
Exploring Scalability in System-Level Simulation Environments
for Distributed Cyber-Physical Systems

Herman Kelder

University of Amsterdam (UvA), The Netherlands

Vrije Universiteit Amsterdam (VU), The Netherlands

herman.kelder@student.uva.nl

ABSTRACT
Industrial Cyber-Physical Systems (CPS) are sophisticated intercon-

nected systems that combine physical and software components

driving various industry sectors worldwide. Distributed CPS (dCPS)

consist of many multi-core systems connected via complicated

networks. During the development of dCPS, researchers and in-

dustrial designers need to consider various design options which

have the potential to impact the system’s behaviour, cost, and per-

formance. The resulting ramification in size and complexity poses

new challenges for manufacturing companies in designing their

next-generation machines. However, objectively evaluating these

machines’ vast number of potential arrangements can be resource-

intensive. One potential alternative is to use simulations to model

the systems and provide initial analysis with reduced overhead and

costs.

This literature review investigates state-of-the-art scalability

techniques for system-level simulation environments, i.e. Simula-

tion Campaigns, Parallel Discrete Event Simulations (PDES), and

Hardware Accelerators. The goal is to address the challenge of

scalable Design Space Exploration (DSE) for dCPS, discussing such

approaches’ characteristics, applications, advantages, and limita-

tions. The conclusion recommends starting with simulation cam-

paigns as those provide increased throughput, adapt to the num-

ber of tasks and resources, and are already implemented by many

state-of-the-art simulators. Nevertheless, further research has to be

conducted to define, implement, and test a sophisticated general

workflow addressing the diverse sub-challenges of scaling system-

level simulation environments for the exploration of industrial-size

distributed Cyber-Physical Systems.

KEYWORDS
Scalable Simulation Environments, System-Level Simulation, Dis-

tributed Cyber-Physical Systems, Design Space Exploration, Simu-

lation Campaigns, Parallel Discrete Event Simulations

1 INTRODUCTION
Nowadays, various information-technology sectors worldwide are

driven by complex interconnected Cyber-Physical Systems (CPS),

which deeply intertwine physical and software components. These

systems support innovation and research in a variety of crucial

industrial sectors, like health industries, industrial automation, ro-

botics, avionics and space. Usually, the compute infrastructure of

such CPS consists of many heterogeneous multi-core or many-core

systems, connected via complex networks to create a distributed
Cyber-Physical Systems (dCPS) [1]. These subsystems implement a

variety of functionalities (e.g., monitoring and control) to provide

specific services at the system-level. The complexity in the infras-

tructure of dCPS creates challenges for manufacturing companies,

such as ASML, Canon Production Printing, and Philips, in design-

ing their next-generation lithography scanner machines, industrial

printers, and X-ray machines, respectively [37].

During the development of such systems, researchers and in-

dustry designers often encounter "What-if" questions (i.e., "What

happens if we add more communication channels between subsys-

tems?", "What if we add hardware accelerators to subsystems?",

"What if we merge subsystems?"). Decisions on those design ques-

tions have the potential to impact a large amount of the system’s

behaviour, cost, energy consumption, and performance. The vast

number of possible configurations based on these decisions results

in a significant increase in resources required in the design process.

Evaluating design options early on, based on design constraints,

Key Performance Indicators (KPIs), and other metrics could sig-

nificantly reduce this effect. Building a prototype to answer the

questions usually is cost-intensive, depending on the system to be

implemented. One potential alternative is to model such systems to

provide an initial analysis with reduced overhead and costs. There

are various ways to accomplish that, like simulations, analytical

models, or other performance estimations.

Nevertheless, large sets of configurations that need to be evalu-

ated provide a significant challenge. A property of a design eval-

uation environment that could address the increased workload is

scalability. This literature study looks into different scalability tech-
niques that can be applied to the evaluation of dCPS designs. In

Section 2, the basic concepts are introduced and the context of

this literature study is addressed. In Section 3, an overview of the

related works is discussed, focusing on different methodologies to

achieve scalability. In Section 4, a discussion on the methodologies

and their applications is presented. Finally, a conclusion on the

literature study and its findings is given in Section 5.

2 BACKGROUND
In the background section, basic concepts are introduced and the

context of this literature study is addressed. First, the DSE2.0 project

[22] on the challenges of Design Space Exploration (DSE) for dis-

tributed Cyber-Physical Systems is highlighted, as it is the context

in which this study is performed. After DSE2.0, the definition of

scalability is examined, which is the goal of the research that will

be discussed. Finally, the scope of the study is briefly considered.

2.1 Design Space Exploration (DSE)
One potential approach for providing designers with early direc-

tions in their design process is Design Space Exploration [22]. DSE

is the process of traversing a solution space consisting of potential



Literature Study, 2023, Course XM_0131 Herman Kelder

design solutions (design points). The goal is to discover solutions

that best satisfy a set of design objectives, which describe the func-

tional and non-functional requirements of a system. Functional

requirements define system features or functionalities which deter-

mine how the system behaves and operates. The non-functional re-

quirements describe constraints or restrictions on system attributes

in areas such as security, reliability, performance, maintainability,

scalability, and usability. Common examples of design objectives

include energy consumption, cost, or throughput. The number

of available design choices determines the complexity and size

of the design space. DSE is classified as either a single or multi-

objective optimisation problem, which can be subject to design

constraints that capture limitations and requirements imposed on

the design points. DSE has already been adopted by many areas

in the computer systems field, such as low-level hardware design

for Systems-on-a-Chip (SoC) [42] and Multiprocessor System-on-

a-Chip (MPSoC) [30], or the co-design of hardware and software

[53].

Nevertheless, applying it to complex distributed Cyber-Physical

Systems is a relatively uncharted area [47]. One ongoing research

project in cooperation with ASML is "DSE2.0" [22]. The authors con-

sider the entirety of the state-of-the-art DSE process under scrutiny

for advancing from, e.g. embedded systems to large industrial ma-

chines like the ASML TwinScan machines. Their general workflow,

illustrated in Figure 1, outlines the four main stages within the

DSE framework: (i) Models, (ii) Design Space, (iii) Exploration, and

(iv) Results. As it is a general workflow, the implementation of

the steps will need to be reconsidered to achieve their respective

objectives based on the underlying system and design choices to

be explored.

In the first stage, Modelling, the modelling stage, the system

artefacts (software, design choices, platforms, etc.) are discovered,

described, and abstracted. These models are then mapped into a

condensed system representation, creating one model combining

software and hardware. This initial model is most often based on

an existing system and can be used as a baseline for further steps

of the DSE workflow.

Using this model, a Design Space is spanned in the second stage

based on the available design choices. The initial design space

encapsulates all possible design points of the model. Nevertheless,

a preliminary pruning phase can be performed based on external

constraints or incompatibilities (i.e., two hardware components are

incompatible with each other).

Exploration of the design space and capturing the results of sys-

tem configuration evaluations is the third stage of their general DSE

workflow. A search algorithm is applied in this stage to determine

which design points should be evaluated. Evaluating a design point

is defined as the study of its extra-functional behaviour, and the

capture of measurable Key Performance Indicators [22]. The search

algorithm can dynamically prune design points based on evaluation

results, potentially decreasing the size of the design space.

The final stage of the general DSE workflow are intermediate

outcomes or conclusive recommendations. Intermediate data can

be used to validate, tune, adjust, or change the search algorithm and

models used throughout the DSE workflow. One example is a multi-

level hierarchical search approachwhereby the abstraction level can

be adjusted (i.e., decreasing the abstraction level in multiple runs).

M
od
el
s

D
es
ig
n
Sp
ac
e

Ex
pl
or
at
io
n

Re
su
lts

Discovery

Description

Abstraction Mapping

Design Space

Construction

Design

Choices

(Pre-Exploration)

Static Pruning

Search Strategy

Pick

Design Point

Evaluate

Design Point

(Performance)

Result

Dynamic

Pruning

DecisionFeedbackValidation

Figure 1: General DSE workflow by Herget et al. [22].

At the end of the process, the best design decisions are presented

to the designer to guide decision-making [22].

Nevertheless, due to the size and complexity of dCPS, various

challenges arise in the DSE process. In their position paper in 2022

[22], the authors identified two in specific: (i) Modelling complex

dCPS, and (ii) Scalable DSE. The first challenge concerns the first

stage, Models, of the general workflow. Models of the heteroge-

neous subsystems in the dCPS need to be created. However, in

comparison to less complex systems like SoC and MPSoC, this is a

huge challenge [22]. Manual generation of those models in a timely

manner is therefore deemed infeasible. This challenge of modelling

such a system requires a different methodology. Herget et al. [22]

propose (semi-)automatic model interference of the application and

platform model as a viable option for DSE of dCPS.

The second challenge, considering the scalability of simulation

environments for dCPS, is the point of interest in this literature

study. Complexity and heterogeneity of dCPS increase the num-

ber of design choices, resulting in a vast expansion of the design

space. This is further exacerbated by conditions such as dynamic

behaviour of the system workload settings, and more. An efficient

approach to DSE is required, which can utilise scalability of the

simulation environment or of search and pruning strategies. This

challenge covers the Exploration stage of the general workflow,

where it can especially be applied to the Evaluation Design Point

and (Performance) Result section steps.

2.2 Scalability
One potential approach for performance improvement in the DSE

process is the scalability of the simulation environment. While

2



Exploring Scalability in System-Level Simulation Environments for Distributed Cyber-Physical Systems Literature Study, 2023, Course XM_0131

the term scalability is widely used in modern computer science, a

precise definition is still highly debated [36] [23] [33].

A rather colloquial usage of the term "scalability" refers to the

ability of a system, network, or process to handle a growing amount

of work, or its potential to be enlarged in order to accommodate

that growth. In the context of simulation, this can be expressed

as the ability to handle a growing number of simulation entities

(Size capability), increase the performance of a single simulation

run (Time capability), or handle more extensive and complex sim-

ulations (Complexity capability) [33]. This ability is most often

achieved by improvements to the hardware design of the system

running the simulations. Law [33] describes this factor as the "ar-

chitectural capability" of a system and hence defines scalability as a

ratio between the simulation and architectural capability. Another

- more precise - definition has been presented by Weinstock and

Goodenough: "Scalability is the ability to handle increased work-

loads by repeatedly applying a cost-effective strategy for extending

a system’s capacity." [54].

Despite the lack of a universally accepted definition, the general

interpretation within the literature has similar aspects: to improve

the capability of a system through hardware, software, or a com-

bination of both. Hence, a wide range of approaches has been

introduced, ranging from specialised hardware [56] to independent

replications [49] and decomposition into logical processes [15].

Scalability capabilities can be addressed and implemented in dif-

ferent ways by a simulation environment, which is one technique to

capture and evaluate a design point’s behaviour. Simulations mimic

a given system model, resulting in the opportunity to evaluate its

performance based on the defined design objectives. In order to

make the evaluation suitable for efficient, time-constrained analy-

sis, the model’s degree of granularity can be adjusted. The level of

abstraction is a trade-off between evaluation speed and accuracy. A

high level provides an increased evaluation speed (Time capability),

but details of the system are lost (Complexity capability), often

resulting in a lower accuracy [22]. Different simulation frameworks

and techniques make use of this modifier depending on their in-

tended application. The highest granularity is register-transfer level

simulation, modelling the system’s digital signals between regis-

ters and combinational logic. Higher levels of abstraction include,

amongst others, cycle-accurate [45] [6], transaction-level [7], and

trace-driven [48].

2.3 Scope
This literature study is based on the Design Space Exploration (DSE)

of distributed Cyber-Physical Systems (dCPS). Specifically, the liter-

ature study is set in the scope of the DSE2.0 project [22] and focuses

on challenge (ii) "Scalable DSE". The core area of interest will be

scalability approaches that are applicable to the system-level simu-

lation environments. Due to the complex, heterogeneous nature of

dCPS, low abstraction levels for the simulation environment would

be too computationally intensive and is therefore not of interest.

Hence, approaches such as cycle-accurate and register transaction-

level are not considered. Instead, the related works section will

discuss some of the techniques proposed in the literature which

can operate at a higher abstraction level and could potentially be

applied to scale a simulation environment in the context of DSE for

a dCPS.

3 RELATEDWORK
The goal of this section is to present the state-of-the-art on methods

and techniques for the scalability of system-level simulation envi-

ronments. There are various concepts under investigation: (i) Cam-

paigns, Section 3.1, where multiple instances of the simulation

environment are executed at the same time, (ii) Parallel Discrete

Event Simulation, Section 3.2, where the model is split into sepa-

rate processes, and (iii) Hardware Acceleration, Section 3.3, which

makes use of specialised hardware in the simulation environment.

3.1 Simulation Campaigns
The first methodology in scaling system-level simulation environ-

ments is the concept of simulation campaigns (or Multiple Replica-
tions In Parallel (MRIP)) [38] [21] [39]. Instead of running a single

instance of the simulation environment with a single configuration

on a single resource (i.e., completely sequential), multiple instances

of the simulation environment with different (or the same) configu-

rations are run on separate resources in parallel. This provides the

opportunity to evaluate multiple design points at the same time.

Simulation campaigns can be configured in various ways, pro-

viding flexibility and adaptivity in the simulation strategy. This

makes the technique applicable to a variety of different simulation

environments and fields of research, like stochastic simulations

[11] or Markov chain simulations [49]. The freedom in the imple-

mentation of simulation campaigns has resulted in proposals of

various approaches, including independent replicated execution

[49], cloning [25], and more.

In order to apply simulation campaigns to a system, problem
decomposition can be applied to split a complex problem into parts

that are easier to conceive, understand, program, and maintain.

In the context of DSE, the problem to which the decomposition

is applied would be the evaluation of a set of design points gen-

erated by the exploration stage strategy. Problem decomposition

defines the approach whereby an application is formulated into

constituent processes. Two well-known problem decompositions

are task parallelism and data parallelism. A concrete application

of both approaches on a JPEG decoder is displayed by Hansson,

Akesson, and Van Meerbergen [20]. Task parallelism focuses on

separate processes or threads of execution, where the processes

are behaviourally distinct. As an example of task parallelism, the

JPEG decoder’s three stages (i) Variable Length Decoding (VLD),

(ii) Inverse Discrete Cosine Transformation (IDCT), and (iii) Colour

Conversion (CC) can be mapped to separate resources, effectively

creating a pipeline.

Instead of decomposing the application itself, data parallelism

maps a set of tasks on disjoint parts of the data set. As an example

of data parallelism, the image can be partitioned and processed

on separate resources by replications of a slightly adapted version

of the original JPEG decoder application. Additionally, the data

parallelism decomposition will be used as it fits the representation

of executing multiple simulation environments to evaluate different

design points.

3



Literature Study, 2023, Course XM_0131 Herman Kelder

Parallel Section 1

A CB

Parallel Section 2 Parallel Section 3

A CBA B

C B C

B B

AA A

Main Thread
of Execution

Figure 2: Illustration of the Fork/Join concept. A main thread
of execution forks into multiple threads, which later join
back into the main thread.

An overarching execution model needs to be defined to manage

the decomposition and execution of the application (i.e., the simu-

lation campaign). Amongst the various execution models are the

fork-join model [32] and manager/worker model [46]. The fork-join

model, illustrated in Figure 2, concerns an application where execu-

tion branches off in concurrent subprocesses at designated points.

At a subsequent predefined point, execution "joins" (the branches

return to the main application) and sequential operation resumes.

When fork-join operations are nested recursively, the fork-join

model becomes a parallel version of the divide-and-conquer model

[34]. In the divide-and-conquer model, an application is recursively

split into two or more sub-problems. This process continues until

the sub-problems are simple enough to be solved directly.

The manager/worker model, in contrast to fork-join, assigns

one process to be the manager and all other processes become

workers. Figure 3 illustrates this concept. In this model, the manager

process orchestrates the execution of the operation and worker

processes. Generally, the manager process oversees, among other

things, data distribution and aggregation, synchronisation, and

communication. Workers can be identical or distinct processes

executing concurrently.

Both models can be extended and adapted in many ways. For

example, the manager/worker model could have a dynamic pool

of processes (the number of available processes might increase or

decrease) or a voting mechanism to assign a new manager in case

the current manager process fails. The flexibility within the models

allows for different approaches in the adoption and implementation

of simulation campaigns in computer science field and other fields.

Many simulation environments have adopted the concept of sim-

ulation campaigns. A popular one that provides the opportunity to

make use of this approach is the Omnet++ simulator [52]. Omnet++

has the built-in functionality to perform parameter studies and

distributed stochastic simulations. Parameter studies are provided

with a tool to group simulation runs (system configurations) into

batches, where each batch executes its set of simulations sequen-

tially inside a single process. Batches are scheduled for running so

that they keep all CPUs busy. Parameters, such as batch size and

number of CPUs, can be configured manually.

Another well-known simulation tool that makes use of simu-

lation campaigns is Akaroa [11], which is also available within

Omnet++. The tool focuses on quantitative stochastic simulation

and speeding up the simulation process using Multiple Replications

W7 W5W6

Manager W4W8

W1 W3W2

Figure 3: Illustration of theManager/Worker concept. Aman-
ager process orchestrates a set of worker processes.

In Parallel (MRIP). In the domain of quantitative stochastic simula-

tion, the runtime of simulations can depend on the initial values of

the model. Those initial values dictate the results of the initial tran-

sient phase (i.e., the system has not reached a steady state), which

should not be included in the data. Additionally, the runtime is also

dependent on the convergence of the system (when has it stabilised

or reached the desired sample size). Akaroa accumulates the data in

a central process. Based on a predefined confidence/precision level,

it determines whether more observations are required. The sim-

ulation campaign is terminated when it has accumulated enough

observations.

3.2 Parallel Discrete Event Simulation (PDES)
The secondmethodology is Parallel Discrete Event Simulation (PDES).
While simulation campaigns execute multiple instances of the sim-

ulation environment with different configurations in parallel, PDES

executes a single simulation environment with a single configura-

tion in parallel.

PDES builds on the concept of discrete event simulation. Discrete
event simulation is an event-driven model of a system’s behaviour,

which assumes the system only changes state at discrete points in

simulated time [15]. Operations of the system are modelled as a

sequence of events in time, where each event marks a state change.

When an event occurs, the system changes state according to the

event and its current state. Classic examples of events include the

arrival or sending of a message, function call or completion, etc.

Discrete event simulation processes the events and their impact on

system state entirely sequentially. Compared to other approaches

(like register-transfer simulation), discrete event simulation oper-

ates on a higher level of abstraction.

In order for PDES to execute a single simulation environment

in parallel, the model of the system needs to be split into sepa-

rate instances called Logical Processes (LPs). Figure 4 illustrates the
concept of LPs in a network of computer systems. The system con-

sists of multiple clusters of computer systems connected with each

other through a communication network. Each cluster of systems

becomes a separate LP, which then is executed separately from the

others.

When the LPs execute separately from each other, synchronisa-
tion problems might occur when they need to interact [15]. The

processes might be at different simulated timestamps, which could

result in an event arriving from another LP which occurred in the

past relative to the current simulation time of the receiving pro-

cess. A synchronisation mechanism is therefore required in order

4



Exploring Scalability in System-Level Simulation Environments for Distributed Cyber-Physical Systems Literature Study, 2023, Course XM_0131

S8S7

S9

S11S10

S12

S2S1

S3

S5S4

S6S6

S10

S12

LP1

LP3

LP2

LP4

Figure 4: Illustration of the Logical Processes (LPs) concept
in Parallel Discrete Event Simulation (PDES) applied to a
network of systems.

to keep the PDES simulation consistent. The following subsections

will discuss some of the research and state-of-the-art on the differ-

ent synchronisation methodologies available for PDES.

3.2.1 Conservative Synchronisation. The first PDES synchronisa-
tion methodology is the concept of conservative synchronisation

[15] [17] [41]. In conservative synchronisation, an LP will only

continue its simulation if it can guarantee that no external events

arrive between its current timestamp and the new future timestamp.

The system has to guarantee that all events happen in order and

that no LP can receive an event that occurred in the past of that

LP its simulated time. If an LP would process an event before an

earlier event has been processed, inconsistencies could occur.

Fujimoto [14] identifies two generations of conservative synchro-

nisation algorithms. The first generation of algorithms has been

introduced by Chandy, Misra, and Bryant [5] [9] in the late 1970s.

Their algorithm blocks an LP’s execution until it can guarantee that

an event with a smaller timestamp can no longer be received. The

system makes use of a communication framework with LP-to-LP

links and an ordered (based on timestamp) message delivery guar-

antee. Using these LP-to-LP links, an LP can inspect those links to

determine whether it can proceed with its execution. Whenever one

of the links is empty, the LP blocks, as it can no longer guarantee

that a message with a smaller timestamp is received. However, a

deadlock might occur where each LP is waiting for another LP in a

cycle. The authors propose the usage of null messages as a solution

to the deadlock problem. A null message from an LP to another LP

provides a guarantee that indicates the smallest timestamp value of

any message it will later send on that link. This solution prevents

the deadlock problem. However, it creates the lookahead creep

problem [12].

The second-generation of conservative synchronisation algo-

rithms addresses the lookahead creep problem with the key insight

that the LPs have to know the timestamp of the next unprocessed

event in the system. When the LPs know the timestamp of the next

unprocessed event in the system, they can proceed to that times-

tamp without breaking the consistency of the simulation. Many

other approaches to prevent deadlocks and lookahead creep prob-

lems were developed. Those solutions include, among others, an

algorithm that detects deadlocks and resolves them [8], barrier

synchronisation [14], and the usage of time intervals [13].

Since its first introduction in 1970, some research has been con-

ducted on the implementation of conservative synchronisation and

many tools have adopted this concept of PDES. A popular simula-

tion environment which makes use of this approach is, again, the

Omnet++ simulator [52]. The PDES implementation of Omnet++

actually makes use of the algorithm proposed by Chandy, Misra,

and Bryant discussed earlier [51]. Another well-known discrete

event simulation library called SystemC also provides conserva-

tive PDES functionality, called Time-Decoupled SystemC [55]. The

GEM5 simulator has also implemented PDES using a conserva-

tive synchronisation methodology [35]. In GEM5, the approach

differs slightly from the approach utilised by Omnet++. GEM5 uses

a second-generation conservative approach in the form of a barrier

for quantum-based (time interval) synchronisation. The simula-

tor is supported by and utilised by many companies, such as the

National Science Foundation, AMD, ARM, Hewlett-Packard, IBM,

Intel, Metempsy, Micron, MIPS, Samsung, and Sun [19] [50].

3.2.2 Optimistic Synchronisation. The second PDES synchronisa-

tion methodology is the concept of optimistic synchronisation. In

contrast to conservative synchronisation, where violations of the

consistency constraint are avoided, the optimistic synchronisation

approach allows those violations to occur and is able to detect and

recover from them [15] [17] [41].

The optimistic synchronisation was introduced in 1985 by Jef-

ferson and Sowizral [28]. Their approach - called "Time Warp"

algorithm - allows errors (incorrect ordering of events) to occur,

but it uses a rollback mechanism to reconstruct the execution of

events in the correct order. Many advanced algorithms based on the

Time Warp philosophy have since been proposed; e.g. Global Vir-

tual Time (GVT) [18], direct cancellation [16], or lazy cancellation

[18]. They are collectively known as optimistic synchronisation

[12].

The Time Warp algorithm is based on two mechanisms, the local

and the global control mechanism. The local control mechanism

is responsible for the rollback within the LPs. The state of the LP

can be recovered in the following three ways; (a) copy state saving,

(b) incremental state saving, or (c) reverse computation. Strategy (a)

can be expensive in both time and memory, as it copies the state to

memory after every event. An alternative is the incremental state

saving (b), where the copy of a state variable is only made before

the first time an event modifies it. The last approach is the inverse

computation (c), which performs a rollback using the inverse of the

events. However, the inverse computation is not always possible

and it therefore has to fallback on the incremental state saving [12].

A rollback can also influence the messages an LP has sent. The Time

Warp algorithmmakes use of anti-messages to undo a sent message.

An anti-message is the exact same as the original message, but it

has a flag enabled to signal it is an anti-message. Upon receiving,

the LP can perform a rollback if the original message was already

processed.

The global control mechanism addresses the problem of recover-

ing memory utilised to hold the checkpointed states, and any event

that has been processed in case it has to be reprocessed later. Several

algorithms for this mechanism were proposed and developed [12].

5



Literature Study, 2023, Course XM_0131 Herman Kelder

Omnet++ was already presented as an example of a simulator

which facilitates the conservative synchronisation approach. Never-

theless, it also supports using optimistic synchronisation. However,

this requires writing significantly more complex code and the im-

plementation of a more complicated simulation kernel [51]. Even

when this is all in place, optimistic synchronisation may be slow

when excessive rollbacks frequently occur.

3.2.3 Adaptive Synchronisation. The third PDES synchronisation

methodology identified is the concept of adaptive synchronisation,

which combines the previously discussed conservative and opti-

mistic approaches [41]. The system can adapt its synchronisation

technique based on the state of the system. It might be advantageous

to utilise optimistic synchronisation when the system tolerates it, or

switch to conservative when the rollback is difficult (or infeasible in

the case of irreversible computations). Various concepts to adaptive

synchronisation have been proposed [29] [40] [44].

3.3 Hardware Accelerators
The third methodology is the concept of Hardware Acceleration. In
the last decades, increasingly more research has been conducted

on the usage of hardware acceleration to speed up and scale appli-

cations. Well-known examples of hardware accelerators are Graph-
ics Processing Units (GPUs), Application-Specific Integrated Circuits
(ASICs), and Field-Programmable Gate Arrays (FPGAs).

Typically, software applications run on a general-purpose cen-

tral processing unit (CPU). As the CPU is designed to be general-

purpose, it has to provide for a wide range of functionalities. Hard-

ware accelerators are not restricted by this constraint and can hence

aim to perform specific functions more efficiently.

A well-known hardware accelerator is the Graphics Processing

Unit (GPU). Originally, GPUs were designed to accelerate the ren-

dering of 3D graphics. Over time, the platform grew more flexible

and programmable, becoming more capable in other fields, such as

Parallel Computing, Deep Learning, and High-Performance Com-

puting (HPC) [27].

At a high-level, the GPU can be described as a large collection

of (simpler) compute resources when compared to a CPU, which

has fewer resources but they are more complex. GPUs are classified

as manycore processors, whereas current generation (consumer

grade) CPUs typically are classified as multicore processors. There

is a different philosophy between the two classifications, where

manycore optimises explicit parallelism and throughput by trading

in the latency and single thread performance from multicore. As

the GPU has many compute resources, it can perform many simple

tasks concurrently, yielding a high throughput.

A different kind of hardware accelerator, the Application-Specific

Integrated Circuit (ASIC), is an integrated circuit chip specially

designed for a particular functionality or application. ASIC chips

are typically smaller, more power efficient and outperform general-

purpose processors. However, the non-recurring engineering (NRE)

cost of designing an ASIC is significant. A large production volume

is often required to justify and amortise the costs [31].

Another established hardware accelerator is the FPGA (Field-

Programmable Gate Array). An FPGA is an integrated circuit con-

figurable by a user after it has been manufactured. Typically, a

Hardware Description Language (HDL) is used to configure the

integrated circuit. Compared to ASICs, FPGAs are not application-

specific and can be utilised in many different applications. The most

notable feature of the FPGA is in its name, "Field-Programmable".

This means that it can be reconfigured and adapted as is desired,

without having the NRE costs of engineering that would still be

required for a fixed circuit chip. Typically, FPGAs are used for pro-

totyping and low-quantity production volumes, whereas ASICs are

used for large production volumes [31].

Another advantage of the reconfigurability of the FPGAs is au-

tomation. The FPGA can adapt its configuration to suit the current

needs of an application through software, without the need to re-

place it for a different component or manual setup. One area where

FPGAs have been used, is in the design exploration of SoCs and mi-

croprocessors. Usually, the models of those systems fit on the FPGA

and allow the designer to adapt, test, and validate their designs in a

timely and automated manner [10]. However, simulating an entire

dCPS on an FPGA is likely not feasible, as those systems are simply

too large to fit (assuming the abstraction level of the dCPS model

is not very high) [2]. However, multiple FPGAs could co-operate,

where each FPGA can be used to simulate submodules of the dCPS

model. Instead of imitating a part of the dCPS to accelerate the

simulation, the hardware could also be used to accelerate (parts of)

the functionalities from the simulator itself.

Already in the 80s, Blank conducted a survey on hardware accel-

erators in the computer-aided design domain (CAD tools) [3]. A set

of machines using hardware accelerators at that time is identified.

For each machine, the architecture and the relative performance

are discussed. It is concluded that the choice to integrate hardware

accelerators depends on many factors like cost, software support,

and maintenance.

In recent decades, the increasing usability, utility and availabil-

ity of hardware accelerators are making them more attractive and

applicable in a broad range of research domains. Xiao et al. [56]

discuss the value hardware accelerators can bring to agent-based

simulations (applicable to fields such as road traffic, social net-

works, military, biology, and economics). The survey categorised

existing approaches based on the key challenges of hardware assign-

ment (i.e., scattered memory accesses, abstraction from hardware

specifics, and more). Their main observations are that (i) most of

the literature in the past years has focused on GPUs and it is ex-

pected that a significant amount of work on FPGAs for agent-based

simulations will appear in the near future. (ii) A vast amount of

work has proposed techniques for efficient execution of agent-based

simulations, but only few techniques have been incorporated into

a unified framework. Finally, they sketch a vision of a framework

that includes automated hardware mapping and performance opti-

misation.

Rahman, Abu-Ghazaleh, and Najjar [43] propose a general ac-

celerator framework for PDES implemented on FPGAs that can

specialise to any particular simulation model. The architecture al-

lows multiple accelerators to be connected with each other to scale

up the simulation. The article explores several design alternatives

and expresses the trade-offs between the different options. Their

future work aims to address three different directions. First, they

intent to reduce the impact of memory access time and resource

contention on the architecture. Second, they want to research mul-

tiple accelerators working together on larger models. Finally, the

6



Exploring Scalability in System-Level Simulation Environments for Distributed Cyber-Physical Systems Literature Study, 2023, Course XM_0131

development of a programming environment to provide rapid pro-

totyping.

4 DISCUSSION
The related works presented the state-of-the-art on methods and

techniques for the scalability of system-level simulation environ-

ments. In this section, the methodologies will be reviewed in the

context in which the literature study is conducted. Additionally,

the techniques will be discussed in each other’s context and their

characteristics will be examined.

4.1 Simulation Campaigns
The first approach to scalability discussed in the related works is the

concept of simulation campaigns. To provide a brief synopsis, sim-

ulation campaigns have the capability to evaluate multiple design

points at the same time. Typically, this is achieved by distribut-

ing multiple (independent) simulation environments on separate

resources.

A way to characterise scalability, as defined in Section 2, is to

express it by capabilities (size, time, and complexity). In the case

of simulation campaigns, the size capability best aligns, as the ap-

proach aims to increase the number of concurrent simulations. Time

capability is not addressed, since the individual simulations do not

achieve speedup through simulation campaigns. The complexity

capability is not clearly part of its philosophy. For example, it could

improve precision in a stochastic simulation by performing more

iterations in the same time interval (related to size capability). How-

ever, the individual simulations themselves are not more extensive

or complex.

Applying a scalability concept to a system is not straightfor-

ward. When considering simulation campaigns in the context of

DSE2.0, all its characteristics, intricacies, and capabilities must be

considered. The design space exploration algorithm also impacts

the compatibility of a scalability approach. Simulation campaigns

benefit from concurrent design point evaluation, focusing on im-

proved throughput. Therefore, an iterative batching exploration

stage in stage (iii) of the general DSE2.0 workflow, see Figure 1,

would be a good candidate to apply simulation campaigns. However,

a designer of a dCPS will not be provided with improved latency on

single evaluations, which could be utilised to guide the DSE manu-

ally. It also means that DSE algorithms processing design points one

by one will not be able to take advantage of simulation campaigns.

Additionally, a hardware dependency is present in the solution.

Theoretically, the solution could scale infinitely, only bounded by

the number of resources available. Nonetheless, when the model of

the dCPS becomes too large to be processed on a single resource,

simulation campaigns might not be able to provide its scalability

property.

After the approach is deemed applicable in the context of the

system, the scalability service needs to be implemented and main-

tained. From a purely theoretical point of view, it is deemed that

the simulation campaigns is the most straightforward scalability

approach, both as a concept and to implement. When a single sim-

ulation environment can successfully be deployed, the simplest

form of campaigns only replicates the same process on different

resources and collects the results afterwards. One benefit of this

approach is that many existing simulation environments and tools,

like Omnet++ and Akaroa, already have the simulation campaign

functionality built-in.

Looking back at the second scientific challenge defined by Her-

get et al. [22], scalability was desired to address the significant

expansion of the design space caused by the increased number of

design choices that come with the complexity and heterogeneity

of dCPS. They envisioned a scalable and efficient approach that

utilises the scalability of the simulation environment or the scala-

bility of search and pruning strategies. Simulation campaigns offer

scalability from within the simulation environment, adapting to

the number of design points generated by the search strategy.

4.2 Parallel Discrete Event Simulation (PDES)
The second approach is Parallel Discrete Event Simulation (PDES).

In this methodology, the model of a design point is split into Logical

Processes (LPs), which will be executed on separate resources. As

the processes will run independently, a synchronisation mechanism

is required to keep consistency with the sequential simulation.

Multiple techniques were identified: conservative synchronisation,

optimistic synchronisation, and adaptive synchronisation.

In the case of PDES, the time and complexity capabilities of

the scalability definition in Section 2 are applicable. It is able to

increase the performance of a single simulation by distributing it

over multiple resources. Additionally, it can handle more complex

and extensive models. Whereas the simulation campaign approach

has size capability, PDES does not, as it only applies to a single

design point.

The difference in scalability capabilities will be visible in the

application of PDES in the context of DSE2.0. Instead of throughput,

the main feature of PDES is latency and model complexity. PDES

does not adapt to the number of design points generated by the

search strategy. However, when a designer needs a quick answer to

a "What-if" question, PDES can provide a (relatively) low latency

response. Additionally, PDES can provide support for large dCPS

models, which could not be processed on a single resource due to

hardware limitations (i.e., memory requirements). A DSE algorithm

which processes design points one by one would benefit most from

this approach, as it offers no size capability for batches.

Implementing PDES, from a theoretical standpoint, is more com-

plicated than simulation campaigns. The system needs to take into

account that changing design points affect the model and LPs. Ide-

ally, the LPs are automatically inferred from a design point, or

manually designated based on a high-level system model that can

transfer the LP partitioning to the design points. Additionally, a

synchronisation mechanism needs to be in place to guarantee con-

sistency. As was the case with simulation campaigns, a wide range

of simulation environments and tools, like Omnet++ and GEM5,

have PDES built-in.

Parallel Discrete Event Simulation addresses the scalability chal-

lenge from Herget et al. [22] solely for the simulation environment

by distributing a single model over multiple resources.

7



Literature Study, 2023, Course XM_0131 Herman Kelder

4.3 Hardware Accelerators
Lastly, hardware accelerators were discussed as a potential scala-

bility approach. Three different hardware accelerators were con-

sidered; (i) Graphics Processing Units (GPUs), (ii) Application-Spe-

cific Integrated Circuits (ASICs), and (iii) Field-Programmable Gate

Arrays (FPGAs). The philosophy behind these techniques is that,

instead of using a general purpose processor, specialised hardware

aiming to perform specific functions more efficiently is used.

It is not straightforward to classify the scalability capabilities

of hardware accelerators, as it depends on the integration into the

system. Hardware accelerators change the platform on which sim-

ulations can be performed, thereby having the potential to achieve

any of three capabilities (size, time, and complexity) or combinations

thereof. The large number of resources provided by a GPU could

be used to execute more simulations simultaneously, achieving size

capability. ASICs and FPGAs could provide time and complexity ca-

pabilities by specialising for a specific (complex) model, improving

performance and facilitating more complex simulations.

As the capabilities of hardware accelerators are not clearly de-

fined, it also results in more difficulties to place them in the context

of DSE2.0. In principle, hardware accelerators significantly change

the platform on which DSE will be performed. This makes it the

least straightforward scalability approach of the three methodolo-

gies, both as a concept and to implement. The platform allows an

entirely custom deployment of the DSE workflow on specialised

hardware. Hardware accelerators could be used in several ways in

the DSE workflow; offloading computation on specialised hardware,

concurrent simulations, and more.

When it is deemed the right fit in the DSE process, the system

needs to be adapted to utilise the hardware accelerator(s) prop-

erly. As the platform provides a broad range of customisability,

integrating it into an established environment is a complex and

time-consuming process. The hardware accelerators approach is

therefore believed to be the most complicated from the three meth-

ods discussed. Research is being performed on utilising hardware

accelerators in simulation environments [56] [43]. However, the

approach is not readily available in existing popular simulators.

Hardware accelerators address the scalability challenge from

Herget et al. [22] in the simulation environment, but may also

affect the implementation of the search and pruning strategies in

the DSE.

4.4 Composite Solutions
The previously discussed techniques all approach the problem of

scalability differently, are applicable to specific use cases, and have

a set of requirements. However, scalability of system-level simula-

tion environments is not necessarily solved by exclusively using

one single methodology. Research has also been conducted on, or

made use of, combinations of the different techniques. Following

is a brief highlight of several composite solutions, which includes:

Simulation Campaigns with PDES, Cloning, Cloning with hardware

accelerators, and PDES with hardware accelerators.

Simulation campaigns do not have to operate solely with se-

quential simulations, the technique can also be used with PDES.

By uniting campaigns and PDES in the DSE process, the designer

is provided with improved throughput and latency. This solution

could also alleviate the hardware limitations that could occur with

simulation campaigns when, for example, the models are too large

for the memory available on a single resource.

Another related technique is called "Cloning" [24] [4] [26], where

the designer can interject a decision point into an ongoing simu-

lation. At this decision point, the system executes a simulation

campaign on a tree of "what-if" scenarios. When applying this to

DSE, a good fit would be a search strategy that sequentially eval-

uates design points. For example, when the designer interjects a

decision point into an ongoing PDES simulation, a campaign of

PDES simulations is deployed. This could provide the designer with

more fine-grained control on the direction of the DSE. On top of

cloning, Yoginath and Perumalla [57] have proposed a combination

with hardware accelerators. By applying cloning on large-scale

GPU platforms, the DSE process might benefit from even more

scalability.

Another combination is the application of PDES on hardware

accelerators through a general framework [43], combining the im-

proved latency of PDES and the specialisation of hardware accel-

erators. A general framework, such as the one proposed in [43],

to integrate hardware accelerators could provide a platform for

research, like DSE2.0, to better assess the capabilities of hardware

accelerators and whether they are applicable to their solutions.

5 CONCLUSION
This literature study discussed the state-of-the-art on methods and

techniques for the scalability of system-level simulation environ-

ments. These scalability techniques were considered in the context

of the DSE2.0 project, where the entirety of the state-of-the-art

in Design Space Exploration is under scrutiny. DSE2.0 identified

two challenges in advancing the field towards efficient and scalable

DSE for distributed Cyber-Physical Systems; (i) Modelling complex

dCPS, and (ii) Scalable DSE.

Especially challenge (ii) was of interest to this literature study.

Addressing the scalability challenge started with a definition. Scal-

ability was expressed in size, time and complexity capabilities. The

relatedworks identified and analysed three approaches to scalability

in simulation environments; (i) Simulation Campaigns, (ii) Parallel

Discrete Event Simulations, and (iii) Hardware Accelerators. The

philosophy and capabilities of the three approaches significantly

differ, making them applicable to different system architectures.

Additionally, composite solutions were briefly discussed as they can

provide amiddle ground between approaches and provide improved

services.

Based on the related works and discussion on the three individual

techniques, simulation campaigns would be the first suggestion for

scalability in the context of DSE2.0. It is a simple concept which

provides increased throughput, adapts to the number of tasks and

resources, and many state-of-the-art simulators have adopted the

technique. However, a combination of simulation campaigns and

PDES could be a good candidate, when composite solutions are also

considered. The composition can provide improved throughput

and latency, whilst also supporting more extensive system models.

Hardware accelerators are not included in the suggested approach.

Although it could improve the scalability, it also adds significant

complexity to the infrastructure and implementation. Therefore, it

8



Exploring Scalability in System-Level Simulation Environments for Distributed Cyber-Physical Systems Literature Study, 2023, Course XM_0131

is not suggested as the initial approach to scalability in the context

of DSE2.0.

Nevertheless, further research still has to be conducted to define,

implement, and analyse the concepts and specific workflows that

contribute to the scalability of system-level simulation environ-

ments in the context of the DSE2.0 project. Assessing the impact on

the entirety of the DSE workflow can provide insights into possible

optimisations to further the facilitation of design space exploration

for dCPS.

REFERENCES
[1] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert

I. Davis. “A comprehensive survey of industry practice in real-time systems”.

In: Real-Time Systems (2021). Publisher: Springer, pp. 1–41.
[2] Sameh Asaad, Ralph Bellofatto, Bernard Brezzo, Chuck Haymes, Mohit Kapur,

Benjamin Parker, Thomas Roewer, Proshanta Saha, Todd Takken, and José

Tierno. “A cycle-accurate, cycle-reproducible multi-FPGA system for accel-

erating multi-core processor simulation”. In: Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays. 2012, pp. 153–162.
doi: 10.1145/2145694.2145720.

[3] Tom Blank. “A survey of hardware accelerators used in computer-aided design”.

In: IEEE Design & Test of Computers 1.3 (1984). Publisher: IEEE, pp. 21–39. doi:
10.1109/MDT.1984.5005647.

[4] Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, and Lorenzo Donatiello.

“Concurrent replication of parallel and distributed simulations”. In: Workshop
on Principles of Advanced and Distributed Simulation (PADS’05). IEEE, 2005,
pp. 234–243. doi: 10.1109/PADS.2005.6.

[5] Randal Everitt Bryant. Simulation of Packet Communication Architecture Com-
puter Systems. MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR

COMPUTER SCIENCE, 1977.

[6] Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli. “Accuracy

evaluation of gem5 simulator system”. In: 7th International workshop on recon-
figurable and communication-centric systems-on-chip (ReCoSoC). IEEE, 2012,
pp. 1–7. doi: 10.1109/ReCoSoC.2012.6322869.

[7] Lukai Cai and Daniel Gajski. “Transaction level modeling: an overview”. In:

First IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and Systems Synthesis (IEEE Cat. No. 03TH8721). IEEE, 2003, pp. 19–24.

[8] K. Mani Chandy and JayadevMisra. “Asynchronous distributed simulation via a

sequence of parallel computations”. In: Communications of the ACM 24.4 (1981).

Publisher: ACM New York, NY, USA, pp. 198–206. doi: 10.1145/358598.358613.

[9] K. Mani Chandy and Jayadev Misra. “Distributed simulation: A case study

in design and verification of distributed programs”. In: IEEE Transactions on
software engineering 5 (1979). Publisher: IEEE, pp. 440–452. doi: 10.1109/TSE.

1979.230182.

[10] André DeHon and John Wawrzynek. “Reconfigurable computing: what, why,

and implications for design automation”. In: Proceedings of the 36th annual
ACM/IEEE Design Automation Conference. 1999, pp. 610–615.

[11] Greg Ewing, Krzysztof Pawlikowski, and Don McNickle. “Akaroa-2: Exploiting

network computing by distributing stochastic simulation”. In: (1999). Publisher:

SCSI Press.

[12] Richard Fujimoto. “PARALLEL AND DISTRIBUTED SIMULATION”. In: Pro-
ceedings of the 2015 Winter Simulation Conference (2015), p. 15.

[13] Richard M. Fujimoto. Parallel and distributed simulation systems. Vol. 300. New
York: Wiley, 2000.

[14] Richard M. Fujimoto. “Parallel and distributed simulation systems”. In: Proceed-
ing of the 2001 Winter Simulation Conference (Cat. No. 01CH37304). Vol. 1. IEEE,
2001, pp. 147–157. doi: 10.1109/WSC.2001.977259.

[15] Richard M. Fujimoto. “Parallel discrete event simulation”. In: Communications
of the ACM 33.10 (1990). Publisher: ACM New York, NY, USA, pp. 30–53. doi:

10.1145/84537.84545.

[16] Richard M. Fujimoto. Time Warp on a shared memory multiprocessor. UTAH
UNIV SALT LAKE CITY SCHOOL OF COMPUTING, 1989.

[17] RichardM. Fujimoto, Rajive Bagrodia, Randal E. Bryant, K. Mani Chandy, David

Jefferson, Jayadev Misra, David Nicol, and Brian Unger. “Parallel discrete event

simulation: The making of a field”. In: 2017Winter Simulation Conference (WSC).
IEEE, 2017, pp. 262–291. doi: 10.1109/WSC.2017.8247793.

[18] Richard M. Fujimoto and Maria Hybinette. “Computing global virtual time

in shared-memory multiprocessors”. In: ACM Transactions on Modeling and
Computer Simulation (TOMACS) 7.4 (1997). Publisher: ACM New York, NY,

USA, pp. 425–446. doi: 10.1145/268403.268404.

[19] GEM5. gem5: About. url: https://www.gem5.org/about/ (visited on 11/23/2023).

[20] Andreas Hansson, Benny Akesson, and Jef Van Meerbergen. “Multi-processor

programming in the embedded system curriculum”. In: ACM SIGBED Review
6.1 (2009). Publisher: ACM New York, NY, USA, pp. 1–9.

[21] Philip Heidelberger. “Statistical analysis of parallel simulations”. In: Proceedings
of the 18th conference on Winter simulation. 1986, pp. 290–295. doi: 10.1145/
318242.318448.

[22] Marius Herget, Faezeh Sadat Saadatmand, Martin Bor, Ignacio González Alonso,

Todor Stefanov, Benny Akesson, and Andy D. Pimentel. “Design Space Explo-

ration for Distributed Cyber-Physical Systems: State-of-the-art, Challenges,

and Directions”. In: 2022 25th Euromicro Conference on Digital System De-

sign (DSD). IEEE, 2022, pp. 632–640. isbn: 978-1-66547-404-7. doi: 10.1109/

DSD57027.2022.00090.

[23] Mark D. Hill. “What is scalability?” In: ACM SIGARCH Computer Architecture
News 18.4 (1990). Publisher: ACM New York, NY, USA, pp. 18–21. doi: 10.1145/

121973.121975.

[24] Maria Hybinette and Richard Fujimoto. “Cloning: A novel method for inter-

active parallel simulation”. In: Proceedings of the 29th conference on Winter
simulation. 1997, pp. 444–451. doi: 10.1145/268437.268523.

[25] Maria Hybinette and Richard M. Fujimoto. “Cloning parallel simulations”. In:

ACM Transactions on Modeling and Computer Simulation (TOMACS) 11.4 (2001).
Publisher: ACM New York, NY, USA, pp. 378–407. doi: 10.1145/508366.508370.

[26] Maria Hybinette and Richard M. Fujimoto. “Scalability of parallel simulation

cloning”. In: Proceedings 35th Annual Simulation Symposium. SS 2002. IEEE,
2002, pp. 275–282. doi: 10.1109/SIMSYM.2002.1000164.

[27] Intel.What Is a GPU? Graphics Processing Units Defined. Intel. Dec. 23, 2022. url:
https://www.intel.com/content/www/us/en/products/docs/processors/what-

is-a-gpu.html (visited on 12/27/2022).

[28] David R. Jefferson. “Virtual time”. In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 7.3 (1985). Publisher: ACM New York, NY, USA,

pp. 404–425. doi: 10.1145/3916.3988.

[29] Vikas Jha and Rajive L. Bagrodia. “A unified framework for conservative and

optimistic distributed simulation”. In: ACM SIGSIM Simulation Digest 24.1
(1994). Publisher: ACM New York, NY, USA, pp. 12–19. doi: 10.1145/195291.

182480.

[30] Minyoung Kim, Sudarshan Banerjee, Nikil Dutt, and Nalini Venkatasubra-

manian. “Design space exploration of real-time multi-media MPSoCs with

heterogeneous scheduling policies”. In: Proceedings of the 4th international
conference on Hardware/software codesign and system synthesis. 2006, pp. 16–21.
doi: 10.1145/1176254.1176261.

[31] Jeff Kriegbaum. FPGA’s vs. ASIC’s - EE Times. Sept. 13, 2004. url: https://www.

eetimes.com/fpgas-vs-asics/ (visited on 12/27/2022).

[32] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar. “Scheduling

parallel real-time tasks on multi-core processors”. In: 2010 31st IEEE Real-Time
Systems Symposium. IEEE, 2010, pp. 259–268. doi: 10.1109/RTSS.2010.42.

[33] Darren R. Law. “Scalable means more than more: a unifying definition of

simulation scalability”. In: 1998 Winter Simulation Conference. Proceedings (Cat.
No. 98CH36274). Vol. 1. IEEE, 1998, pp. 781–788. doi: 10.1109/WSC.1998.745064.

[34] Doug Lea. “A java fork/join framework”. In: Proceedings of the ACM 2000
conference on Java Grande. 2000, pp. 36–43. doi: 10.1145/337449.337465.

[35] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,

Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad

Beckmann, and Srikant Bharadwaj. “The gem5 simulator: Version 20.0+”. In:

arXiv preprint arXiv:2007.03152 (2020). doi: 10.48550/arxiv.2007.03152.
[36] Edward A. Luke. “Defining and measuring scalability”. In: Proceedings of Scal-

able Parallel Libraries Conference. IEEE, 1993, pp. 183–186.
[37] Brit Meier, Mladen Skelin, Frans Beenker, and Wouter Leibbrandt. HTSM

Systems Engineering Roadmap. July 24, 2020.

[38] Edjair Mota, AdamWolisz, and Krzysztof Pawlikowski. “A perspective of batch-

ing methods in a simulation environment of multiple replications in parallel”.

In: 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165). Vol. 1.
IEEE, 2000, pp. 761–766.

[39] Krzysztof Pawlikowski, Victor WC Yau, and Don McNickle. “Distributed sto-

chastic discrete-event simulation in parallel time streams”. In: Proceedings of
Winter Simulation Conference. IEEE, 1994, pp. 723–730. doi: 10.1109/WSC.1994.

717420.

[40] Kalyan S. Perumalla. “/spl mu/sik-a micro-kernel for parallel/distributed simula-

tion systems”. In:Workshop on Principles of Advanced and Distributed Simulation
(PADS’05). IEEE, 2005, pp. 59–68. doi: 10.1109/PADS.2005.1.

[41] Kalyan S. Perumalla. “Parallel and distributed simulation: traditional techniques

and recent advances”. In: 2006 Winter Simulation Conference. IEEE Computer

Society, 2006, pp. 84–95. doi: 10.1109/WSC.2006.323041.

[42] Andy D. Pimentel. “Exploring exploration: A tutorial introduction to embedded

systems design space exploration”. In: IEEE Design & Test 34.1 (2016). Publisher:
IEEE, pp. 77–90. doi: 10.1109/MDAT.2016.2626445.

[43] Shafiur Rahman, Nael Abu-Ghazaleh, and Walid Najjar. “PDES-A: Accelerators

for parallel discrete event simulation implemented on FPGAs”. In: ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 29.2 (2019). Publisher:
ACM New York, NY, USA, pp. 1–25. doi: 10.1145/3302259.

[44] Hassan Rajaei, Rassul Ayani, and Lars-Erik Thorelli. “The local Time Warp

approach to parallel simulation”. In: Proceedings of the seventh workshop on

9

https://doi.org/10.1145/2145694.2145720
https://doi.org/10.1109/MDT.1984.5005647
https://doi.org/10.1109/PADS.2005.6
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1145/358598.358613
https://doi.org/10.1109/TSE.1979.230182
https://doi.org/10.1109/TSE.1979.230182
https://doi.org/10.1109/WSC.2001.977259
https://doi.org/10.1145/84537.84545
https://doi.org/10.1109/WSC.2017.8247793
https://doi.org/10.1145/268403.268404
https://www.gem5.org/about/
https://doi.org/10.1145/318242.318448
https://doi.org/10.1145/318242.318448
https://doi.org/10.1109/DSD57027.2022.00090
https://doi.org/10.1109/DSD57027.2022.00090
https://doi.org/10.1145/121973.121975
https://doi.org/10.1145/121973.121975
https://doi.org/10.1145/268437.268523
https://doi.org/10.1145/508366.508370
https://doi.org/10.1109/SIMSYM.2002.1000164
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/195291.182480
https://doi.org/10.1145/195291.182480
https://doi.org/10.1145/1176254.1176261
https://www.eetimes.com/fpgas-vs-asics/
https://www.eetimes.com/fpgas-vs-asics/
https://doi.org/10.1109/RTSS.2010.42
https://doi.org/10.1109/WSC.1998.745064
https://doi.org/10.1145/337449.337465
https://doi.org/10.48550/arxiv.2007.03152
https://doi.org/10.1109/WSC.1994.717420
https://doi.org/10.1109/WSC.1994.717420
https://doi.org/10.1109/PADS.2005.1
https://doi.org/10.1109/WSC.2006.323041
https://doi.org/10.1109/MDAT.2016.2626445
https://doi.org/10.1145/3302259


Literature Study, 2023, Course XM_0131 Herman Kelder

Parallel and distributed simulation. 1993, pp. 119–126. doi: 10.1145/158459.
158474.

[45] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2: A cycle

accurate memory system simulator”. In: IEEE computer architecture letters 10.1
(2011). Publisher: IEEE, pp. 16–19. doi: 10.1109/L-CA.2011.4.

[46] Sartaj Sahni and George Vairaktarakis. “The master-slave paradigm in parallel

computer and industrial settings”. In: Journal of Global Optimization 9.3 (1996).

Publisher: Springer, pp. 357–377. doi: 10.1007/BF00121679.

[47] Bram van der Sanden, Yonghui Li, Joris van den Aker, Benny Akesson, Tjerk Bi-

jlsma, Martijn Hendriks, Kostas Triantafyllidis, Jacques Verriet, Jeroen Voeten,

and Twan Basten. “Model-Driven System-Performance Engineering for Cyber-

Physical Systems: Industry Session Paper”. In: 2021 International Conference
on Embedded Software (EMSOFT). IEEE, 2021, pp. 11–22. doi: 10.1145/3477244.
3477985.

[48] G. S. Sangeetha, Vignesh Radhakrishnan, Prabhu Prasad, Khyamling Parane,

and Basavaraj Talawar. “Trace-driven simulation and design space exploration

of network-on-chip topologies on FPGA”. In: 2018 8th International Symposium
on Embedded Computing and System Design (ISED). IEEE, 2018, pp. 129–134.
doi: 10.1109/ISED.2018.8703884.

[49] Simon Streltsov and Pirooz Vakili. “Parallel replicated simulation of markov

chains: implementation and variance reduction”. In: Proceedings of the 25th
conference on Winter simulation. 1993, pp. 430–436. doi: 10.1145/256563.256682.

[50] UC Davis. Simulation Research and gem5. UC Davis Computer Architecture.

url: https://arch.cs.ucdavis.edu/projects/gem5 (visited on 11/23/2022).

[51] Andras Varga. OMNeT++ discrete event simulation system version 6.x user man-
ual. 2022. url: https://doc.omnetpp.org/omnetpp/SimulationManual.pdf

(visited on 11/13/2022).

[52] András Varga and Rudolf Hornig. “An overview of the OMNeT++ simulation

environment”. In: 1st International ICST Conference on Simulation Tools and
Techniques for Communications, Networks and Systems. 2010. doi: 10.4108/icst.
simutools2008.3027.

[53] Guangxi Wan and Peng Zeng. “Codesign of Architecture, Control, and Sched-

uling of Modular Cyber-Physical Production Systems for Design Space Explo-

ration”. In: IEEE Transactions on Industrial Informatics 18.4 (2021). Publisher:
IEEE, pp. 2287–2296. doi: 10.1109/TII.2021.3097761.

[54] Charles B. Weinstock and John B. Goodenough. On system scalability. Software
Engineering Institute, Carnegie Mellon University, 2006.

[55] Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd Ascheid,

and Laura Tosoratto. “Time-decoupled parallel SystemC simulation”. In: 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2014, pp. 1–4.

[56] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.

“A survey on agent-based simulation using hardware accelerators”. In: ACM
Computing Surveys (CSUR) 51.6 (2019). Publisher: ACM New York, NY, USA,

pp. 1–35. doi: 10.1145/3291048.

[57] Srikanth B. Yoginath and Kalyan S. Perumalla. “Scalable cloning on large-

scale gpu platforms with application to time-stepped simulations on grids”.

In: ACM Transactions on Modeling and Computer Simulation (TOMACS) 28.1
(2018). Publisher: ACM New York, NY, USA, pp. 11–26. doi: 10.1145/3158669.

This literature study has been produced as part of the XM_0131 course at the

Vrije Universiteit Amsterdam in cooperation with the University of Amsterdam.

Supervisors:

Prof. Dr. Andy D. Pimentel

University of Amsterdam

a.d.pimentel@uva.nl

Prof. Dr. Benny Akesson

University of Amsterdam & TNO-ESI

k.b.akesson@uva.nl

Marius Herget

University of Amsterdam

m.herget@uva.nl

10

https://doi.org/10.1145/158459.158474
https://doi.org/10.1145/158459.158474
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1007/BF00121679
https://doi.org/10.1145/3477244.3477985
https://doi.org/10.1145/3477244.3477985
https://doi.org/10.1109/ISED.2018.8703884
https://doi.org/10.1145/256563.256682
https://arch.cs.ucdavis.edu/projects/gem5
https://doc.omnetpp.org/omnetpp/SimulationManual.pdf
https://doi.org/10.4108/icst.simutools2008.3027
https://doi.org/10.4108/icst.simutools2008.3027
https://doi.org/10.1109/TII.2021.3097761
https://doi.org/10.1145/3291048
https://doi.org/10.1145/3158669

	Abstract
	1 Introduction
	2 Background
	2.1 Design Space Exploration (DSE)
	2.2 Scalability
	2.3 Scope

	3 Related Work
	3.1 Simulation Campaigns
	3.2 Parallel Discrete Event Simulation (PDES)
	3.3 Hardware Accelerators

	4 Discussion
	4.1 Simulation Campaigns
	4.2 Parallel Discrete Event Simulation (PDES)
	4.3 Hardware Accelerators
	4.4 Composite Solutions

	5 Conclusion

