a read pattern and a write pattern, and a delay of 7 NOP cycles between a write
pattern and a read pattern. In the upper illustration, the access patterns have their
NOP commands at the front of the pattern while the lower illustration has its NOP
commands at the end. When determining the length of a switching pattern, we
must enforce the minimum number of cycles between the last access of an access
pattern and the first access of the following As shown in the figure, the difference
in lengths between the two switching patterns is shifted from one switching pattern
to the other, in order to maintain the minimum number of cycles between accesses.
Because the overall sum of the two switching patterns does not change, we see that
moving NOPs does not influence the bandwidth of a given pattern set. It may
have a small effect on latency however, due to the changes in trtw and twtr lengths.
These lengths affect latency as shown in Equation (5.14).

The refresh pattern is also affected by the location of NOP commands in the access
patterns. The length of the refresh pattern is partially determined by the number

6.1. PATTERN GENERATION DESIGN DECISIONS 37

RTW WRITE WTRREAD READ

8 cycles 4 cycles 5 cycles 2 cycles

READ RTW WRITE WTR READ

4 cycles 3 cycles2 cycles 10 cycles

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

N
O

P

Figure 6.1: Illustration of moving NOPs from back to front of pattern.

of cycles from the last precharge of the previous access pattern. An access pattern
with its NOPs at the beginning has its precharges earlier compared to a pattern
with its NOPs at the end, thus a few cycles can be saved on the refresh pattern.

Thus, by having NOP commands at the end of the pattern, we do not increase the
length of the access patterns, we give the algorithms a base case to start from, we
save cycles in the refresh pattern, and we significantly reduce the design space of
the branch and bound algorithm.

4. A final design assumption was that all banks are treated as equal by all algorithms.
This means that when the algorithm is looking at available commands to be sched-
uled at a certain cycle, it does not consider commands to individual banks, but
only the commands themselves. When a command is selected then the algorithm
determines the proper target bank for the command. This was done in order to
reduce the design space.

6.1.1 Access Pattern Termination

As we have mentioned above we search for the shortest access patterns, which means
that it becomes critical to know when an access pattern is complete. We determine
access pattern completeness with the following criteria.

• All commands have been scheduled

• tRC constraint satisfied

• Data bus constraints satisfied

• Precharge constraints satisfied

The first criterion is stems from the obvious fact that we do not want to end a pattern
before all of the commands we must insert have been scheduled. The set of commands
to be scheduled is determined with the following equations.

38 CHAPTER 6. ALGORITHM APPROACHES

numActivates = numBanks

numReads = BurstCount ∗ numBanks For Read Patterns

numWrites = BurstCount ∗ numBanks For Write Patterns

The tRC constraint specifies the minimum amount of cycles that must occur between
successive activate commands to the same bank. Due to the fact that we allow an
access pattern to be scheduled after itself, this constraint is effectively the minimum
theoretical access pattern length. As we saw in Section 5.1.1, we allow a read pattern to
be scheduled directly after itself, as well as a write pattern to be scheduled directly after
itself. Therefore, we must make sure that in these cases where a pattern is scheduled
twice in a row, that the minimum number of cycles between their activate commands to
each bank has been satisfied.

Data bus constraints are that we must ensure that data that is produced on the
data bus does not conflict with data being produced on a data bus from a future access
pattern. To prevent this from happening we must examine the burstSize parameter,
and the dataRate parameter. These parameters refer to the number of words produced
per read or write command, and the number of words per clock cycle, respectively. By
knowing these, we can determine how many clock cycles must separate the last access
command of one pattern, and the first access command of the following pattern.

The last criterion refers to the fact that before a bank can be activated, it must have
been precharged already. Therefore it becomes important to know where the precharge
actually occurs in an access pattern. We determine this in two ways, as the read and
write constraints on a precharge are different.

Under a read pattern, the cycle of precharge for a particular bank is computed by
finding the cycle of the last read command to that bank, cycleLastRead, and the cycle
of the activate to the bank, cycleACT , and evaluating Equation (6.1), which comes
from [8,9].

prechargeCycle = max(cycleLastRead + tRTP ,

cycleACT + tRAS ,

cycleLastRead +
burstSize

dataRate
+ max(tRTP , 2)− 2) (6.1)

We say that for read and write patterns, a bank has its precharge constraint met if
the cycle of its precharge is at least tRP cycles before the next activate occurs. Under
a write pattern, the idea remains the same yet the parameters involved change. The
precharge cycle for a write pattern is defined in Equation (6.2).

prechargeCycle = cycleLastWrite + tWL +
burstSize

dataRate
+ tWR (6.2)

Then we say the precharge requirement for write patterns is satisfied if precharge
cycle is at least tRP cycles before the next activate command occurs.

6.2. BRANCH AND BOUND 39

6.1.2 Auxiliary Pattern Computation

As we saw in the previous section, the heuristics of the pattern generation approaches
focus on access patterns. We treat the auxiliary patterns as being dependent on the
access patterns, which allows us to reduce the size of the design space.

The way to compute the refresh pattern length is as follows. First we determine which
access pattern has its precharge cycle happen the latest, as the refresh command is not
allowed to occur until a minimum number of cycles has passed since the last precharge.
The size of the refresh pattern is defined in Equation (6.3).

tref =























tRP + tRFC + (tread − prechargeCycle) if tread − prechargeCycle <
twrite − prechargeCycle

tRP + tRFC + (twrite − prechargeCycle) if tread − prechargeCycle ≥
twrite − prechargeCycle

(6.3)

The switching patterns have constraints similar to that of the refresh pattern in that
there is a minimum number of cycles that must occur between two commands. In the
case of switching patterns, there are two constraints, one for each type of switch. This
number of cycles is defined in the memory specification [8, 9]. However, as the cycle of
the last non-NOP command in an access pattern is not necessarily equal to the pattern’s
length, we use Equations (6.4), and (6.5) to determine the size of the switching patterns.
delay is the minimum number of cycles that must occur between the last access of one
pattern and the first access of the following pattern.

trtw = max(delay − (cycleF irstWrite + tread − cycleLastRead), 0) (6.4)

twtr = max(delay − (cycleF irstRead + twrite − cycleLastWrite), 0) (6.5)

6.2 Branch and Bound

This algorithm is used to find the minimum length access patterns by searching over
all possible access patterns according to the design decisions listed above. When the
pattern set found exhibits read or write pattern dominance, this algorithm will produce
optimal results. If the pattern set generated is mix dominant, then we cannot guar-
antee optimality. The reason we guarantee optimality in the case of read and write
dominance is because switching patterns do not affect the worst-case bandwidth offered.
Therefore only access patterns are of concern, and shorter access patterns will always
offer higher ebank than longer options, resulting in a higher net bandwidth, as shown
in Equation (3.5). When switching patterns do affect the scenario, we must compute
the auxiliary patterns for every combination of access patterns in order to guarantee
optimality, because the shortest access patterns do not guarantee the shortest switching
patterns. The amount of time taken to compute this is inordinate. Therefore we use the
heuristic.

40 CHAPTER 6. ALGORITHM APPROACHES

The branch and bound algorithm works by starting a read pattern at cycle 0, and
then looking to see what are the possible commands that could be scheduled at cycle 1.
It then creates one copy of the schedule for each of the available commands respecting
the memory constraints, and then appends to the end of the schedule the available
command in question. The algorithm repeats this process until the pattern is complete,
at which point it stores the pattern into a container and continues its search in remaining
directions. The same process is repeated for the write pattern. In essence, it is a depth
first tree traversal. An example of the tree being searched is shown in Figure 6.2.

ACT 1

NOP

1 2 3 4 50 6

ACT 0 NOP NOP

Cycle Number

RD 0

NOP

ACT 1

NOP

RD 0

NOP

NOP

RD 0

NOP

RD 0

ACT 1

NOP

RD 0

ACT 1

ACT 2

NOP

ACT 2

NOP

ACT 2

NOP

NOP

RD 0

NOP

NOP

ACT 1
NOP

NOP

RD 0

ACT 1
NOP

RD 0
ACT 1
NOP

NOP

Figure 6.2: Example of command tree.

When each of the optimizations below are implemented, there is at least 1 pattern
of a fixed length found for the read and write patterns. In order to select the best
read and write pattern, the read patterns and write patterns in the set returned by the
algorithm must be searched. The access patterns that contain their last scheduled non-
NOP command at the earliest point in the pattern are selected. Once the read and write
patterns have been selected, they are used to compute the switching patterns and the
refresh pattern. The reason why the patterns with their last commands scheduled the
earliest are used is because we are able to possibly take advantage of NOP cycles at the
end of patterns to reduce the size of switching patterns. This results in a better switch
efficiency as shown in Equation (5.11), which in turn provides a higher net bandwidth,
shown in Equation (3.5).

Now that we have defined how to arrive at a pattern set with a fixed BurstCount, we
need a way to determine which BurstCount should be chosen. This problem is addressed

6.2. BRANCH AND BOUND 41

Create Switching Patterns
Create Refresh Pattern

Generate Auxiliary Patterns

Set parameters
Generate commands to schedule

Initialization

Determine set of allowed commands at current cycle
Fork copies of current pattern for each command in the set
Append each command to its forked pattern
Increment the current cycle
For each forked pattern, repeat

Schedule Command

Figure 6.3: Flow diagram of the branch and bound algorithm.

in Section 7.

6.2.1 Hard Ceiling

To reduce the run time of the algorithm, some optimizations had to be made. The
most important one was to put a hard ceiling on the pattern length. This prevents the
algorithm from searching for infinite length patterns, and at the same time significantly
cuts down on the exploration space. These changes result in significant decreases in
memory and run time.

6.2.2 Sliding Ceiling

This optimization starts where the hard ceiling leaves off. Once a valid pattern is found,
its length is recorded and then used as the current maximum ceiling. Thus, when the
algorithm resumes exploring the other branches of the design tree, it first checks to see
how long the current path length is. If it is already over the current ceiling, it stops
searching the current path. This change also results in significant decreases in run time
and memory, as well as a dynamic exploration space.

During the course of this optimization, it is possible that an optimal pattern set is
missed. Previously in Section 6.1, it is stated that shortest access patterns do not always
offer optimal bandwidth.

6.2.3 Sanity Check

This last optimization works in tandem with the sliding ceiling optimization. Whenever
the algorithm wishes to create a copy of a pattern so that it may append a command, it
first checks to see if even in the best-case scenario, is it possible for this current pattern’s
length to be smaller than the current ceiling, based on the remaining commands to be
scheduled into the pattern. As with the other two optimizations, this reduces memory
use and run time. Pseudo-code is shown for this optimization in Figure 6.4. numActs

42 CHAPTER 6. ALGORITHM APPROACHES

refers to the remaining number of activate commands to be scheduled, numAcc refers
to the number of remaining read or write commands to be scheduled.

The first check is based on how many activates are remaining. For example, if there
are 3 activate commands remaining at the current cycle, we can guarantee that this
pattern cannot be completed until 2 * tRRD + tRCD cycles have occurred. The 2 *
tRRD comes from the fact that activates cannot be scheduled within tRRD cycles of
each other, and there are at least 2 full delays between activates remaining. The second
part of the sum is tRCD . This is included into the delay because we know if there is at
least one activate left, there is also at least one read or write access, and tRCD is the
minimum delay between an activate command and a read or write command.

The second check looks purely at how many read or write commands are left. If there
are 3 read commands remaining in the pattern, and we know that it there is a minimum
delay of burstSize/dataRate between read commands, then we know that there must
be 2 full delays of burstSize/dataRate cycles.

if numActs = 0 then
len1← currentCycle

else
len1← currentCycle + (numActs− 1) ∗ tRRD + tRCD

end if
if numAcc = 0 then

len2← currentCycle
else

len2← currentCycle + (numAcc− 1) ∗ burstSize/dataRate
end if
if max(len1, len2) < currentCeiling then

SchedulePossible
else

ScheduleNotPossible
end if

Figure 6.4: Pseudo-code of sanity check optimization.

6.2.4 Conclusions

The benefit of this algorithm is that it always finds the shortest access patterns. This
translates to optimal net bandwidth in the case of read or write dominant pattern sets,
but not necessarily optimal net bandwidth in the case of mix dominance. These benefits
come at the cost of run time.

Despite the optimizations that reduce the run time of the algorithm, with high fre-
quency SDRAMs, the complexity begins to show itself. Timing constraints are larger,
and thus there is more space in between non-NOP commands, which creates many more
options when the algorithm is making copies of the current schedule. Furthermore, as
the BurstCount increases, there are more commands to be scheduled, which also signifi-
cantly increases the complexity of the design space. In Figure 6.5 the growth in numbers
of valid patterns starting with an activate command at different lengths is demonstrated.

6.3. AS SOON AS POSSIBLE SCHEDULING 43

A read and write pattern length of 32 is shortest provided by the branch and bound al-
gorithm, while 37 is the length provided by the ASAP algorithm.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

32 33 34 35 36 37

N
um

be
r

of
 V

al
id

 P
at

te
rn

s

Pattern Length

Read
Write

Figure 6.5: Number of valid patterns at BurstCount 2 for a DDR2-400 SDRAM device

For practical purposes, the algorithm becomes unusable for online use whenever the
BurstCount is greater than 2. Offline use is still practical until a DDR3-1600 is used
with BurstCount equal to 2. After this point, the run time moves into months and
years. As a result, this algorithm may be used to produce a limited database offline, for
use as a comparator with new algorithms being developed. However, the problem of not
being able to generate more complicated patterns remains, and thus a new algorithm
must be developed.

6.3 As Soon As Possible Scheduling

This algorithm works by linearly creating a read pattern starting from cycle 0. The
algorithm looks at the current cycle to see all of the commands allowed to scheduled at
this cycle based on the timing constraints imposed by previous commands. If there is
more than one available command, a priority scheme is used to pick one. The priority
scheme is that read and write commands are selected over activate and NOP commands,
and activate commands are chosen over NOP commands. The pseudo-code for this
algorithm is shown in Figure 6.6, and a flowchart is shown in Figure 6.7.

6.3.1 Conclusions

This major benefit achieved from this algorithm is that it runs extremely fast (less
than 1 second) for any value of BurstCount. However, this comes at the cost of net
bandwidth. As seen in Figures 6.11, 6.12, 6.13, 6.14, the patterns provide around 80%
of the bandwidth that is offered by branch and bound algorithm.

The reason this occurs is that it is not always beneficial to schedule a command as
soon as it becomes available. After a write command has been issued to the SDRAM,

44 CHAPTER 6. ALGORITHM APPROACHES

currentCycle← 0
pattern[currentCycle]← {ACT − 0}
while !isV alid(pattern) do

availableCmds← getAllowedCmds(pattern, currentCycle)
cmdToSchedule← pickBestCmd(availableCmds)
pattern[currentCycle]← cmdToSchedule
currentCycle + +

end while

Figure 6.6: Pseudo-code of ASAP algorithm

Create Switching Patterns
Create Refresh Pattern

Generate Auxiliary Patterns

Set parameters
Generate commands to schedule

Initialization

Determine set of allowed commands at current cycle
Pick one command based on priority scheme
Append command to the pattern
Increment the current cycle
Continue to next cycle

Schedule Command

Figure 6.7: Flowchart of the ASAP algorithm

time is required after the completion of the write to precharge the data in the row buffer.
If the algorithm does not account for this, cycles can be wasted.

3 cycles 9 cycles

3 cycles 3 cycles 3 cycles 3 cycles

ACT 0 ACT 1 ACT 2WR 0 WR 1 WR 2 WR 3ACT 3

ACT 0 WR 0 WR 1 WR 2 WR 3ACT 1 ACT 2 ACT 3

Figure 6.8: Example of a pattern generated by the ASAP algorithm (top), and a pattern
generated by the branch and bound algorithm (bottom).

Examine the situation where two write patterns are to be scheduled after each other
and a bank requires 10 cycles after a write command has been issued before it is allowed
to be activated again. We also say that the length of the pattern is 16 cycles, the last
command is a write command, and that we have the option of scheduling the last activate
command at cycle 8 or at cycle 12 of the pattern without changing the overall length of
the pattern.

In this situation, we see that there is potential conflict with the following pattern

6.4. BANK SCHEDULING 45

when the activate is scheduled at cycle 8, thus two extra NOP commands are required
to be appended to the pattern to satisfy the timing requirement, thereby increasing the
length, decreasing bandwidth, and increasing latency.

In conclusion, this algorithm cut the run time drastically compared to the branch
and bound algorithm, yet the difference in net bandwidth provided was too significant to
ignore. A goal of these algorithm approaches is to provide a high amount of bandwidth
and this approach’s net bandwidth is too low. Therefore a new algorithm was developed
with the idea that we were willing to sacrifice a bit in terms of run time for gains in net
bandwidth.

6.4 Bank Scheduling

This algorithm was born from the idea that a bank’s activate command should be kept
as close as possible to its respective read/write commands. This was done in order to
avoid the problems that the ASAP algorithm ran into, shown in Figure 6.8.

The procedure for this algorithm is to first plot an entire schedule for only the first
bank, with all commands placed as closely to each other as possible. Once this is com-
pleted the algorithm then plots the schedule for the next bank. The way this part works
is that the algorithm looks for the last read or write command scheduled in the previous
bank. The algorithm then places the current bank’s read or write command in the next
allowed slot, assuming that the slot tRCD cycles back in the schedule is allowed to have
an activate command placed. The timing constraint tRCD is the minimum number of
cycles between an activate command to a bank and a read or write command to the
same bank. If the pattern does not allow an activate command to be scheduled there,
then the read/write command is moved forward one cycle, and the algorithm tries again.
This process is then repeated until all banks have been scheduled. The pseudo-code for
this algorithm is shown in Figure 6.9.

pattern[0]← {ACT − 0}
pattern[tRCD]← {RD − 0}
currentBank ← 1
while !allCmdsScheduled() do

cycleLastRead← getLastRead(pattern)
targetCycleRead← cycleLastRead + BL/2
while !activateAllowed(targetCycleRead, tRCD) do

targetCycleRead + +
end while
pattern[targetCycleRead]← {RD − currentBank}
pattern[targetCycleRead− tRCD]← {ACT − currentBank}
currentBank + +

end while

Figure 6.9: Pseudo-code of bank scheduling algorithm

46 CHAPTER 6. ALGORITHM APPROACHES

Create Switching Patterns
Create Refresh Pattern

Generate Auxiliary Patterns

Set parameters
Generate commands to schedule

Initialization

Place ACT
Schedule bank 0

Place RDs ASAP

Place RD at earliest slot
Check backward to see if
ACT fits, if yes continue
to next bank. If not, then
move RD forward one
cycle and repeat

Schedule remaining banks

Figure 6.10: Flow diagram of the bank scheduling algorithm

6.4.1 Sliding Activate

An alternative approach attempted was to let the ACT command slide backwards until
an empty slot is found, as opposed to the READ/WRITE command sliding forwards
immediately if the slot tRCD cycles behind is not empty. However, the results of this
implementation were at best the same, and with some memory specifications this imple-
mentation proved to yield poorer results than the original implementation.

6.4.2 Conclusions

After running this algorithm, we find that the run time is comparable to that of the
ASAP algorithm, and therefore suitably fast. More importantly, the closeness to the
branch and bound bandwidth offerings are much more reasonable. As seen in Fig-
ures 6.11, 6.12, 6.13, 6.14, the maximal difference between the two is very small. As a
result, this algorithm has been selected for use with Predator. We discuss the integration
of this algorithm in Section 7.

6.5 Results

Plotted in Figures 6.11, 6.12, 6.13, and 6.14, we see comparisons of guaranteed bandwidth
offered by pattern sets generated by the branch and bound, ASAP, and bank scheduling
algorithms. The charts are based on the net bandwidth defined in Equation (3.5).

The bank scheduling approach and the branch and bound approach guarantee simi-
lar net bandwidths over different memory specifications. Also observed is the lower net
bandwidth guaranteed by the ASAP approach. For all memories tested, branch and
bound always provided the best results in terms of offered bandwidth. Bank schedul-
ing always matched, or provided slightly less bandwidth than the branch and bound

6.5. RESULTS 47

approach. The ASAP approach always provided the worst results of the three. The
lack of data for BurstCount 4 for the branch and bound approach is due the algorithm
not being able to calculate such complex patterns. A BurstCount of 3 is included in
these graphs for demonstration purposes only. In practical applications, only powers of
2 are used for BurstCount values as they are the only numbers that may be translated
into a memory map. An interesting observation drawn from these results is that offered
bandwidth saturates at BurstCount 3 for the memory types tested.

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Burst Count

Branch and Bound
ASAP
Bank

Peak Bandwidth

Figure 6.11: Comparison of net bandwidth guaranteed by algorithms for a DDR2-400
SDRAM.

 0

 500

 1000

 1500

 2000

1 2 3 4

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Burst Count

Branch and Bound
ASAP
Bank

Peak Bandwidth

Figure 6.12: Comparison of net bandwidth guaranteed by algorithms for a DDR2-800
SDRAM.

48 CHAPTER 6. ALGORITHM APPROACHES

 0

 500

 1000

 1500

 2000

1 2 3 4

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Burst Count

Branch and Bound
ASAP
Bank

Peak Bandwidth

Figure 6.13: Comparison of net bandwidth guaranteed by algorithms for a DDR3-800
SDRAM.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Burst Count

Branch and Bound
ASAP
Bank

Peak Bandwidth

Figure 6.14: Comparison of net bandwidth guaranteed by algorithms for a DDR3-1600
SDRAM.

Algorithm Context 7
In this section, the overall design flow of the memory controller architecture is examined.
Specific attention is given to the integration of the pattern generation algorithm into the
Predator configuration flow.

7.1 Tooling Flow Overview

This section provides an overview of the various stages in the offline tool flow. First,
the initialization of requestors is considered, followed by a description of the pattern
generator. Lastly, the bandwidth allocator and priority assigner will be discussed.

7.1.1 Requestors

Requestors have their request sizes, latency requirements, and bandwidth requirements
initialized. The bandwidth requirements require special attention as they are not ini-
tialized to the requestor’s specification, but are initialized to a normalized value. By
examining the pattern granularity and the request size of the requestor, we are able to
determine edata as shown in Equation (3.2). Because we now know which percentage
of bandwidth the requestor actually uses, we scale up its requested bandwidth, such
that the amount it receives meets its requirements. As an example, if a requestor has a
bandwidth requirement of 200 MB/s, and a request size of 8 bytes, and the pattern set
being used has a granularity of 16 bytes, then the edata will be 50%. Therefore, we scale
the bandwidth requirement up by a factor of 2, to 400 MB/s. We call this value the
normalized bandwidth requirement. A requestor specification can be seen in Appendix D.

7.1.2 Pattern Generator

The pattern generator is responsible for creating pattern sets. It takes as inputs the
following:

• Memory Specification

• BurstCount

The memory specification refers to the timings of the constraints detailed in Ap-
pendix A, and an example can be seen in Appendix E. These constraints are very
significant in determining how the patterns are allowed to be built. As detailed be-
low, BurstCount is iterated over, and is therefore needed as an input into the pattern
generator so it knows which pattern to produce.

The outputs of the pattern generator are as follows:

49

50 CHAPTER 7. ALGORITHM CONTEXT

• Read Pattern

• Write Pattern

• Read To Write Switch Pattern

• Write To Read Switch Pattern

• Refresh Pattern

These patterns comprise a pattern set.

7.1.3 Bandwidth Allocator

We consider the case where a credit-controlled static-priority arbiter is used [3]. This
arbiter’s configuration has two steps: bandwidth allocation and priority assignment.

In the bandwidth reservation mechanism of the arbiter, the bandwidth of the memory
is allocated to the various requestors. The amount of bandwidth requested is approxi-
mated by the allocator as closely as possible. However, due to finite precision, discretiza-
tion of the bandwidth occurs, which results in the possibility of the allocated bandwidth
exceeding the net bandwidth offered by the memory controller. A second issue that is
worthy of concern is that the sum of the requested bandwidth of the requestors may
simply be more than the net bandwidth offered by the memory controller. Both of these
issues result in negative non-allocated bandwidth, and are taken into account as shown
in the pseudo-code of the algorithm, in Figure 7.1.

7.1.4 Priority Assigner

The priority assignment stage is responsible for finding a priority scheme that allows for
all requestors latency requirements to be met. An optimal priority assignment algorithm
is used to accomplish this, and it runs in polynomial time [4]. A revision of the latency
equation detailed in Equation (5.15) becomes very useful in this stage.

This equation is needed because it allows us to use a priority assignment algorithm
that is independent of the resource. In essence, the equation is a conversion from actual
latency requirements, to using more abstract requirements, such that the tooling can be
ignorant of the details of the memory being used.

Equation (7.2) is called the reverse latency equation and its purpose is to find the
maximum number of read and write patterns that can interfere before a deadline is
missed in the worst-case. Here, α is defined as the number of interfering patterns, and Θ̂
is defined as the maximum latency allowed by a requestor specification, and φ is defined
in Equation (5.18).

7.2. INTEGRATION OF PATTERN GENERATOR 51

Θ̂ ≥ TotalLatency(α)

Θ̂ ≥ latency(α) + NumberRefreshes(α)

Θ̂ ≥ latency(α) +

(

latency(α)

φ
+ 1

)

∗ tref

Θ̂ ≥ latency(α) +
tref ∗ latency(α)

φ
+ tref

Θ̂ ≥ latency(α) ∗

(

1 +
tref
φ

)

+ tref

Θ̂− tref

1 +
tref
φ

≥ latency(α) (7.1)

Now, solving for α we get,

α ≤



















































































Θ̂−tref
“

1+
tref

φ

”

∗tread
if read dominant

Θ̂−tref
“

1+
tref

φ

”

∗twrite

if write dominant

Θ̂−tref

1+
tref
φ

−
3∗twtr

2
−tread−trtw

twtr
2

+
tread

2
+

trtw
2

+
twrite

2

if mix read dominant

Θ̂−tref

1+
tref
φ

−
3∗trtw

2
−twrite−twtr

trtw
2

+
twrite

2
+

twtr
2

+
tread

2

if mix write dominant

(7.2)

The derivations of these equations can be found in Appendix C.

7.2 Integration of Pattern Generator

Now that the algorithm for use in run time pattern generation has been established, the
actual integration into the memory controller flow is explained. Figure 7.1 illustrates
the pseudo-code of the tooling algorithm, and Figure 7.4 shows the architecture of the
memory controller.

As we saw in Section 5.6, there is a pattern set for each value of BurstCount. The
problem for the generator now becomes which BurstCount should be chosen. This is
accomplished by running the pattern generator multiple times with an incrementing
BurstCount, and using a new metric that is defined below, to evaluate which generated
pattern set is ideal for a given use case.

We iterate over different values of BurstCount because the pattern generator cannot
know if the pattern set it has created is ideal until bandwidth allocation and priority
assignment have taken place at other values of BurstCount. Therefore, depending on

52 CHAPTER 7. ALGORITHM CONTEXT

BurstCount← 1
NonAllocBW ← 0
while isNonAllocBWBetter() do

LatencyFlag← 1
patternSet← generatePatternSet(memSpec,BurstCount)
allocateBandwidth()
assignPriorities()
for requestor in Requestors do

if requestor.AllocatedLatency > requestor.RequiredLatency then
LatencyFlag← 0 // Latency requirement for requestor not met

end if
end for
if LatencyFlag = 0 then

break
end if
BurstCount← 2 ∗BurstCount
NonAllocBW ← computeNonAllocBW ()

end while
usePatternSet(patternSet)

Figure 7.1: Pseudo-code of integrated pattern generator.

the result of the output of the allocation and priority assignment, the algorithm may
need to generate a new pattern at a higher BurstCount.

The reason why the value of BurstCount affects the bandwidth is due to the nature
of the patterns. Increasing BurstCount can result in a higher net bandwidth offered by
the pattern because of better bank efficiency. The number of transfer cycles grows by
a factor of the BurstCount, while due to the parallelism offered by a bank architecture
SDRAM, the length of the pattern typically increases at half that rate. Therefore the
bank efficiency increases as shown in Equation (5.7).

However, using a higher BurstCount can also prove detrimental to the net band-
width, due to its effect on data efficiency. If we imagine a situation where a requestor
only wishes to read 4 bytes of memory, and a pattern set has an access granularity of 8
bytes, we can see that by increasing the BurstCount we increase the access granular-
ity even more, which results in a worse data efficiency. As shown in Equation (3.5), a
decreasing data efficiency results in lower net bandwidth offered.

Therefore we must iterate over different values of BurstCount in order to find the
pattern set that maximizes bank efficiency and data efficiency. In order to do this over
different values of BurstCount, we need to establish a loop between the pattern generator
and the flow into which it is set. The flowchart can be seen in Figure 7.3. To demonstrate
the relationship between edata and ebank, a plot of a DDR3-1600 SDRAM memory device
has been created in Figure 7.2. In this graph we see how increasing BurstCount improves
ebank at the cost of edata. Also plotted is the non-allocated bandwidth. The goal of the
integrated pattern generator is to find the value of BurstCount that produces the peak
non-allocated bandwidth.

The method that has been implemented is to generate an initial pattern with a

7.2. INTEGRATION OF PATTERN GENERATOR 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

E
ffi

ci
en

cy

N
on

-A
llo

ca
te

d
B

an
dw

id
th

 (
M

B
/s

)

BurstCount

ebank
edata

Non-Allocated BW

Figure 7.2: Trade-off between edata and ebank.

Timing
Constraints

Bandwidth
Requirement

Normalized

Normalized
Latency
Requirement

Pattern
Set

Pattern
Set

Pattern
Set

Requestor
SpecificationSpecification

Memory

Priority
AssignmentAllocatorGenerator

Termination condition not met?
Save patterns, increment
burst count, and generate the
next patterns

Termination condition met?
Stop. Look at completed
patterns to determine which
burst count provides the
most non−allocated bandwidth

Pattern STOPBandwidth

Figure 7.3: Flow of integrated pattern generator

BurstCount of 1. If the requestors’ bandwidth requirements are met, then the pattern
set generated is sent to the service allocation stage, where the bandwidth is discretized
to the various requestors. The patterns are then to the priority assignment stage of the
flow.

At the priority assignment stage the arbiter attempts to find a priority scheme for
the requestors such that the latency requirements of no requestor are violated. If the
arbiter is able to successfully find an assignment where none of the latency requirements
are violated, then it means that the generator has found a valid pattern set. Then, the
non-allocated bandwidth is computed for the pattern set. If it is less than the value
found for the previous BurstCount, then the loop is broken. Additionally, if the arbiter
is not able to find a priority scheme to fit the pattern set, the loop is broken. Otherwise,
the pattern is saved for later consideration, and the loop continues with an incremented

54 CHAPTER 7. ALGORITHM CONTEXT

BurstCount.

The loop termination condition is always reached. The non-allocated bandwidth can
only decrease when edata has become less than 100% for all requestors, as shown by
Equation (7.3). As edata must decrease below 100% as the BurstCount rises as shown
by Equation (5.10), the loop must be broken.

When the arbiter is unable to find a priority scheme for the pattern set, the loop is
broken for the following reason. A pattern with a higher BurstCount is always longer
than a pattern with a lower BurstCount, which also means that higher BurstCount
patterns take longer to execute. Thus, increasing BurstCount can only exacerbate the
problems an arbiter may have creating a priority assignment. A second termination
condition is implemented to prevent the BurstCount from becoming so large that the
refresh constraint is violated. Once the termination condition has been met, the pattern
set that has the highest offered non-allocated bandwidth is selected.

In Figure 7.4 we see the architecture of the Predator memory controller. Now that
we have a proper tool to generate memory pattern sets, we show how the tool is related
to the architecture. Once the patterns have been generated, they are loaded into the
command generator. This allows the command generator to know which sequence of
patterns should be sent to the SDRAM. The priority assignment stage is responsible
for creating proper priorities for the requestors, and these priorities are loaded into the
scheduler. Finally, the bandwidth allocator is responsible for determining how to divide
the available bandwidth for the requestors. This information is used by the rate regulator,
which is responsible for enforcing the budgets derived by the bandwidth allocator.

SDRAM back endResource front end

requestor 1

requestor 2

address
logical

Memory
Map

Command
Generator

cmd
SDRAM

address
physical

S
D

R
A

M
 M

em
ory

cmd

Req/Resp
Buffers

Req/Resp
Buffers

D
ata B

us

Regulator
Rate

Scheduler data

Arbiter

Figure 7.4: Illustration of Predator architecture.

7.3 Non-allocated Bandwidth Calculations

As mentioned above, the criteria for determining whether a given generated pattern set
is better than other pattern sets depends on the amount of non-allocated bandwidth. As
such, it is important to be able to calculate this value.

The first thing that needs to be computed is the net bandwidth, which is comprised
of the product of the efficiencies presented in Section 5.4 and the peak bandwidth,

7.4. EXPERIMENTAL RESULTS 55

presented in Section 3.1. Now that we have the total amount of bandwidth offered to
the requestors, we need to calculate how much bandwidth does each requestor take.

For each requestor at a specified BurstCount, we subtract the normalized bandwidth
requirement from the net bandwidth being offered by the memory controller. This
value left over is the non-allocated bandwidth. An example is shown in Table 7.3 with
hypothetical values of net bandwidth.

NonAllocatedBandwidth = NetBandwidth−

NumRequestors
∑

k=1

NormalizedBandwidthk (7.3)

Table 7.1: Example of normalized bandwidth changing with BurstCount.
Requestor Burst

Size
Access
Granularity

Normalized
Bandwidth

Burst
Count

Net
Bandwidth

Req. 1 64
128

3200MB/s
1 5000MB/s

Req. 2 128 400MB/s

Req. 1 64
256

6400MB/s
2 9000MB/s

Req. 2 128 800MB/s

Req. 1 64
512

12800MB/s
4 16000MB/s

Req. 2 128 1600MB/s

Thus with this particular example at BurstCount = 2, we have improved the non-
allocated bandwidth over the previous iteration. Therefore we increment BurstCount
and try again. We see at BurstCount = 4 that the non-allocated bandwidth is lower
than the previous iteration, and thus terminate the loop and choose the pattern set with
BurstCount = 2.

NonAllocatedBandwidth = 5000− 3200− 400 = 1400 (BurstCount = 1)

NonAllocatedBandwidth = 9000− 6400− 800 = 1800 (BurstCount = 2)

NonAllocatedBandwidth = 16000− 12800− 1600 = 1600 (BurstCount = 4)

7.4 Experimental Results

This section presents two types of results. The first results demonstrate how iterating
over different values of BurstCount is useful. The second section presents simulations
of the Predator memory controller with requestors, detailing how the actual offered
bandwidth compares to the guaranteed values computed in Section 6.

56 CHAPTER 7. ALGORITHM CONTEXT

7.4.1 Rates of Satisfaction

The integrated pattern generator iterates over different values of BurstCount to get
the highest rates of latency and bandwidth requirement satisfaction for different use
cases. Figures 7.5, 7.6, 7.7, and 7.8 demonstrate the rates of success for meeting a use
case’s bandwidth or latency requirements for fixed BurstCount compared to an iterating
BurstCount.

In each of the following figures, 5000 use cases are used. Each use case has 6 re-
questors, and each requestor has randomized requirements based on the following vari-
ables. load refers to the percentage of peak bandwidth requested by the requestors.
ReqSize is a parameter used to determine the amount of data requested by a requestor.
ReqMod is a modifier used in conjunction with ReqSize. The request size of a requestor
is determined by randomly selecting a value from 1 to ReqMod, and multiplying it by
ReqSize. Latency requirements are generated in a similar fashion, with LatReq being
a maximum latency requirement, and LatMod being its modifier. These figures are
useful as they prove that an iterating BurstCount has a higher rate of diverse use case
requirement satisfaction. The values used in the figures are defined in Table 7.2.

Table 7.2: Values of load, request size, and latency requirement.
load 82.6%

ReqSize:ReqMod 512:8

LatReq:LatMod 135:100

As seen in Figure 7.5, at a low BurstCount it is difficult to provide enough bandwidth
to match the bandwidth requirements of the requestors. Due to the short pattern lengths
created with a low BurstCount, the priority assigner has more space to work with and
thus has an easier task of finding a valid assignment to meet latency requirements. As
BurstCount increases, we see a corresponding increase in bandwidth satisfaction. This is
expected because in the environment that this graph comes from, the request sizes of the
requestors are larger than the granularity of the patterns produced for BurstCount 1, 2,
and 4. This means that the edata will always be 1, and thus increasing the BurstCount
does not have a negative effect on bandwidth satisfaction at these values.

Figure 7.6 displays the combined latency and bandwidth satisfaction rate. The com-
bined rate of satisfaction is highest with the iterating approach as we predicted in Sec-
tion 7, thus verifying that an iterative method provides higher requirement satisfaction
over different use cases.

In Figures 7.7 and 7.8, we have decreased ReqSize:ReqMod to 64:8 in order to
demonstrate a decrease in bandwidth requirement satisfaction. As seen in Figure 7.7,
the bandwidth satisfaction rate drops sharply at BurstCount 4. This occurs because the
granularity of the patterns is now much larger than the request size of the requestors,
thus negatively influencing edata as BurstCount increases, and as a result, the bandwidth
offered is reduced.

7.4. EXPERIMENTAL RESULTS 57

 0

 20

 40

 60

 80

 100

 120

BC1 BC2 BC4 Iterating

S
uc

ce
ss

 R
at

e
(%

)

Algorithm Type

Bandwidth Satisfied
Latency Satisfied

Figure 7.5: Comparison of fixed BurstCount generator and an iterating generator with
large request size. The memory specification used is DDR2-400.

 0

 5

 10

 15

 20

 25

 30

BC1 BC2 BC4 Iterating

S
uc

ce
ss

 R
at

e
(%

)

Algorithm Type

Latency and Bandwidth Satisfied

Figure 7.6: Comparison of fixed BurstCount generator and an iterating generator with
large request size. The memory specification used is DDR2-400.

7.4.2 Actual Bandwidth

The results in this section are based on simulations of the Predator memory con-
troller with 4 requestors, with a constant backlog of requests. Plotted in Fig-
ures 7.9, 7.10, 7.11, and 7.12 are actual measured bandwidth compared against the
worst-case bounds guaranteed by the bank scheduling algorithm. In each figure, the
simulation is run twice. In the first simulation, the patterns being executed are forced
to switch from read writes at every opportunity. In the second simulation, switches are
not forced, but allowed to switch at every opportunity. The length of time for all plots
is 16.6 µs. This value was chosen because it is just over the amount of time required to
execute 2 refresh commands. We see at 7.8 µs and at 15.6 µs a small dip in the average

58 CHAPTER 7. ALGORITHM CONTEXT

 0

 10

 20

 30

 40

 50

 60

BC1 BC2 BC4 Iterating

S
uc

ce
ss

 R
at

e
(%

)

Algorithm Type

Bandwidth Satisfied
Latency Satisfied

Figure 7.7: Comparison of fixed BurstCount generator and an iterating generator with
small request size. The memory specification used is DDR2-400.

 0

 5

 10

 15

 20

 25

BC1 BC2 BC4 Iterating

S
uc

ce
ss

 R
at

e
(%

)

Algorithm Type

Latency and Bandwidth Satisfied

Figure 7.8: Comparison of fixed BurstCount generator and an iterating generator with
small request size. The memory specification used is DDR2-400.

bandwidth due to the refresh pattern executing.
As we see in Figure 7.9, the plot of bandwidth when switching is not forced is slightly

higher because the pattern set produced for this memory device is mix dominant. This
means that the worst-case scenario in terms of bandwidth offered occurs when there is
constant switching between read and write patterns.

In the remaining figures the forced switch and unforced switch plots are the same
because the patterns generated for each figure write dominant or mix dominant with
switching patterns of length 0. This implies that the worst-case occurs for forced switch-
ing use cases and non-forced switching use cases.

7.4. EXPERIMENTAL RESULTS 59

 660

 680

 700

 720

 740

 760

 780

 800

 0 2 4 6 8 10 12 14 16 18

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Time (microseconds)

Actual Bandwidth (Forced Switches)
Peak Bandwidth

Worst-Case Guarantee
Actual Bandwidth

Figure 7.9: Average bandwidth over time for a DDR2-400 device by simulation.

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 2 4 6 8 10 12 14 16 18

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Time (microseconds)

Actual Bandwidth (Forced Switches)
Peak Bandwidth

Worst-Case Guarantee
Actual Bandwidth

Figure 7.10: Average bandwidth over time for a DDR2-800 device by simulation.

60 CHAPTER 7. ALGORITHM CONTEXT

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 2 4 6 8 10 12 14 16 18

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Time (microseconds)

Actual Bandwidth (Forced Switches)
Peak Bandwidth

Worst-Case Guarantee
Actual Bandwidth

Figure 7.11: Average bandwidth over time for a DDR3-800 device by simulation.

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18

N
et

 B
an

dw
id

th
 (

M
B

/s
)

Time (microseconds)

Actual Bandwidth (Forced Switches)
Peak Bandwidth

Worst-Case Guarantee
Actual Bandwidth

Figure 7.12: Average bandwidth over time for a DDR3-1600 device by simulation.

Conclusion 8
This thesis describes a problem associated with applications being run on real-time sys-
tems with hard requirements, namely, the bounding of worst-case latency and bandwidth.
It introduces the idea of a hybrid memory controller, Predator, which uses memory pat-
terns to interact with an SDRAM device, in order to bound worst-case latency and
bandwidth. The problem of creating these memory patterns is described, along with the
goal of this thesis, which is to create a method for producing patterns.

Following this, the thesis describes the architecture and operation of various basic
components of the considered platform. These are the SDRAM memory device, and
memory controllers. Current solutions are presented, along with why these solutions
do not conform to our requests. The Predator memory controller is detailed with more
information, and explanations are given on why this controller is suitable.

Basic pattern construction and metrics for evaluating pattern sets are illustrated.
The metrics detailed involve memory efficiency, which is an extension of an existing
model, as well as latency calculations.

Three heuristic-based pattern generation approaches are created. They explore the
trade-offs between run time and net bandwidth offered. Based on experimental results,
the bank scheduling algorithm is chosen as it provides a huge decrease in run time
compared to the branch and bound algorithm, while providing much more bandwidth
than the ASAP algorithm.

Once the pattern generation algorithm is determined, the generator is integrated into
the design flow of the Predator memory controller. The integration consists of creating a
loop between the generator, bandwidth allocator, and priority assigner, such that highest
satisfaction rate of required bandwidth and latency are met. We prove this is the case by
running the Predator design flow with multiple requestors, and showing that the iterating
BurstCount provides higher satisfaction rates than having a fixed BurstCount.

61

62 CHAPTER 8. CONCLUSION

Future Work 9
This section contains ideas for possible future directions of the project.

9.1 3D Stacking

An emerging technology is that of 3D stacking. This technology reduces the cost-per-pin
of a package, and therefore allows for some interesting areas of optimization. One theory
to consider would be to have separate buses for reading and writing to a memory device.
This could lead to the elimination for the need of switching patterns, and thus increase
net bandwidth offered by mix dominant pattern sets.

A second area of improvement could be in consideration of the memory interface.
With reduced cost-per-pin, it could be feasible to widen existing bus widths, or to even
implement multiple interfaces for a device. These improvements would provide a higher
bandwidth to requestors.

9.2 Optimal Pattern Generation

One area for improvement is in the pattern generator. Currently, in the branch and
bound algorithm we only search for the shortest access patterns. This idea behind it is
that with shorter access patterns, you increase ebank. However, it has also been shown
that in certain conditions a one or two cycle increase in access pattern length results in
a 4 or 5 cycle decrease in the switching patterns. In a case observed experimentally, the
pattern set was write dominant, so in fact due to the definition of eswitch the switching
patterns were irrelevant, thus the shorter access pattern still provided higher bandwidth.
But the case remains where the resulting pattern set is mix dominant, in which case the
switching patterns make a difference. Therefore a proposal for making the generator
produce optimal patterns could be an interesting future direction.

9.3 Low Power Considerations

Currently the generator produces patterns without any consideration for power use. As
such, interleaving memory map-based patterns are the ideal choice because we are able
to exploit the parallelism of the SDRAM’s bank architecture, and thus provide a higher
net bandwidth.

However, this approach also consumes a lot of power as all banks are activated on
every access pattern execution. Activate commands take significantly more power than
the other SDRAM commands. Therefore, it could be interesting to research how pattern
construction choices could be modified to be aware of power consumption [11].

63

64 CHAPTER 9. FUTURE WORK

9.4 Future SDRAM Iterations

Another area where there may require future improvement is with next generation
SDRAM devices. The transition from DDR1 to DDR2 memories saw minor changes
in device operation, and the same thing happened again in the transition from DDR2
to DDR3. The algorithms detailed above were explicitly designed with those memories
in mind. It is expected that when DDR4 arrives on the market that in order to fully
support it some minor revisions must be made to account for new differences in timing
constraints and parameters.

Bibliography

[1] S. Adee. Thanks for the Memories. IEEE Spectrum, 46(5), 2009.

[2] B. Akesson et al. Predator: a predictable SDRAM memory controller. In Proc. CODES+ISSS, 2007.

[3] B. Akesson et al. Real-Time Scheduling Using Credit-Controlled Static-Priority Arbitration. In Proc.
RTCSA, Aug. 2008.

[4] N. Audsley. Optimal priority assignment and feasibility of static priority tasks with arbitrary start times.
Real-Time Systems, 1991.

[5] S. Dutta et al. Viper: A multiprocessor SOC for advanced set-top box and digital TV systems. IEEE Des.
Test. Comput., 2001.

[6] K. Goossens et al. Interconnect and memory organization in SOCs for advanced set-top boxes and TV —
Evolution, analysis, and trends. In Interconnect-Centric Design for Advanced SoC and NoC, chapter 15.
Kluwer, 2004.

[7] E. İpek et al. Self-Optimizing Memory Controllers: A Reinforcement Learning Approach. In Intl. Symp.
on Computer Architecture (ISCA), 2008.

[8] JEDEC Solid State Technology Association, JEDEC Solid State Technology Association 2004, 2500 Wilson
Boulevard, Arlington, VA 22201-3834. DDR3 SDRAM Specification, jesd79-3 proposal edition, Oct 2005.

[9] JEDEC Solid State Technology Association. DDR2 SDRAM Specification, JESD79-2C edition, May 2006.

[10] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE, 91(1), 2003.

[11] S. Liu et al. A power and temperature aware dram architecture. In DAC ’08: Proceedings of the 45th
annual conference on Design automation, 2008.

[12] S. A. McKee. Reflections on the memory wall. In CF ’04: Proceedings of the 1st conference on Computing
Frontiers, 2004.

[13] G. Moore. Progress in digital integrated electronics. In Electron Devices Meeting, volume 21, 1975.

[14] S. Rixner et al. Memory access scheduling. In ISCA ’00: Proceedings of the 27th annual international
symposium on Computer architecture, 2000.

[15] J. Shao and B. T. Davis. A burst scheduling access reordering mechanism. In HPCA 13: Symposium
proceedings on High Performance Computer Architecture, 2007.

[16] L. Steffens et al. Real-time analysis for memory access in media processing socs: A practical approach.
Proc. ECRTS, 2008.

[17] E. Strooisma. A predictable and composable front-end for system on chip memory controllers. Master’s
thesis, Delft University of Technology, May 2008.

[18] L. Woltjer. Optimal DDR controller. Master’s thesis, University of Twente, Jan. 2005.

65

66 BIBLIOGRAPHY

List of relevant DDR timing

constraints and parameters A
Constraint Description DDR2-400 Values

(cycles)

tRC Minimum time between successive activate commands to the
same bank

11

tRCD Minimum time between activate and read/write commands
on the same bank

3

CL Latency in cycles after a read command until data is avail-
able on the bus

3

tWL Latency in cycles after a write command until data is avail-
able on the bus

2

tAL Additive latency, used to artificially inflate latency to pro-
vide better command bus utilization

0

tRP Minimum time between a precharge command on a bank
and a successive activate command

3

tRFC Minimum time between a refresh command and a successive
refresh or activate command

15

tRAS Minimum time after an activate command to a bank until
that bank is allowed to be precharged

8

tRTP Minimum time between a read and precharge command 2
tWR Minimum time after the last data has been written to a bank

until a precharge may be issued
3

tFAW Within this time frame at most 4 banks may be activated 8
tRRD Minimum time between activates to different banks 2
tCCD Used to compute the amount of time needed for a switching

pattern
2

tWTR Used to compute the amount of time needed for a switching
pattern

2

BurstSize Number of words produced/consumed per read/write com-
mand

Configurable

DataRate Number of words on the data bus per clock cycle 2
BurstCount Number of read/write commands per bank per pattern Configurable

67

68 APPENDIX A. LIST OF RELEVANT DDR TIMING CONSTRAINTS AND

PARAMETERS

Glossary B
Term Definition Page

BurstCount Number of read or write commands per bank in a
memory pattern

26

BurstSize Number of words per read or write command 10
DDR Double Data Rate 7

SDRAM Synchronous Dynamic Random Access Memory 7
SoC System-On-Chip 1
tread Length of read pattern 26
tref Length of refresh pattern 26
trtw Length of read to write switching pattern 26

twrite Length of write pattern 26
twtr Length of write to read switching patern 26

69

70 APPENDIX B. GLOSSARY

Latency Equation Derivations C
For the case of read dominance,

Θ̂− tref

1 +
tref
φ

≥ α ∗ tread

α ≤
Θ̂− tref

(

1 +
tref
φ

)

∗ tread
(C.1)

For the case of write dominance,

Θ̂− tref

1 +
tref
φ

≥ α ∗ twrite

α ≤
Θ̂− tref

(

1 +
tref
φ

)

∗ twrite

(C.2)

For the case of mix read dominance,

Θ̂− tref

1 +
tref
φ

≥

⌈

α + 1

2

⌉

∗ twtr +
⌈α

2

⌉

∗ tread +
⌈α

2

⌉

∗ trtw +
⌊α

2

⌋

∗ twrite

Θ̂− tref

1 +
tref
φ

≥

(

α + 3

2

)

∗ twtr +

(

α + 2

2

)

∗ tread +

(

α + 2

2

)

∗ trtw +
(α

2

)

∗ twrite

Θ̂− tref

1 +
tref
φ

≥
α ∗ twtr

2
+

3 ∗ twtr

2
+

α ∗ tread
2

+ tread +
α ∗ trtw

2
+ trtw +

α ∗ twrite

2

Θ̂− tref

1 +
tref
φ

−
3 ∗ twtr

2
− tread − trtw ≥ α ∗

(

twtr

2
+

tread
2

+
trtw
2

+
twrite

2

)

α ≤

Θ̂−tref

1+
tref

φ

− 3∗twtr

2 − tread − trtw

twtr

2 + tread
2 + trtw

2 + twrite

2

(C.3)

71

72 APPENDIX C. LATENCY EQUATION DERIVATIONS

For the case of mix write dominance,

Θ̂− tref

1 +
tref
φ

≥

⌈

α + 1

2

⌉

∗ trtw +
⌈α

2

⌉

∗ twrite +
⌈α

2

⌉

∗ twtr +
⌊α

2

⌋

∗ tread

Θ̂− tref

1 +
tref
φ

≥

(

α + 3

2

)

∗ trtw +

(

α + 2

2

)

∗ twrite +

(

α + 2

2

)

∗ twtr +
(α

2

)

∗ tread

Θ̂− tref

1 +
tref
φ

≥
α ∗ trtw

2
+

3 ∗ trtw
2

+
α ∗ twrite

2
+ twrite +

α ∗ twtr

2
+ twtr +

α ∗ tread
2

Θ̂− tref

1 +
tref
φ

−
3 ∗ trtw

2
− twrite − twtr ≥ α ∗

(

trtw
2

+
twrite

2
+

twtr

2
+

tread
2

)

α ≤

Θ̂−tref

1+
tref

φ

− 3∗trtw
2 − twrite − twtr

trtw
2 + twrite

2 + twtr

2 + tread
2

(C.4)

Requestor Specification D
The specification of four requestors are defined below.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE communication SYSTEM "../../../etc/dtd/communicationgrm.dtd">

<communication>

<application id="Application">

<connection qos="GT" id="0">

<initiator ip="input" port="p1"/>

<target ip="memory_controller" port="p1"/>

<read latency="0" bw="164" burstsize="128"/>

<parameter id="delay" type="bool" value="1"/>

</connection>

<connection qos="GT" id="1">

<initiator ip="filter1" port="p1"/>

<target ip="memory_controller" port="p1"/>

<write latency="0" bw="164" burstsize="128"/>

<parameter id="delay" type="bool" value="1"/>

</connection>

<connection qos="GT" id="2">

<initiator ip="filter1" port="p2"/>

<target ip="memory_controller" port="p1"/>

<read latency="0" bw="164" burstsize="128"/>

<parameter id="delay" type="bool" value="1"/>

</connection>

<connection qos="GT" id="3">

<initiator ip="output" port="p1"/>

<target ip="memory_controller" port="p1"/>

<write latency="0" bw="164" burstsize="128"/>

<parameter id="delay" type="bool" value="1"/>

</connection>

</application>

</communication>

73

74 APPENDIX D. REQUESTOR SPECIFICATION

DDR Memory Specification E
<!DOCTYPE architecture SYSTEM "../../../etc/dtd/architecturegrm.dtd">

<architecture id="isss">

...........

...........

<ip id="memory_controller" type="MemoryController">

<port id="p1" type="Target" protocol="MMIO_DTL">

<!-- Memory Specification -->

<parameter id="memoryId" type="string" value="64MB_DDR3-1600_16bit" />

<parameter id="capacity" type="uint" value="65536" />

<parameter id="nbrOfBanks" type="uint" value="4" />

<parameter id="clk" type="uint" value="800" />

<parameter id="dataRate" type="uint" value="2" />

<parameter id="tREFI" type="double" value="7800" />

<parameter id="burstSize" type="uint" value="8" />

<parameter id="wordSize" type="uint" value="2" />

<parameter id="RC" type="uint" value="36" />

<parameter id="RCD" type="uint" value="8" />

<parameter id="CL" type="uint" value="8" />

<parameter id="WL" type="uint" value="7" />

<parameter id="AL" type="uint" value="0" />

<parameter id="RP" type="uint" value="8" />

<parameter id="RFC" type="uint" value="72" />

<parameter id="RAS" type="uint" value="28" />

<parameter id="RTP" type="uint" value="6" />

<parameter id="WR" type="uint" value="12" />

<parameter id="FAW4" type="uint" value="24" />

<parameter id="RRD" type="uint" value="5" />

<parameter id="CCD" type="uint" value="4" />

<parameter id="WTR" type="uint" value="6" />

..........

..........

</port>

</ip>

</architecture>

75

