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Abstract

To manage the complexity of systems, they can be developed as component-based systems. Here, the
system is divided into modular, reusable components that abstract externally visible behaviour using
interfaces. Components can then act as servers, and offer services through these interfaces. These services
can in turn be used by clients, or even other components part of the same system. Component-based
systems can be modeled in the Component Modeling and Analysis (ComMA) framework. ComMA
interfaces describe both structure and behaviour, where the behaviour of an interface is specified using
protocol state machines. The big challenge with component-based systems, is that their concurrent
nature makes it hard to verify their behaviour. When changing the behaviour of an interface, how does
this affect any clients using the interface? It is entirely possible that the update caused the behaviour
of the interface to become incompatible with its client interfaces, causing deadlock and unbounded
behaviour.

Given a ComMA component specification, the verification of interface compliance through trace
analysis is already possible. This is not formal verification however, and to formally verify properties like
deadlock-freedom and boundedness, ComMA models are translated to Petri nets. Using Petri nets, a
mathematical modeling language, two interfaces can be verified to be compatible, implying the absence of
deadlock and unbounded behaviour. However, this translation was not complete, as constraints defined
on interfaces could not be modeled as a Petri net yet. Such constraints could be that an interface can
only transition to another state if another interface is in a certain state.

In this thesis, three of these constraints are categorized. Then, for each of these constraints, a
formalization is provided describing how the constraint should limit the behaviour of a Petri net. A
series of assumptions is furthermore given, describing properties that help ComMA users avoid creating
inherently deadlocking specifications. For each of the constraints, a method was then proposed to
represent and integrate the constraint into existing Petri net interface representations. The methods
were lastly applied on a case, and the results suggest that the proposed methods do not lead to an
exponential increase of the state space, indicating that they are scalable.
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Chapter 1

Introduction

Systems are becoming increasingly more complex [1], making it more challenging to develop, maintain,
and evolve them. One way to manage a complex system, both inside and outside the world of software
development, is to make the system modular [2][3]. To then achieve modularity in a system, it can be
developed as a component-based system.

A Component-based system (CBS) tries to achieve modularity by breaking the system down into
different asynchronously communicating pieces, referred to as components. The goal is to then make
these components easy to reuse and maintain. This is achieved by letting each component provide
a set of services through a set of interfaces. An interface can specify types of messages and data,
but also behaviour, thereby defining how a certain resource can be accessed. Having such a broad
definition, interfaces can be described using many things ranging form a simple word document, and
Interface Description Language (IDL) such as OpenAPI, or a Domain Specific Language (DSL) such as
Component Modelling and Analysis (ComMA) [4]. As long as the definition of the interface of a service
does not change, any change to the service behind the interface is not noticeable by anything using the
service.

This arrangement potentially allows for a wide variety of clients to access a multitude of services
provided by one or more different servers . The big challenge with CBS’s is that they are hard to verify
because of their concurrent nature. Changing the definition of an interface is easy, but what is difficult is
to determine how this affects any clients using the service that the interface provides, or how this affects
other interfaces that may depend on the changed interface in some way.

By creating a component specification using a modeling framework like ComMA, some analysis and
verification can already be done. For example, traces can be generated from the interaction of specified
interfaces, and monitors can be added to analyze compliance with the specified interface. However, this
does not formally verify whether two interfaces are compatible. Compatibility between interfaces in this
case implying the absence of deadlocks, livelocks, and any unbounded behaviour.

To do formal verification and analysis, the component specification could be translated to be rep-
resented in formal frameworks, such as Petri nets [5] or communicating state machines [6], that have
existing and proven verification methods. With this representation, the compatibility of interfaces can be
verified, and adapters that solve compatibility issues can even be generated [7][8]. Petri nets in particular
are well suited to model component-based systems, as they provide a graphical, intuitive way of mod-
eling systems in which events happen concurrently, furthermore allowing constraints on the occurrence,
precedence and frequency of these events [9].

Verifying the compatibility of a single interface with a client is already possible. In ComMA specif-
ically, an interface specification can already be represented as a Petri net, and then be verified to be
compatible with a client interface [8]. However as mentioned previously, interfaces can have inter-
dependencies. An example of such a dependency is that an action in one interface may only happen if
another interface is in a certain state. Without a method to encode these constraints, interfaces that
have such dependencies can currently not be verified formally.

1.1 Problem Statement

Manual verification for a set of interfaces is simply not feasible if the interfaces have any degree of
complexity, so an automated method is required. It is already possible to take a ComMA interface
specification, generate a Petri net representing its behaviour, and then formally verify its compatibility
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CHAPTER 1. INTRODUCTION

with a single client. However, there exists no method to encode the interface constraints. To be able
to do verification for specifications that contain these constraints, there would have to exist a way to
encode those constraints as a Petri net, and no such method currently exists currently. By developing
such a method, the range of models that can be formally verified is therefore increased.

Several approaches, using different types of Petri nets to model these constraints can be considered.
Each of these types of Petri nets have different degrees of expressive power, but also come with a different
range of verification methods. Here, the Petri nets with the least amount of expressive powers, have the
widest range of verification methods, while this range is more limited for the more expressive Petri nets.

Encoding the constraints using a Petri net with a lower expressive power is desirable, as it would
mean the resulting net is compatibly with existing verification and adapter generation methods [8].

It possible that a less expressive net will not suffice though. In this case, a more expressive Petri
net type have to be used, making the encoding of constraints easier. However, as existing verification
methods would no longer work in this case, more work would have to be done to make verification
possible.

1.2 Contributions

This thesis has four main contributions:

1. A formalization for each interface constraint, describing how each constraint should limit the be-
haviour of a P/T net.

2. A set of assumptions, describing properties that help ComMA users avoid creating specifications
with termination issues.

3. Methods for encoding the behaviour of these constraints into existing Petri net representations of
interfaces.

4. Methods for validating whether a set of given constraints is encoded correctly into a given Petri
net.

The goal is to allow for the verification of inter-dependent interfaces part of a component. Before
introducing the methods that achieve this, a formalization of each of these types of constraints is given.
This clearly defines the expected behaviour of each constraint. This then leads to the second contribution,
which is the definition of a set of assumptions about how the constraints are expected to be defined in
a specification. These assumptions act as guidelines, and can help people to specify interfaces that can
be formally verified and do not deadlock.

The third contribution will be the methods that encode the constraints as a Petri net. The proposed
methods are presented in the form of four pseudo-code algorithms, and each of the algorithms have a
corresponding implementation in ComMA. Two of them encoding enabling and disabling constraints,
and the other two encoding causal sequence constraints. Alongside each algorithm, proof sketches are
given, showing that the properties defined in the formalization of each constraint are respected.

Lastly, methods for validating whether a set of given constraints is encoded correctly into a Petri
net is provided. This validation is done using Neo4j, and its query language Cypher. These methods
are given in the form of Cypher templates, one for each of the three constraints. As the algorithms are
accompanied by proof sketches, the validation methods are meant to build additional confidence in the
solution, and can be seen as a way to provide feedback to a user’s given specification.

1.3 Outline

The rest of the thesis is organized as follows. Chapter 2 covers other works in the area of component-based
model verification. The differences in the angles of approach and solutions are highlighted. Chapter 3
gives a brief introduction to ComMA, provides some necessary basics of Petri nets, and shows an example
of the existing ComMA Petri net representation. In Chapter 4, for each type of constraints, a formal-
ization alongside some terminology is presented. This is followed by series of assumptions introduced in
Chapter 5. These assumptions are about the specification of interfaces and act as guidelines, and some
of them will be used for proof sketches in Chapter 6.

Chapter 6 continues by presenting for each type of constraint, an algorithm encoding the constraint, as
well as proof sketches showing that the algorithm produces a Petri net that complies with the properties
defined in Chapter 4. Causal sequences are divided into smaller subsections covering different cases,
starting with a simple case, and ending with the most complex case. Chapter 7 then covers a case study.
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CHAPTER 1. INTRODUCTION

A ComMA specification of the case is given, and the results of applying the algorithms of Chapter 6
on these specifications are shown. This is followed by an explanation on how the results can be verified
using Neo4j and Cypher. Lastly, the effects of the different constraint specifications on the state space of
the resulting Petri net are covered. This is followed by a short chapter that covers the implementations
that were made, both inside and outside of ComMA. Lastly, Chapter 9 gives a summary of the results
is given, alongside some potential improvements and optimizations listed in the future work section.
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Chapter 2

Related Work

There is a variety of works covering the verification of component-based systems. In general, two types
of verification methods can be distinguished: Static and dynamic verification. Static verification is done
based purely on specification, and does not involve executing an implementation of the system, while
dynamic verification involves executing a program and performing runtime analysis. While this work
uses a static verification method, there exist works that propose dynamic verification of component-based
systems [10]. In [10], runtime verification is integrated into the component-based BIP framework [11].
Runtime verification approaches like the one used in [10], sacrifice completeness for applicability [12]. In
this sense, it can be compared to trace analysis that can be done in ComMA to ensure compliance with an
interface specification [13]. So while these types of approaches can be valuable in certain contexts, they do
not align with the goal of this thesis to formally verify the compatibility of interfaces in component-based
systems.

Another approach is compositional verification, in which a divide and conquer approach to verification
is taken. Both [14] and [15] use such an approach, and in both cases a verifiable decomposition of the
system must be found. In [15] specifically, a guarantee-reasoning approach is used. Using this technique,
to verify a component that is part of larger network of components, a set of assumptions is calculated. The
potential limitations of this technique lie in the calculations of these assumptions, whereas the limitation
of the approach in this thesis lies in having to analyze the statespace of an entire system. Another
example involving a static verification method, is the work done in [16]. Like in this work, a translation
is made from a modeling framework specification, Dezyne, to a formal framework mCRL2 [17]. The first
difference in this approach is that the work in [16] focuses on translating the full language of Dezyne to a
formal framework, while this work focuses purely on interface constraints in the ComMA framework. In
[16], this translation is being done to mCRL2, a framework based on process algebra, rather than Petri
nets. These things make the approach in [16] fundamentally different and less applicable to this work.

There are several works that do propose Petri net based methods for component-based system ver-
ification [18][19][20]. In that sense, these works have an approach that is the closest to what is being
done in this thesis. How they fundamentally differ, is that they do verification on the component level,
focusing on the behaviour and dependencies of components. This work takes an approach that is a level
of abstraction lower, focusing on the internal behaviour of the interfaces part of a single component. The
methods proposed in [18],[19] and [20] all consider multiple components and the dependencies between
them.

Some form of interface dependencies are considered implicitly in [18],[19] and [20]. One interface
providing a service may expect a certain order of operations, and if another interface requiring that service
does not adhere to that order, deadlock may occur. In that sense, more implicit interface dependencies
that cause deadlock can be captured using these methods. However, as mentioned previously, this work
considers explicitly defined interface dependencies, such as the requirement that an action in one interface
must be followed by a sequence of actions in other interfaces. And no method exists yet to encode such
dependencies into a Petri net, meaning that interfaces containing these constraints could not be verified
feasibly.
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Chapter 3

Background

This chapter provides the necessary background information for the concepts used in this thesis. Sec-
tion 3.1 covers ComMA, which is the modeling framework in which the component and interface spec-
ifications are given. Afterwards, in Section 3.2, some basic mathematical notation is introduced. In
Section 3.3 Petri nets are covered, which is what the ComMA specifications will be translated to by the
methods proposed in chapter 5. Finally, Section 3.4 will go over Pnet, which is the Petri net represen-
tation that already exists in ComMA.

3.1 ComMA

ComMA is a modeling framework that supports component-based development of systems1. ComMA
supports model-based engineering, by allowing for the specification of components and interfaces, the
generation of monitors that can verify compliance, and the generation of documentation among other
things. For this thesis, we are primarily interested in the specification of components and interfaces in
ComMA.

3.1.1 ComMA Interface Specification

A ComMA interface definition describes both structure and behaviour. The internal behaviour of an
interface is specified in the form of a protocol state machine. The structure of an interface is defined by
its signature. An interface’s signature specifies a set of events, and these events can come in three forms:
signals, notifications, and commands.

• A signal is an asynchronous message sent from a client to a server.

• A notification is an asynchronous message sent from a server to a client.

• A command is a synchronous message sent from a client to a server. This is a blocking call, as the
client waits for a reply after the command has been executed.

Figure 3.1 shows an example of an interface signature, containing five signals and one notification, but
no commands.

1 s i gna tu r e Imaging
2
3 s i g n a l s
4 turnOn
5 turnOff
6 image
7 image2
8 i n i t i a l i z e
9

10 n o t i f i c a t i o n s
11 done

Figure 3.1: ComMA interface signature

1https://esi.nl/research/output/tools/comma
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CHAPTER 3. BACKGROUND

An interface’s behaviour is described as a protocol state machine, so its definition will therefore contain
a set of states, one of which is the initial state. For each state, a set of outgoing transitions can then be
defined. A transition can be defined to be triggered or non-triggered. A triggered transition happens as a
result of a signal or a command, meaning it was initiated by the client. A triggerless transition happens
as a result of a notification, meaning that the server executed a transition autonomously. Figure 3.2
shows the specification of an interface with three states: Off, On and processing. For the transitions, the
events of Figure 3.1 are used. Note that each transition has a definition of a tag. These tags allow for
specific transitions to be referenced in a component specification, such that they can be used to define
constraints. This will be shown later in Section 3.1.2 Tags are always in the format < source state > <
event > < target state >, so the tag on Line 10 in Figure 3.2 refers to the transition turnOn coming
from the state Off, going to the state On.

Transitions can furthermore contain guards, and allow the specification and manipulation of data.
However, these concepts are outside the scope of this thesis, and will therefore not be explained further.

1 import ” Imaging . s i gna tu r e ”
2
3 i n t e r f a c e Imaging ve r s i on ” 1 .0 ”
4
5 machine StateMachine {
6 i n i t i a l s t a t e Off {
7
8 t r a n s i t i o n t r i g g e r : turnOn
9 next s t a t e : On

10 ( tag Off turnOn On )
11 }
12
13 s t a t e On {
14
15 t r a n s i t i o n t r i g g e r : turnOff
16 next s t a t e : Off
17 ( tag On turnOff Off )
18
19 t r a n s i t i o n t r i g g e r : image
20 next s t a t e : Proce s s ing
21 ( tag On image Process ing )
22
23 t r a n s i t i o n t r i g g e r : image2
24 next s t a t e : Proce s s ing
25 ( tag On image2 Process ing )
26
27 }
28
29 s t a t e Proce s s ing {
30 t r a n s i t i o n do :
31 done
32 next s t a t e : On
33 ( tag Process ing done On )
34 }
35 }

Figure 3.2: ComMA interface specification

3.1.2 CommA Component Specification

The specification of a component is done in component file. The first thing that gets specified are the
interfaces that are part of the component. When adding interfaces to a component, an interface can
either be a provided interface or a required interface. The provided interfaces of a component are the
interfaces that the client will interact with directly. Required interfaces then provide services in the
background that the client does not interact with directly, but are required for a system to function.
So in that way, components can be users of other components, while they are technically not clients.
Dependencies between interfaces can only be defined between interfaces belonging to the same class, i.e.
constraints can be defined between two provided interfaces, but not a required and a provided interface.
To scope the problem, only provided interfaces are considered in this thesis.

The second part of a component specification that we consider are the functional constraints, which

10



CHAPTER 3. BACKGROUND

are the constraints defined on the interfaces. In this thesis these constraints are classified into the
previously mentioned three different classes of enabling, disabling and causal sequence constraints. It
needs to be noted however, that in ComMA, an enabling constraint can only be defined as part of a
causal sequence, while a disabling constraint is defined on its own.

Figure 3.3 shows an example of a component specification with four interfaces, and two causal
sequence constraints containing two enabling constraints. Here, the first causal sequence constraint
𝑖𝑛𝑖𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 specifies that a turnOn action in the Imaging interface must be followed by a turnOn in
the Vacuum interface, followed by a turnOn in the Temperature interface. The enabling constraint of
the sequence then specifices that the turnOn action in the imaging interface can only happen if both the
temperature and the vacuum interface are in the Off state.

A disabling constraint is essentially the inverse of the enabling constraint, specifying that a transition
cannot be taken if another interface is in a certain state.

1 import ”Temperature/Temperature . i n t e r f a c e ”
2 import ”Vacuum/Vacuum . i n t e r f a c e ”
3 import ” Imaging/ Imaging . i n t e r f a c e ”
4 import ”Monitor/Monitor . i n t e r f a c e ”
5 component imagingComponent
6
7 provided port Temperature iTemperaturePort
8 provided port Imaging iImagingPort
9 provided port Vacuum iVacuumPort

10 provided port Monitor iMonitorPort
11
12 f un c t i o n a l c on s t r a i n t s
13
14 causa l−seq i n i t s e qu en c e {
15 iImagingPort : : Off turnOn On
16 where iTemperaturePort in Off and iVacuumPort in Off
17 leads−to
18 iVacuumPort : : Off turnOn On
19 iTemperaturePort : : Off turnOn On
20
21 }
22
23 causa l−seq o f f s e qu en c e {
24 iImagingPort : : On turnOff Off
25 where iTemperaturePort in On and iVacuumPort in On
26 leads−to
27 iVacuumPort : : On turnOff Off
28 iTemperaturePort : : On turnOff Off
29
30 }

Figure 3.3: ComMA component specification

3.2 Basic Mathematical Notations

A set 𝑆 is an unordered potentially infinite collections of elements, and is denoted using curly brackets.
The set 𝑆 = {1, 2, 3}, denotes a set containing elements 1, 2 and 3. |𝑆| denotes the number of elements
in the set 𝑆, and ∅ denotes the empty set. We use 𝑠 ∈ 𝑆, to denote that the element 𝑠 is part of the set
𝑆. 𝑆′ ⊆ 𝑆 denotes that 𝑆′ is a subset of 𝑆, meaning that every element of 𝑆′ is also an element of 𝑆,
implying that |𝑆′| ≤ |𝑆|. We use 𝒫 to denote the powerset of a set 𝑆, which is the set of all subsets of
𝑆. The set union set operation ∪ is defined in the standard way. 𝐴×𝐵 denotes the Cartesian product,
which is the set of all ordered pairs {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}. We say that a function 𝑚 : 𝑆 → N over
some set 𝑆 is a bag over 𝑆. For some 𝑠 ∈ 𝑆, 𝑚(𝑠) denotes the number of occurrences of s in 𝑚. The set
of all bags over 𝑆 is denoted by 𝐵(𝑆).

We use N to denote the set of natural numbers, where 0 ∈ N. A finite sequence over a set 𝑆 with
length 𝑛 ∈ N is denoted by 𝜎, where 𝜎 is a function 𝜎 : {1, .., 𝑛} → 𝑆. We denote the set of all finite
sequences over 𝑆 by 𝑆*. |𝜎| denotes the length of a sequence. A sequence of length 𝑛 is represented
by 𝜎 = ⟨𝑠1, ..., 𝑠𝑛⟩, where 𝑠1, ..., 𝑠𝑛 ∈ 𝑆 and 𝜎(𝑖) = 𝑠𝑖 for 1 ≤ 𝑖 ≤ 𝑛. We use 𝑥 ∈ 𝜎 to denote that the
element 𝑥 is part of the sequence 𝜎. If |𝜎| = 0, the sequence is empty, which is denoted by 𝜖. For a
sequence 𝜎 = ⟨𝑎1, ..., 𝑎𝑛⟩ with 𝑛 ∈ N, a subsequence 𝜎′ of 𝜎 is defined as 𝜎′

𝑘 = 𝜎𝑛𝑘
with 𝑘 ∈ N, where

11
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𝑛1 < 𝑛2 < ...𝑛𝑘 < ... is an increasing sequence of indices. For a sequence 𝜎, 𝜎* denotes the set of all
possible subsequences.

A directed graph is an ordered pair 𝐺 = (𝑉,𝐸), where 𝑉 is a set of vertices, and 𝐸 ⊆ 𝑉 × 𝑉 a set of
edges. Edges have directions represented by a head and a tail, and for an edge (𝑥, 𝑦), 𝑥 is the head and 𝑦
is the tail. We say that a graph is strongly connected, if for each 𝑒1, 𝑒2 ∈ 𝑉 , there exists a directed path
from 𝑒1 to 𝑒2. A bipartite graph, is a graph whose vertices can be divided into two disjoint, independent
sets. This means that no edge exists whose head and tail is in the same set.

3.3 Petri Nets

A Petri net [21], is a modeling language that is often used to describe distributed systems. A big advan-
tage of Petri nets, is that it provides an intuitive, graphical representation, while still having a rigorous
mathematical foundation. In this thesis we focus on one type of Petri net, called a place/transition
(P/T) net.

A P/T net is a bipartite graph, and consists of three different things: a set of places that can hold
one or more tokens, a set of transitions that can consume or produce tokens to these places, and a set of
arcs that determine which places transitions can consume and produce tokens to. A formal definition of
a P/T net is given in Definition 3.1.

Definition 3.1 (P/T net)
A P/T net 𝑁 is defined as 𝑁 = (𝑃, 𝑇, 𝐹 ), where

• 𝑃 is a set of places

• 𝑇 a set of transitions

• 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is a set of directed arcs.

where 𝑃 and 𝑇 are pairwise disjoint. We refer to 𝑃 ∪ 𝑇 as the set of nodes.

Figure 3.4 shows an example of a P/T net defined as follows:

𝑁 = (𝑃 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5}, 𝑇 = {𝑇1, 𝑇2, 𝑇3, 𝑇4}, 𝐹 = {(𝑆1, 𝑇1), (𝑇1, 𝑆2), (𝑆2, 𝑇2), (𝑆2, 𝑇3),
(𝑇2, 𝑆3), (𝑇3, 𝑆3), (𝑆3, 𝑇4), (𝑇4, 𝑆1)}

Here, S1 is an example of a place, T1 a transitions, and the arrows between the places and transitions
are the arcs.

Figure 3.4: An example P/T net

The preset of a node 𝑛, consists of all nodes that have an outgoing arc to 𝑛. The postset of a node 𝑛,
consists of all nodes that have an incoming arc from 𝑛. This is formalized in Definition 3.2. In Figure 3.4,
the preset of the transition T1 consists only of S1, and its postset consists of both S2 and S3.

12
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Definition 3.2 (Presets and postsets)
The preset of a node is denoted by ∙𝑛 = {𝑚 | (𝑚,𝑛) ∈ 𝐹}, and the post set as 𝑛∙ = {𝑚 | (𝑛,𝑚) ∈ 𝐹}.
We use the preset and postset as functions, where ∙𝑢(𝑣) = 1 and 𝑢∙(𝑣) = 1 if 𝑣 ∈ ∙𝑢 and 𝑣 ∈ 𝑢∙

respectively, and ∙𝑢(𝑣) = 0 and 𝑢∙(𝑣) = 0 otherwise.

The state of a P/T net is the distribution of tokens in the net, called a marking, and is a bag over a
nets places. Definition 3.3 describes this formally. The current marking of the net shown in Figure 3.4,
would indicate that only S1 has one token.

Definition 3.3 (Marking)
A marking 𝑚 is defined as 𝑚 : 𝑃 ↦→ N, indicating the number of tokens that a given place has in the
marking. The initial marking of a net is denoted by 𝑚0

We say that a transition 𝑡 is enabled in a marking, if at least one token is present in all places in the
preset of 𝑡. Definition 3.4 formalizes what it means for a transition to be enabled.

Definition 3.4 (Enabledness of transitions)
A transition 𝑡 is enabled in some marking 𝑚 in some P/T net 𝑁 iff ∀𝑝 ∈ 𝑃𝑁 : ∙𝑡(𝑝) ≤ 𝑚(𝑝).

When a transition is enabled, it is allowed to fire. This notion is formalized in Definition 3.5. When a
transition fires, it removes a token from each place in its preset, and places a token in each of the places
in its postset.

Definition 3.5 (Transition firings)
In a P/T net 𝑁 , when an enabled transition 𝑡 fires in a marking 𝑚, this results in a new marking 𝑚′

where:
∀𝑝 ∈ 𝑃𝑁 : 𝑚′(𝑝) = 𝑚(𝑝)− ∙𝑡(𝑝) + 𝑡∙(𝑝)

.

We use the term firing sequence to refer to a sequence of transition firings. This is formally defined
in Definition 3.6.

Definition 3.6 (Firing sequences)
A firing sequence of length 𝑛 ∈ N is denoted by 𝜎 = ⟨𝑡0, 𝑡1, ..., 𝑡𝑛⟩. A firing sequence 𝜎 = ⟨𝑡0, 𝑡1, ..., 𝑡𝑛⟩
is enabled in a marking 𝑚 iff: ∃𝑚1, ...,𝑚𝑛 ∈ 𝐵(𝑃 ) : 𝑚

𝑡1−→ 𝑚1
𝑡2−→ 𝑚2...

𝑡𝑛−→ 𝑚𝑛, and we denote this as

𝑚
𝜎−→.

An example of a firing sequence would be the sequence of 𝑇1 followed by 𝑇2 in Figure 3.4.
The concept of reachability is important when we need to determine the possible behaviour of a Petri

net. The reachability of a Petri net defines the nets reachable markings, or its state space. Definition 3.7
formalizes this.

Definition 3.7 (Reachability)

We say that a marking 𝑚′ is reachable from another marking 𝑚 in a net 𝑁 if ∃𝜎𝑇*, such that 𝑚
𝜎−→ 𝑚′.

We use 𝑅(𝑁,𝑚) = {𝑚′ | 𝑚 *−→ 𝑚′} to denote all reachable markings in a net 𝑁 from the marking 𝑚.

The reachability of a net is often described in a reachability graph, an example of which is shown in
Figure 3.5. Here, each node represents a marking, and the connection between each node a transition
firing. In Figure 3.5, we can see that from m0, which is the initial marking also displayed in Figure 3.4,
only T1 can fire. After T1 fires, either T2 can fire followed by T3, or T3 followed by T2.
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m0 m1

m2 m3

m4

T1

T2
T3

T3
T2

T4

Figure 3.5: Reachability graph of the example P/T net

In Figure 3.5, we can see that it is possible to end up back in the initial marking m0. In fact, in any
given node, we always end up in back in the initial marking at some point. In this case we say that the
net is weakly terminating.

Definition 3.8 (Weak termination)
A P/T net 𝑁 is weakly terminating iff:

∀𝑚 ∈ 𝑅(𝑁,𝑚0) : ∃𝑚 *−→ 𝑚0

where 𝑚
*−→ 𝑚0 indicates that 𝑚0 is reachable from 𝑚 through one or more transition firings.

Because the behaviour of ComMA interfaces is described by protocol state machines, we introduce
the notion of a state machine P/T net, formalized in Definition 3.9. Being a state machine net restricts
the behaviour of P/T net, in that it disallows concurrent behaviour.

Definition 3.9 (S-net)
A P/T net 𝑁 is an S-net iff: ∀𝑡 ∈ 𝑇𝑁 : |∙𝑡| ≤ 1 ∧ |𝑡∙| ≤ 1 and all markings have exactly one token.

An open net, formalized Definition 3.10, is the standard way of modeling an interface as a Petri net,
as it has dedicated places representing the inputs and outputs of an interface. Given two open nets, their
interface places can be fused. This allows for the modeling of, for example, a client and a server. The
concept of interface places is out of scope for this thesis, so a more detailed explaination can be found
in [22].

Definition 3.10 (Open nets)
OPNs have two separate sets of input and output interface places. All sets of places and transitions in
the OPN are pairwise disjoint. The net in which an OPN’s interface places are omitted, is called the
OPN’s skeleton. If the skeleton of an OPN is an S-net, the OPN is called an state machine open net
(S-OPN).

All interfaces are defined as S-OPN’s. However, during the rest of this thesis, only the skeleton of
interfaces will be considered. This is because we only care about the internal behaviour of the interfaces
when trying to encode interface constraints.

In this context, we use the term component to refer to a collection of interfaces. This is formally
defined in Definition 3.11.

Definition 3.11 (Component)
Components are defined as a set of S-OPN’s representing its interfaces. For a component 𝒪, all 𝑁 ∈ 𝒪
are pairwise disjoint. For a component 𝒪, 𝑃𝒪 denotes the set of all places

⋃︀
𝑁∈𝒪(𝑃𝑁 ), and 𝑇𝒪 the set

of all transitions
⋃︀

𝑁∈𝒪(𝑇𝑁 ).

14



CHAPTER 3. BACKGROUND

3.4 Pnet

As mentioned previously, there already exist methods to translate a ComMA interface to a Petri net.
This currently done by translating a ComMA interface to the Pnet format, which is a ComMA DSL
representation of a Petri net. When not considering variable definitions and guards, a Pnet representation
is semantically equivalent to a formal P/T net definition. Therefore, this representation can be directly
mapped to a more standardized P/T net format such as pnml, which is used by most Petri net verification
tools [23]. This means that the interface skeletons are a given, and that this thesis focuses only on
connecting these skeletons through methods encoding interface constraints.

Figure 3.6 shows an example Pnet representation of an interface with two states, On and Off, and
two transitions, turnOn and turnOff. The representation then simply consists of two places, Off and
On. On then has turnOff in its postset and turnOn in its preset, and Off has turnOn in its postset and
turnOff in its preset.

1 i n t e r f a c e −net : StateMachine
2 {
3 i n i t −token
4 in t e rna l−p lace Off {
5 post−t r a n s i t i o n s :
6 Off Imaging turnOn 1 1
7 }
8 in t e rna l−p lace On {
9 post−t r a n s i t i o n s :

10 On Imaging turnOff 1 1
11 }
12
13
14 t r an s i t i o n −t r i g : On Imaging turnOff 1 1 {
15 ( tag On turnOff Off )
16 t r i g g e r : turnOff
17 post−p lace : Off
18 }
19
20 t r an s i t i o n −t r i g : Of f Imaging turnOn 1 1 {
21 ( tag Off turnOn On )
22 t r i g g e r : turnOn
23 post−p lace : On
24 }
25 }

Figure 3.6: Example Pnet representation
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Chapter 4

Formalizing The Constraints

We can categorize three different types of constraints that can model interface dependencies:

1. Enabling constraint: An action in one interface can only occur if one or more other interfaces are
in a certain state.

2. Disabling: An action in one interface cannot occur if one or more other interfaces are in a certain
state.

3. Causal sequence constraint: An action must be followed by an uninterrupted sequence of actions
across different interfaces.

This chapter introduces formalizations for each of these constraints. Each constraint will have one
definition, and this definition includes a property that the Petri net encoding introduced in Chapter 6
should satisfy.

4.1 Enabling Constraint

Because interfaces are S-nets, there is a one to one mapping between states in an interface in ComMA,
and the places in the Petri net representation of this interface. That is, with S-net markings having only
one token, a place 𝑝 having a token, represents the interface being in a state 𝑠. An enabling constraint
for a transition is defined as an additional enabling condition based on the states of other interfaces.
That is, an enabling constraint on a transition requires places in other interfaces to contain a token in
order to be enabled.

Definition 4.1 (Enabling constraint)
Given a Component 𝒪 and a set of transitions 𝑇𝑐 ⊆ 𝑇𝒪, an enabling constraint is defined as

𝐶𝑒 : 𝑇𝑐 → 𝑃𝒪

For a transition 𝑡 ∈ 𝑇𝑐, the enabling constraint 𝐶𝑒(𝑡) = {𝑝1, 𝑝2} indicates that 𝑡 may only fire if both 𝑝1
and 𝑝2 have at least one token.

A component 𝒪 satisfies a set of constraints 𝐶𝑒 iff for any given transition 𝑡 ∈ 𝑇𝑐 and marking
𝑚 ∈ 𝐵(𝑃𝒪):

if 𝑚
𝑡−→ then ∀𝑝 ∈ 𝐶𝑒(𝑡) : 𝑚(𝑝) = 1

4.2 Disabling Constraint

The disabling constraint requires a transition to be disabled if other interfaces are in a certain state. The
same reasoning used for the enabling constraint can be applied here. But instead, places must now act
as a disabling condition, rather than an additional enabling condition. That is, a disabling constraint on
a transition requires that this transition is disabled if a set of places in other interfaces contain at least
one token.
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Definition 4.2 (Disabling constraint)
Given a Component 𝒪 and a set of transitions 𝑇𝑐 ⊆ 𝑇𝒪, a disabling constraint is defined as

𝐶𝑑 : 𝑇𝑐 → 𝑃𝒪

For a transition 𝑡 ∈ 𝑇𝑐, the enabling constraint 𝐶𝑑(𝑡) = {𝑝1, 𝑝2} indicates that 𝑡 cannot be enabled if both
𝑝1 and 𝑝2 have at least one token.

A component 𝒪 satisfies a set of constraints 𝐶𝑑 iff for any given transition 𝑡 ∈ 𝑇𝑐 and marking
𝑚 ∈ 𝐵(𝑃𝒪):

if 𝑚
𝑡−→ then ∀𝑝 ∈ 𝐶𝑑(𝑡) : 𝑚(𝑝) = 0

4.3 Causal Sequence

A causal sequence constraint requires a certain transition to be followed by an uninterrupted firing of a
specified sequence of transitions.

Definition 4.3 (Causal sequence constraint)
Given a Component 𝒪 and a set of transitions 𝑇𝑐 ⊆ 𝑇𝒪, a causal sequence constraint is defined as
follows:

𝐶𝑠 : 𝑇𝑐 → 𝑇 *

A component satisfies a causal sequence constraint 𝐶𝑠 iff for any given transition 𝑡 ∈ 𝑇𝑐 and marking
𝑚 ∈ 𝐵(𝑃𝒪):

if 𝑚
𝑡−→ 𝑚′ then:

∃𝑚′ 𝜎−→ such that 𝜎 = 𝐶𝑠(𝑡) ∧ ¬∃𝑚′ 𝜎′

−→ such that 𝜎′ ̸= 𝜎

For a component 𝒪 and a transition 𝑡 ∈ 𝑇𝒪, if 𝐶𝑠(𝑡) ̸= 𝜖, we say that 𝑡 is an activation transition of
a sequence. Any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)|, is a consequence transition. An activation
transition cannot belong to more than one causal sequence constraint of a component 𝒪. Furthermore,
a transition cannot be an activation transition if it is also a consequence transition. If a transition is
neither a consequence nor an activation transition of any defined causal sequence constraint of component
O, we refer to it as free. For two consequence transitions 𝑡𝑛, 𝑡𝑛+1 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑛 < |𝐶𝑠(𝑡)|, we say
that 𝑡𝑛+1 is a sequence successor of 𝑡𝑛, and that 𝑡𝑛 is a sequence predecessor of 𝑡𝑛+1. Furthermore, only
one sequence may be active at the same time, meaning that after some activation transition 𝑡 fires, any
other activation transition cannot be enabled.

4.3.1 Overlapping and Diverging Sequences

The concepts of overlapping and diverging sequences are now introduced. As will become clear in
Chapter 6, these concepts influence the complexity of the algorithm required to model the causal sequence
constraint.

It is possible that the sequence of consequence transitions of two or more causal sequence constraints
overlap. That is, for two activation transitions 𝑡 and 𝑡′, and some sequence of consequence transitions
𝜎, 𝜎 may be a subsequence of both 𝐶𝑠(𝑡) and 𝐶𝑠(𝑡

′). Whenever a set of sequences share a subsequence
of consequence transitions, we say that the sequences are overlapping. If a set of sequences has 𝜎 as a
common subsequence, we say that the sequences overlap on 𝜎. For two sequences 𝐶𝑠(𝑡) = ⟨𝑡0, 𝑡1, 𝑡2, 𝑠0, 𝑠1⟩
and 𝐶𝑠(𝑡

′) = ⟨𝑡′0, 𝑡′1, 𝑠0, 𝑠1⟩, this is illustrated in Figure 4.1.
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t0 t1 t2 s0 s1

t0’ t1’

Figure 4.1: Overlapping sequences

The behaviour of the sequences shown in Figure 4.1 is fully deterministic. In every step, we know
exactly which transition comes next. However, what if we have two overlapping sequences in which
the two common subsequences are followed by different transitions? Consider two sequences 𝐶𝑠(𝑡) =
⟨𝑡0, 𝑡1, 𝑡2, 𝑠0, 𝑠1, 𝑡3⟩ and 𝐶𝑠(𝑡

′) = ⟨𝑡′0, 𝑡′1, 𝑠0, 𝑠1, 𝑡′2⟩, where the sequences overlap on ⟨𝑠0, 𝑠1⟩. Figure 4.2
illustrates these sequences, and we can see that for transition 𝑠1 it is no longer clear which transition
should follow afterwards. It could be 𝑡3 or 𝑡2′, depending on which sequence is active. In this case, we
say that the set of sequences are diverging, and that 𝑠1 is a divergence point.

t0 t1 t2 s0 s1

t0’ t1’

t3

t2’

Figure 4.2: Overlapping and diverging sequences

Suppose now that 𝑡2′ would not be part of the causal sequence constraint 𝐶𝑠(𝑡
′), as illustrated in

Figure 4.3.

t0 t1 t2 s0 s1

t0’ t1’

t3

Figure 4.3: Same sequences where the transition 𝑡2′ is left out

In this case, 𝑠1 may not have to be followed by another transition at all, depending on which sequence
is active. In this case, 𝑠1 is also a divergence point. As will become clear in Chapter 6, these are both
problems that need to be dealt with when creating the Petri net representation of causal sequence
constraints.

4.3.2 Multi-Stage Sequences

The concept of divergence can also occur in the context of a single sequence. This is the case when
a consequence transition occurs more than once in a single causal sequence constraint. Consider the
following causal sequence constraint on an activation transition 𝑡, where the index of each element in the
sequence is denoted as a superscript: 𝐶𝑠(𝑡) = ⟨𝑡00, 𝑡11, 𝑡22, 𝑡30, 𝑡43⟩. This is illustrated in Figure 4.4.
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t0 t1

t2

t3

Figure 4.4: Multi-stage sequence

As can be seen in Figure 4.4, the causal sequence contains a loop, making it possible for transitions to
have multiple successors within the same sequence. In this case, how do we know whether 𝑡0 should be
followed by 𝑡1 or 𝑡3? To be able to make this distinction, we divide the sequence up in stages. We then
call the sequence shown in Figure 4.4 a multi-stage sequence, as transitions may have to be followed up
by different transitions depending on which stage of execution the sequence is in. Because the sequences
shown in Figures 4.1 and 4.2 do not have this problem, we call them single-stage sequences. In the
example illustrated in Figure 4.4, the only point of ambiguity is in 𝑡0, where we have to decide between
𝑡1 or 𝑡3. We can solve this ambiguity by dividing the sequence up into two stages. The first stage is
active as soon as the sequence is activated, and we can then say that if the sequence is in the first stage,
𝑡0 should be followed by 𝑡1. After 𝑡0 fires the first time, the second stage becomes active. We can then
say that if the sequence is the second stage, 𝑡0 should be followed by 𝑡3.

We now want to generalize this, and to do this we want to identify divergence points like with the
diverging sequences covered in Section 4.3.1. We first define the sequence successors of a transition. For
a transition 𝑡 part of some causal sequence 𝑆, the sequence successors of 𝑡 are all of the successors of 𝑡
in the order in which they appear in the 𝑆. So for 𝑡0, this is the sequence ⟨𝑡11, 𝑡43⟩, and for 𝑡1 it is ⟨𝑡22⟩.
The sequence successors are defined in the context of a single sequence, and as such, transitions part of
multiple sequences will have multiple different sequences of sequence successors.

To identify the divergence points, we want to look at the sequence successors of each transition 𝑡 of a
sequence. Every transition 𝑡 is considered a divergence point, if 𝑡 has more than one sequence successors
when excluding recurring transitions, but including any transitions that are the final transition of the
sequence. We want to include the final transitions of a sequence for the same reason that we consider
𝑠1 in Figure 4.3 to still be a divergence point. The final transition of a sequence is a special case that
needs separate consideration when creating the representation in Chapter 6. For example, 𝑡0 would be
considered a divergence point, as its sequence successors are ⟨𝑡11, 𝑡43⟩, which are two unique transitions.
A transition 𝑡0′ part of some causal sequence 𝑆 with ⟨𝑡11, 𝑡31⟩ as its sequence successors is not considered
a divergence point, unless 𝑡31 is the final transition of 𝑆.

Once all divergence points within a sequence are identified, we want to combine their sequence
successors into one large sequence of stage transitions. When adding the sequences of sequence successors,
we omit the final transition, as the final transition of a sequence successor sequence does not mark the
start of a new stage. For the example in Figure 4.4, only 𝑡0 is a divergence point. Therefore, the sequence
of stage transitions for 𝐶𝑠(𝑡) is simply ⟨𝑡11⟩, as we take ⟨𝑡11, 𝑡31⟩ and omit 𝑡31.

In the above example, only one transition was actually a divergence point, making the construction
of the stage transition sequence trivial.

Now consider the following causal sequence constraint on an activation transition 𝑡:

𝐶(𝑡) = ⟨𝑡00, 𝑡13, 𝑡21, 𝑡32, 𝑡40, 𝑡51, 𝑡62, 𝑡70, 𝑡83, 𝑡94⟩

illustrated in Figure 4.5, where the index of each element is superscripted. We can divide this sequence
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up into stages consisting of the following transitions:

Stage 0 = ⟨𝑡00⟩
Stage 1 = ⟨𝑡13⟩
Stage 2 = ⟨𝑡21, 𝑡32, 𝑡40⟩
Stage 3 = ⟨𝑡51, 𝑡62, 𝑡70, 𝑡83, 𝑡94⟩

So the stage transitions are 𝑡13, 𝑡
2
1 and 𝑡51.

t0 t1

t2

t3 t4

Figure 4.5: Multi-stage sequence

We now construct the sequence of stage transitions for the causal sequence illustrated in Figure 4.5.
We first identify the divergence points, which are 𝑡0 and 𝑡3, as their sequence successors are ⟨𝑡13, 𝑡51, 𝑡83⟩ and
⟨𝑡21, 𝑡94⟩ respectively. We now want to combine these sequences to get the sequence of stage transitions.
We do this by interleaving them, preserving the order based on each element’s index in 𝐶𝑠(𝑡). A simple
algorithm to do for a causal sequence 𝐶𝑠(𝑡) is shown in Figure 4.6. The algorithm iterates over each
transition of 𝐶𝑠(𝑡), and for each transition its sequence successors are obtained. If the transition is a
divergence point, the first element of the sequence of sequence successors is added to the sequence of
stage transitions. This element is then removed afterwards. By then also checking that the length of the
sequence of sequence successors is greater than one, we ensure that the last element is always omitted.

1 s equenc e su c c e s s o r s = mapping o f a t r a n s i t i o n to i t s sequence s u c c e s s o r s .
2 s t a g e t r a n s i t i o n s = ⟨⟩
3 f o r each t r a n s i t i o n t in 𝐶𝑠(𝑡) :
4 s u c c e s s o r s = s t a g e s u c c e s s o r s [ t ]
5 i f t i s a d ive rgence po int and | s u c c e s s o r s | > 1 :
6 su c c e s s o r = su c c e s s o r s [ 0 ]
7 s t a g e t r a n s i t i o n s . add ( su c c e s s o r )
8 d e l e t e s u c c e s s o r s [ 0 ]

Figure 4.6: Stage transition sequence algorithm

This gives us the following stage transition sequence: ⟨𝑡13, 𝑡21, 𝑡51⟩. Once again the last elements of each
sequence of sequence successors are omitted, and as the superscripted indices are in ascending order, the
order in which they appear in 𝐶𝑠(𝑡) is preserved. Having three stage transitions, this sequence then has
four stages. In this sequence, we call 𝑡21 a stage transition successor of 𝑡13. We say that 𝑡32 is part of the
third stage, as it occurs after the second stage transition, but before the third.
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Chapter 5

Specification Guidelines

When creating component and interface specifications, it is possible that the specification has inherent
problems. For example, it might be that the initial state is not reachable from all other states, or that
the interface constraints contain cyclical dependencies. Such errors could lead to a deadlocking Petri
net representation, regardless of the representation method. This chapter covers several problematic
specification patterns in the form of assumptions, some of which are used in the proof sketches of
Chapter 6. It is important to note that these assumptions are a necessary, but not sufficient, condition
for deadlock-freedom.

5.1 Assumptions

Aside from constraint specifications, interface specifications can also be bad. That is, given a component
𝒪, one of its interfaces 𝑁 ∈ 𝒪 might already be deadlocking without any constraints being encoded yet.
This is if the protocol state machine describing the behaviour of an interface is not strongly connected,
meaning that the any state of the interface is not reachable from all other possible states. Naturally, this
would mean that the Petri net representation is then also not strongly connected, which means that it
not deadlock-free.

Assumption 5.1
Given a component 𝒪, the following is assumed to be true:

∀𝑁 ∈ 𝒪 : 𝑁 is strongly connected

We must furthermore make an assumption about the state of each interface as soon as the activation
transition of a causal sequence fires. Let 𝑡 be an activation transition for the causal sequence 𝐶𝑠(𝑡). It is
possible that after 𝑡 fires, for any 𝑡𝑛 ∈ 𝐶𝑠(𝑡) belonging to an interface 𝑁 , that 𝑁 is not in a state in which
𝑡𝑛 is enabled. If this is not always the case, the Petri net representation of the of the specification will
not be deadlock free. Consider Figure 5.1, where two interfaces named interface one and interface two
are shown on the left side and right side respectively. Suppose that there is a causal sequence constraint
𝐶𝑠(𝑇0) = ⟨𝑇2, 𝑇1⟩. This means that after 𝑇0 fires, 𝑇2 must fire next. In the current marking however,
𝑇2 cannot fire, and the firing of 𝑇3 would be required to make that possible. However, after 𝑇0 fires in
this situation, any transition not part of 𝐶𝑠(𝑇0) must be disabled, which includes the transition 𝑇3. In
this case the net deadlocks after the firing of 𝑇0, because 𝑠2 is not guaranteed to have a token after the
firing of 𝑇0. In terms of interface specifications, this means that constraints defined on interface two do
not guarantee that interface two is in the state 𝑠2 as soon as the transition 𝑇0 is taken.

We furthermore need to consider that the firing of consequence transitions also affects the states of
the interfaces. This means that making an assumption about the state of each interface before the firing
of an activation transition is not enough. To satisfy this constraint, any causal sequence constraint must
comply with the behaviours defined by the protocol state machine of each interface part of the sequence.
For example, the sequence of transitions ⟨𝑇0, 𝑇1, 𝑇0, 𝑇1⟩ would be valid for interface one in Figure 5.1,
but the sequence ⟨𝑇0, 𝑇0, 𝑇1⟩ is not. This is because a 𝑇0 in interface one can only be followed by a 𝑇1
in interface one. When looking at causal sequence constraints specifically, 𝐶𝑠(𝑇0) = ⟨𝑇2, 𝑇1, 𝑇3⟩ respect
the behaviour of both interface one and two, but 𝐶𝑠(𝑇0) = ⟨𝑇2, 𝑇1, 𝑇2⟩ does not. This is because a 𝑇2
in interface two can only be followed by a 𝑇3 in interface two.
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Figure 5.1: Illustration of the described situation

Assumption 5.2 formalizes this by requiring that after a consequence or activation transition fires,
the interface that its sequence successor 𝑡𝑠𝑢𝑐𝑐 is part will have a token in the correct place.

Assumption 5.2
Let 𝑡 be an activation transition for a causal sequence 𝐶𝑠(𝑡) = ⟨𝑡0, ..., 𝑡𝑛⟩ where 𝑛 ∈ N. For any marking
𝑚 that is the result of the firing of 𝑡:

𝑡0 is enabled in m

For any marking 𝑚′ that is the result of the firing of 𝑡𝑖 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑖 ≤ |𝐶𝑠(𝑡)| − 1:

𝑡𝑖+1 is enabled in 𝑚′

Because consequence transitions cannot fire while no sequence is active, there may be situations in
which an interface deadlocks. This could happen if a place only has consequence transitions in its postset,
while having at least one free transition in its preset. This situation is illustrated in Figure 5.2. In this
case, if 𝑝 receives a token through the free transition, it has to be possible to reach a marking in which
an activation transition in another interface is enabled. This activation transition must then lead to a
sequence containing one of the consequence transitions in the postset of 𝑝.

Assumption 5.3
For a component 𝒪 and a set of causal sequence constraints defined by 𝐶𝑠 the following must hold:

∀𝑝 ∈ 𝑃𝒪, such that ∃𝑡 ∈ ∙𝑝 : where t is free, and ∀𝑡′ ∈ 𝑝∙ : t’ is a consequence transition :

Then ∀𝑚 ∈ 𝑅(𝑚0,𝒪) such that 𝑚(𝑝) = 1 :

∃𝑚′ ∈ 𝑅(𝑚,𝒪) such that 𝑚′ 𝑡act−→∧ 𝑡′ ∈ 𝐶𝑠(𝑡𝑎𝑐𝑡), where 𝑡′ ∈ 𝑝∙
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Figure 5.2: Illustration of the described situation

An enabling constraint may also interfere with a causal sequence constraint. Let 𝒪 be a component,
where 𝑡 is an activation transition for the consequence sequence 𝐶𝑠(𝑡) = ⟨𝑇𝑚, 𝑇𝑛⟩, where 𝑇𝑚 and 𝑇𝑛 are
two consequence transitions part of different interfaces. It is possible to define an enabling constraint
𝐶𝑒(𝑡𝑛) = {𝑝}, where 𝑝 is a place part of 𝑁 ∈ 𝒪. 𝑡𝑚 may now also be part of 𝑁 , and could furthermore
only be enabled in any marking 𝑚 where 𝑚(𝑝) = 0. If we then assume that Assumption 5.2 holds, then
𝑝 cannot have a token in the current marking, as in all markings in which 𝑡𝑚 was enabled, 𝑝 could not
have a token. This is because the behaviour of all interfaces is described by protocol state machines,
which cannot be in two states at the same time. Because 𝑝 does not have a token now, 𝑡𝑛 cannot be
enabled because of the constraint 𝐶𝑒(𝑡𝑛), resulting in deadlock as soon the sequence gets activated by
the firing of 𝑡. Such a situation is shown in Figure 5.3, where both the interfaces are in the correct state,
but the enabling constraint 𝐶𝑒(𝑡𝑛) = {𝑝} cannot possibly be satisfied to enable 𝑡𝑛. This is because after
𝑇𝑚 fires, the only transition that is allowed to fire is 𝑇𝑛. Because 𝑇2 is not allowed to fire, there is no
way for there to be a token in 𝑝, which means that 𝑇𝑛 cannot be enabled.
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Figure 5.3: Enabling constraint interference

Assumption 5.4
Let 𝑡 be an activation transition for a causal sequence 𝐶𝑠(𝑡) = ⟨𝑡0, ..., 𝑡𝑛⟩ where 𝑛 ∈ N. For any marking
𝑚 that is the result of the firing of 𝑡:

∀𝑐 ∈ 𝐶𝑒(𝑡0) : 𝑚(𝑐) = 1

For any marking 𝑚′ that is the result of the firing of 𝑡𝑖 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑖 ≤ |𝐶𝑠(𝑡)| − 1, and the
transition 𝑡𝑖+1 ∈ 𝐶𝑠(𝑡) part of some interface 𝑁 :

∀𝑐 ∈ 𝐶𝑒(𝑡𝑖+1) : 𝑚
′(𝑐) = 1

Interference may also arise between disabling and causal constraints. Let 𝒪 be a component, where
𝑡 is an activation transition for the consequence sequence 𝐶𝑠(𝑡) = ⟨𝑇𝑛, 𝑇𝑚⟩, where 𝑇𝑛 and 𝑇𝑚 are two
consequence transitions part of different interfaces. There may now be a disabling constraint 𝐶𝑑(𝑡𝑛) =
{𝑝}, while 𝑡𝑚 is only enabled in markings in which 𝑝 does have a token. Assuming that Assumption 5.2
holds, 𝑝 must have a token as 𝑡𝑚 needs to be enabled. But because of 𝐶𝑑(𝑡𝑛) = {𝑝}, 𝑇𝑛 is simultaneously
not allowed to fire, resulting in deadlock. Such a situation is shown in Figure 5.3, where both the interfaces
are in the correct state according to Assumption 5.2, but the disabling constraint 𝐶𝑒(𝑡𝑛) = {𝑝} cannot
possibly be satisfied to enable 𝑇𝑛.
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Figure 5.4: Disabling constraint interference

Assumption 5.5
Let 𝑡 be an activation transition for a causal sequence 𝐶𝑠(𝑡) = ⟨𝑡0, ..., 𝑡𝑛⟩ where 𝑛 ∈ N. For any marking
𝑚 that is the result of the firing of 𝑡:

∀𝑐 ∈ 𝐶𝑑(𝑡0) : 𝑚(𝑐) = 0

For any marking 𝑚′ that is the result of the firing of 𝑡𝑖 ∈ 𝐶𝑠(𝑡) where 0 ≤ 𝑖 ≤ |𝐶𝑠(𝑡)| − 1, and the
transition 𝑡𝑖+1 ∈ 𝐶𝑠(𝑡) part of some interface 𝑁 :

∀𝑐 ∈ 𝐶𝑑(𝑡𝑖+1) : 𝑚
′(𝑐) = 0

5.2 Cyclical Dependencies

It is possible that a specified set of enabling or disabling constraints have cyclical dependencies, leading
to a deadlocking net. Consider two transitions 𝑡 ∈ 𝑁 and 𝑡′ ∈ 𝑁 ′ that have cyclical dependencies in
terms of enabling constraints. A cyclical dependency in this case means that 𝑡 relies on interface 𝑁 ′

being in a state only reachable through a firing sequence containing 𝑡′, while 𝑡′ relies on the interface 𝑁
being in a state only reachable through a firing sequence containing 𝑡.

Consider the example shown in Figure 5.5, containing two interfaces. Suppose now that there are two
enabling constraints 𝐶𝑒(𝑇1) = {𝑆4} and 𝐶𝑒(𝑇4) = {𝑆2}. For 𝑇1 to be enabled, the firing of 𝑇4 is required
to satisfy the enabling condition on 𝑇1. However, for 𝑇4 to be enabled, the firing of 𝑇1 is required to
satisfy the enabling condition on 𝑇4. This is a cyclical dependency.

For disabling constraints, again consider Figure 5.5. Suppose now that there are two disabling
constraints 𝐶𝑑(𝑇1) = {𝑆3} and 𝐶𝑑(𝑇4) = {𝑆1}. For 𝑇1 to be enabled, the firing of 𝑇4 is required to
satisfy the disabling condition on 𝑇1. However, for 𝑇4 to be enabled, the firing of 𝑇1 is required to satisfy
the disabling condition on 𝑇4. This is again a cyclical dependency.
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Figure 5.5: Example to showcase cyclical dependencies

5.2.1 Detecting cyclical dependencies

The recursively defined function 𝑓𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑒𝑠 in Figure 5.6 walks through all possible dependency chains
to try and find cyclical dependencies. The algorithm is applied on the interface skeletons of a component,
before any of the structures introduced in Chapter 6 get added. The algorithm starts by going over all
places, and looking at the enabling constraints of the transitions in the preset of each place. This
is then repeated for each of the places found in the enabling constraints of these transitions. Cyclical
dependencies can then be found by keeping track of which places have visited while following these chains.
However, just considering visited places is not enough. This has to do with the fact that interfaces are
S-nets, and can therefore only have one token at a time. If we follow a dependency chain, and end up
at a place which we have not yet visited, but is part of an interface we have already visited, this also
problematic. It would imply that a transition depends on an interface being in two places at the same
time. This means that we have to keep track of interfaces that were already visited.

For there to be a deadlock, a cyclical dependency must exist along every single chain of dependencies
starting from a transition. That why when visiting a place, a list that stores Boolean values is kept. For
every enabling or disabling constraint on the transition, either True or False is then added to this list
depending on whether a cycle is found directly, or somewhere further along a dependency chain. The
function findCycles then only returns True if every single value in the results list is True.

The algorithm of Figure 5.6 specifically is for cycles in a set of enabling constraints. Given a place
𝑐 ∈ 𝐶𝑒(𝑡), a list of visited places, and a list of visited interfaces, the algorithm considers three different
cases:

1. 𝑐 is in the list of visited places. In this case, a cycle has been found, and True will be added to the
list of results. (Line 9)

2. 𝑐 is not in the list of visited places, but the interface 𝑖 that 𝑐 is part of is in the list of visited
interfaces (Lines 10-19). If 𝑖 has already been visited, it simply means that a place part of 𝑖 has
already been visited. If this is the case, the specification may be bad or simply contain redundancies,
depending on the situations covered by the two cases below. In this case, the first visited place 𝑣
of 𝑖 is considered, and one of the following cases applies:

• If 𝑐 is in the preset of all transitions 𝑡′ in the preset of 𝑣, then it means that all 𝑡′, through
a chain of dependencies, depend 𝑐 having a token (Lines 12-17). However, this is naturally
the case as 𝑐 is in the preset of all 𝑡′ by the design of the interface 𝑖. In this case, there is a
redundancy in the specification, but this does not lead to deadlock. In this case, the recursion
will continue with either True or False being added to the list of results depending on the
result of each findCycles call.

• If 𝑐 is not in the preset of all transitions 𝑡′ in the preset of 𝑣, then all transitions 𝑡′, through a
chain of dependencies, depend on 𝑐 having a token (Lines 18-19). However, considering that 𝑖
is an S-net, and that therefore only one place of 𝑖 can have a token in any marking, this does
not make sense. This is because by the design of the interface 𝑖, all transitions 𝑡′ depend on
some place 𝑐′ that is not 𝑐 to fire. Because 𝑖 is an S-net, there cannot simultaneously be a
token in both 𝑐 and 𝑐′. In this case True is added to the list of results, as we have encountered
a situation that is impossible to satisfy.
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3. 𝑐 is not in the list of visited places, and the interface that 𝑐 is part of has not been visited yet
(Lines 20-25). In this case, the recursion will continue with either True or False being added to the
list of results depending on the result of each findCycles call.

The check is done for each interface 𝑖 ∈ 𝒪, for each place in 𝑝 ∈ 𝑃𝑖, where 𝑓𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑒𝑠 is called with
each transition 𝑡 in the preset of 𝑝. In the end, a specification will only be guaranteed to lead to deadlock
if a cycle is found amongst all followed dependency chains starting in each 𝑡.

While the only purpose of this algorithm is to check if a specification will not lead to a deadlocking
net, it is important to keep in mind that any cycles that are found are a sign of a bad specification. This
is because the existence of cycles guarantees that there will be transitions that are always disabled.

1 func t i on f i ndCyc l e s (𝐶𝑒 , t , v i s i t e d p l a c e s , v i s i t e d i n t e r f a c e s ) :
2 r e s u l t s = ∅
3 n ew v i s i t e d p l a c e s = v i s i t e d p l a c e s . add (𝐶𝑒(𝑡))
4 n ew v i s i t e d i n t e r f a c e s = v i s i t e d i n t e r f a c e s
5 f o r each c in 𝐶𝑒(𝑡) :
6 n ew v i s i t e d i n t e r f a c e s . add ( i n t e r f a c e o f c )
7 f o r each c in 𝐶𝑒(𝑡) :
8 i f ( c in v i s i t e d p l a c e s ) :
9 r e s u l t s . add (True )

10 e l s e i f ( i n t e r f a c e o f c in v i s i t e d i n t e r f a c e s ) :
11 v = f i r s t v i s i t e d p lace part o f the i n t e r f a c e o f 𝑐 :
12 i f c in ∙𝑡′ f o r each t ’ in ∙𝑣 :
13 f o r each t in ∙𝑐 :
14 i f ( f i ndCyc l e s (𝐶𝑒 , t , n ew v i s i t ed p l a c e s , n ew v i s i t e d i n t e r f a c e s )

:
15 r e s u l t s . add (True )
16 e l s e :
17 r e s u l t s . add ( Fa l se )
18 e l s e :
19 r e s u l t s . add (True )
20 e l s e :
21 f o r each t in ∙𝑐 :
22 i f ( f i ndCyc l e s (𝐶𝑒 , t , n ew v i s i t ed p l a c e s , n ew v i s i t e d i n t e r f a c e s ) :
23 r e s u l t s . add (True )
24 e l s e :
25 r e s u l t s . add ( Fa l se )
26 re turn ( a l l ( r e s u l t s , True ) && r e s u l t s != ∅)
27
28
29
30 func t i on validateComponent (𝒪 , C e )
31 f o r each i in 𝒪 :
32 f o r each p in 𝑃𝑖

33 r e s u l t s = ∅
34 f o r each t in ∙𝑝 :
35 i f ( f i ndCyc l e s (𝐶𝑒 , t , {p} , { i }) ) :
36 r e s u l t s . add (True )
37 e l s e :
38 r e s u l t s . add ( Fa l se )
39
40 i f a l l ( r e s u l t s , True ) :
41 p r i n t ( Deadlock . For a l l t r a n s i t i o n s in ∙𝑝 , a c y c l i c a l depenency was

found )
42 re turn Fa l se
43
44 re turn True

Figure 5.6: Dependency cycles algorithm for enabling constraints
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Figure 5.7: Example Component on which we apply enabling constraints that lead to
circular dependencies

Example 5.6
This example shows a situation in which case 1 applies, and a cyclical dependency is thus found. Fig-
ure 5.7 shows parts of the skeletons of three different interfaces. Let the place 𝑝 of interface one be the
place referenced on line 32 in the Algorithm of Figure 5.6. For each transition 𝑡 1, 𝑡 2 in the preset of
𝑝, findCycles is now called. Suppose that 𝐶𝑒(𝑡 1) = {𝑝2}, 𝐶𝑒(𝑟 1) = {𝑝3} and 𝐶𝑒(𝑦 1) = {𝑝}. When
findCycles is now called with 𝑡 1, the third case will apply first as neither 𝑝2 nor interface 2 has been
visited yet. findCycles will thus be called for 𝑟 1 and 𝑟 2. When findCycles get called with 𝑟 1, case
3 will again apply for 𝑝3, meaning that findCycles will now get called for 𝑦 1 and 𝑦 2. After calling
findCycles on 𝑦 1, case one will now apply, as 𝑝 has already been visited. A cycle has now been found
for the following chain of transitions: 𝑡 1, 𝑟 1, 𝑦 1. This does not imply deadlock, however, as findCycles
will return False for the chain starting with 𝑡 2. This is because this transition does not have constraints,
meaning that the results variable will be empty. For 𝑡 1 to be able to fire, any 𝑟 2 could simply fire as
this transition does not have dependencies either. This showcases how a cycle must be found following
all chains starting a place’s preset in order to guarantee deadlock.
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Example 5.7
This example shows in which situations case 2 applies. Figure 5.7 shows parts of the skeletons of three
different interfaces. Let the place 𝑝 of interface one be the place referenced on line 32 in the Algorithm
of Figure 5.6. For each transition 𝑡 1 and 𝑡 2 in the preset of 𝑝, findCycles is now called. Suppose that
𝐶𝑒(𝑡 1) = {𝑝2}, 𝐶𝑒(𝑟 1) = {𝑝3}, 𝐶𝑒(𝑦 1) = {𝑝 𝑛}, 𝐶𝑒(𝑡 2) = {𝑝2}, 𝐶𝑒(𝑟 2) = {𝑝3} and 𝐶𝑒(𝑦 2) = {𝑝 𝑛}.
When findCycles is now called with both 𝑡 1, the third case will apply in both cases as neither 𝑝2 nor
interface 2 have been visited yet. In both instances, findCycles will thus be called for 𝑟 1 and 𝑟 2. For
both 𝑟 1 and 𝑟 2, case 3 will again apply for 𝑝3, meaning that findCycles will now get called for 𝑦 1 and
𝑦 2.

After calling findCycles on 𝑦 1 and 𝑦 2, case two will now apply in both instances. This is because
𝑝𝑛 has not been visited, but interface 1 has. The second sub-case of case two will apply specifically, as
𝑝𝑛 is not in the presets of the transition in the presets of 𝑝, which is the first visited place of interface
one. In this case, we have found that the specified enabling constraints lead to deadlock. This is because
there in all dependency chains starting from 𝑝 lead to a cycle. More specifically, we found the following
dependency chains starting from 1: 𝑡1 → 𝑟1 → 𝑦1 → 𝑝𝑛, 𝑡1 → 𝑟2 → 𝑦1 → 𝑝𝑛, 𝑡1 → 𝑟2 → 𝑦2 → 𝑝𝑛 etc.
Furthermore, starting from 𝑡2: 𝑡2 → 𝑟2 → 𝑦2 → 𝑝𝑛, 𝑡2 → 𝑟1 → 𝑦1 → 𝑝𝑛, 𝑡2 → 𝑟1 → 𝑦2 → 𝑝𝑛 etc.

Being able to detect cycles given a set of enabling constraints, this leads us to Assumption 5.8

Assumption 5.8
Given a component 𝒪 and a set of enabling constraints 𝐶𝑒 defined on 𝒪, 𝒪 is only considered valid if
the function validateComponent in Figure 5.6 returns true when called with 𝒪 and 𝐶𝑒.

5.2.2 Disabling Constraints

Like for enabling constraints, it is possible that a specified set of disabling constraints necessarily lead
to a deadlocking net. Similarly to enabling constraints, there may exist cyclical dependencies. This
is detected in almost the same way as for enabling constraints, except the postsets of places are now
considered, rather than the presets. The algorithm can be found in Appendix A. This is showcased in
Example 5.9. Enabling constraints may also interfere with disabling constraints and vice versa. This is
currently not considered, but this could be covered by combining the algorithms of Figures 5.6 and A.1.
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Figure 5.8: Example component on which the following disabling constraints are defined:
𝐶𝑑(𝑡 1) = {𝑝2}, 𝐶𝑑(𝑡 2) = {𝑝2}, 𝐶𝑑(𝑟 1) = {𝑝3}, 𝐶𝑑(𝑟 2) = {𝑝3}, 𝐶𝑑(𝑦 1) = {𝑝}, 𝐶𝑑(𝑦 2) = {𝑝}

Example 5.9
Figure 5.8 shows a net that will deadlock when the following disabling constraints are defined: 𝐶𝑑(𝑡 1) =
{𝑝2}, 𝐶𝑑(𝑡 2) = {𝑝2}, 𝐶𝑑(𝑟 1) = {𝑝3}, 𝐶𝑑(𝑟 2) = {𝑝3}, 𝐶𝑑(𝑦 1) = {𝑝}, 𝐶𝑑(𝑦 2) = {𝑝}. Let the place 𝑝
of interface one be the place of line 28 in the algorithm. For each transition 𝑡 1 and 𝑡 2 in the preset of 𝑝,
findCycles is now called. When findCycles is now called with 𝑡 1, the third case will apply first as neither
𝑝2 nor interface 2 has been visited yet. findCycles will thus be called for 𝑟 1 and 𝑟 2. When findCycles
get called with 𝑟 1, case 3 will again apply for 𝑝3, meaning that findCycles will now get called for 𝑦 1
and 𝑦 2.

After calling findCycles on 𝑦 1, case 1 will now apply, as 𝑝 has already been visited. A cycle has
now been found for the following chain of transitions: 𝑡 1, 𝑟 1, 𝑦 1. The same now goes for the chain
𝑡 2, 𝑟 2, 𝑦 2. This means that findCycles will return True for both calls with 𝑡 1 and 𝑡 2, correctly deter-
mining that the net in Figure 5.8 would deadlock if we were to apply the disabling constraints as described
in this example.

Being able to detect cycles given a set of disabling constraints, this leads us to Assumption 5.10.
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Assumption 5.10
Given a component 𝒪 and a set of disabling constraints 𝐶𝑑 defined on 𝒪, 𝒪 is only considered valid if
the function validateComponent in Figure A.1 returns true when called with 𝒪 and 𝐶𝑑.
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Chapter 6

Encoding Constraints in Existing
Interface Representations

Given a component that is described by both interface and constraint specifications, a Petri net must now
be generated that satisfies these constraints. Having a set of interface specifications, an intermediate Petri
net representation called Pnet can already be generated by ComMA. With this Pnet representation, the
interface skeleton nets of a component are a given. What remains is to model the component constraints
that add restrictions on enabling of transitions of the interface skeleton nets. In this chapter, we will
present algorithms to generate constraint nets for all three kinds of component constraints. These nets
are added on top of existing interface nets.

6.1 Enabling and Disabling Constraint

6.1.1 Enabling Constraints

For a component 𝒪, and a set of enabling constraints defined by 𝐶𝑒, Figure 6.3 shows an algorithm
that generates a Petri net that correctly encodes the constraints defined in 𝐶𝑒. The algorithm is fairly
straightforward: Line 3 creates bidirectional arcs between 𝑡 and all 𝑝 ∈ 𝐶𝑒(𝑡) in order to enforce the
constraints of 𝐶𝑒(𝑡). This is to ensure that when 𝑡 fires, the token in 𝑝 is not consumed.

Example 6.1
Let 𝒪 = {𝐼1, 𝐼2} be a component, shown in Figure 6.1. Let 𝐶𝑒 denote the enabling constraints on 𝒪,
where 𝐶𝑒(𝑇1) = {𝑆4} and 𝐶𝑒(𝑇2) = {𝑆3}. Figure 6.2 shows the result of applying the enabling constraint
algorithm on 𝒪.
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Figure 6.1: Component 𝒪

Figure 6.2: Resulting net after applying the enabling constraint algorithm of Figure 6.3 on
𝒪

As can be seen, both the interface skeletons in Figure 6.1, as well as the net in Figure 6.2 are weakly
terminating.
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1 f o r each t r a n s i t i o n t in 𝑇𝒪 :
2 f o r each p lace p in 𝐶𝑒(𝑡) :
3 c r e a t e b i d i r e c t i o n a l arc <p , t>

Figure 6.3: Enabling constraint algorithm

Lemma 6.2
The property described in Definition 4.1 always holds for a component 𝒪 after applying the algorithm in
Figure 6.3 on 𝒪.

Proof sketch. Let 𝒪 be a component, and 𝑡 be an arbitrary transition of 𝑁 ∈ 𝒪, and an arbitrary
number of constraints defined by 𝐶𝑒.

Line 3 guarantees a bidirectional arc is created between 𝑡 and each of the places in 𝐶𝑒(𝑡), meaning
that all of the places in 𝐶𝑒(𝑡) are in the preset of 𝑡. Therefore, 𝑡 can only fire if all places in 𝐶𝑒(𝑡) have
a token, as required by the property in Definition 4.1.

6.1.2 Disabling Constraint

The algorithm for disabling constraints is in a way very similar to that of the enabling constraint, which
makes sense as the disabling constraint is essentially the inverse. When 𝐶𝑑(𝑡) = {𝑝} for some transition 𝑡
a place 𝑝, instead of enabling 𝑡 when 𝑝 has a token, 𝑡 must now be disabled instead. One way of making
the algorithms almost identical would be to use inhibitor arcs. If there is an inhibitor arc between a
place 𝑝 and a transition 𝑡, it means that 𝑡 is disabled if 𝑝 has a token. Figure 6.4 shows how Example 6.1,
now having disabling constraints instead of enabling constraints, could be modeled using inhibitor arcs.
The algorithm to generate what is shown in Figure 6.4 would be the same as for the enabling constraint,
except an inhibitor arc would be created from 𝑝 to 𝑡, rather than a bidirectional arc.

Figure 6.4: Modeling disabling constraints using inhibitor arcs

However, since we restrict ourselves to P/T nets, inhibitor arcs cannot be used. The concept of
complement places can be used instead. It is important to note that replacing inhibitor arcs with such
places only works for bounded nets [24][25]. This is not a problem as interface skeletons are S-nets,
guaranteeing that every place can have at most one token at any time.
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For a place 𝑝, its complement place 𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 has a token only if 𝑝 does not. With this behaviour,
a bidirectional arc can then be created between a transition 𝑡 and the complement place 𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 of
a place 𝑝 ∈ 𝐶𝑑(𝑡).

For a component 𝒪, and a set of disabling constraints defined by 𝐶𝑑, Figure 6.6 shows an algorithm
that generates a Petri net that correctly encodes the constraints defined in 𝐶𝑑.

Line 3-6 are responsible for creating complement places, and making sure the complement places have
the correct number of initial tokens, depending on whether 𝑝 has a token initially. Lines 7-10 then make
sure that the complement places is correctly updated as the net executes. This is done by creating arcs
from the complement place of 𝑝, to each transition 𝑝𝑡 in the preset of 𝑝, and by creating arcs from each
transition 𝑝𝑡 in the postset of 𝑝, to the complement place of 𝑝. Line 11 then creates a bidirectional arc
that ensures that a transition can only be enabled if the right complement place has a token.

Example 6.3
Let 𝒪 = {𝐼1, 𝐼2} be a component, shown in Figure 6.1. Let 𝐶𝑑 denote the disabling constraints on
𝒪, where 𝐶𝑑(𝑇1) = {S3} and 𝐶𝑑(𝑇2) = {𝑆4}. Figure 6.5 shows the result of applying the disabling
constraint algorithm on 𝒪.

Figure 6.5: Resulting net after applying the disabling constraint algorithm of Figure 6.6
on 𝒪

In Figure 6.5, we can see how the two disabling constraints of Example 6.3 are modeled by introducing
two complement places for the places 𝑆3 and 𝑆4.
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1 f o r each t r a n s i t i o n t in 𝑇𝒪 :
2 f o r each p lace p in 𝐶𝑑(𝑡) :
3 i f 𝑚0(𝑝) = 1 :
4 c r e a t e p lace <complement p , 0 tokens>
5 e l s e :
6 c r e a t e p lace <complement p , 1 token>
7 f o r each pt in ∙𝑝 :
8 c r e a t e arc <complement p , pt>
9 f o r each pt in 𝑝∙ :

10 c r e a t e arc <pt , complement p>
11 c r e a t e b i d i r e c t i o n a l arc <complement p , t>

Figure 6.6: Disabling constraint algorithm

Lemma 6.4
The property described in Definition 4.2 always holds after applying the above algorithm

Proof sketch. Let 𝒪 be a component, and 𝑡 be an arbitrary transition of 𝑁 ∈ 𝒪, and an arbitrary
number of constraints defined by 𝐶𝑑. Because of Lines 3-6, every place in 𝐶𝑑(𝑡) has a complement place,
with Lines 3-4 ensuring that the complement place has no token if the corresponding place has a token
in the initial marking. For any place 𝑝 in 𝐶𝑑(𝑡), its complement place 𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 can only have a token
if 𝑝 has no token, as by Lines 7-8, any transition in the preset of 𝑝 removes a token from 𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡,
and by Lines 9-10, any transition in the postset of 𝑝 adds a token to 𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡. With Line 11 then
guaranteeing that each of these complement places are in the preset of 𝑡, 𝑡 can thus only be enabled if
for all 𝑝 in 𝐶𝑑(𝑡), 𝑝 has no token, as required by Definition 4.2.

6.2 Sequences

For the causal sequence constraint, four different cases with different assumptions about the sequence
constraints are covered. In this section, three algorithms are proposed. The first one being sufficient to
cover the first two cases, the second one additionally covering the third case, and the third one covering
the fourth case.

6.2.1 Case 1: A Single Causal Sequence Constraint

The first case considers only a single causal sequence constraint. As a result, there can only be single-
stage, non-overlapping and non-diverging sequences. For a component𝒪 and a causal sequence constraint
𝐶𝑠(𝑡) = ⟨𝑡0, ..𝑡𝑛⟩, the following things have to be guaranteed by the algorithm introduced in Figure 6.9
in order to satisfy the property given in Definition 4.3:

1. After 𝑡 fires, all free transitions must be disabled until the last transition in 𝐶𝑠(𝑡) fires.

2. A transition 𝑡𝑖 ∈ 𝐶𝑠(𝑡) with 1 < 𝑖 < |𝐶𝑠(𝑡)|, must only be enabled after 𝑡𝑖−1 ∈ 𝐶𝑠(𝑡) fires.

The first requirement is satisfied by introducing a disabler place with an initial token. Any free
transition has a bidirectional arc to this disabler place, which prevents them from being enabled whenever
the disabler place has no token. All activation transitions furthermore have an incoming arc coming from
this disabler, disabling all free transitions as well as any other activation transitions.

The second requirement is satisfied using enabling places. Every consequence transition has such
an enabler place in its preset. Enabler places have no token in the initial marking, and the algorithm
ensures that the enabler place of a consequence transition 𝑡 can only receive a token from the sequence
predecessor of 𝑡.

Example 6.5
Let 𝒪 = {𝐼1, 𝐼2} be a component, shown in Figure 6.7. Let 𝐶𝑠 denote the causal sequence constraints
on 𝒪, where 𝐶𝑠(𝑇5) = ⟨𝑇1, 𝑇3, 𝑇4⟩ and 𝐶𝑠(𝑇6) = ⟨𝑇2⟩. Figure 6.8 shows the result of applying the
enabling constraint algorithm on 𝒪.
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Figure 6.7: Component 𝒪
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Figure 6.8: Resulting net after applying the sequence constraint algorithm of Figure 6.9
on 𝒪, with the following constraints: 𝐶𝑠(𝑇5) = ⟨𝑇1, 𝑇3, 𝑇4⟩ and 𝐶𝑠(𝑇6) = ⟨𝑇2⟩

In Figure 6.8, we can see the bidirectional arc between the free transitions 𝑇7 and 𝑇8, and the disabler
place. We can furthermore see the arcs going from the disabler place going to the activation transitions
𝑇5 and 𝑇6, ensuring that only one sequence can be active, and that 𝑇7 and 𝑇8 are disabled. The arcs
going from the final transition of each sequence 𝑇4 and 𝑇2 to the disabler place then allow 𝑇7, 𝑇8, 𝑇5
and 𝑇6 to be enabled again as soon as any of the sequences finishes.
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1 c r e a t e p lace <d i s ab l e r , 1 token>
2 f o r each t r a n s i t i o n t in 𝑇𝒪 :
3 i f t i s f r e e :
4 c r e a t e b i d i r e c t i o n a l arc <d i s ab l e r , t>
5 e l s e i f t i s an a c t i v a t i o n t r an s i t i o n , l e ad ing to a consequence t r a n s i t i o n

sequence s t a r t i n g with 𝑡0 :
6 c r e a t e p lace <𝑡0 enab le r , 0 tokens>
7 c r e a t e arc <𝑡0 enab le r , 𝑡0>
8 c r e a t e arc <t , 𝑡0 enab le r>
9 c r e a t e arc <d i s ab l e r , t>

10 e l s e :
11 f o r each sequence s that t i s a part o f :
12 i f t i s the l a s t t r a n s i t i o n o f the sequence s :
13 c r e a t e arc <t , d i s ab l e r>
14 e l s e :
15 i f enab l e r p lace o f s u c c e s s o r ( t ) e x i s t s :
16 c r e a t e arc <t , s u c c e s s o r ( t ) enab l e r>
17 e l s e
18 c r e a t e p lace <s u c c e s s o r ( t ) enab l e r , 0 tokens>
19 c r e a t e arc <t , su c c e so r ( t ) enab l e r>
20 c r e a t e arc <s u c c e s s o r ( t ) enab l e r , s u c c e s s o r ( t )>

Figure 6.9: Sequence Algorithm 1

6.2.2 Case 2: Multiple, Non-Diverging Causal Sequence Constraints

When allowing more than one sequence constraint to be defined, the concepts of overlapping and diverging
sequences now play a role. For this case, however, diverging sequences are not yet considered. It was
found that when not considering diverging sequences, Sequence Algorithm 1 still suffices.

Example 6.6
Let 𝒪 = {𝐼1, 𝐼2} be a component, shown in Figure 6.10. Let 𝐶𝑠 denote the causal sequence constraints
on 𝒪, where 𝐶𝑠(𝑇6) = ⟨𝑇1, 𝑇4, 𝑇5⟩, where 𝐶𝑠(𝑇7) = ⟨𝑇2, 𝑇4, 𝑇5⟩ and 𝐶𝑠(𝑇8) = ⟨𝑇3⟩. Figure 6.11
shows the result of applying the enabling constraint algorithm on 𝒪.
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Figure 6.10: Component 𝒪
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Figure 6.11: Resulting net after applying the sequence constraint algorithm of Figure 6.9
on 𝒪, with the following constraints: 𝐶𝑠(𝑇6) = ⟨𝑇1, 𝑇4, 𝑇5⟩, 𝐶𝑠(𝑇7) = ⟨𝑇2, 𝑇4, 𝑇5⟩ and 𝐶𝑠(𝑇8) =
⟨𝑇3⟩

6.2.3 Proof sketches for Sequence Algorithm 1

It now needs to be shown that after applying the Sequence Algorithm of Figure 6.9, the resulting net
satisfies the causal sequence constraint for a set of non-diverging sequences. The following places and
transitions are used in all of the proofs in this section. Let 𝒪 be a component, and 𝑡 be an activation
transition part of 𝑁 ∈ 𝒪, and an arbitrary sequence of consequence transitions defined by 𝐶𝑠(𝑡). Let 𝑡0
and 𝑡𝑓𝑖𝑛𝑎𝑙 be first and last transition of the sequence 𝐶𝑠(𝑡) respectively. Let 𝑚𝑎𝑐𝑡 and 𝑚𝑓𝑖𝑛𝑎𝑙 denote the
resulting markings after the firing of 𝑡 and 𝑡𝑓𝑖𝑛𝑎𝑙 respectively. Let 𝑝𝑑 be the disabler place introduced
on Line 1 of Sequence Algorithm 1. Figure 6.12 illustrates all places, transitions, and arcs used in the
proofs.

41



CHAPTER 6. ENCODING CONSTRAINTS IN EXISTING INTERFACE REPRESENTATIONS

Figure 6.12: Visualization of all places and transitions used in the proof sketches

Lemma 6.7
Any free transition 𝑡𝑓𝑟𝑒𝑒 or activation transition 𝑡𝑎𝑐𝑡 cannot be enabled in 𝑚𝑎𝑐𝑡. For the enabledness of
both 𝑡𝑓𝑟𝑒𝑒 and 𝑡𝑎𝑐𝑡 part of an interface 𝑁 , we must consider the following places in their presets in the
marking 𝑚𝑎𝑐𝑡:

1. A place 𝑝 ∈ 𝑃𝑁 . Only one such 𝑝 can exist, as 𝑁 is an S-net and any transition can only be part
of one interface.

2. A set of places 𝑐1 ∈ 𝐶𝑒(𝑡𝑓𝑟𝑒𝑒).

3. A set of places 𝑐1′ ∈ 𝐶𝑑(𝑡𝑓𝑟𝑒𝑒).

4. A set of places 𝑐2 ∈ 𝐶𝑒(𝑡𝑎𝑐𝑡).

5. A set of places 𝑐2′ ∈ 𝐶𝑑(𝑡𝑎𝑐𝑡).

6. 𝑝𝑑, which is disabler place introduced Algorithm 1.

Proof sketch. Line 4 guarantees 𝑡𝑓𝑟𝑒𝑒 has the disabler place 𝑝𝑑 in its preset. Line 9 then guarantees
that 𝑡𝑎𝑐𝑡 has the disabler place in its preset. Because there is no step in the algorithm creating an arc
from 𝑡𝑎𝑐𝑡 to 𝑝𝑑, 𝑡𝑎𝑐𝑡 never has 𝑝𝑑 in its postset. Therefore, after the firing of 𝑡 that results in the marking
𝑚𝑎𝑐𝑡, the disabler place 𝑝𝑑 can never have a token in 𝑚𝑎𝑐𝑡. Therefore, neither 𝑡𝑓𝑟𝑒𝑒 nor 𝑡𝑎𝑐𝑡 can be
enabled in 𝑚𝑎𝑐𝑡, regardless of the contents of the places 𝑐1, 𝑐1′, 𝑐2, 𝑐2′, and 𝑝.

Lemma 6.8
The first transition of 𝐶𝑠(𝑡), 𝑡0 is enabled in the marking 𝑚𝑎𝑐𝑡. For the enabledness of 𝑡0 part of an
interface 𝑁 , we must consider the following places its preset in the marking 𝑚𝑎𝑐𝑡:

1. A place 𝑝 ∈ 𝑃𝑁 . Only one of such 𝑝 can exist, as 𝑁 is an S-net and any transition can only be
part of one interface.

2. A set of places 𝑐 ∈ 𝐶𝑒(𝑡0).

3. A set of places 𝑐′ ∈ 𝐶𝑑(𝑡0).

4. 𝑝𝑒0, which is the enabler place of 𝑡0 introduced by Sequence Algorithm 1.

Proof sketch. Lines 7 and 8 in Sequence Algorithm 1 guarantee that the first consequence transition
of a sequence, 𝑡0, has an enabler place 𝑝𝑒0 without an initial token in its preset. Line 9 then guarantees
𝑝𝑒0 is in the postset of the activation transition 𝑡.

Using Assumption 5.2, we can assume that 𝑚𝑎𝑐𝑡(𝑝) = 1. Using Assumption 5.4, we can furthermore
assume that for all places 𝑐 ∈ 𝐶𝑒(𝑡0), 𝑚𝑎𝑐𝑡(𝑐) = 1. And lastly, using Assumption 5.5, we can assume
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that for all places 𝑐′ ∈ 𝐶𝑑(𝑡0), 𝑚𝑎𝑐𝑡(𝑐
′) = 0. Since 𝑝𝑒0 is in the postset of the activation transition 𝑡, 𝑝𝑒0

also has a token in 𝑚𝑎𝑐𝑡. Therefore 𝑡0 is enabled in 𝑚𝑎𝑐𝑡.

Lemma 6.9
Any consequence transition 𝑡′ that is not 𝑡0 is disabled in 𝑚𝑎𝑐𝑡. For the enabledness of 𝑡′ part of an
interface 𝑁 , we consider the following places in its preset in the marking 𝑚𝑎𝑐𝑡:

1. A place 𝑝 ∈ 𝑃𝑁 . This can only be exactly one place, as 𝑁 is an S-net.

2. A set of places 𝑐 ∈ 𝐶𝑒(𝑡
′).

3. A set of places 𝑐′ ∈ 𝐶𝑑(𝑡
′).

4. 𝑝′𝑒, which is the enabler place of 𝑡′ introduced by Sequence Algorithm 1.

Proof sketch. Lines 18 and 19 guarantee that any consequence transition 𝑡′ has an enabler place
without an initial token. Because of Line 20, this enabler place 𝑝′𝑒 is not in the postset of 𝑡, but rather
in the postset of its predecessor transition in the sequence. This means that 𝑝′𝑒 cannot have a token in
𝑚𝑎𝑐𝑡. Therefore, 𝑡

′ is disabled in 𝑚𝑎𝑐𝑡.

Lemma 6.10
For any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡), where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)| − 1, and 𝑡 is an activation transition: In any given
marking 𝑚′ that is the result of the firing of 𝑡𝑛, the only transition enabled afterwards is 𝑡𝑛+1 ∈ 𝐶𝑠(𝑡).
For the enabledness of 𝑡𝑛+1 part of an interface 𝑁 , we consider the following places in its preset in the
marking 𝑚′:

1. A place 𝑝 ∈ 𝑃𝑁 . This can only be exactly one place, as 𝑁 is an S-net.

2. A set of places 𝑐 ∈ 𝐶𝑒(𝑡𝑛+1).

3. A set of places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1).

4. 𝑝𝑒𝑛+1, which is the enabler place of 𝑡𝑛+1 introduced by Sequence Algorithm 1.

Proof sketch. Line 21 guarantees that the enabler place of 𝑡𝑛+1, 𝑝
𝑒
𝑛+1, is in the postset of 𝑡𝑛. Line

19 furthermore guarantees that there is an arc going from 𝑝𝑒𝑛+1 to 𝑡𝑛+1. Using Assumption 5.2, we
can assume that 𝑚′(𝑝) = 1. Using Assumption 5.4, we can furthermore assume that for all places
𝑐 ∈ 𝐶𝑒(𝑡𝑛+1), 𝑚

′(𝑐) = 1. Lastly, using Assumption 5.5, we can assume that for all places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1),
𝑚′(𝑐′) = 0. As 𝑝𝑒𝑛+1 is in the postset of 𝑡𝑛, 𝑝

𝑒
𝑛+1 has a token in 𝑚′, therefore 𝑡𝑛+1 is enabled in 𝑚′.

Since the set of causal sequence constraints are only overlapping, any transition part of a sequence
can have at most one sequence successor. Since a transition can only fire after its sequence predecessor
has fired, and 𝑡𝑛 can only have one possible sequence successor, which is 𝑡𝑛+1. 𝑡𝑛+1 is thus the only
transition that is enabled in 𝑚′.

Theorem 6.11
A component 𝒪 always satisfies a non-diverging, single-stage set of causal sequence constraints after
applying Sequence Algorithm 1 to 𝒪

Proof sketch. To show that 𝒪 satisfies an arbitrary, non-diverging causal sequence constraint after
applying Sequence Algorithm 1, it needs to be shown that the property introduced in Definition 4.3
holds. That is, it must be shown that there is exactly one possible firing sequence 𝐶𝑠(𝑡) after any 𝑡 fires
until the last transition of 𝐶𝑠(𝑡) fires.

Following Lemma 6.7, any transition not part of a sequence is disabled after 𝑡 fires. Furthermore, any
transition part of a sequence that is not 𝑡0 is disabled following Lemma 6.9. Because 𝑡0 is guaranteed to
be enabled following Lemma 6.8, the only possible transition that be enabled after 𝑡 fires is 𝑡0. Following
Lemma 6.10, the 𝑛th transition to fire after 𝑡 fires, must be the 𝑛th element of 𝐶𝑠(𝑡), as any transition
not part of a sequence is disabled, and any transition 𝑡𝑛 part of a sequence can only be enabled after

𝑡𝑛−1. Therefore, for any marking 𝑚′, if 𝑚′ 𝑡−→, there exists exactly one possible firing sequence from 𝑚′,

and that is 𝐶𝑠(𝑡).

6.2.4 Case 3: Multiple Diverging Sequences

For Case 3, multiple possibly diverging sequences are now also considered. In this case, Sequence
Algorithm 1 no longer suffices, and Sequence Algorithm 2 shown in Figure 6.15 subsumes it. The
situation can now arise where a transition part of a sequence is a divergence point. For such cases, a
decision place is introduced. For a transition 𝑡, this decision place has a transition in its postset for each
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possible sequence successors of 𝑡. Each of these transitions 𝑡′ then put a token in the enabler place of its
corresponding sequence successor. To then know which of these transitions must be enabled, a place is
introduced for each defined sequence. Each activation transition 𝑡 puts a token in a place corresponding
to the sequence 𝐶(𝑡), while the last transition of 𝐶(𝑡) removes it. By then creating a bidirectional arc
between each of the transitions in the postset of the decision place of 𝑡, only the correct one is enabled.

Introducing these additional places that indicate which sequence is active does introduce another
problem, however. Namely, the fact that the final transitions of each sequence must remove the tokens
from these places. In this case, ambiguity may arise even when there is only a set of overlapping sequences.
More precisely, a transition 𝑡 may be the final transition of more than one sequence. Therefore, the
decision place must also be used in such cases. For a transition 𝑡 and its decision place 𝑝, there is a
transition for each of the sequences that has 𝑡 as its final transition in the postset of 𝑝. Each of these
transitions then remove a token from the place indicating which sequence is active, and put back a token
in the disabler place.

Example 6.12
Let 𝒪 = {𝐼1, 𝐼2} be a component, shown in Figure 6.13. Let 𝐶𝑠 denote the causal sequence constraints
on 𝒪, where 𝐶𝑠(𝑇6) = ⟨𝑇1, 𝑇2, 𝑇5⟩, and 𝐶𝑠(𝑇7) = ⟨𝑇1, 𝑇4, 𝑇5⟩ and 𝐶𝑠(𝑇8) = ⟨𝑇3⟩. Figure 6.14 shows
the result of applying Sequence Algorithm 2 on 𝒪.

Figure 6.13: Component 𝒪
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Figure 6.14: Resulting net after applying the sequence constraint algorithm of Figure 6.15
on 𝒪, with the following constraints: 𝐶𝑠(𝑇6) = ⟨𝑇1, 𝑇2, 𝑇5⟩, 𝐶𝑠(𝑇7) = ⟨𝑇1, 𝑇4, 𝑇5⟩ and 𝐶𝑠(𝑇8) =
⟨𝑇3⟩

In Figure 6.14, we can see the new structure introduced by Sequence Algorithm 2. In the bottom
right, we can see that for each of the three sequences defined in Example 6.12, an active place is added
indicating whether or not that sequence is active. For the active place of 𝐶𝑠(𝑇6) = ⟨𝑇1, 𝑇2, 𝑇5⟩, we
can see that 𝑇6𝑎𝑐𝑡𝑖𝑣𝑒 has an outgoing arc to 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇6, an incoming arc from 𝑇6, which is the final
transition of 𝐶𝑠(𝑇6) and 𝐶𝑠(𝑇7), and a bidirectional arc to 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇2. We can see an example of a
decision place in the postset of 𝑇5, as 𝑇5 is a divergence point. Here, we see that 𝑇5𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 has two
transitions 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇6 and 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇7 in its postset, one for each of the sequences that of which 𝑇5 is
a final transition. We can see instead of 𝑇5 now putting back a token in the disabler place, this is now
done by the transitions in the postset of its decision place instead. Which of the two transitions fires
depends on which sequence is active, indicated by the places in the bottom right. Another divergence
point is 𝑇1, where we can see two transitions in the postset of its decision place, one for each of its
sequence successors.
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1 c r e a t e p lace <d i s ab l e r , 1 token>
2 f o r each sequence s :
3 c r e a t e p lace <s a c t i v e , 0 tokens>
4 f o r each t r a n s i t i o n t part o f an i n t e r f a c e sk e l e t on :
5 i f t i s f r e e :
6 c r e a t e arc <d i s ab l e r , t>
7 c r e a t e arc <t , d i s ab l e r>
8 e l s e i f t i s an a c t i v a t i o n t r a n s i t i o n f o r a sequence s s t a r t i n g with 𝑡0 :
9 c r e a t e p lace <𝑡0 enab le r , 0 tokens>

10 c r e a t e arc <𝑡0 enab le r , 𝑡0>
11 c r e a t e arc <t , 𝑡0 enab le r>
12 c r e a t e arc <d i s ab l e r , t>
13 c r e a t e arc <t , s a c t i v e>
14 e l s e :
15 i f t i s a d ive rgence po int :
16 c r e a t e p lace <t d e c i s i o n , 0 tokens>
17 c r e a t e arc <t , t d e c i s i o n>
18 f o r each su c c e s s o r succ o f t as part o f the sequence s :
19 c r e a t e t r a n s i t i o n <t succ>
20 c r e a t e arc <t d e c i s i o n , t succ>
21 c r e a t e b i d i r e c t i o n a l arc <s a c t i v e , t succ>
22 i f enab l e r p lace o f s u c c e s s o r ( t ) does not e x i s t :
23 c r e a t e p lace <s u c c e s s o r ( t ) enab l e r , 0 tokens>
24 c r e a t e arc <s u c c e s s o r ( t ) enab l e r , s u c c e s s o r ( t )>
25 c r e a t e arc <t succ , enab l e r su c c ( t )>
26
27 f o r each sequence s that t i s the f i n a l t r a n s i t i o n o f :
28 c r e a t e t r a n s i t i o n < f i n a l s >
29 c r e a t e arc <t d e c i s i o n , f i n a l s >
30 c r e a t e arc <s a c t i v e , f i n a l s >
31 e l s e :
32 i f t i s the l a s t t r a n s i t i o n o f the sequence s :
33 c r e a t e arc <t , d i s ab l e r>
34 c r e a t e arc <s a c t i v e , t>
35 e l s e :
36 i f enab l e r p lace o f s u c c e s s o r ( t ) does not e x i s t :
37 c r e a t e p lace <s u c c e s s o r ( t ) enab l e r , 0 tokens>
38 c r e a t e arc <s u c c e s s o r ( t ) enab l e r , s u c c e s s o r ( t )>
39 e l s e :
40 c r e a t e arc <t , enab l e r su c c ( t )>

Figure 6.15: Sequence Algorithm 2

6.2.5 Proof sketches for Sequence Algorithm 2

It now needs to be shown that after applying the Sequence Algorithm of Figure 6.15, the resulting net
satisfies any causal sequence constraint. Lemmas 6.7, 6.8, and 6.9 still hold for Sequence Algorithm 2.
However, for this version of the Sequence Algorithm diverging sequences are now allowed. Therefore,
Lemma 6.10 alone no longer suffices and we need Lemmas 6.13 and 6.14 to cover the case of consequence
transitions being divergence points.

The following places and transitions are used in the proofs of this section. For a consequence transition
𝑡𝑛, 𝑝

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑛 refers to the decision place of 𝑡𝑛 created on Line 16 in Sequence Algorithm 2. Every transition

𝑡 in the postset of 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is a decision transition of 𝑡𝑛. For a sequence 𝑠, 𝑠
𝑎𝑐𝑡𝑖𝑣𝑒 denotes the place created

on Line 3, that is used to indicate whether or not the sequence 𝑠 is currently active.

Lemma 6.13
For any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡), where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)| − 1, 𝑡 is an activation transition, and 𝑡𝑛 is a
divergence point: There is a decision transition 𝑡′ of 𝑡𝑛 whose firing leads to a marking 𝑚 in which only
𝑡𝑛+1 is enabled.

For the enabledness of 𝑡𝑛+1 part of an interface 𝑁 , we consider the following places in its preset in
the marking 𝑚:

1. A place 𝑝 ∈ 𝑃𝑁 . This can only be exactly one place, as 𝑁 is an S-net.

2. A set of places 𝑐 ∈ 𝐶𝑒(𝑡𝑛+1).

3. A set of places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1).

4. 𝑝𝑒𝑛+1, which is the enabler place of 𝑡𝑛+1 introduced by Sequence Algorithm 2.
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Proof sketch. Line 19 ensures there exists a decision transition 𝑡′ of 𝑡𝑛 for each sequence successor
of 𝑡𝑛. Because of Line 25, 𝑝𝑒𝑛+1 is in the postset of 𝑡′. For the place 𝑝 ∈ ∙𝑡𝑛+1, using Assumption 5.2,
we can assume that 𝑚(𝑝) = 1. Using Assumption 5.4, we can furthermore assume that for all places
𝑐 ∈ 𝐶𝑒(𝑡𝑛+1), 𝑚(𝑐) = 1. Lastly, using Assumption 5.5, we can assume that for all places 𝑐′ ∈ 𝐶𝑑(𝑡𝑛+1),
𝑚(𝑐′) = 0. Because 𝑝𝑒𝑛+1 is in the postset of 𝑡′, 𝑝𝑒𝑛+1 will also have a token in the marking 𝑚. Therefore,
𝑡𝑛+1 is enabled in 𝑚.

Line 20 then ensures that 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in the preset of each decision transition. This means that if
one of these decision transitions fires, none of the other decision transitions are enabled in the resulting
marking. Because any other decision transition could not have fired, any other consequence transition
cannot have a token in its enabling place. Therefore, 𝑡𝑛+1 is the only transition enabled in 𝑚.

Lemma 6.14
For any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡), where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)| − 1, 𝑡 is an activation transition, and 𝑡𝑛 is a
divergence point, Lemma 6.13 showed that there is a decision transition 𝑡′ of 𝑡𝑛 whose firing leads to a
marking 𝑚′ in which only 𝑡𝑛+1 is enabled. After 𝑡𝑛 fires, resulting in the marking 𝑚, only 𝑡′ is enabled
in 𝑚. For the enabledness of 𝑡′, we consider the following places in its preset in the marking 𝑚:

1. 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 . This is the decision place of 𝑡𝑛 introduced by Sequence Algorithm 2.

2. 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑠(𝑡)
, the place indicating that the sequence 𝐶𝑠(𝑡) that 𝑡𝑛 is part of is active.

Proof sketch. Line 17 ensures that 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in the postset of 𝑡𝑛. Therefore, there is a token in
𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 in the marking 𝑚. Because of Line 21, 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in both the postset and preset of 𝑡′. Knowing
now that 𝑡 is guaranteed to be the last activation transition that has fired, and that the final transition of
𝐶𝑠(𝑡) has not fired yet, Line 21 ensures that there is a token in the place 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑠(𝑡)

. Therefore 𝑡′ is enabled

in 𝑚. Line 21 also ensures that any other decision transition 𝑡′′ with 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 in its preset will have
a different active place 𝑠𝑎𝑐𝑡𝑖𝑣𝑒 in its preset. Knowing that any activation transition other than 𝑡 could
not have been the last activation transition to fire, there can be no token in 𝑠𝑎𝑐𝑡𝑖𝑣𝑒. Therefore only 𝑡′ is
enabled in 𝑚.

Theorem 6.15
A component always satisfies a set of single-stage causal sequence constraints after applying Sequence
Algorithm 2

Proof sketch. To show that 𝒪 satisfies an arbitrary causal sequence constraint after applying Sequence
Algorithm 2, it needs to be shown that the property introduced in Definition 4.3 holds. That is, it must
be shown that there is exactly one possible firing sequence, excluding transitions introduced by the
Sequence Algorithm, after any 𝑡 fires until the last transition of 𝐶𝑠(𝑡) fires. Since Lemmas 6.7, 6.9 and
6.8 still hold, the same proof from Theorem 6.11 can be used to show that the only possible transition
that can be enabled after 𝑡 fires is 𝑡0. Following Lemmas 6.13, 6.14 and 6.10, the 𝑛th sequence transition
to fire after 𝑡 fires, must be the 𝑛th element of 𝐶𝑠(𝑡), as any transition not part of a sequence is disabled,
and any transition 𝑡𝑛 part of a sequence can only be enabled after 𝑡𝑛−1 fires. Therefore, for any marking

𝑚′, if 𝑚′ 𝑡−→, when excluding any transitions introduced by Sequence Algorithm 2, there exists exactly

one firing sequence from 𝑚′ that is 𝐶𝑠(𝑡).

6.2.6 Case 4: Multiple Diverging, Multi-Stage Sequences

In Case 4, multi-stage sequences are also considered. As such, Sequence Algorithm 2 no longer suffices,
and Sequence Algorithm 3 shown in Figure 6.18 must be used instead. The situation may now arise
that transitions can be divergence points in the context of a single sequence, and that we can divide
a multi-stage sequence into stages. Similarly to Case 3, where we needed to know which sequence was
active, we now need to know in which stage a sequence is. We again solve this by using dedicated decision
places, and introducing a place for each sequence stage. Using the stage transition sequence introduced
in Section 4.3.2, we can then determine the correct ordering of stages, allowing the correct transition to
be enabled in the postset of each decision place.

Example 6.16
Let 𝒪 = {𝐼1, 𝐼2} be a component, shown in Figure 6.16. Let 𝐶𝑠 denote the causal sequence constraints
on 𝒪, where 𝐶𝑠(𝑇1) = ⟨𝑇2, 𝑇3, 𝑇4, 𝑇2, 𝑇5⟩. This sequence has two stages, and its sequence of stage
transitions is ⟨𝑇3⟩ Figure 6.17 shows the result of applying Sequence Algorithm 2 on 𝒪.
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Figure 6.16: Component 𝒪

Figure 6.17: Resulting net after applying the sequence constraint algorithm of Figure 6.18
on 𝒪, with the following constraint: 𝐶𝑠(𝑇1) = ⟨𝑇2, 𝑇3, 𝑇4, 𝑇2, 𝑇5⟩

In Figure 6.17, we can see the new structures introduced by Sequence Algorithm 3. In the bottom, we
can see the two places indicating which stage of the sequence 𝐶𝑠(𝑇1) is active. The activation transition
𝑇1 puts a token in the place stage0-active, indicating the first stage of 𝐶𝑠(𝑇1) is active. The consequence
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transition 𝑇2 is a divergence point, and as such there are two decision transitions for each of its sequence
successors. As 𝑇3 is the first sequence successor of 𝑇2, the first decision transition that should fire is
𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇3. This is the case because 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇3 has stage0-active in its preset, while 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇5 has
stage1-active in its preset. As 𝑇3 is a stage transition, it is the first transition of the second stage of
𝐶𝑠(𝑇1), which means that 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇3 removes a token from stage0-active, and puts a token in stage1-
active. This means that the next time 𝑇2 fires, only 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇5 is enabled. After 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇5 fires,
only 𝑇5 will be enabled, and 𝑇5 in turn removes the token from stage1-active, indicating that 𝐶𝑠(𝑇1) is
no longer active.

1 c r e a t e p lace <d i s ab l e r , 1 token>
2 f o r each sequence s :
3 f o r each s tage s t o f C s ( t ) :
4 c r e a t e p lace <s t a c t i v e , 0 tokens>
5 f o r each t r a n s i t i o n t part o f an i n t e r f a c e sk e l e t on :
6 i f t i s f r e e :
7 c r e a t e arc <d i s ab l e r , t>
8 c r e a t e arc <t , d i s ab l e r>
9 e l s e i f t i s an a c t i v a t i o n t r a n s i t i o n f o r a sequence s s t a r t i n g with 𝑡0 :

10 c r e a t e p lace <𝑡0 enab le r , 0 tokens>
11 c r e a t e arc <𝑡0 enab le r , 𝑡0>
12 c r e a t e arc <t , 𝑡0 enab le r>
13 c r e a t e arc <d i s ab l e r , t>
14 s t1 = f i r s t s tage o f s
15 c r e a t e arc <t , s t 1 a c t i v e>
16
17 i f t i s a consequence t r a n s i t i o n :
18 i f t i s a d ive rgence po int :
19 c r e a t e p lace <t d e c i s i o n , 0 tokens>
20 c r e a t e arc <t , t d e c i s i o n>
21
22 f o r each sequence s that t i s part o f :
23 f o r each sequence su c c e s s o r succ o f t in s :
24 c r e a t e t r a n s i t i o n <t succ>
25 c r e a t e arc <t d e c i s i o n , t succ>
26 s t s u c c = stage that succ i s part o f
27 s t t = stage that t i s part o f
28 i f succ i s a s tage t r a n s i t i o n :
29 c r e a t e arc <s t t a c t i v e , t succ>
30 c r e a t e arc <t succ , s t s u c c a c t i v e>
31 e l s e :
32 c r e a t e b i d i r e c t i o n a l arc <s t t a c t i v e , t succ>
33
34 i f enab l e r p lace o f succ does not e x i s t :
35 c r e a t e p lace <succ enab l e r , 0 tokens>
36 c r e a t e arc <succ enab l e r , succ>
37
38 c r e a t e arc <t succ , succ enab l e r>
39
40 f o r each sequence s that t i s the f i n a l t r a n s i t i o n o f :
41 c r e a t e t r a n s i t i o n < f i n a l s >
42 c r e a t e arc <t d e c i s i o n , f i n a l s >
43 s t l a s t = l a s t s tage o f s
44 c r e a t e arc <s t l a s t a c t i v e , f i n a l s >
45 c r e a t e arc < f i n a l s , d i s ab l e r>
46
47 e l s e :
48 i f t i s the l a s t t r a n s i t i o n o f the sequence s :
49 c r e a t e arc <t , d i s ab l e r>
50 s t l a s t = l a s t s tage o f s
51 c r e a t e arc <s t l a s t a c t i v e , t>
52 e l s e :
53 i f enab l e r p lace o f s u c c e s s o r ( t ) does not e x i s t :
54 c r e a t e p lace <s u c c e s s o r ( t ) enab l e r , 0 tokens>
55 c r e a t e arc <s u c c e s s o r ( t ) enab l e r , s u c c e s s o r ( t )>
56 e l s e :
57 c r e a t e arc <t , enab l e r su c c ( t )>

Figure 6.18: Sequence Algorithm 3
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6.2.7 Proof sketches for Sequence Algorithm 3

The introduction of multi-stage sequences means that transitions can be divergence points in the context
of a single sequence. Because this expands the notion of what a divergence point is, we need to replace
Lemma 6.14 with 6.17.

The following places and transitions are used in the proofs of this section. For a consequence transition
𝑡𝑛, 𝑝

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑛 refers to the decision place of 𝑡𝑛 created on Line 19 in Sequence Algorithm 3. For each stage

𝑠𝑡 of a sequence 𝑠, 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡 denotes the place created on Line 4, and is used to indicate whether or not
the stage 𝑠𝑡 of 𝑠 is active.

Lemma 6.17
For any transition 𝑡𝑛 ∈ 𝐶𝑠(𝑡) part of the stage 𝑠𝑡, where 0 ≤ 𝑛 ≤ |𝐶𝑠(𝑡)|−1, 𝑡 is an activation transition,
and 𝑡𝑛 is a divergence point, Lemma 6.13 still holds for Sequence Algorithm 3, and showed that there is
a decision transition 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 𝑡𝑛 whose firing leads to a marking 𝑚′ in which only 𝑡𝑛+1 part of the
stage 𝑠𝑡′ is enabled. After 𝑡𝑛 fires, resulting in the marking 𝑚, only 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is enabled in 𝑚. For the
enabledness of 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, we consider the following places in its preset in the marking 𝑚:

1. 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 . This is the decision place of 𝑡𝑛 introduced by Sequence Algorithm 3.

2. 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡 , the place indicating that the stage 𝑠𝑡 of 𝐶𝑠(𝑡) is active.

Proof sketch. Line 17 ensures that 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in the postset of 𝑡𝑛, therefore there is a token in 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛

in the marking 𝑚. Because of Line 21, 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 is in both the postset and preset of 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛. Lines 19-20
guarantee that after 𝑡𝑛 fires, there is a token in a place 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 .

For any other decision transition 𝑡′′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 with 𝑝𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 in its preset, 𝑡′′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 also has a place
𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡′′ that is not 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡 in its preset. Following Lemma 6.7, any other activation transition that could
have possibly put a token in the initial stage of another sequence could not have fired. If 𝑡𝑛+1 is a
stage transition, then Lines 28-30 guarantee 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡 is in the preset of 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and that 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡′ is in the
postset of 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛. If 𝑡𝑛+1 is not a stage transition, Line 32 then guarantees that 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡 is in both the
postset and preset of 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛. This guarantees that only one stage can be active at a time, and that a
new stage can only be activated after a stage transition is fired. With 𝑡𝑛 being part of the stage 𝑠𝑡, it is
then guaranteed that 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡 and only 𝑝𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝑡 , will have a token in the marking 𝑚. As a result ,𝑡′′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

cannot be enabled in 𝑚. Therefore, only 𝑡′𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is enabled in 𝑚′.

Theorem 6.18
A component always satisfies a set of potentially overlapping, diverging, multi-stage causal sequence
constraints after applying Sequence Algorithm 3

Proof sketch. To show that 𝒪 satisfies an arbitrary causal sequence constraint after applying Sequence
Algorithm 3, it needs to be shown that the property introduced in Definition 4.3 holds. That is, it must
be shown that there is exactly one possible firing sequence, excluding transitions introduced by the
Sequence Algorithm, after any 𝑡 fires until the last transition of 𝐶𝑠(𝑡) fires. Since Lemmas 6.7, 6.9 and
6.8 still hold, the same proof from Theorem 6.11 can be used to show that the only possible transition
that can be enabled after 𝑡 is 𝑡0. Following Lemmas 6.17 and 6.10, the 𝑛th sequence transition to fire
after 𝑡 fires, must be the 𝑛th element of 𝐶𝑠(𝑡), as any transition not part of a sequence is disabled, and
any transition 𝑡𝑛 part of a sequence can only be enabled after 𝑡𝑛−1 fires. Therefore, for any marking 𝑚′,

if 𝑚′ 𝑡−→, when excluding any transitions introduced by Sequence Algorithm 3, there exists exactly one

firing sequence from 𝑚′ that is 𝐶𝑠(𝑡).
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Chapter 7

Case study

This chapter goes over three main topics. First, a case in the form of a ComMA component specification
is covered, and the algorithms introduced in Chapter 6 are applied to represent its interface constraints.
Secondly, the Neo4J based validation method is introduced. The main contributions here are in the form
of Cypher, which is the query language of Neo4J. For each of the constraints, a Cypher query template
is introduced, and these are then used to validate the Petri net representation produced for the case. In
the implementation, Cypher queries based on these templates are generated automatically from a given
ComMA specification. Lastly, the scalability of the methods introduced in Chapter 6 is evaluated, which
is done by analyzing the state space of the Petri produced for the case. This is important as the methods
of Chapter 6 may produce Petri nets whose state space is too large, in which case it can be infeasible to
do any analysis.

7.1 ComMA Specifications of the Case

In this case study, we will look at the ComMA specification of a simple, synthetic model based on an
MRI machine. MRI machines operate using superconducting magnets and are cooled at extremely low
temperatures, which can only be maintained in a vacuum. The component therefore has a vacuum and
a temperature interface, as well as an imaging interface responsible for the imaging. On top of this,
there is a monitor interface that monitors the system for any faults. The ComMA definitions of these
interfaces are shown in Figures 7.1, 7.2, 7.3 and 7.4, respectively. The Petri net representation of the
skeletons of these interfaces is shown in Figure 7.6.
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1 import ”Monitor . s i gna tu r e ”
2
3 i n t e r f a c e Monitor v e r s i on ” 1 .0 ”
4
5 machine StateMachine {
6 i n i t i a l s t a t e I d l e {
7
8 t r a n s i t i o n t r i g g e r : checkSystem
9 next s t a t e : Checking

10 ( tag Id le checkSystem Checking )
11 }
12
13 s t a t e Checking {
14
15 t r a n s i t i o n t r i g g e r : f a u l t
16 next s t a t e : Error
17 ( tag Check ing f au l t Er ro r )
18
19 t r a n s i t i o n t r i g g e r : f i n i s h
20 next s t a t e : I d l e
21 ( tag Ch e c k i n g f i n i s h I d l e )
22
23 }
24
25 s t a t e Error {
26 t r a n s i t i o n do :
27 handleError
28 next s t a t e : Checking
29 ( tag Error handleError Check ing )
30 }
31 }

Figure 7.1: ComMA monitor interface definition

The monitor interface shown above has three states: Idle, Checking and Error. A checkSystem event
will transition the monitor interface from the Idle state to the Checking state. From the Checking state,
a fault event will transition the interface to the Error state, while a finish event will transition it back to
the Idle state. In the error state, a handleError event will transition the interface back to the checking
state.
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1 import ”Vacuum . s i gna tu r e ”
2
3 i n t e r f a c e Vacuum ve r s i on ” 1 .0 ”
4
5 machine StateMachine {
6 i n i t i a l s t a t e Off {
7
8 t r a n s i t i o n t r i g g e r : turnOn
9 next s t a t e : On

10 ( tag Off turnOn On )
11 }
12
13 s t a t e On {
14
15 t r a n s i t i o n t r i g g e r : turnOff
16 next s t a t e : Off
17 ( tag On turnOff Off )
18
19 t r a n s i t i o n t r i g g e r : check
20 next s t a t e : Checking
21 ( tag On check Checking )
22
23 t r a n s i t i o n t r i g g e r : check2
24 next s t a t e : Checking
25 ( tag On check2 Checking )
26 }
27
28 s t a t e Checking {
29 t r a n s i t i o n do :
30 done
31 next s t a t e : On
32 ( tag Checking done On )
33 }
34 }

Figure 7.2: ComMA vacuum interface definition

The Vacuum interface shown above has three states: Off, On and Reading. A turnOn event will
transition the vacuum interface from the Off state to the On state. From the On state, a check or check2
event will transition the interface to the Checking state, while a turnOff event will transition it back to
the Off state. In the Checking state, a done event will transition the interface back to the On state.
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1 import ”Temperature . s i gna tu r e ”
2
3 i n t e r f a c e Temperature ve r s i on ” 1 .0 ”
4
5 machine StateMachine {
6 i n i t i a l s t a t e Off {
7
8 t r a n s i t i o n t r i g g e r : turnOn
9 next s t a t e : On

10 ( tag Off turnOn On )
11 }
12
13 s t a t e On {
14
15 t r a n s i t i o n t r i g g e r : turnOff
16 next s t a t e : Off
17 ( tag On turnOff Off )
18
19 t r a n s i t i o n t r i g g e r : read
20 next s t a t e : Reading
21 ( tag On read Reading )
22
23 }
24
25 s t a t e Reading {
26 t r a n s i t i o n do :
27 done
28 next s t a t e : On
29 ( tag Reading done On )
30 }
31
32 }

Figure 7.3: ComMA temperature interface definition

The Temperature interface shown above has three states: Off, On and Reading. A turnOn event will
transition the vacuum interface from the Off state to the On state. From the On state, a read event
will transition the interface to the Reading state, while a turnOff event will transition it back to the Off
state. In the reading state, a done event will transition the interface back to the On state.
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1 import ” Imaging . s i gna tu r e ”
2
3 i n t e r f a c e Imaging ve r s i on ” 1 .0 ”
4
5 machine StateMachine {
6 i n i t i a l s t a t e Off {
7
8 t r a n s i t i o n t r i g g e r : turnOn
9 next s t a t e : On

10 ( tag Off turnOn On )
11 }
12
13 s t a t e On {
14
15 t r a n s i t i o n t r i g g e r : turnOff
16 next s t a t e : Off
17 ( tag On turnOff Off )
18
19 t r a n s i t i o n t r i g g e r : image
20 next s t a t e : Proce s s ing
21 ( tag On image Process ing )
22
23 t r a n s i t i o n t r i g g e r : image2
24 next s t a t e : Proce s s ing
25 ( tag On image2 Process ing )
26
27 }
28
29 s t a t e Proce s s ing {
30 t r a n s i t i o n do :
31 done
32 next s t a t e : On
33 ( tag Process ing done On )
34 }
35 }

Figure 7.4: ComMA Imaging interface definition

The Imaging interface shown above has three states: Off, On and Processing. A turnOn event will
transition the vacuum interface from the Off state to the On state. From the On state, an image or
image2 event will transition the interface to the Processing state, while a turnOff event will transition it
back to the Off state. In the Processing state, a done event will transition the interface back to the On
state.
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1 import ”Temperature/Temperature . i n t e r f a c e ”
2 import ”Vacuum/Vacuum . i n t e r f a c e ”
3 import ” Imaging/ Imaging . i n t e r f a c e ”
4 import ”Monitor/Monitor . i n t e r f a c e ”
5 component testModule
6
7 provided port Temperature iTemperaturePort
8 provided port Imaging iImagingPort
9 provided port Vacuum iVacuumPort

10 provided port Monitor iMonitorPort
11
12 f un c t i o n a l c on s t r a i n t s
13
14 causa l−seq i n i t s e qu en c e {
15 iImagingPort : : Off turnOn On
16 where iTemperaturePort in Off and iVacuumPort in Off
17 leads−to
18 iVacuumPort : : Off turnOn On
19 iTemperaturePort : : Off turnOn On
20
21 }
22
23 causa l−seq image {
24 iImagingPort : : On image Process ing
25 where iTemperaturePort in On and iVacuumPort in On
26 leads−to
27 iTemperaturePort : : On read Reading
28 iTemperaturePort : : Reading done On
29 iVacuumPort : : On check Checking
30 iVacuumPort : : Checking done On
31 }
32
33 causa l−seq image2 {
34 iImagingPort : : On image2 Process ing
35 where iTemperaturePort in On and iVacuumPort in On
36 leads−to
37 iTemperaturePort : : On read Reading
38 iTemperaturePort : : Reading done On
39 iVacuumPort : : On check2 Checking
40 iVacuumPort : : Checking done On
41 }
42
43 causa l−seq e r r o r {
44 iMonitorPort : : Check ing f au l t Er ro r
45 leads−to
46 iMonitorPort : : Error handleError Check ing
47 iMonitorPort : : Ch e c k i n g f i n i s h I d l e
48 }
49
50 invar e r r o r d i s a b l e {
51 iImagingPort : : On image Process ing
52 where iMonitorPort in Error
53 }
54
55 invar e r r o r d i s a b l e 2 {
56 iImagingPort : : On image2 Process ing
57 where iMonitorPort in Error
58 }

Figure 7.5: ComMA component definition

Above is the component definition of the example specification. As can be seen in the definition, all in-
terfaces part of the component are provided interfaces. The first causal sequence constraint init sequence
states that a turnOn in the Imaging interface must be followed by an turnOn in the Vacuum interface,
followed by a turnOn in the Temperature Interface. The second causal sequence constraint states that
an Image in the image interface must be followed by a read in the temperature interface, followed by
a done in the Temperature interface, followed by a check in the vacuum interface, finally followed by a
done in the Vacuum interface. The third sequence image2 is almost the same as the image sequence,
meaning that they are overlapping. Only the third transition in the sequence is different, as a check2
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is now required to happen instead, making the sequences diverging. The fourth sequence states that a
fault in the monitor interface must be followed by a handleError in the monitorInterface, followed by a
finish in the monitor interface. Followed are two disabling constraints, for which the ”invar” keyword is
used in ComMA. These disabling constraints state that the image and image2 transition in the Imaging
interface cannot happen if the Monitor interface is in the Error state.
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Figure 7.6: Interface skeletons of the interfaces of the example component

The figure above shows the interface skeletons of each of the interfaces represented as a Petri net,
which is the result of an existing generator in ComMA.
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Figure 7.7: Resulting Petri net after applying the sequence constraint algorithm of Fig-
ure 6.18 on the example component
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7.2 Validation

Validation is done on the reachability graph of the Petri net representation of a component. Although
there are proof sketches for each of the algorithms, it is always possible that the proof contains errors.
Therefore, some redundancy with regards to validation never hurts to build additional confidence in
the solutions. Using reachability analysis, we can verify that the properties introduced in Chapter 4 do
indeed hold. Several options were explored, including Tapaal, which is a tool for editing, simulating, and
verifying Petri nets [26]. Using Tapaal, the verification of enabling constraints and disabling constraints
was possible. However, it was not expressive enough to be able to verify causal sequence constraints.
This is because the query language does not allow for the verification of the existence and nonexistence
of specific firing sequences, which is required to verify causal sequence constraints. In the end, the graph
database platform Neo4J was found to be sufficiently expressive to cover all three constraints.

7.2.1 Neo4J

Neo4J 1 is a graph database platform, used to both store and leverage relationships between data. Graphs
consist of nodes, and nodes can have relationships with other nodes. A Petri net reachability graph could
then be represented as a Neo4J graph. A node represents a marking, and a relationship to another node
represents a transitions that leads the net to another marking. Nodes in Neo4J can furthermore have
properties, and these can be used to represent the marking each node represents. A node property is
simply a key-value pair, thus a marking can be represented by letting place names map to a number of
tokens.

From the internal representation used to generate the net, a set of Cypher scripts is then also generated
that verify the properties of Definitions 4.1, 4.2 and 4.3 for each of the defined constraints.

Figure 7.8: Part of a neo4j reachability graph

Cypher is Neo4J’s SQL-like query language that uses pattern matching to match for certain nodes
and relationships.

1 MATCH (n)
2 WHERE (n) − [ : Trans i t i on ]−>()

The above Cypher matches for all nodes 𝑛, such that 𝑛 has an outgoing relationship called Transition.
If we then want to check the marking of all nodes 𝑛 with an outgoing transition TurnOff to see if the
place 𝑂𝑛 has at least one token, we can do the following:

1 MATCH (n)
2 WHERE (n) − [ : TurnOff ]−>()
3 RETURN ex i s t s (n .On)

Where exists(n.On) returns True if the node 𝑛 has a property with the key On.

7.3 Cypher Templates Used to Validate the Case

This section introduces the Cypher templates used for the validation of each interface constraint. Each
template is followed by a corresponding Cypher query that was used to validate the case.

1Neo4J documentation
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7.3.1 Enabling Constraint

For an enabling constraint 𝐶𝑒 and a transition 𝑡 on which the constraint is applied, the template for
generating the validation Cypher script is as follows:

1 MATCH (n)
2 WHERE (n)−[:<t>]−>()
3 RETURN <For each c in 𝐶𝑒(𝑡) : e x i s t s (n.<c>)>

The script matches for some node 𝑛, where 𝑛 has an outgoing edge named 𝑡. Any 𝑛 that matches, must
then have a property for each place 𝑐 in 𝐶𝑒(𝑡), indicating that 𝑐 has a token. Note that this merely
checks for the existence of a property, and not the value of the property itself. This is done because each
node only contains a property for each of the places that has a token, not for all possible places of the
net, which is a more compact representation. We can do this because the nets we are verifying are safe,
which means that any place can either have one token, or none at all.

The following Cypher query was used to verify the enabling constraint on the turnOn transition part
of the case:

1 MATCH (n)
2 WHERE (n) − [ : Imaging Off turnOn ]−>()
3 RETURN ex i s t s (n . Temperature Off ) AND
4 e x i s t s (n . Vacuum Off )

If the result is valid then for each of 𝑛 found in each of the above Cypher queries, True must be
returned. The rest of the queries for enabling constraints can be found in Appendix B.1 and B.2.

7.3.2 Disabling Constraint

For a disabling constraint 𝐶𝑑 and a transition 𝑡 on which the constraint is applied, the template for
generating the validation Cypher script is as follows:

1 MATCH (n)
2 WHERE (n)−[:<t>]−>()
3 RETURN <For each c in 𝐶𝑒(𝑡) : NOT e x i s t s (n.<c>) >

The Cypher for a disabling constraint is almost exactly the same as for the enabling constraint. The
only difference is now that for any node 𝑛 that matches, 𝑛 must not have a property for each c in 𝐶𝑒(𝑡).
Like with the Cypher for enabling constraints, this is again an existence check, except now it checks for
the absence of a property.

The following Cypher query was used to verify the disabling constraint on the image transition part
of the case:

1 MATCH (n)
2 WHERE (n) − [ : Imaging On image ]−>()
3 RETURN NOT ex i s t s (n . Monitor Error )

If the result is valid, then for each of 𝑛 found in each of the above Cypher queries, True must be
returned. The rest of the queries for disabling constraints can be found in Appendix B.3.

7.3.3 Causal Sequence Constraint

The template for validating a causal sequence constraint is more complicated. When analyzing the
reachability graph, we first have to consider that when a consequence transition is a divergence point, it
is followed by a choice transition that is introduced why by Sequence Algorithm 2 or 3. If we then want
to match the full path of a sequence, we need to include these transitions in the matching expression.
For a causal sequence constraint 𝐶𝑠(𝑡) where 𝑡 is an activation transition, let 𝑆𝑑 denote the sequence
consisting of 𝐶𝑠(𝑡) and all the choice transitions corresponding to each element of 𝐶𝑠(𝑡). For each 𝑡𝑛 ∈ 𝑆𝑑

where 𝑛 ∈ N, 𝑡𝑛+1 is a choice transition of 𝑡𝑛 if it has one. It does not matter what 𝑡𝑛+1 actually is,
as 𝑡𝑛+1 is just there to account for the fact that 𝑡𝑛 is not directly followed by its sequence successor in
the reachability graph. For a causal sequence constraint 𝐶𝑠 and a transition 𝑡 on which the constraint is
applied, the template for generating the validation Cypher script is as follows:
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1 MATCH ac t i v a t i o n = (n)−[a]−>()
2 WHERE a . name=’Monitor Check ing fau l t ’
3 WITH ac t i va t i on , n , a
4 MATCH sequence = (n)−[a]−>(m)− < f o r i from 0 to |𝑆𝑑| : [ e i ]−( n i )−> > [ e6 ]−>( f i n a l )
5 WHERE < f o r each 𝑡𝑛 in 𝐶𝑠(𝑡) : e j . name=𝑡𝑛> // here , j i s the index o f 𝑡𝑛 in 𝑆𝑑

6 WITH act i va t i on , sequence , m, e0 , < f o r i from 0 to |𝑆𝑑| : n i > , f i n a l
7 OPTIONAL MATCH inva l i d = ( ) −[ e0 ]−>() − [∗1 . . |𝑆𝑑|]−>( i f i n a l )
8 WHERE < f o r i from 0 to |𝑆𝑑| : i f i n a l <> n i > AND i f i n a l <> f i n a l
9 WITH ac t i va t i on , sequence , i n v a l i d

10 RETURN [ seq IN RELATIONSHIPS( sequence ) | seq . name ] AS pathValid , [ seq IN
RELATIONSHIPS( i n v a l i d ) | seq . name ] AS Paths Inva l id

It is important to clarify that for each 𝑒 𝑗 generated on Line 2, and each 𝑒 𝑖 generated on Line 1, 𝑖 = 𝑗,
as they refer to the same consequence transition.

When validating sequences, a chain of nodes and transitions must now be checked. That is, for any
activation transition 𝑡, there must exist at least one path in the reachability graph that containts the
exact firing sequence 𝐶𝑠(𝑡). It must then also be validated that no invalid paths exist. More specifically,
the existence of branching in the previously found valid paths must be checked. This is because branches
indicate that more than one transition is enabled while a sequence is active, which is a violation of the
property defined in Definition 4.3. This is validated by matching any node that has 𝑡 as an outgoing arc,
and then checks for all paths with at most a length of |𝐶𝑠(𝑡)| that are not 𝐶𝑠(𝑡). The following Cypher
query was used to verify the causal sequence constraint on the image transition part of the case:

1 // Val idate sequence
2 MATCH ac t i v a t i o n = (n)−[a]−>()
3 WHERE a . name=’Imaging On image ’
4 WITH ac t i va t i on , n , a
5 MATCH sequence = (n)−[a]−>(m)−[ e0 ]−>(n0 )−[ e1 ]−>(n1 )−[ e2 ]−>(n2 )−[ e3 ]−>(n3 )−[ e4 ]−>(n4 )

−[ e5 ]−>(n5 )−[ e6 ]−>( f i n a l )
6 WHERE
7 e0 . name=’Temperature On read ’ AND
8 e2 . name=’Temperature Reading done ’ AND
9 e4 . name=’Vacuum On check ’ AND

10 e5 . name=’Vacuum Checking done ’
11 WITH ac t i va t i on , sequence , m, e0 , n0 , n1 , n2 , n3 , n4 , n5 , f i n a l
12 OPTIONAL MATCH inva l i d = (m)−[ e0 ]−>() − [∗1..6]−>( i f i n a l )
13 WHERE i f i n a l <> n0 AND i f i n a l <> n1 AND i f i n a l <> n2 AND i f i n a l <> n3 AND i f i n a l

<> n4 AND i f i n a l <> n5 AND i f i n a l <> f i n a l
14 WITH ac t i va t i on , sequence , i n v a l i d
15 RETURN [ seq IN RELATIONSHIPS( a c t i v a t i o n ) | seq . name ] AS Act ivat ion , [ seq IN

RELATIONSHIPS( sequence ) | seq . name ] AS pathValid ,
16 [ seq IN RELATIONSHIPS( i n v a l i d ) | seq . name ] AS Paths Inva l id

The queries above return three things: Each instance of the activation transition that occurs in
the reachability graph, corresponding to each instance a list of relationships that should be the exact
sequence of transitions of the causal sequence that is being validated, as well as a list of invalid paths.
The first list of relationships can only be null, or the exact matching sequence of transitions. If the
result is valid, for each match that was found, the first list of relationships cannot be null, and the list
of invalid paths must be null. The rest of the queries for causal sequence constraints can be found in
Appendix B.4 and B.5. Figure 7.9 shows the result of a query on a valid model, while Figure 7.10 shows
the result for an invalid one.

Figure 7.9: Query result for a valid model
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Figure 7.10: Query result for an invalid model

7.4 Scalability

As the purpose of introducing constraints on a component is to reduce the amount of possible behaviour,
one would think that the size of the state space would also reduce as a consequence. How much it reduces
or if it reduces at all depends on the defined constraints. However, since the algorithms that encode the
constraints add new places and transitions to the net, it is possible that the state space of resulting net
could increase.

The state space of the net shown in Figure 7.6 should simply be the product of the size of the state
spaces of the individual interfaces. Since each interface has three possible markings, the combined state
space contains 34 = 81 possible markings. Using Pnat2, the state space of the net in Figure 7.7 can also
be obtained by counting the number of nodes in the reachability graph.

Doing this, it was found that the net of Figure 7.7 has 80 possible markings, which so far suggests that
the provided methods are scalable. We can furthermore only look at the places part of a given component.
For our case, this would mean counting only the places present in Figure 7.6. When considering only
the places part of the component, the number of possible markings is 46. So while only a small decrease
of possible markings can be observed for the overall net, we can see a significant reduction in possible
behaviour.

This does raise the question of what would happen if the number of constraints were to decrease.
Figure 7.11 shows the Petri net resulting from a specification with only one causal sequence constraint
defined.

2Pnat GitHub
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Figure 7.11: Resulting net with only the initialization sequence constraint

The net in Figure 7.11 actually has 87 possible markings, making its state space bigger than the state
space of the net in Figure 7.6. When not considering places introduced to encode the constraints, the
net in Figure 7.11, still has 81 possible markings. In this particular example, the goal could have been
to make sure that the vacuum Interface and the Temperature interface are both in the On state when
the Imaging interface is in the On state. However, after the sequence ends, both the Vacuum Interface
and the Temperature interface can simply transition to the Off state on their own. By accompanying
the startup sequence with a shutdown sequence, we end up with a specification that does achieve the
original goal. As a result, the state space is also reduced as expected, with the resulting net only having
39 possible markings.

The specification that resulted in the net of Figure 7.11 is an example of a set of constraints that
does not reduce the amount of possible behaviour of the net. It then also makes sense that the resulting
net could have an overall larger state space, as the number of possible markings is not reduced by the
constraint, while the structure encoding the constraints only allow for a larger number possible markings.
So while the state space can become bigger as a result of constraint enconding, its size is still manageable,
and it does not suggest that the constraint encodings lead to an exponential increase in the size of the
state space.
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Chapter 8

Implementation

So far, only the theoretical contributions have been covered. This chapter gives an overview of the
implementations that were created, and how these implementations are integrated into, or work together
with existing tools to create a validation pipeline. An overview of this pipeline is shown in Figure 8.1.

Comma
Component
specification

Interface
behaviour

Interface
constraints

Chapter 6
Algorithms

Pnet
Internal

representation
pnml generator

Pnml file

PnAT

Reachability
graph

Chapter 7
Cypher

templates

validation
cypher

graph cypher Neo4J

updates

generates

generates

Specification

Existing work

New work

Figure 8.1: Validation pipeline overview

8.1 Validation Pipeline

The implementation starts with the parsing of a ComMA component specification, which results in an
internal representation. This internal representation, as well as all the generators, are implemented in
Xtend 1, which is the language that a large part of ComMA is implemented in. The internal represen-

1Xtend documentation
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tation contains three major elements:

1. A Petri net representation. This is simply a set of places, transitions, and arcs.

2. A constraint representation. Given a transition 𝑡, indicates which enabling and disabling constraints
are applied on 𝑡, as well as the sequence of transitions that 𝑡 leads to if 𝑡 is an activation transition.

3. Some additional data structures storing things used by the algorithms of Chapter 6, such as the pre-
sets and postsets of nodes, as well as the sequences of stage transitions introduced in Section 4.3.2.

The initial Petri net representation can be easily obtained from the Pnet representations of the interfaces
of the component. After this is done, the constraints are parsed, and the additional data structures used
by the algorithms of Chapter 6 are constructed. As indicated by the bidirectional arc in Figure 8.1,
the algorithms of Chapter 6 take the data from the internal representation as an input, and update
the internal representation with the set of places, transitions and arcs required to represent the defined
constraints. After the internal representation gets updated with these new structures, a pnml generator
is first called to produce the pnml [23] file representing the component in a Petri net. Secondly, a Cypher
generator that uses the templates introduced in Chapter 7 is called, to produce the Cypher validation
files. Having the complete Petri net representation, the pnml generator can simply iterate over all
the places, transitions, and arcs in the internal representation to produce the pnml that represents the
ComMA component. Similarly, the Cypher generator can iterate over the constraints defined in the
constraint representation, producing a Cypher file for each of these constraints.

We now have a Petri net in the form of a pnml file representing the ComMA component, and a set
of Cypher files that can be used to validate whether the constraints are represented correctly. What is
missing is a Neo4J representation of the reachability graph of the Petri net. To obtain this, the pnml file is
first fed into the Pnat tool, which produces a reachability graph. Using a Python script, this reachability
graph is parsed and an internal graph representation is created. From this, a Cypher script is generated
that constructs a Neo4J graph containing the right nodes, relationships, and node properties needed to
represent the reachability graph. The script to create the graph, as well as the validation scripts, can
then be imported into the Neo4J desktop environment. Using the Neo4J APOC library, all the scripts
could be executed automatically, starting off with the creation of the graph, followed by all the validation
scripts.
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Chapter 9

Conclusions & Future Work

This concluding chapter starts off with a summary of the main contributions of this thesis. The con-
tributions are discussed for each of the chapters separately. This is followed by several limitations of
the existing contributions and points of future work, primarily focused on the guidelines of Chapter 5,
the methods introduced in Chapter 6, scalability, and the range of the ComMA language that is not
supported.

9.1 Conclusions

The main goal of the thesis was to provide a method for encoding ComMA interface constraints as Petri
nets, and to integrate these encodings into existing Petri net representations. To do this, a formaliza-
tion was first provided for each of the categorized constraints, defining the behaviour of each of these
constraints. The concepts of overlapping, diverging, and multi-stage sequences were furthermore intro-
duced to serve as a basis for the algorithms introduced in Chapter 6. From the formalization, a set of
assumptions was furthermore defined that act as guidelines for the specification of interface constraints,
helping users avoid creating deadlocking specifications.

While multiple options were considered, the goal initially was to create a method that could encode
the categorized interface constraints as a P/T net. In the end, it was found that P/T nets were sufficiently
expressive to encode the constraints, meaning that the Petri nets produced by the proposed solutions
are compatible with existing methods and tools for verification. Two methods were proposed for the
enabling constraint and the disabling constraint, respectively, and three for causal sequence constraints.
Sequence Algorithm 1 provides a compact encoding of causal sequence constraints, but is limited to
non-diverging, single-stage sequences. Sequence Algorithm 2 was then introduced to furthermore deal
with diverging sequences. Finally, Sequence Algorithm 3 was introduced to supersede Sequence Algo-
rithm 2, furthermore supporting multi-stage sequences, at the cost of providing a larger, more complex
representation. For each of the proposed algorithms, proof sketches were provided that showed that the
Petri net encoding of the constraints satisfied the validation properties defined in Chapter 4.

In the case study, several examples were shown on how the size of the state space is affected by
different sets of specifications. An example of a specification that did not reduce the possible behaviour
of a component was then shown. Using this example, it was furthermore shown that some constraint
specifications can cause an overall increase of the state space. This makes it possible for a Petri net
representation of a component with interface constraints, to be larger than the state space of a repre-
sentation without any constraints. However, there was no indication that this increase in state space is
exponential, suggesting that the solution is scalable.

The Petri net that represents a component and its interface constraints are automatically generated in
ComMA. Using the graph database platform Neo4j, a method for automatically validating this Petri net
was provided. A generation template is provided for each of the three classes of constraints. Using these
templates, the Cypher queries that can be run in Neo4j are automatically generated in ComMA based
on a component’s specification. Using a Python script, Cypher that creates a Neo4J graph representing
the reachability graph of a Petri net can be generated. Having a Neo4J representation of a reachability
graph and the Cypher validation scripts generated in ComMA, it can be verified whether a Petri net
correctly encodes the interface constraints defined in a ComMA specification.
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9.2 Future work

While some examples were shown on how the structure introduced by the algorithms proposed in Section 6
affects size of the state space, this behaviour has not been formally characterized yet. So while the solution
appears to be scalable, formally showing that it is remains an open question. This could also be done
empirically by synthetically generating interfaces. The method proposed in [27] can be used as a starting
point, and support for the generation of valid interface constraints would have to be added.

There is also room for optimization in the sequence algorithm, namely to reduce the clutter in the
resulting net. In the current solution, every free transition is connected to a disabler place with a
bidirectional arc. This is in order to guarantee that they cannot fire while a sequence is active. However,
not every free transition has to be connected to this disabler place for them to be disabled. Some
transitions may be disabled by design, because the interface they are a part of can never be in a state
in which it can be fired. It should be possible to do a reachability analysis and detect this, allowing
the removal of unnecessary arcs, and making the resulting net more readable. The sequence algorithm
could furthermore be optimized to remove unnecessary enabler places, which is the case when all the
predecessors of a consequence transition 𝑡 are part of the same interface as 𝑡.

A third point of future work would to extend the list of assumptions given in Chapter 5, as well as
giving users feedback regarding on a provided specification. At the moment, following the assumptions
is only necessary to avoid deadlock, but does not guarantee deadlock-freedom.

Furthermore, Assumption 5.8 and Assumption 5.10 are based on an algorithm that detects cyclical
dependencies, and determines whether a specification can lead to a weakly terminating net. However, a
formal proof or argument about its correctness is still lacking. For the other assumptions, only a possible
validation property is provided, and methods for verifying these properties given a specification are still
missing.

Lastly, the full range of the ComMA language is not supported yet. The current solution does not
consider required interfaces and compound transitions. Furthermore, the current solution for causal
sequence constraints does not support the recurrence of activation transitions as consequence transitions
in the sequence they activate. To make this work with the current solution, it would involve representing
a ComMA transition as two separate transitions in a Petri net. For enabling and disabling constraints,
only expressions that are purely conjunctive are considered currently, while ComMA also allows for
disjunctive expressions. For example, a transition 𝑡 may depend on place 𝑝 and 𝑝′ having at least one
token, but could also depend on 𝑝 or ′ having at least one token. Lastly, the use of Colored Petri nets
to model constraints is a point of future work, which has the advantage of requiring a more compact
representation. Furthermore, since the modeling of data aspects in ComMA specifications will require
the use of Colored Petri nets, being able to model constraints in Colored Petri nets allows for the
representations to be integrated.
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Appendix A

Cycle Detection Algorithm for
Disabling Constraints

1 func t i on f i ndCyc l e s ( t , v i s i t e d p l a c e s , v i s i t e d i n t e r f a c e s ) :
2 r e s u l t s = ∅
3 n ew v i s i t e d p l a c e s = v i s i t e d p l a c e s . add (𝐶𝑒(𝑡))
4 n ew v i s i t e d i n t e r f a c e s = v i s i t e d i n t e r f a c e s
5 f o r each c in 𝐶𝑒(𝑡) :
6 n ew v i s i t e d i n t e r f a c e s . add ( i n t e r f a c e o f c )
7 f o r each c in 𝐶𝑒(𝑡) :
8 i f ( c in v i s i t e d p l a c e s ) :
9 r e s u l t s . add (True )

10 e l s e i f ( i n t e r f a c e o f c in v i s i t e d i n t e r f a c e s ) :
11 v = place in v i s i t e d p l a c e s part o f i n t e r f a c e o f c :
12 i f c in 𝑡′∙ f o r each t ’ in 𝑣∙ :
13 f o r each t in 𝑐∙ :
14 i f ( f i ndCyc l e s ( t , n ew v i s i t ed p l a c e s , n ew v i s i t e d i n t e r f a c e s ) :
15 r e s u l t s . add (True )
16 e l s e :
17 r e s u l t s . add ( Fa l se )
18 e l s e :
19 r e s u l t s . add (True )
20 e l s e :
21 f o r each t in 𝑐∙ :
22 i f ( f i ndCyc l e s ( t , n ew v i s i t ed p l a c e s , n ew v i s i t e d i n t e r f a c e s ) :
23 r e s u l t s . add (True )
24 e l s e :
25 r e s u l t s . add ( Fa l se )
26 re turn ( a l l ( r e s u l t s , True ) && r e s u l t s != ∅)
27
28
29
30
31 f o r each i in 𝒪 :
32 f o r each p in 𝑃𝑖

33 r e s u l t s = ∅
34 f o r each t in 𝑝∙ :
35 i f ( f i ndCyc l e s ( t , {p} , { i }) ) :
36 r e s u l t s . add (True )
37 e l s e :
38 r e s u l t s . add ( Fa l se )
39
40 i f a l l ( r e s u l t s , True ) :
41 p r i n t ( Deadlock . For a l l t r a n s i t i o n s in 𝑝∙ , a c y c l i c a l dependency was

found )

Figure A.1: Dependency cycles algorithm for disabling constraints
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Appendix B

Cypher Queries Generated for the
Case Study

1 MATCH (n)
2 WHERE (n) − [ : Imaging On image ]−>()
3 RETURN ex i s t s (n . Temperature On ) AND
4 e x i s t s (n .Vacuum On)

Figure B.1: Cypher validation for the enabling constraint on the image transition

1 MATCH (n)
2 WHERE (n) − [ : Imaging On image2 ]−>()
3 RETURN ex i s t s (n . Temperature On ) AND
4 e x i s t s (n .Vacuum On)

Figure B.2: Cypher validation for the enabling constraint on the image2 transition

1 MATCH (n)
2 WHERE (n) − [ : Imaging On image2 ]−>()
3 RETURN NOT ex i s t s (n . Monitor Error )

Figure B.3: Cypher validation for the disabling constraint on the image2 transition
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APPENDIX B. CYPHER QUERIES GENERATED FOR THE CASE STUDY

1 MATCH ac t i v a t i o n = (n)−[a]−>()
2 WHERE a . name=’Imaging On image2 ’
3 WITH ac t i va t i on , n , a
4 MATCH sequence = (n)−[a]−>(m)−[ e0 ]−>(n0 )−[ e1 ]−>(n1 )−[ e2 ]−>(n2 )−[ e3 ]−>(n3 )−[ e4 ]−>(n4 )

−[ e5 ]−>(n5 )−[ e6 ]−>( f i n a l )
5 WHERE
6 e0 . name=’Temperature On read ’ AND
7 e2 . name=’Temperature Reading done ’ AND
8 e4 . name=’Vacuum On check2 ’ AND
9 e5 . name=’Vacuum Checking done ’

10 WITH ac t i va t i on , sequence , m, e0 , n0 , n1 , n2 , n3 , n4 , n5 , f i n a l
11 OPTIONAL MATCH inva l i d = (m)−[ e0 ]−>() − [∗1..6]−>( i f i n a l )
12 WHERE i f i n a l <> n0 AND i f i n a l <> n1 AND i f i n a l <> n2 AND i f i n a l <> n3 AND i f i n a l

<> n4 AND i f i n a l <> n5 AND i f i n a l <> f i n a l
13 WITH ac t i va t i on , sequence , i n v a l i d
14 RETURN [ seq IN RELATIONSHIPS( a c t i v a t i o n ) | seq . name ] AS Act ivat ion , [ seq IN

RELATIONSHIPS( sequence ) | seq . name ] AS pathValid ,
15 [ seq IN RELATIONSHIPS( i n v a l i d ) | seq . name ] AS Paths Inva l id

Figure B.4: Cypher validation for the causal sequence constraint on the image2 transition

1 MATCH ac t i v a t i o n = (n)−[a]−>()
2 WHERE a . name=’ Imaging Off turnOn ’
3 WITH ac t i va t i on , n , a
4 MATCH sequence = (n)−[a]−>(m)−[ e0 ]−>(n0 )−[ e1 ]−>( f i n a l )
5 WHERE
6 e0 . name=’Vacuum Off turnOn ’ AND
7 e1 . name=’Temperature Off turnOn ’
8 WITH ac t i va t i on , sequence , m, e0 , n0 , f i n a l
9 OPTIONAL MATCH inva l i d = (m)−[ e0 ]−>() − [∗1..1]−>( i f i n a l )

10 WHERE i f i n a l <> n0 AND i f i n a l <> f i n a l
11 WITH ac t i va t i on , sequence , i n v a l i d
12 RETURN [ seq IN RELATIONSHIPS( a c t i v a t i o n ) | seq . name ] AS Act ivat ion , [ seq IN

RELATIONSHIPS( sequence ) | seq . name ] AS pathValid ,
13 [ seq IN RELATIONSHIPS( i n v a l i d ) | seq . name ] AS Paths Inva l id

Figure B.5: Cypher validation for the causal sequence constraint on the turnOn transition

1 MATCH ac t i v a t i o n = (n)−[a]−>()
2 WHERE a . name=’Monitor Check ing fau l t ’
3 WITH ac t i va t i on , n , a
4 MATCH sequence = (n)−[a]−>(m)−[ e0 ]−>(n0 )−[ e1 ]−>( f i n a l )
5 WHERE
6 e0 . name=’Monitor Error handleError ’ AND
7 e1 . name=’Moni tor Check ing f in i sh ’
8 WITH ac t i va t i on , sequence , m, e0 , n0 , f i n a l
9 OPTIONAL MATCH inva l i d = (m)−[ e0 ]−>() − [∗1..1]−>( i f i n a l )

10 WHERE i f i n a l <> n0 AND i f i n a l <> f i n a l
11 WITH ac t i va t i on , sequence , i n v a l i d
12 RETURN [ seq IN RELATIONSHIPS( a c t i v a t i o n ) | seq . name ] AS Act ivat ion , [ seq IN

RELATIONSHIPS( sequence ) | seq . name ] AS pathValid ,
13 [ seq IN RELATIONSHIPS( i n v a l i d ) | seq . name ] AS Paths Inva l id

Figure B.6: Cypher validation for the causal sequence constraint on the fault transition
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