
Vrije Universiteit Amsterdam University of Amsterdam

Master Thesis

Scalability in System-Level Simulation
Environments for Distributed

Cyber-Physical Systems

Author: Herman Kelder

1st supervisors: Prof. dr. A.D. Pimentel
Prof. dr. B. Akesson

daily supervisor: M. Herget, M.Sc.
2nd reader: Prof. dr. R.V. van Nieuwpoort

A thesis submitted in fulfilment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 5, 2023

“We are just an advanced breed of monkeys on a minor planet of a very average star.

But we can understand the Universe. That makes us something very special.”

– Stephen Hawking, Der Spiegel 1988

ii

Abstract

Industrial Cyber-Physical Systems (CPS) drive industry sectors worldwide,

combining physical and software components into sophisticated interconnected

systems. Distributed CPS (dCPS) further enhance these systems by intercon-

necting multiple distributed subsystems through intricate, complex networks.

Researchers and industrial designers need to carefully consider various design

options that have the potential to impact system behaviour, cost, and perfor-

mance during the development of dCPS. However, the increased size and com-

plexity present manufacturing companies with new challenges when designing

their next-generation machines. Furthermore, objectively evaluating these ma-

chines’ vast number of potential arrangements can be resource-intensive. One

of the approaches designers can utilise to aid themselves with early directions

in the design process is Design Space Exploration (DSE). Nevertheless, the vast

amount of potential design points (a single system configuration) in the design

space (collection of all possible design points) poses a significant challenge to

scalably and efficiently reach an exact or reasonable solution during the design

process.

This thesis addresses the scalability challenge in the design process employed

by researchers and designers of the next-generation complex dCPS. A baseline

of understanding is constructed of the state-of-the-art, its complexity, research

directions, and challenges in the context of DSE for dCPS and related research

fields. To facilitate scalable and efficient DSE for dCPS, an evaluation envi-

ronment is proposed, implemented, and evaluated. The research considers key

design considerations for developing a distributed evaluation workflow that can

dynamically be adapted to enable efficient and scalable exploration of the vast

design space of complex, distributed Cyber-Physical Systems.

Evaluation of the proposed environment employs a set of system models, rep-

resenting design points within a DSE process, to assess the solution and its

behaviour, performance, capability, and applicability in addressing the scal-

ability challenge in the context of DSE for dCPS. During the evaluation, the

performance and behaviour are investigated in three areas: (i) Simulation Cam-

paign, (ii) Task Management Configuration, and (iii) Parallel Discrete-Event

Simulation (PDES). Throughout the evaluation, it is demonstrated that the

proposed environment is capable of providing scalable and efficient evaluation

of design points in the context of DSE for dCPS. Furthermore, the proposed

solution enables designers and researchers to tailor it to their environment

through dynamic complex workflows and interactions, workload-level and task-

level parallelism, and simulator and compute environment agnosticism.

The outcomes of this research contribute to advancing the research field to-

wards scalable and efficient evaluation for DSE of dCPS, supporting designers

and researchers developing their next-generation dCPS. Nevertheless, further

research can be conducted on the impact of a system’s behavioural character-

istics on the performance and behaviour of the proposed solution when using

the PDES methodology. Additionally, the interaction between external appli-

cations and the proposed solution could be investigated to support and enable

further complex interactions and requirements.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Objectives and Contributions . 3

1.3 Structure . 4

2 Background and Related Works 7

2.1 Cyber-Physical Systems . 7

2.2 DSE . 9

2.3 Scalability . 13

2.4 Simulation . 17

2.5 Distributed Computing . 19

2.6 Related Works . 21

2.6.1 Scaling Frameworks . 21

2.6.1.1 Simulator Capabilities . 21

2.6.1.2 Scalability Toolchains . 22

2.6.2 DSE Frameworks . 23

3 Approach 27

3.1 Simulation . 27

3.1.1 Design Points . 28

3.1.2 Scalability . 29

3.2 Distributed Computing . 30

3.2.1 Interaction . 30

3.2.2 Facilities . 31

i

CONTENTS

3.2.3 Data Management . 33

4 Methodology 35

4.1 Design . 35

4.2 Implementation . 39

4.2.1 Configuration . 39

4.2.2 Design Point Object . 40

4.2.3 Distributed Computing . 41

5 Evaluation 47

5.1 Setup . 47

5.1.1 Platform . 47

5.1.2 Models . 48

5.2 Experiment Definition . 51

5.2.1 Experiment: Simulation Campaign 52

5.2.2 Experiment: Worker Size . 55

5.2.3 Experiment: PDES . 56

5.3 Results . 58

5.3.1 Simulation Campaign . 59

5.3.2 Worker Size . 64

5.3.3 PDES . 65

6 Discussion 69

6.1 Simulation Campaign . 69

6.2 Worker Size . 72

6.3 PDES . 74

6.4 General . 76

7 Conclusion 79

7.1 Future Work . 82

A Data 93

A.1 Experiment: Simulation Campaign . 93

A.1.1 Baselines . 93

A.1.2 Campaign . 93

A.2 Experiment: Worker Size . 95

A.3 Experiment: PDES . 97

ii

CONTENTS

A.3.1 Baselines . 97

A.3.2 Campaign: Sequential . 98

A.3.3 Campaign: PDES . 103

B Visualisations 107

B.1 Experiment: Simulation Campaign . 108

B.1.1 SMT Enabled . 108

B.2 Experiment: PDES . 108

B.2.1 Sequential Campaign . 109

B.2.2 Relative Speedup . 113

C Models 119

C.1 INET-LANS . 119

iii

List of Figures

2.1 General DSE workflow by Herget et al. [24]. 11

4.1 Scalable evaluation workflow . 36

4.2 Dask, Dask Distributed, and Dask Jobqueue overview. 43

4.3 Resource Controller internal workflow with a single Dask Worker per Com-

pute Node. 44

4.4 Resource Controller internal workflow with four Dask Workers per Compute

Node. 45

4.5 Resource Controller Dask Worker slots. 46

5.1 CQN model structure. 51

5.2 Efficiency and Speedup for strong and weak scaling with 32 evaluations as

baseline for the single node configuration and the Sequential and Sequential

execution time baselines. 59

5.3 Efficiency and Speedup for increasing number of simulations with both the

Sequential and Sequential Multi execution time baseline. 60

5.4 Efficiency and Speedup for strong and weak scaling with 64 evaluations as

baseline for the single node configuration and the Sequential and Sequential

Multi execution time baselines when SMT is enabled. 61

5.5 Efficiency and Speedup for an increasing number of evaluations of the INET-

LANS model with both the Sequential and Sequential Multi execution time

baselines when SMT is enabled. 62

5.6 Relative speedup Srel for an increasing number of evaluations of the INET-

LANS model with both the Sequential, Sequential Multi execution time base-

lines when SMT is enabled or disabled. 63

v

LIST OF FIGURES

5.7 Evaluation time when increasing the number of workers on a single node for

both weak and strong scaling with 32 evaluations as baseline for the single

node configuration. 64

5.8 Speedup for strong and weak scaling with 4 PDES evaluations of a CQN

model as baseline for the single node configuration and the Sequential,

Sequential Multi, Sequential Campaign, Sequential PDES, and Sequential

PDES Multi execution time baselines. 65

5.9 Efficiency for strong and weak scaling with 4 PDES evaluations of a CQN

model as baseline for the single node configuration and the Sequential,

Sequential Multi, Sequential Campaign, Sequential PDES, and Sequential

PDES Multi execution time baselines. 66

5.10 Relative speedup Srel(x, y) comparing model x against model y for increas-

ing number of PDES CQN model evaluations with the Sequential Multi

execution time baseline. 67

5.11 Relative speedup Srel(x, y) comparing model x against model y for increas-

ing number of PDES CQN model evaluations with the Sequential PDES

Multi execution time baseline. 68

vi

List of Tables

5.1 Configuration parameters of the CQN models. 52

vii

1

Introduction

In recent decades, information-technology has become increasingly intertwined with so-

ciety and daily lives. At the foundation of the information-technology field are complex

interconnected Cyber-Physical Systems (CPS), driving research, innovation, and operation

of crucial industrial sectors such as robotics, industrial automation, avionics, space, and

health industries. Deeply intertwining physical and software components, a CPS com-

prises a collection of subsystems to provide system-level services, where each subsystem

implements a variety of functionalities (e.g., data processing, redundancy, monitoring, and

control). Connecting the distributed computing infrastructure, usually incorporating het-

erogeneous multi-core or many-core systems, of a CPS through complex networking creates

distributed Cyber-Physical Systems (dCPS) [2]. The complexity involved in the infrastruc-

ture, operation, and maintenance of dCPS for manufacturing companies, such as ASML,

Canon Production Printing, and Philips, introduces important challenges when designing

next-generation lithography scanner machines, industrial printers, and X-ray machines,

respectively [43].

Researchers and industry designers regularly encounter "What-if" questions when de-

signing and developing the next-generation of dCPS (i.e., "What if we split a subsystem

into multiple smaller subsystems?", "What happens if we alter the structure of communi-

cation channels between subsystems?", and "What if we change to more efficient but less

performant hardware in subsystems?"). Such design decisions have the potential to sig-

nificantly affect a system’s operational behaviour, performance, and costs (i.e., production

and operational costs). The collection of all possible design configurations is the Design

Space. As a result of the complexity of dCPS, a vast number of possible design config-

urations are created based on the design decisions present. The ramification in size and

complexity of possible designs presents manufacturing companies with new challenges in

1

1. INTRODUCTION

designing and evaluating their next-generation machines. However, objectively evaluating

the vast number of potential arrangements can be resource-intensive.

A fast expansion of possible design configurations can be mitigated by efficiently eval-

uating design points (one possible configuration) early on, based on Key Performance

Indicators (KPIs), constraints, and other metrics. One way of analysing possible design

configurations is Design Space Exploration (DSE), which aims to find an exact or reason-

able solution and typically avoids evaluating the entire design space. Especially in the

context of complex dCPS, exploring the entire design space is usually not possible for a

time-constrained and efficient analysis. Instead of exploring the entire design space, DSE

usually tries to intelligently search the design space by taking previous evaluations of de-

sign points into account. A high-accuracy approach for evaluation of a system is to build

a prototype. However, depending on the system to be implemented, the development of

a prototype usually is a cost-intensive and time-consuming process. An alternative to

prototyping is preliminary analysis, such as analytical models, simulation, or other perfor-

mance estimations, which involves reduced overhead and costs by modelling the respective

systems.

Nevertheless, large quantities of design point evaluations pose a significant challenge dur-

ing the design process. Addressing the increased workload in a design evaluation workflow

could be accomplished through scalability, enabling the DSE workflow to distribute the

evaluation workload and address the complexity of dCPS to achieve a time-constrained

and efficient exploration of the design space. A prior literature study investigated differ-

ent scalability methodologies applicable to the evaluation of dCPS designs [30]. Building

on the literature study, this research considers the entirety of the evaluation environment

to provide a scalable and efficient workflow for the Design Space Exploration of complex

dCPS.

1.1 Problem Statement

Evaluating an extensive collection of design configurations, based on the available options

of design choices, poses a significant challenge to researchers and designers of the next-

generation complex dCPS. The evaluation of a vast volume of design points necessitates

scalability in the evaluation workflow, which can facilitate and aid the design process for

researchers and designers of complex dCPS. However, technology for efficient and scalable

design space exploration of dCPS is a largely unexplored research field [24], where scala-

bility of the evaluation environment is a segment of the research and development required

2

1.2 Objectives and Contributions

to facilitate the design process of next-generation dCPS. In order to address the challenge

of scalability in the evaluation workflow, a main research question has been formulated as

follows:

How can a distributed evaluation workflow be designed and dynamically adapted

to enable efficient and scalable evaluation of the vast design space of complex,

distributed Cyber-Physical Systems? (RQ1)

By extension of the main research question, the following questions will also need to be

addressed:

What are the key design considerations for developing a distributed evaluation

workflow for efficient and scalable evaluation of complex, distributed

Cyber-Physical Systems? (RQ1.1)

How can a distributed evaluation workflow be composed to scale evaluations

efficiently across multiple computing resources? (RQ1.2)

1.2 Objectives and Contributions

In this research, the challenge of scalability in the evaluation environment of the design

process employed by researchers and designers of the next-generation dCPS is addressed.

The objective is to investigate and develop a scalable and efficient approach to evaluate

a vast number of complex dCPS design points by exploiting distributed simulation tech-

niques. Achieving this objective involves the following main contributions of this research:

(i) Focused literature review, where key design considerations for distributed simulation

workflows are identified and the scalability challenge of evaluations in the design space

exploration of complex, distributed cyber-physical systems is investigated. (ii) Concep-

tual development of the distributed simulation workflow, where a methodology is proposed

based on the state-of-the-art and the scalability requirement of the design process. (iii) De-

velopment of a proof of concept, where the conceptual workflow design is advanced to a

working implementation that provides scalability to the evaluation environment. (iv) Per-

formance analysis and demonstration of the proposed solution and its applicability through

a set of case studies employing a range of dCPS models. (v) Identification of future research

directions and potential applications.

3

1. INTRODUCTION

The novelty and benefits provided by this research to the research field are as follows:

(i) Advancement of knowledge in the field of design space exploration of complex, dCPS by

providing a new approach to address the scalability challenge and enabling the exploration

of larger design spaces. (ii) Practical contributions to the development of distributed

simulation workflows that can be applied to a wide range of cyber-physical systems and

optimisation problems. (iii) Experiments for an evaluation environment in the context of

design space exploration for complex dCPS through a set of case studies using a variety of

system models.

1.3 Structure

The research presented in this thesis is structured in the following manner:

Chapter 2 Background and Related Works

The background and related works introduce and establish the foundational

knowledge of the research area. After describing and defining the background

on CPS and design space exploration, scalability, simulation and distributed

computing are introduced to establish the context of the research. Following

is the related works, discussing the current state-of-the-art and other relevant

research in the domain of scalability for the evaluation environment in design

space exploration of dCPS.

Chapter 3 Approach

The approach establishes the frame, expectations, and requirements of the

required solution to address the scalability challenge of the evaluation envi-

ronment in the design space exploration of dCPS. Discussing the choice of

simulation and simulator for the evaluation environment and the scalability

capabilities already available. Additionally, the facilities, capabilities, and ex-

pectations of a distributed computing environment to enable scalability are

introduced.

Chapter 4 Methodology

The methodology introduces the proposed conceptual design and correspond-

ing implementation of a scalable evaluation environment in the context of de-

sign space exploration of dCPS. Establishing a conceptual design based on the

state-of-the-art and the expectations discussed in the approach section. From

4

1.3 Structure

the design, an implementation is built and discussed. Covering the key compo-

nents and design choices that create and shape the proposed scalable evaluation

workflow.

Chapter 5 Evaluation

The evaluation covers the performance analysis and demonstration of the pro-

posed solution and its applicability to design space exploration of dCPS. A

variety of dCPS models are employed to perform case studies investigating the

performance, utility, and behaviour of the solution. Multiple experiment def-

initions are presented, each defining the purpose, goal, environment, metrics,

and other essential components involved in each individual evaluation experi-

ment. Concluding the evaluation are the results, which exhibit the experiment

outcomes and highlight valuable aspects of the data.

Chapter 6 Discussion

The discussion extends on the evaluation chapter by analysing and interpret-

ing the outcomes of the experiments. Providing valuable insights into the be-

haviour, performance, effectiveness, and applicability of the proposed solution

under various circumstances and use cases. Additionally, a reflection on the

context of the research and its research questions is presented based on the

evaluation outcome and methodology.

Chapter 7 Conclusion

The conclusion reflects on the research and its objectives. Summarising the

research process, highlighting evaluation results, and introducing the research

conclusions. Lastly, recommendations for future work are presented.

5

2

Background and Related Works

In order to address the challenges in the design of Cyber-Physical Systems (CPS), the

basic concepts, properties, and research areas will be introduced. Following is Design Space

Exploration (DSE), an approach to aid a designer of CPS. There the DSE2.0 project, on the

challenges of advancing DSE to distributed Cyber-Physical Systems (dCPS), is highlighted,

as it is the context in which this research is performed. After DSE, the concept and

definition of scalability are examined, which is central to the aim of the research in this

thesis. A brief introduction to simulation and well-known simulators is made next. To

finish the background, a brief overview of Distributed Computing, a common methodology

to facilitate scalability, is provided. After the background sections, concluding this chapter,

related work on the state-of-the-art methods and techniques involved in the scalability of

system-level simulation environments applicable to DSE of dCPS is presented.

2.1 Cyber-Physical Systems

Nowadays, Cyber-Physical Systems (CPS) are omnipresent in daily life and they drive

critical information-technology infrastructure in our society. Deeply intertwining physical

and software components, CPS is a broad denominator and comprises many different kinds

of systems. Nevertheless, they can generally be described as (automated) systems that

integrate operations of physical systems with computing and communication infrastructure

[4] [26] [36]. Research and innovation is supported by these systems in a broad range

of crucial industry sectors, such as robotics, industrial automation, avionics, space, and

health industries. Examples of such systems can range from a simple electronic thermostat

to advanced lithography machines, aeroplanes, autonomous cars, and medical monitoring

7

2. BACKGROUND AND RELATED WORKS

devices. Designing CPS involves many engineering principles like electrical engineering,

computer science, material science, and more.

Formulating a definition is not straightforward, as a large variety of systems and engi-

neering fields are involved. Liu et al. [37] describe CPS as multidisciplinary systems which

conduct feedback control on distributed embedded computing systems. Others also include

feedback control which affects the physical process and computations [35] [36] [4]. Another

integral component is the communication infrastructure connecting subsystems, enabling

the integration of physical processes and computation [35]. By integrating several different

subprocesses and physical systems, the CPS can provide its service. The physical processes

themselves are often monitored by sensors and controlled by actuators, which are orches-

trated through embedded computers [36]. As many different physical components can be

present, which in turn can or need to interact with other systems, CPS are a common

environment for specialised hardware and purpose-built software to manage all systems.

Nevertheless, CPS have various defining characteristics, which can be described as fol-

lows [54] [37]: (i) (Complex) physical system with cyber capability. Physical systems are

integrated through the software embedded in the physical component or embedded sys-

tem, where control and feedback are majorly constrained by the physical phenomena and

time. (Smaller-scale) CPS usually are resource (i.e., computing and network bandwidth)

constrained. (ii) Networked information system. A CPS consists of a collection of sub-

systems which can gather, process, and communicate information. (iii) Closely integrated

heterogeneous systems. CPS are built on heterogeneous distributed information and phys-

ical systems, which rely on communication and are integrated with each other. Between

subsystems the system has to manage complications like time synchronisation and spa-

tial location of (moving) physical components. (iv) Automation, Control, and Adaptivity.

Components and subsystems are often highly automated and governed by control loops.

As physical components are present, the system has to to be robust and adaptive to address

a changing and dynamic environment. (v) Security, Real-Time, and Reliability. As CPS

drive critical systems, cyber-security is of great importance. There can be requirements

mandating data processing or operating in real-time. Further, reliability can be necessary

in the form of fail-safes or performance guarantees.

As stated before, CPS is a broad term encapsulating a large variety of systems. When

considering more advanced systems from sectors like health industries, industrial automa-

tion, avionics and space, such environments are often based on multiple distributed CPS

connected through an extended communication infrastructure to create distributed Cyber-

Physical Systems (dCPS) [2]. The subsystems each implement a variety of functionalities

8

2.2 DSE

(e.g., monitoring and control) to provide specific services at the system-level. Advanced

dCPS from manufacturing companies, such as ASML, Canon Production Printing, and

Philips, are typically considered complex dCPS. A complex dCPS is a large collection of

interconnected subsystems where multiple dependent compute nodes are responsible for

various tasks, such as data processing, monitoring, and control. Collectively, the subsys-

tems provide a broad range of services and features.

CPS is an active field of research where various challenges are addressed in areas such as

system architecture, system autonomy, model-based development, information processing,

resource management, and security [54] [37]. Relevant to this thesis is the challenge of

model-based development, where the capabilities of existing methodologies are inadequate

to address the complexity and scale of dCPS [24] [54]. The complex interaction between

the various heterogeneous subsystems of a CPS can provide considerable challenges during

the design and in the field. Important areas of concern to the operation of CPS include

energy control, secure control, transmission and management, model-based software design,

control technique, and system resource allocation [54].

2.2 DSE

Design Space Exploration is one of the approaches designers can utilise to provide them-

selves with early directions in the design process [24]. By aiding the designer in the early

phases, DSE can accelerate the design process. Involved in the design process are the

design choices, which determine the characteristics and performance of the system (i.e.,

clustered communication network or mesh communication network, general purpose CPUs

or hardware accelerators, many small subsystems or merge into a few subsystems). A

system can have many design choices, where each combination of design choices repre-

sents a single design solution. All design solutions together define the solution space of

a set of design choices. DSE is the process of traversing the potential design solutions

(design points) within the solution space. Generally, it aims to find an exact or reason-

able solution satisfying a set of design objectives and typically avoids exploring the entire

design space. Instead, it is time-constrained and tries to intelligently search the design

space by taking into account previous evaluations of design points. Design objectives,

which describe the functional and non-functional requirements of a system, are utilised

by the DSE to explore, discover, and evaluate solutions. Functional requirements define

a set of system features or functionalities that determine the operational behaviour of a

9

2. BACKGROUND AND RELATED WORKS

system. Restrictions or constraints on system attributes concerning areas such as secu-

rity, reliability, performance, maintainability, scalability, and usability are captured by the

non-functional requirements. Examples of commonly used design objectives include energy

consumption, cost, and throughput. The goal of DSE is to discover solutions that best

satisfy the design objectives as defined by the designer. The complexity and size of the

design space is based on the number of design choices, classifying DSE as either a single or

multi-objective optimisation problem. Additionally, design constraints may be applicable

to capture limitations and requirements that need to be enforced on design points. DSE

can be applied to various different scientific fields, and has already been adopted within

the computer systems field in areas such as low-level hardware design for Systems-on-a-

Chip (SoC) [47] and Multiprocessor System-on-a-Chip (MPSoC) [31], or the co-design of

hardware and software [61]

Even though DSE has been applied in the computer systems field, the application to

complex distributed Cyber-Physical Systems is a relatively unexplored area [52]. The

adoption and application of DSE for dCPS is being explored by an ongoing research project

"DSE2.0", which is a collaboration of the University of Amsterdam, Leiden University,

and ASML [24]. The DSE2.0 project investigates the entirety of the state-of-the-art DSE

process to advance from, e.g. embedded systems to large industrial machines like the

ASML TwinScan machines. As existing state-of-the-art research is used as a baseline,

their research is an evolutionary approach instead of a revolutionary approach. Based

on their research into the state-of-the-art, they have created a general DSE workflow, as

illustrated in Figure 2.1, where four main stages are outlined within the DSE framework:

(i) Models, (ii) Design Space, (iii) Exploration, and (iv) Results.

In order to achieve the respective objectives based on the underlying system and design

choices to be explored, it may be necessary to reconsider the implementation of individual

components as it is a general workflow. An exact implementation of the DSE process can

depend on diverse factors, such as the system/use-case itself, restrictions, design objectives,

and available resources.

The first stage, Modelling, consists of four components: (i) Discovery, (ii) Description,

(iii) Abstraction, and (iv) Mapping. DSE starts with the discovery phase, which explores

the system and its artefacts (i.e., software, design choices, and available architectural

platforms). The goal is to capture the structure of the system and the behaviour of

the internal processes. Together, the system structure and artefacts provide a descriptor

of the system. However, various levels of detail and complexity can be deployed in the

system description. A high complexity and too detailed description are not well suited

10

2.2 DSE

a)
M

od
el

s
b)

D
es

ig
n

Sp
ac

e
c)

E
xp

lo
ra

ti
on

d)
R
es

ul
ts

Discovery

Description

Abstraction Mapping

Design Space
Construction

Design
Choices

(Pre-Exploration)
Static Pruning

Search Strategy

Pick
Design Point

Evaluate
Design Point

(Performance)
Result

Dynamic
Pruning

DecisionFeedbackValidation

Figure 2.1: General DSE workflow by Herget et al. [24].

for time-constrained and efficient analysis needed by DSE. After the description phase, an

abstraction phase is present to address the complexity and detail of the initial system and

artefact models. The abstraction level describes the level of detail and complexity in the

initial models. In the mapping phase, the models of the system and artefacts are combined,

which creates a single abstract system representation. Combining software and hardware

models of the system, the abstract system representation is utilised by further steps in the

DSE workflow as a baseline model.

The second stage of the general workflow utilises this initial model to build a Design

Space (DS). By defining a set of design choices (or a set of design points and the corre-

sponding parameters), a DS of possible design points is spanned. At first, the DS will

encapsulate all possible design points based on the design choices and the initial model.

Nonetheless, a (pre-exploration) pruning phase can be present in the second stage, which

performs preliminary pruning on the DS based on factors such as external constraints or

incompatibilities (i.e., two hardware components are incompatible with each other or a set

of internal processes have specific hardware requirements).

In the third stage, Exploration, the previously defined DS is explored and evaluated,

11

2. BACKGROUND AND RELATED WORKS

capturing the characteristics and performance of the various design points available. Two

major parts of the third stage are the search algorithm and the evaluation environment.

The search algorithm determines how the solution space is traversed and which design

points should be evaluated. As shown in the general workflow, the search algorithm can

also make use of intermediate results to perform dynamic pruning. Thereby guiding or

adapting the current search strategy and potentially decreasing the DS to be explored. A

variety of search algorithms exist, such as exact and heuristic-based algorithms [47], each

having its own approach, characteristics, and merits.

The evaluation environment is used to evaluate all design points selected by the search

algorithm. Herget et al. [24] define the evaluation of a design point as the study of its

extra-functional behaviour and the capture of measurable Key Performance Indicators

(KPIs). There are various ways of accomplishing the evaluation of a design point, which

can roughly be separated into three methodologies [47]: (i) benchmark measurements on

(prototype) implementations, (ii) simulation-based evaluations, and (iii) analytical model

estimations. Prototype evaluation will provide the highest accuracy of the methodologies.

However, the cost and development time involved in creating prototypes (especially for

dCPS) prevents the evaluation of many design points. Generally, analytical model estima-

tions are considered to be the fastest method for evaluation. However, typically those are

unable to sufficiently capture system behaviour and characteristics [47]. Simulation-based

evaluations bridge the gap between prototype evaluation and analytical model estimation.

Simulations can provide both high accuracy (at the cost of higher evaluation time) and fast

evaluation (at the cost of accuracy). This trade-off between accuracy and speed is often

determined by the abstraction level of the simulation, as mentioned by the abstraction

component in the first stage (Models) of the general workflow. The flexibility in evaluation

accuracy and speed is why many existing DSE approaches utilise simulation. The proposed

approach to DSE for dCPS in the DSE2.0 project [24] also included simulation.

During the evaluation of a design point, the KPIs and other metrics of a system’s be-

haviour and performance are captured. As mentioned before, the search algorithm can

utilise the intermediate evaluation results to guide its exploration through the solution

space with a dynamic pruning phase. Additionally, intermediate results can provide guid-

ance or recommendations to the designer for design choices, whereby the designer might

interject further constraints in the design process.

The final stage of the general workflow, depicted in Figure 2.1, is the Results stage.

Both the (intermediate) outcomes and conclusive recommendations are encapsulated in this

stage. Utilising the intermediate data, the search algorithm and models used throughout

12

2.3 Scalability

the DSE workflow can be validated, tuned, adjusted, or changed. An example of such

an adjustment could be in the abstraction level, where a multi-level hierarchical search

approach tunes the abstraction level of the design points (i.e., increasing or decreasing the

abstraction level in a set of runs). At the end of the workflow, the designer is presented

with the best found design decisions to guide their decision-making in the design process

[24].

Nevertheless, as this is a general workflow, the size and complexity of dCPS give rise to

various challenges in the DSE process. For their position paper of the DSE2.0 project in

2022, the authors identified two research challenges in specific [24]: (i) Modelling complex

dCPS, and (ii) Scalable DSE.

The challenge of modelling complex dCPS concerns specifically the first stage, Models.

Modelling the heterogeneous subsystems of a dCPS poses a significant challenge in com-

parison to systems like SoC and MPSoC [24]. Where manual creation could be possible

for smaller, simpler, and more elementary systems, it is deemed infeasible for dCPS. In

their position paper, Herget et al. [24] propose (semi-)automatic model inference of the

application and platform model as a potential viable solution.

Besides modelling complex dCPS, scalability of DSE for dCPS was also identified as a

research challenge. Both the heterogeneity and complexity of dCPS increase the number of

design choices present, which in turn significantly expands the DS. This inflation is further

exacerbated by conditions such as dynamic behaviour of the system and its workload

settings. Herget et al. [24] argue that an efficient approach to DSE is required, which can

utilise the scalability of the search and pruning strategy, of the simulation environment,

or both. Thereby covering the entire third stage, see Figure 2.1, with the second research

challenge. Especially the Evaluation Design Point and (Performance) Result steps will be

of interest, as the scalability of the simulation environment is the focus of this thesis.

2.3 Scalability

The second scientific challenge described by Herget et al., scalable design space exploration,

concerns the need for adequately scalable new search and pruning strategies, and efficient

design point evaluation. Focusing on the scalability of the simulation environment requires

a grounded understanding of the scalability concept itself. Even though the term scalability

is widely adapted and applied in historic and modern computer science, a single detailed

definition has not been agreed upon [40] [25] [34].

13

2. BACKGROUND AND RELATED WORKS

A rather common colloquial usage or definition of the term "scalability" concerns the

ability of a system, network, or process to be able to cope with and address an increase in

the amount of work, or the potential to grow its own capacity in order to accommodate the

increased workload. However, this is a very generalised interpretation of scalability. When

considering scalability in the context of simulations, a classification of the capabilities can

be expressed as follows: (i) the ability to cope with an increasing number of simulation

entities (Size capability), (ii) the ability to reduce the time required to complete a single

simulation run (Time capability), and (iii) the ability to facilitate more extensive and

complex simulations (Complexity capability) [34].

When addressing the size capability in a simulation environment, the focus is often

on throughput of simulation entities. The goal is to increase the number of completed

simulation entities per time unit. The size capability goal is most commonly implemented

by increasing the number of available computing resources on which simulations can be

executed. Simply put, enabling more simulation entities to run simultaneously results in

increased throughput.

Instead of focusing on throughput, by addressing the time capability in a simulation

environment, the latency of a single simulation entity is targeted. Here the goal is to

decrease the time required to complete a single simulation entity. The time capability

goal is most commonly implemented through performance improvement of the hardware,

parallelising a single simulation over multiple compute resources, performance improvement

of the software the simulation is being executed on, or a combination thereof. Simply put,

the faster a single simulation entity is running, the lower the latency.

Addressing the complexity capability in a simulation environment can concern various

areas. An increased complexity capability could, for instance, allow larger or more complex

models to be simulated. Additionally, it might provide the simulation environment with

additional simulation capabilities or features not supported before. Compared to size and

time capability, the goal and ways of achieving complexity capability are more challenging

to define as there could be many ways to improve the complexity capability.

A well-known theorem related to scalability in the field of computer science is Amdahl’s

law [3], which formulates the expected theoretical speedup in execution time latency of

a task with a fixed workload, when a system has its resources improved. Equation (2.1)

demonstrates Amdahl’s law, where s is the speedup of the part from the task which benefits

from the improved resources (i.e., 4 when the number of resources has quadrupled), and

p is the proportion of the task which benefits from the improved resources. Amdahl’s law

states that the performance improvement of a single part in a system is limited by the

14

2.3 Scalability

fraction of total execution time it requires. For example, a sequential workload of 4 hours

has a part of 1 hour which can be parallelised. Even in the case of infinite parallelism,

the minimum execution time of the workload will be 3 hours. As a result, the theoretical

speedup for a system is limited by the part of the system that does not benefit from the

improved performance.

Samdahl(s) =
1

(1− p) + p
s

(2.1)

An important factor in Amdahl’s law is the fixed workload/problem size (strong scaling).

However, in practice, when more compute resources are available or resources improve, the

problem size is often also increased to fully exploit the available computing power (weak

scaling). The proportion of the parallelisable part in the total execution time grows and of-

ten more significantly than the sequential part. Another well-known theorem, Gustafson’s

law [23], takes the increase of workload into account and therewith provides a less pes-

simistic and more pragmatic view of the theoretically achievable speedup. Equation (2.2)

demonstrates Gustafson’s law, where s is the proportion of execution time which is spent

on the sequential part of the workload, p is the proportion of execution time which is spent

on the parallel part of the workload, and N is the number of processors present in a parallel

computing resource.

Sgustafson(s) = s+ p ·N (2.2)

= s+ (1− s) ·N

= N + (1−N) · s

Both Amdahl’s law and Gustafson’s law approach scalability of a workload from different

perspectives. Whilst Amdahl’s law assumes a fixed workload size, Gustafson’s law assumes

a tendency to increase the workload size when the compute resources improve. Amdahl’s

law aligns with the previously defined Time Capability as both assume a fixed workload. On

the other hand, Gustafson’s law aligns with the Size Capability, as both assume an increase

in workload size. Connecting Complexity Capability with either law is not straightforward,

as both do not address the change to a more extensive or complex workload.

Where Amdahl’s and Gustafson’s law approach scalability from the workload size, scal-

ability can also be viewed from a hardware perspective. A common analogy in the field of

computer science is the comparison of vertical scaling and horizontal scaling. Vertical scal-

ing concerns the improvement of a single resource (i.e., higher core count CPU or increase

15

2. BACKGROUND AND RELATED WORKS

in RAM size). Horizontal scaling concerns an increase in the number of resources. An

integral difference between vertical and horizontal scaling is in the workload distribution.

With vertical scaling, the logic of the application remains the same. However, horizontal

scaling requires the workload logic to be split into smaller chunks that can be executed in

a distributed fashion on multiple resources. The same comparison with scalability capabil-

ities can be made as was done for Amdahl’s and Gustafson’s law, where horizontal scaling

aligns with Size Capability, and vertical scaling aligns with Time Capability. Both could

support Complexity Capability, but this behaviour highly depends on the workload and

its requirements.

A simulation environment can address and implement scalability capabilities in a variety

of ways. Simulation environments attempt to mimic a given system, allowing for the

opportunity to assess its characteristics and evaluate its performance based on the defined

design objectives. As mentioned in Section 2.2, an efficient, time-constrained analysis is

needed by the DSE process. One way of achieving this is to adjust the degree of granularity

(abstraction) of the model that will be simulated. A high level of abstraction will provide

an increased evaluation speed (Time capability), but will have a loss in details of the system

(Complexity capability), often resulting in a lower simulation accuracy [24]. By adjusting

the level of abstraction, different simulation frameworks and techniques accommodate for

their intended application. One of the highest granularity levels in system simulation is

register-transfer level, where a system’s digital signals between registers and combinational

logic are modelled. Other techniques with higher levels of abstraction include, amongst

others, cycle-accurate [51] [10], transaction-level [11], and trace-driven [53].

Besides scalability through abstraction, there are various other ways of achieving scala-

bility in simulation environments. In a previous literature study [30], the following three

methodologies were identified: (i) Simulation Campaigns, (ii) Parallel Discrete-Event Sim-

ulation (PDES), and (iii) Hardware Accelerators.

Between the three approaches, a significant difference in philosophy and capabilities is

visible. Hence, each method will be applicable to different system architectures. Simula-

tion campaigns distribute the work amongst multiple resources, providing size capability.

PDES splits a single model and executes the different parts on separate resources, providing

time capability and complexity capability. Hardware accelerators can provide scalability

through specialised hardware. As the capabilities of hardware accelerators and their in-

tegration into a system are highly specialised, the literature study remained equivocal to

their adoption into the simulation environment of a DSE workflow. Composite approaches

were also briefly highlighted, as they could provide a middle ground between the three

16

2.4 Simulation

approaches. The literature study concludes that the applicability of the methodologies

highly depends on factors such as the use case, platform, and goal.

2.4 Simulation

Section 2.2 discussed the various options that could be utilised to evaluate the character-

istics and performance of design points. In the context of the DSE2.0 project, the choice

was made to simulate the design points, as it can provide a (adaptable) balance between

evaluation speed and accuracy. Nevertheless, there is a wide variety of simulation frame-

works, which all boast their own characteristics, features, advantages, and disadvantages.

Characteristics of a simulation framework can be defined by a simulation model, which

encapsulates multiple dimensions such as time and state. The choice of implementation

within those dimensions for the simulation model will heavily depend on the system to be

simulated and the goal of the simulation.

An important part of the simulation model is the representation of time, which can gen-

erally be classified into two categories: continuous time and discrete time. The distinction

between continuous and discrete is based on the interval of state transitions in the model.

In a continuous time simulation, state transitions occur continuously throughout time.

Whereas in a discrete time simulation, state transitions occur in discrete time intervals.

An example to distinguish the two can be made with a sine wave, where the x-axis is

time. Continuous time simulation will encapsulate the entirety of the sine wave and will

have a value for all timestamps. However, discrete time might only have the values for the

timestamps where the sine wave reaches its extremes (-1 and 1). All values between the

extremes of the sine wave are not captured.

The discrete time simulation can subsequently be divided into two general categories:

time-driven and event-driven. A time-driven discrete simulation indicates that state tran-

sitions occur at discrete time intervals (commonly referred to as time steps). Whereas

event-driven discrete simulation (more commonly known as Discrete-Event Simulation)

advances in time based on event activities (i.e., process x sends a message to process y).

Discrete-Event Simulation is commonly utilised in the field of computer system simula-

tions, like SoC and MPSoC systems. The choice for a discrete time model seems like a

reasonable fit, as a computer system processes data as discrete values (values are processed

as 0s and 1s) and state of the system changes at discrete time intervals (i.e., based on the

clock frequency). Instead of the time-driven approach (i.e., based on the clock frequency),

17

2. BACKGROUND AND RELATED WORKS

an event-driven approach (i.e., a computation is starting or a file read has completed) can

also be used.

When simulating an entire system (system-level simulation), the behaviour of system

components and processes have to be captured. Various different solutions exist to model

the behaviour of such a system, like trace-driven and program execution-driven [50] [49].

A trace-driven approach utilises traces of program execution and system component states

to reconstruct and mimic the behaviour of the system. As traces of program execution are

utilised, an existing system is often used as baseline. Program execution-driven is similar

to the trace-driven approach. However, the program execution-driven approach has to read

a program and simulate the execution in the system on the fly. Program execution-driven

simulation requires a program file, which is usually orders of magnitudes smaller than the

trace file(s) required for trace-driven simulation. However, the execution-driven approach

is cost-intensive and detailed as the simulation has to process instructions one-by-one and

update the system state accordingly. This is further exacerbated when a large number of

simulations have to be performed. Hence, Herget et al. [24] deem the trace-driven approach

a better fit in the context of DSE2.0.

A broad variety of well-known simulators exist and have been used to research the

design and performance of a diverse set of computer systems (i.e., from SoCs to large-

scale networks). Such simulators include OMNeT++, gem5, SystemC, NS-3, and OPNET,

where each simulator will have its own unique feature set and intended purpose. The gem5

simulator is a computer-system architecture platform supported and utilised by academia

and industry, such as the National Science Foundation, AMD, ARM, Hewlett-Packard,

IBM, Intel, Metempsy, Micron, MIPS, Samsung, and Sun [22] [58]. Governance is arranged

as a meritocratic, consensus-based community project. Gem5 is a discrete-event simulator

providing simulation both at system-level architecture and processor microarchitecture.

Similarly to gem5, OMNeT++ is also a well-known open-source discrete-event simulator,

which has gained widespread popularity as a network simulation platform both in the

scientific community and in an industrial setting [59]. Simulation models in OMNeT++

are component-based, where modules are programmed in C++ and assembled in larger

components/systems using a high-level language (NED). The modularity provided through

the components structure and NED system provides reusability of models. Additionally,

both an extensive GUI and command-line interface are provided. Due to the modular

structure of the simulation kernel and the project being open-source, extensions can be

made to the simulator (as shown by the large variety of community projects adapting

18

2.5 Distributed Computing

or extending OMNeT++, like the INET project, which provides tools for research on

communication networks).

2.5 Distributed Computing

Section 2.3 discussed the concept of scalability, where it was established different ways

exist to achieve scalability. Nevertheless, a methodology commonly used to achieve scala-

bility is horizontal scaling, which distributes the workload over multiple (interconnected)

resources. The process of distributing a workload over multiple resources concerns the

domain of distributed computing. Distributed computing makes use of a network of com-

puting platforms (a distributed system) to facilitate computing, information access, and

information exchange in order to process a workload [33] [32]. A wide variety of research

fields, such as physics, medical sciences, and avionics, utilise distributed computing to

compute on intensive workloads, like large-scale space simulations [27], protein folding [8],

and CFD aerodynamics simulations [55].

Distributed computing and distributed systems are considerably different from comput-

ing on traditional single-machine systems. Distributed computing allows the application

to leverage multiple resources to reach a common goal. Compared to a single system, dis-

tributed systems are significantly more complex to utilise effectively. Additionally, effective

utilisation also depends on the characteristics of the application. Common characteristics

and challenges can be identified for distributed computing and utilising a distributed sys-

tem: (i) communication, inherently the subsystems of distributed computing require a

communication mechanism to establish interaction. A common methodology for commu-

nication is message passing, where a network is used to enable each process to send and

receive messages. The Message Passing Interface (MPI) standard is widely known and

utilised [60]. (ii) synchronisation, in order to keep consistency, as independent subsystems

interact, a synchronisation methodology is required. When multiple independent processes

can execute concurrently, the interaction between them has to be regulated. Otherwise, the

system will lose consistency of its state. The implementation of a synchronisation protocol

is application specific as it depends on factors and characteristics such as strictness, com-

munication, and architecture. (iii) data management, distributed computing is often used

in applications which process and/or generate large quantities of data. Storing, moving,

and communicating large quantities of data can be very costly and an inherent challenge

of an application. Smart placement and interaction with data could enable improved use

of the capabilities in a distributed environment. Lastly (iv) utilisation, where distributed

19

2. BACKGROUND AND RELATED WORKS

computing, usually, makes use of multiple compute resources, a common goal is to utilise

those resources as effectively and efficiently as possible. Utilisation can be considered at

different scales, from a single resource to entire compute clusters. Energy efficiency has be-

come a prevalent area of research and often considers methodologies to improve utilisation

or reduce energy consumption.

One of the applications of distributed computing is scientific computing, where systems

like cluster computing, grid computing, and cloud computing are utilised and researched.

Compute clusters are a large collection of (often homogeneous) compute resources, which

are usually orchestrated to cooperate on a task. When a compute cluster is shared amongst

users, Cluster Management Software (CMS) can be used to supervise a job-batching sys-

tem. By allowing users to submit jobs to a central queue, the CMS can ensure cluster-level

goals such as fairness and utilisation. An example of a cluster computing initiative is

the Distributed ASCI Supercomputer (DAS) by the Advanced School for Computing and

Imaging (ASCI), which involves Dutch universities and research institutes [5]. DAS has

multiple cluster sites located at universities and research institutes, allowing researchers

and students to perform research on compute clusters.

Grid computing is related to cluster computing but has some significant differences.

Where cluster computing generally is a local area network of homogeneous compute re-

sources, grid computing is a widely (geographically) distributed network of primarily het-

erogeneous compute resources. Grid computing can utilise heterogeneous generic comput-

ing resources (i.e., personal computers or workstations) to create a distributed computing

network. An example of a grid platform is Grid5000 in France [6]. Grid5000 aims to

provide resources for experiment-driven research in the field of computer science, with a

focus on parallel and distributed computing, including Cloud, High-Performance Comput-

ing (HPC), Big Data and AI. Another well-known application utilising a grid infrastructure

is the Folding@home project, which is a distributed computing project aimed to aid sci-

entists by simulating protein dynamics. It provided biological insights for drug discovery

and other efforts to combat global health threats [8].

Lastly, the increasingly more popular cloud computing platform, which targets on-

demand availability of computer system resources (i.e., data storage and compute power)

to external customers. Cloud computing has evolved from grid computing to a service-

oriented structure boasting abstracted, virtualised, dynamically scalable, managed com-

puting power, storage, platforms, and services on demand [21]. Many large companies

in the tech sector, like Amazon, Google, and Microsoft, have created their own cloud

infrastructure for external customers.

20

2.6 Related Works

2.6 Related Works

In order to research scalability of system-level simulation environments applicable to DSE

of dCPS, the state-of-the-art on methods and techniques involved will need to be explored.

The related works section is based on and extends on the research presented in a previously

published literature study on the scalability in system-level simulation environments for

dCPS [30], where scalability and available methodologies were investigated.

2.6.1 Scaling Frameworks

Firstly, the capabilities of simulation frameworks (like OMNeT++) and other toolchains

will be investigated. Usually, a distinction can be made between the following two cases

for scaling tools [7]: (i) scalability built-in, where simulation frameworks have scalability

tools built in, or (ii) add-on scalability, where external applications extend the scalability

facilities of an existing simulation framework.

2.6.1.1 Simulator Capabilities

The well-known discrete-event simulator OMNeT++ has several capabilities to provide

small-scale scalability. A basic sequential simulation, which runs on a single CPU, is pro-

vided out-of-the-box. However, it features tools to facilitate improved scalability through

simulation campaigns and parallel discrete-event simulation [59]. More specifically, OM-

NeT++ provides the tools to perform a parameter study on a model, which is used to

explore the parameter space, or to perform repetitions using different seeds for a random

number generator to increase the statistical accuracy. The parameter study can be per-

formed on a single CPU or multiple CPUs in the same computing system. A drawback of

the available tool is that it only supports a single configuration of the model, classifying it

as Multiple Replications In Parallel (MRIP). Parallel execution of different model config-

urations at the same time is not supported. Nevertheless, only a single processor will not

be sufficient to complete large-scale scientific simulations or exploration of a vast design

space in a manageable time frame. OMNeT++ refers to batch-queuing, cluster computing

or grid computing middleware for the adoption of (distributed) compute clusters [59]. The

parallel discrete-event simulation support of OMNeT++ allows the developer to indicate

separate subprocesses within a model. Those subprocesses will then be executed indepen-

dently from each other. However, the parallel discrete-event simulation setup is a manual

process with quite some constraints and limitations [59].

21

2. BACKGROUND AND RELATED WORKS

Another well-known community-led simulator is gem5, which is intended as a platform

for computer-system architecture research, both at a system-level as well as processor mi-

croarchitecture. Similarly to OMNeT++, the standard is a basic sequential single CPU

simulation. However, a big community is supporting the development of gem5 and creating

projects of their own. One of the extensions made to gem5 is the dist-gem5 project [44]

[38]. Dist-gem5 provides support for distributed system modelling, which splits large dis-

tributed models into separate processes (like Parallel Discrete-Event Simulation) that can

be executed on separate resources. Communication and synchronisation between the sep-

arate instances is facilitated by dist-gem5 through TCP connections and quantum-based

synchronisation.

2.6.1.2 Scalability Toolchains

Besides the built-in scalability features of simulation frameworks, other research or com-

munity projects also try to provide scalability in a simulation environment. One of those

projects is Akaroa [19], which is actually available in OMNeT++ [59]. Akaroa aims to

speed up the simulation process for quantitative stochastic simulation using the Multiple

Replications In Parallel (MRIP) paradigm, which is a form of simulation campaign. A cen-

tral process accumulates the data of the replications and determines, based on a predefined

confidence/precision level, whether more observations are required. Akaroa concludes the

simulation campaign when enough observations have been accumulated.

A project that aims to provide scalability in managing simulation campaigns and post-

simulation analysis for OMNeT++ is SMO (Simulations Manager for OMNeT++) [7].

SMO is similar to the parameter study built into OMNeT++, as it analyses the configura-

tion file of a model and will execute all parameter value combinations. As with OMNeT++,

it is limited to the computing resources of a single machine. However, their focus is on

the management and post-simulation analysis of data. SMO has separate summariser and

analysis tools that process the output of the parameter study, calculate statistics, and

provide (interactive) visualisations of the results [7].

The Neurogenesis project aims to provide the ability to perform the aforementioned

OMNeT++ parameter study on a compute cluster using the Message Passing Interface

(MPI) [20]. Similarly to SMO, Neurogenesis generates all parameter combinations based

on a configuration file. Neurogenesis makes use of a single manager which distributes all

scenarios to worker instances through MPI. Whenever a simulation has completed, the

worker will signal the manager accordingly.

22

2.6 Related Works

The aforementioned scalability tools extend or are built on existing simulation frame-

works. However, workflow tools like Celery [12], Dask [15], and Luigi [39] can also provide

scalability even when not explicitly designed for a simulation framework. Celery, Dask,

and Luigi can provide workflow management, dependency resolution, and scheduling. A

task can be defined that encapsulates the entirety of a single simulation. Based on the

task definition, the tools can orchestrate the set of simulations that need to be performed.

Additionally, tools like Dask can distribute the workload across multiple machines or on a

compute cluster through their resource managers (i.e., Slurm [63]). Such tools could provide

scalability without the costly development and maintenance of a workload management

and distribution tool built from scratch, allowing the developer to focus on higher-level

features and services.

The scalability toolchains discussed in this section all have a similar approach to scal-

ability, where the focus is on MRIP. Akaroa aims to speed up the simulation process

for quantitative stochastic simulation using MRIP on a network of computers. The SMO

project extends on the parameter study facility provided in OMNeT++ and provides man-

agement and automated post-simulation analysis of the evaluation data, which could be

helpful to the designer in the DSE process. The Neurogenesis project aims to provide

support for the parameter study on a compute cluster using the Message Passing Interface

(MPI). However, as was the case for the parameter study tool in OMNeT++, supporting

only MRIP, the utilisation of a single compute resource, or both, is not sufficient for DSE

of complex dCPS. Nevertheless, MRIP could be part of DSE for dCPS, but it does not

enable the search of a large-scale design space containing a broad range of system mod-

els. Instead, in this research, the aim is to address the challenge of efficient and scalable

evaluation of a vast number of (independent) design points for DSE of complex dCPS,

where workflow tools like Celery, Dask, and Luigi could be a valuable asset enabling the

large-scale evaluation required.

2.6.2 DSE Frameworks

In previous sections, scalability in simulation environments has been discussed. As this

thesis investigates scalability of simulation environments in the context of DSE for dCPS,

this section will discuss some of the well-known DSE frameworks used in relevant research

fields. Existing scalability solutions inside the DSE frameworks will be highlighted.

SESAME (Simulation of Embedded System Architectures for Multilevel Exploration)

is a system-level modelling, simulation, and exploration framework for embedded MPSoC

systems [48]. The framework was not explicitly designed with an aim towards scalability of

23

2. BACKGROUND AND RELATED WORKS

the evaluation environment. Nonetheless, the structure of the application and architecture

models allows for reusability and a reduction in compilation. Additionally, the application

models are executed using POSIX threads. As SESAME is focused on the smaller-scale

MPSoC systems, it is not applicable or capable of facilitating reasonable performance for

large-scale complex dCPS systems, as also concluded by Herget et al. [24].

Another DSE framework called NASA (Non Ad-hoc Search Algorithm) aims to create a

modular general infrastructure for DSE workflows [29] [28]. Jia et al. [29] address the ad-hoc

nature of software infrastructures created to facilitate the system-level DSE experiments.

The NASA framework creates well-defined interfaces between the components of a DSE

workflow. A modular setup allows the developer to easily integrate a variety of simulation

tools and search algorithms in a plug-and-play fashion. Additionally, a dimension-oriented

DSE approach is available, providing the possibility to deploy multiple search algorithms

that simultaneously co-explore a design space [29]. NASA does not necessarily provide out-

of-the-box scalability of the evaluation environment, where a large number of simulations

can be performed. However, it does provide a modular framework where various approaches

can be adapted, switched, or combined to utilise and explore their scalability capabilities.

Both scalability in the search algorithm and the evaluation environment are explored

by the authors of the DeSpErate++ project [42], an extension on DeSpErate [41]. The

search algorithm tries to prune suboptimal regions of the design space, thereby reducing the

number of simulations required. Concerning the scalability of the evaluation environment,

DeSpErate++ supports the usage of a multicore machine or a compute cluster to scale the

number of simulations running in parallel. Additionally, a workload scheduler is present

that employs execution time prediction to improve the utilisation of available computing

resources.

When exploring literature on scalability employed by existing DSE frameworks or in

DSE research, most literature encountered does not explicitly focus on the evaluation

environment. A common topic is the search algorithm, where scalability can be achieved

by effectively reducing the size of the design space or reducing the number of evaluations to

reach an optimal or reasonable solution. An example of such a project is DISPATCH [57],

where a two-step method is employed for efficient DSE of CPS, which first creates a coarse

design and, in the second step, fine-tunes it to meet system requirements. The authors

demonstrate the capability of DISPATCH to require fewer simulations to synthesise valid

designs in comparison to various other search algorithms and human designs.

One of the recent developments in this area is project FARSI (Facebook AR system

investigator) [9]. FARSI presents a DSE framework for Domain-specific SoCs (DSSoCs),

24

2.6 Related Works

which are SoCs with domain-specialised hardware blocks. DSE for DSSoCSs has to deal

with complex systems due to specialised hardware, which results in high development

effort. Additionally, the complexity of the design space is increased by the many specialised

systems, which further complicates the search for an optimal solution. Boroujerdian et

al. [9] address the complexities of DSSoCSs by identifying features that are required to

construct a DSE framework capable of efficiently traversing the complex design space of

DSSoCs. Their evaluation of the FARSI framework shows promising results.

25

3

Approach

In order to create a scalable evaluation workflow, the approach will review constraints,

requirements, desired features, and high-level design choices. At the core of the evaluation

environment are the choice of simulator and design points. Section 3.1 explores the struc-

ture of system models and available scalability in the simulator of choice. As a platform

to enable scalability, distributed computing is utilised. Section 3.2 will discuss the require-

ments and expectations for the scalability of the distributed computing environment.

3.1 Simulation

The evaluation environment is used to evaluate all design points selected by the search

algorithm, studying their extra-functional behaviour and capturing measurable KPIs. As

discussed in Chapter 2, various methodologies exist to evaluate a design point, roughly sep-

arated into benchmark measurements on (prototype) implementations, simulation-based

evaluations, and analytical model estimations. Although prototype evaluations provide

the highest accuracy of the methodologies, the cost and development time prevents the

evaluation of a large collection of design points. Improved evaluation speed can be offered

through analytical model estimations (considered the fastest method for evaluation). How-

ever, usually, those are unable to sufficiently capture system behaviour and characteristics

[47]. Instead, the simulation-based approach can provide both high accuracy (at the cost

of higher evaluation time) and fast evaluation (at the cost of accuracy), bridging the gap

between the prototypes and analytical model estimations. The abstraction level of the

simulation often determines the trade-off between accuracy and speed. As the simulation-

based approach facilitates flexibility in evaluation accuracy and speed, this research, along

with many existing DSE approaches, will utilise a simulator to evaluate design points.

27

3. APPROACH

Central to the evaluation environment is the simulator, which will be the discrete-event

simulator OMNeT++ [59]. The choice for OMNeT++ is based on the large community,

active development, rich feature set, and high adaptability. Next, an overview of the

structure of a design point and an analysis of the available built-in scalability tools is

provided.

3.1.1 Design Points

A design point needs to be created before the evaluation environment can perform an

assessment. As depicted in Figure 2.1, the search algorithm is expected to provide the

design points, which it will need to build according to the specifications of the simulator.

System models in OMNeT++ are based on a modular component architecture, where each

component (called a module in OMNeT++) is programmed in C++. Components can be

assembled into larger components and models using the high-level NEtwork Description

(NED) topology description language. Between components, communication is facilitated

through exchanging messages, which are defined in corresponding message files (.msg).

Configuration files (.ini files) can be used to set parameters for components of the system

models and to set parameters for the execution of the simulation. The modular component

architecture allows for reusability between system models.

As OMNeT++ and its component architecture are used in the evaluation environment,

the design points are defined through the corresponding C++, NED, msg, and ini files.

The evaluation environment will not be involved in the creation of the files for a design

point, nor will it be altering or expanding on the corresponding files. However, compi-

lation of the corresponding design point files will be the responsibility of the evaluation

environment. In order to facilitate a variety of different dynamic, complex interactions

with external applications (i.e., a search algorithm), the evaluation workflow will need to

support both continuous batch and individual inputs of design points. Different search

strategies might have different requirements, and the evaluation environment aims to have

a dynamic adaptation with respect to the input characteristics of the search algorithm.

In order to keep track of design points being processed by a variety of different stages,

an identifier is required throughout the entirety of the evaluation environment. Retrieving

results of evaluation, storing runtime data, design point caching, and communication are

examples of tasks where such an identifier is required. Additionally, a designer might have

the need to reconstruct the corresponding design point after the entire DSE process has

been completed. In order to account for the identifier and reconstruction of a design point,

the evaluation workflow will need to facilitate a token (or a token for each purpose) that

28

3.1 Simulation

enables the respective purposes. Such a token could be generated through a hash (i.e.,

MD5 or SHA) or another (central) mapping process.

3.1.2 Scalability

In order to create a scalable evaluation environment, the capabilities already available in

OMNeT++ will need to be investigated. As discussed in Chapter 2, the baseline facility

provided is a basic sequential simulation running on a single CPU. Small-scale scalabil-

ity facilities are included through local simulation campaigns in the form of a parameter

study and Parallel Discrete-Event Simulation (PDES)[59]. A parameter study explores the

parameter space or can be used to perform repetitions using different random number gen-

erator seeds to increase statistical accuracy. The study can be executed through the same

simulation instance. However, the entire process would be running in sequential order and

the system is prone to failure, as a failure of a single run would abort execution or corrupt

the state for subsequent executions. The latter drawback can be prevented by executing

every point in the parameter space in its own environment. However, this induces a setup

overhead for each evaluation, and the simulations are still running sequentially on a single

CPU.

In order to mitigate the aforementioned drawbacks, OMNeT++ provides the opp_runall

tool [59]. It facilitates the parameter study using multiple CPUs and multiple processes.

The parameter set is divided into batches, where each batch will be processed sequen-

tially in a single environment. As the batches are independent of each other, they can be

scheduled and processed on multiple CPUs. The number of CPUs and batch size can be

configured by the developer. A drawback of the opp_runall tool is that only a single sys-

tem model is supported, classifying it as Multiple Replications In Parallel (MRIP). Parallel

execution of different system models is not supported.

The parameter study, using the opp_runall tool, only utilises a single processor, whereas

large-scale scientific simulations or exploration of a vast design space will require signif-

icantly more computing resources to complete in a manageable time frame. Large-scale

simulation campaigns could utilise the large collection of compute resources from a com-

pute cluster. However, OMNeT++ does not natively feature support to deploy on a

compute cluster, instead referring to batch-queuing, cluster computing, or grid comput-

ing middleware for the adoption of (distributed) compute clusters [59]. Community-based

projects, such as SimDistribution [46], SimProcTC [18], Neurogenesis [20], and OSM [7],

exist, but do not fully satisfy the needs and requirements to explore a vast design space

in the context of DSE for dCPS. The older (2009) SimDistribution project does allow

29

3. APPROACH

separate design points to be executed on different computers. However, the setup of the

compute infrastructure, management and creation of the design points, and the operation

of the environment is a manual process not suitable for DSE of dCPS. As discussed in the

background and related works, the focus on MRIP by the Neurogenesis and OSM projects

also does not satisfy the demands of DSE for dCPS.

Where the parameter study capability utilises multiple sequential execution instances,

PDES alleviates the restriction of sequential simulation by splitting a single system model

into multiple independent Logical Processes (LPs). The simulation is parallelised by ex-

ecuting the LPs on separate compute resources, where each LP will be running as an

independent process. Communication between LPs is performed through message passing

or file-based communication orchestrated by the OMNeT++ simulation engine.

Configuration of PDES in OMNeT++ is performed manually and does have some con-

straints and limitations. Dividing the system model into LPs is not automatic, but is

specified in the model configuration. After the model is split into LPs, a conservative

synchronisation protocol is employed, which guarantees correct order of execution, but

could experience a degradation of performance (compared to the ideal speedup) or even a

slowdown compared to the standard sequential execution. The modularity of OMNeT++

does allow developers to create custom communication and synchronisation classes.

3.2 Distributed Computing

A single sequential simulation instance running on a single compute resource will not be

sufficient to facilitate exploration of the large-scale design space for dCPS in a manageable

time frame. In order to support a scalable evaluation environment, distributed computing

will be employed. Distributed computing allows the evaluation workflow to utilise multiple

computing resources. This section will discuss the facilities, interactions, and expectations

of the distributed computing environment.

3.2.1 Interaction

The interaction of the evaluation workflow with the designer and external application (i.e.,

the search algorithm) is an essential aspect of the solution. Reducing the complexity

of deployment to achieve a straightforward setup process, whilst also facilitating a more

advanced usage to tailor the environment to a specific use-case, needs to be achieved.

Interaction with the environment will be through a central point of access, where tasks

such as submitting design points for evaluation, retrieving results, blocking wait on a set

30

3.2 Distributed Computing

of evaluations, and a shutdown need to be available. Additionally, the configuration of the

workflow and its individual components should be clearly defined, have reasonable defaults,

and be validated before execution of the environment.

External applications (i.e., a search algorithm) build the configuration of the workflow

and each individual design point. In order to initialise the evaluation environment, the

corresponding workflow configuration is submitted. Once the evaluation environment has

completed its initialisation, which includes verification and compatibility of the configu-

ration parameters, initialising each individual workflow component, and the setup of the

compute resources, the external application can interact and trigger the corresponding

functional handlers. For instance, the search algorithm can instantiate a set of design

points. These design points can then be passed to the central workflow manager, which

processes the data accordingly. After submitting, the search algorithm can either continue

operation or wait for the evaluation results of the submitted design points. Additionally,

the central workflow manager can offer other handlers, such as a wait on the results of a

specific set of design points, wait on all design points currently in the workflow, cancel all

design points currently in the workflow, or halt the evaluation environment. After having

evaluated a collection of design points, the search algorithm can access the corresponding

output and local design point storage.

3.2.2 Facilities

Various distributed computing platforms (i.e., compute cluster, grid, or cloud) could be

utilised by the scalable evaluation environment. An approach that can be adopted by

multiple different platforms would provide to a variety of end-users. Nevertheless, this

thesis will assume the adoption of a compute cluster, as this reduces the complexity in the

orchestration of an evaluation workflow through its CMS and (often) homogeneous inter-

connected resources. Different scalability methodologies (i.e., simulation campaigns and

PDES) can be deployed on a compute cluster, where each methodology might facilitate

different DSE strategies or system models. The workflow should support both simulation

campaigns and PDES to provide for a broad range of use cases. Simulation campaigns

can make use of the evaluation environment to run independent processes on separate

resources. PDES will utilise the facilities in OMNeT++ to orchestrate the LPs, which

will be running on separate resources. The evaluation environment has to be aware of the

PDES execution, as it should not oversubscribe resources. Oversubscription of resources

occurs when, for example, two processes are assigned the same single resource at the same

time. Depending on the computing hardware and application workload characteristics,

31

3. APPROACH

oversubscription could potentially lead to a degradation of system performance. The envi-

ronment should not exclusively facilitate scalability through campaigns or PDES. Features

already integrated into OMNeT++ should also be available to the DSE process, such as

the parameter-study feature. Additionally, the simulation environment should not inhibit

or restrict the configurability available within OMNeT++.

When design points arrive in the evaluation environment, they need to be processed and

sent to the computing resources. Input processing also needs to be scalable in order to

provide a scalable evaluation environment. One way to address the dynamic control at the

input is to employ an input queue (or multiple) with a scheduling policy, where the search

algorithm (or the designer) can indicate priority or a hierarchy between design points. The

scheduling policy determines the order in which the design points are to be processed.

However, the order of processing need not be the order of completion, as this highly de-

pends on the evaluation execution time of the individual design points. The evaluation

environment should offer multiple basic scheduling policies (like First In First Out (FIFO)

or simply random order) and provide the designer with the opportunity to define additional

priority-based policies (like Highest Abstraction First in the context of DSE). User-defined

priority policies could be defined through metaconfiguration during the initialisation of the

environment, where priority is defined through the attributes of a design point available

at runtime. Besides solely scheduling the design points, the scheduling policy could also

take into account the available computing resources. Advanced scheduling policies might

consider the performance characteristics of heterogeneous computing resources in a dis-

tributed compute cluster or prioritise different goals/metrics, such as energy efficiency or

average latency.

After the design points have been accepted at the input and processed accordingly, they

can be evaluated on the compute resources. Nevertheless, the evaluation environment

will need to manage the available compute resources. Different distributed computing

clusters might have different CMS through which the compute resources can be reserved

(i.e., a well-known interface is Slurm). Preferably, the evaluation environment should

support the adoption and integration of multiple CMS. During the lifetime of the evaluation

environment, it should manage the available resources, be able to scale up and down if

necessary, and provide an interface for the search algorithm to submit and evaluate design

points.

32

3.2 Distributed Computing

3.2.3 Data Management

As the evaluation environment is part of a larger DSE workflow, the corresponding evalua-

tion results need to be collected and stored. The search algorithm in particular will require

the results of the evaluation of each design point. As discussed in Subsection 3.1.1, the de-

sign point simulation instances will contain the necessary data collection instructions. All

the evaluation results will be recorded and stored such that the other components (i.e., the

search algorithm) can access them using the identifier of the design points when necessary.

Besides the results yielded from the evaluation of design points, the aim is to collect as

much data as possible about the evaluation workflow. Such data includes compute resource

runtime data, scheduling decisions, and general runtime execution events. By collecting

as much data as possible, in-depth analysis can be performed. During or after the DSE

process, the designer might want to analyse the performance or behaviour of the evaluation

environment. By recording and providing all runtime data, external or internal tools may

be able to provide further insights to the designer. It also allows the system maintainer to

track potential erroneous results and behaviour.

Another aspect which needs to be addressed by the evaluation environment is validation.

Whenever irregularities or erroneous behaviour occurs, the evaluation environment should

detect and address it accordingly. A failed simulation might be addressed by retrying or

notifying the search algorithm or designer of the failure. Thorough validation is required

to detect inconsistencies in or between evaluation environment components, as erroneous

behaviour could corrupt the state of the environment or the evaluation results. A basic

validation strategy is to halt the environment whenever any irregularity is detected. How-

ever, a more balanced approach is desired, as such a hard stop is not user-friendly and

could inhibit an effective design process.

As stated before, the evaluation workflow aims to collect as much data as possible. In

order to facilitate extensive data collection, a data storage solution needs to be present.

At first, the evaluation of a single design point will rely on storage accessible locally to

the compute resource. A predetermined structured storage, which is uniform for all design

points, will allow the evaluation environment to manage all data (i.e., results, runtime,

and performance data) generated during an evaluation. After an evaluation has been

completed, the locally stored data needs to be transferred to a central global storage. A

similar strategy using a predetermined structure will need to be employed in this global

storage. When all data corresponding to the design point has been transferred to global

storage, the search algorithm is signalled that it can safely access the required data.

33

4

Methodology

Previous sections described the concept of scalability, available methodologies, challenges,

and the need for a scalable evaluation environment. In this section, a design and imple-

mentation for a scalable workflow is proposed. Building a scalable evaluation environment

involves many design choices, which all affect one another and the overall environment.

The design choices that have been made will be explained in detail and are majorly based

on the context of the workflow and the state-of-the-art. An overall design of a scalable

workflow will be presented and details on the implementation enabling scalability is pro-

vided. Challenges, observations, and findings when applying scalability in practice will be

discussed.

4.1 Design

As this thesis is performed in context of DSE2.0 [24], the evaluation environment is assumed

to be integrated into the DSE general workflow (presented in Figure 2.1). Specifically, it

receives input from the search algorithm and thereby replaces the Evaluate Design Point

and (Performance) Result phases from the Exploration stage. Figure 4.1 illustrates the

design of the scalable workflow, which consists of five major components: (i) Manager,

(ii) Design Point Cache, (iii) Design Point Queue, (iv) Resource Controller, and (v) Output

Handler.

This design is constructed to address the challenges outlined in this thesis so far: (i) Dy-

namically Configurable Workflow, where the workflow of the evaluation environment should

adapt according to the configuration of its components and the configuration of the design

points provided. (ii) Dynamic Input Handling, where the workflow should support com-

plex and dynamic interactions with external applications (i.e., a search algorithm). The

35

4. METHODOLOGY

Manager

Resource
Controller

Design Point
Queue

Output Handler

Evaluation Environment

Search Algorithm

Output Store

Sim Store

WorkerWorkerWorkerWorker

Resources

Design Point
Cache WorkerWorkerWorkerQueue

Queues

Figure 4.1: Scalable evaluation workflow

design point cache and design point queue can facilitate this through scheduling policies,

hierarchical queues, and comparative analysis of the design points provided. (iii) Work-

load-level and Task-level Parallelism, where the main methodology of each are simulation

campaigns and PDES respectively. Further task-parallelism should be supported to al-

low for additional paradigms present in simulators or any custom approaches required.

(iv) Simulator Agnostic, where the distribution and processing of the design points by

the workflow is agnostic to the underlying simulator. The evaluation environment can

be tailored to a specific simulator framework by specifying its corresponding evaluation

routine. When evaluating a design point the corresponding approach of a simulator is

performed. (v) Computing Environment Agnostic, where the computing infrastructure

utilised by the evaluation environment can both be scaled from a smaller-scale (for exam-

ple, a laptop during development) to a larger-scale (for example, an entire compute cluster

during deployment) and utilise various CMS.

Together, these elements facilitate an efficient and scalable evaluation environment ad-

dressing the challenge of scalability in DSE for dCPS. By enabling complex, dynamic inter-

actions and workflows that can provide diverse methodologies of scalability, adaptable to

a variety of environments and infrastructures, the evaluation environment can be adopted

and tailored to suit the needs, requirements, and established environments of designers

and researchers of the next-generation dCPS.

The main component of the workflow is the manager, which oversees and orchestrates

the entire evaluation environment. Interaction of the search algorithm with the evaluation

environment is performed through the manager, where it can send design points, request

36

4.1 Design

evaluation results, halt the workflow, and perform a variety of other tasks. Whenever such

a request arrives, the manager will process and forward it accordingly. By creating a single

point of access, the complexity of interacting with a scalable evaluation environment in

the DSE workflow is reduced. Overall, the primary responsibility is to accept incoming

requests, manage the workflow components, and communication between the workflow

components.

Orchestration of the evaluation environment also includes recording runtime diagnostics.

By tracking the behaviour and performance of the workflow, potential problems or failures

can be investigated. During the execution, the manager will keep track of runtime data

concerning the behaviour of the environment, such as the total number of (successful)

evaluations, total runtime, total number of failures, average waiting time, and more.

Besides input requests, orchestration, and diagnostics, the manager is also where ad-

ditional tasks like aggregation and validation could be performed. Aggregation refers to

the task of processing metrics and data generated by an evaluation, which in turn can

be utilised by the constraint checking of the search algorithm. Such aggregations and

metrics could be defined through meta-configuration files crafted by the user. Validation

includes the validity of the individual components in the workflow and the evaluation of a

design point. The manager has to ensure that the evaluation of design points is valid and

successful. When inconsistencies or violations are detected, an appropriate response (i.e.,

evaluation retry or hard stop of the environment) has to be taken. Although aggregation is

currently not present in the evaluation environment, basic validation of design point eval-

uation and validation of configuration files is in place, where irregularities and exceptions

will be caught and propagated to the manager, which subsequently halts the evaluation

environment.

When the search algorithm provides a design point, the manager will forward it to the

design point cache. Inside the cache, a store keeps track of the status (i.e., status such

as processing or finished) of the design points which have passed through the environ-

ment. When the cache indicates the input is already being processed or has already been

processed, the manager will not forward it to the design point queues. Instead, when

the evaluation results are requested, the manager can forward the data of the previously

evaluated identical simulation instance. A cache is present in the workflow to reduce un-

necessary evaluations occupying valuable compute resources and to cater to a variety of

different search algorithms, which may or may not implement caching themselves, thereby

addressing the dynamic input handling and dynamically configurable workflow challenges.

37

4. METHODOLOGY

After the cache has indicated that the design point has not appeared in the evaluation

environment before, the design point will be forwarded to the design point queues. To

further address the dynamic input handling challenge, the workflow contains multiple de-

sign point queues to facilitate various evaluation strategies, which different DSE workflows

might require. A variety of complex interactions can be facilitated, such as batch evalua-

tions, one-by-one evaluations, or a hierarchical approach, depending on the preference and

requirements of an external application (i.e., a search algorithm), thereby enabling both

dynamic input handling and a dynamically configurable workflow. The workflow configu-

ration set by the user indicates the queues present and their internal settings. The user can

indicate priority between the queues, where the workflow will first evaluate design points

from the highest priority queue (if not specified otherwise). When the search algorithm

provides design points to the manager, it has to specify the queue identifier to which the

design points belong. Each individual queue also has a scheduling policy that can be set

by the user, thereby indicating a local priority between design points in the same queue.

In order to support more complex scheduling policies, such as highest abstraction first in

the context of DSE, the design points accepted by the environment can be annotated with

metadata.

Once the search algorithm commands the environment to start evaluating, the manager

will request design points from the design point queues and forward them to the resource

controller. The primary responsibility of the resource controller is the execution of design

point simulations by managing the compute resources and distributing the workload, which

concerns the workload-level and task-level parallelism challenge. Evaluations can be per-

formed both asynchronously (resource controller immediately continues after distributing

the workload) and synchronously (resource controller explicitly waits for the simulations to

complete). This allows the search algorithm to continue its own workflow whilst the design

points are being evaluated in the background. When a design point arrives at the resource

controller, it will be sent to one of the available worker processes running on the compute

resources. In order to facilitate services such as synchronous waits on a set of design points

or communicating status updates, the design points currently being evaluated are tracked.

After the design point has arrived at the worker process, the source files are compiled into

an executable. If the compilation is successful, the worker will continue with the simulation

and capture the corresponding runtime data and evaluation results.

The last step of the evaluation environment is to retrieve the runtime and evaluation data

of the design points, which is the responsibility of the output handler. Data generated by

the evaluation environment is divided into three global stores: (i) (Intermediate) Results

38

4.2 Implementation

Store, (ii) Logs Store, and (iii) Runtime Store. The (Intermediate) Results Store contains

the evaluation data (i.e., KPIs) required by the search algorithm to perform DSE. All data

generated by loggers, configuration, and command-line output is archived in the Logs Store.

The Runtime Store captures the behaviour and performance of the evaluation environment

by recording information such as average evaluation time, number of evaluations, and

resource utilisation. When the output handler receives a design point, it will transfer the

data to the respective global data stores. Once all data is stored in its respective stores,

the design point has completely passed through the evaluation environment. The search

algorithm can then acquire the evaluation results as desired.

4.2 Implementation

Transferring the design of the scalable evaluation workflow presented in the previous section

to an actual working application involves a large amount of design choices and implementa-

tion details. This section will cover the major design decisions and infrastructure required

to create a working scalable evaluation environment. The implementation of the scalable

evaluation environment is based on Python (version 3.10). Python has been chosen for its

quick prototyping, widespread support, and integration with a large variety of scientific

packages.

4.2.1 Configuration

Each component in the workflow, design points, and the evaluation environment itself has

many parameters and settings that can be configured, enabling a dynamically configurable

workflow. In order to communicate this to the respective entity, JSON is utilised to

generate structured configuration files. All workflow components and design points read

and parse the corresponding files during their initialisation.

The configuration file for the workflow and its components is created before the envi-

ronment is instantiated. Global configuration settings include the path where the search

algorithm stores the simulation source files for each design point, the path for all three

global output stores, and the relative paths to be used by all simulations (i.e., for local

output). Currently, only the resource controller and design point queues require additional

configuration settings. For the design point queues, a set containing identifiers, priorities,

and scheduling policies is specified to represent the available queues. Configuration of the

39

4. METHODOLOGY

resource controller determines the platform that will be utilised and the settings of corre-

sponding parameters, thereby facilitating a dynamically configurable workflow agnostic to

its computing environment.

Each individual design point also has a configuration file detailing evaluation settings.

Where the workflow configuration must be generated before the evaluation environment

is instantiated, an individual design point configuration can be generated at runtime. In

order to facilitate future usage of different simulation frameworks, addressing the simu-

lator agnostic challenge, the configuration includes a field specifying the simulator to be

utilised. Based on this field, the configuration file will contain further settings on the

compilation and simulation of the design point, mostly concerning the usage of available

command-line parameters. For instance, with OMNeT++ settings like PDES, a time limit,

or external libraries can be passed through the configuration file. As configurations are

highly dependant on the simulator and its capabilities, parsing the configuration file is

based on the provided simulator parameter. By creating a simulator-specific parser, future

integration of different simulators can be enabled by providing a corresponding parser. A

simulator-specific parser reads the parameters present in the configuration file, captures

only the parameters expected and valid for that simulator, and arranges the execution of

the simulation corresponding to the parameter values.

4.2.2 Design Point Object

When the search algorithm creates a design point, it must instantiate a Design Point Object

(DPO) defined by the evaluation environment. DPOs are used by the workflow components

during communication, to manage the design points, and to execute the evaluations (i.e.,

when the manager sends work to the resource controller, it sends a list of DPOs). Each

DPO represents a design point, of which its data is contained in a single folder, where the

configuration file and all OMNeT++ simulation source files (excluding external libraries

and external NED files) of the design point have to be present (i.e., the C++, ini, NED,

and msg files). Creating a DPO makes communication between workflow components less

complex, as often only the DPO has to be transferred.

Upon instantiation of a DPO, a Unique IDentifier (UID) is generated to manage and

keep track of the DPOs present inside the evaluation environment. Currently, a basic UID

scheme is utilised based on an MD5 hash of the folder contents from the respective DPO.

In this basic scheme, the following is included in the hash (where subfolders are traversed

recursively): (i) File names, (ii) Folder names (excluding the root folder of the DPO),

and (iii) Content of files. However, effectively identical design points that maybe differ in

40

4.2 Implementation

file structure or names will not be caught by the design point cache. Nevertheless, more

advanced UID schemes can be adopted by the evaluation environment. Such a scheme, for

example, could perform an in-depth analysis of the design point to improve the effectiveness

of caching.

After the DPO has been initialised, the evaluation environment can start processing.

Each DPO defines the compilation and simulation execution through its configuration file,

which addresses the computing environment agnostic challenge. When a worker process

calls the compilation or simulation method of a DPO, the corresponding configuration

parameters are parsed. An exception is raised if a required parameter is absent or an

invalid parameter value is given. Once the configuration has successfully been parsed and

validated, the compilation or simulation will be performed.

To analyse the performance and behaviour of the evaluation environment, each DPO

keeps track of runtime data, such as the start time of the simulation or the total time

spent in the workflow. Additionally, an extensive logging system thoroughly records events

during execution and all output generated by compilation and simulation is stored. By

recording these diagnostics, the user can investigate and analyse problems that may arise

during the evaluation of a DPO.

4.2.3 Distributed Computing

The main component that provides scalability to the evaluation environment is the resource

controller. As shown in Figure 4.1, the resource controller has to manage the worker

processes on the compute resources. The goal was to provide both simulation campaigns

and PDES to the workflow without limiting or restricting the existing capabilities of a

simulator. Simulation campaigns and PDES are approaches that address the workload-

level and task-level parallelism challenges respectively. Development of the workflow was

performed on a compute cluster using the Slurm Workload Manager, where users can

reserve compute nodes from a head node (administrative file node).

During the implementation of the resource controller, many approaches were considered.

An early version explored the use of MPI, where each workflow component and all workers

are a separate process running on the compute resources. However, a significant devel-

opment overhead was present to properly implement communication and synchronisation

protocols, which limits the development of features of the evaluation environment. It was

also recognised that the DSE would be limited by the Slurm reservation on the cluster,

violating the aim to address the computing environment agnostic challenge. When the

entire evaluation environment is on the compute resources, the state and data could be

41

4. METHODOLOGY

corrupted if the reservation is terminated before the execution is completed. Addition-

ally, the environment could not be scaled adaptively during execution, as the number of

compute resources is bounded by the reservation.

Instead of executing the entire environment on the compute resources, a different ap-

proach is employed where only the worker processes are on the compute resources. By

moving the simulation environment away from the compute resources, the resource con-

troller can dynamically adapt the number of compute resources through reservations on

the compute cluster. It also mitigates the potential termination of the environment, as the

workflow components are no longer bound by a reservation.

Another issue encountered in the early version using MPI was the development overhead

of communication and synchronisation protocols limiting the development of evaluation

environment features. Instead of building communication and synchronisation handlers

from scratch, existing well-known task scheduling tools were investigated. Specifically,

Celery, Luigi, and Dask were considered.

Celery is open-source software providing asynchronous task queues based on distributed

message passing [12]. Although the focus is on real-time processing, task scheduling is

supported. A workload is distributed across threads and machines using the task queue.

The task queues are monitored by worker processes requesting work. A task is added to

the task queue by clients. Communication in Celery is message-passing based, where a

message broker is responsible for the transfer of messages between entities. Availability,

redundancy, and horizontal scaling are supported by the Celery system, as multiple workers

and brokers can be present. Additionally, Celery can be deployed on a range of systems,

from a single machine to across compute clusters.

Luigi is an open-source project based on, hosted, and utilised by Spotify to orchestrate

complex pipelines of batch jobs [39]. Luigi is also utilised by other well-known companies

such as GIPHY, SeatGeek, Squarespace, and Red Hat. The intended purpose of Luigi

is to address the orchestration and pipelining usually involved with long-running batch

processes. During these processes, tasks have to be chained and automated, and failures

are likely to occur. In order to focus on the tasks themselves and their dependencies,

Luigi addresses workflow management and provides services such as dependency resolution,

visualisation, handling failures, and command-line integration.

Dask is an open-source Python library for parallel computing and is supported by and

utilised by many companies, such as Anaconda, Microsoft, NASA, NVIDIA, and Shell [14]

[15]. Similarly to Celery and Luigi, it provides dynamic task scheduling optimised for com-

putation. Dask has multiple plugins for large-scale distributed computing, such as Dask

42

4.2 Implementation

(a) Dask workflow [14] (b) Dask Distributed and Dask Jobqueue facilities
[14]

Figure 4.2: Dask, Dask Distributed, and Dask Jobqueue overview.

Distributed [17] and Dask Jobqueue [16]. Dask Distributed provides a centrally managed,

distributed, dynamic task scheduler to extend Dask APIs to moderate-sized clusters. The

scheduler is an asynchronous event-driven process managing a collection of Dask worker

processes spread across multiple machines. Tasks submitted to the scheduler are Python

functions operating on Python objects. The scheduler keeps track of task execution and

scheduling using a directed acyclic graph of tasks, where dependencies and priorities are

integrated. Dask Jobqueue enables users to deploy Dask on job queuing systems typically

found in high-performance supercomputers, academic research institutions, and other clus-

ters. By combining Dask Distributed and Dask Jobqueue, Dask can provide an interface

in Python for dynamic task scheduling on compute clusters.

After careful consideration of and experimentation with the previously discussed schedul-

ing tools, Dask was chosen for its user-friendly interface in Python, widespread support,

active development, integration with CMS through Dask Distributed and Dask Jobqueue,

and the ability to adaptively scale compute resources. By integrating Dask into the re-

source controller, the workflow further facilitates the aims of dynamic configurability and

compute environment agnosticism. Figure 4.2 visualises the workflow of Dask and the ca-

pabilities of Dask Distributed with Dask Jobqueue. Dask has its own built-in collections,

mimicking well-known structures such as the array and dataframe, which are combined

into a task graph to be scheduled on the available resources. Within Dask, arbitrary task

scheduling is performed using Future objects. A Future represents the execution of the

arbitrary task and contains runtime data such as status and result. As the Dask work-

flow supports both local-machine scheduling and cluster-level scheduling through CMS, it

provides a common interface to transfer between prototyping on a local machine and a

compute cluster for deployment.

43

4. METHODOLOGY

Dask Scheduler

Dask Cluster

Dask Client

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Node

Dask Worker

Compute Cluster

Resource Controller

WorkerWorkerWorkerTask

Tasks

Figure 4.3: Resource Controller internal workflow with a single Dask Worker per Compute
Node.

Dask is integrated into the resource controller by creating a Dask Distributed Client and

a Dask Cluster for the CMS using Dask Jobqueue. A Dask Cluster object can allocate

resources on the cluster using the CMS and manage worker processes on the resources using

an internal scheduler. The Dask Client is the interface through which tasks are accepted

and forwarded to the worker processes through the internal Dask Scheduler of the Dask

Cluster. A worker process in Dask can manage multiple tasks at the same time. For

example, all simulations executing on a compute node can be managed by a single worker,

or each simulation could be managed by its own worker. Different configurations could

be optimal depending on the workload characteristics and the hardware platform. The

internal workflow of the resource controller using Dask Distributed with Dask Jobqueue is

demonstrated in Figures 4.3 and 4.4. Upon initialisation of the Dask Cluster, the required

hardware specification for a single job is specified, which is used by the Dask Scheduler to

request resources through the CMS. As the Dask Cluster uses the job specification to scale

to the number of desired resources, a single job should not surpass the specifications of a

single machine in the compute cluster.

In the evaluation environment, a task is defined as a Python function that initiates

the compilation and simulation of a DPO. By defining the evaluation process inside a

DPO, the aims of simulator agnosticism and task-level parallelism are facilitated. When

presenting a task to the Dask Client, a corresponding DPO is provided. By default, a

44

4.2 Implementation

Resource Controller

Dask SchedulerDask Client

Compute Cluster

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Compute Node

Dask
Worker

Dask
Worker

Dask
Worker

Dask
Worker

Dask Cluster

WorkerWorkerWorkerTask

Tasks

Figure 4.4: Resource Controller internal workflow with four Dask Workers per Compute
Node.

single task will run on a single core of a compute node, which fits with the Simulation

Campaign methodology. However, the simulation environment also needs to be capable of

providing task-level parallelism (i.e., PDES), which can utilise more than a single core at

a time. In Dask, task-level parallelism can be enabled through the resources tag. During

the initialisation of a Dask Cluster, the availability of scarce resources (like GPUs) can

be indicated for a worker. Whenever a task requires such a resource, it can be listed as

a requirement in the submission through the Dask Client. A task can only be scheduled

to a worker when the resource requirement can be satisfied. The resource annotation can

be utilised to enable task-level parallelism, like PDES, by indicating the number of slots

available to a worker. Slots can generally be correlated to the number of cores available in

a processor (i.e., a single worker on a 32-core processor would have 32 slots as resources

available, or more if simultaneous multithreading is available). Upon submission of a DPO

requiring PDES, the number of logical processes in the PDES instance will be set as the

required number of slots. When a worker has the required number of slots available, the

task is scheduled and the worker will update its number of available resources. Figure 4.5

visualises the use of slots in a worker to enable the use of PDES. This strategy also enables

the use of the built-in parameter study of OMNeT++ and other methodologies requiring

task-level parallelism or specialised hardware. Furthermore, using the resources annotation

allows the evaluation environment to simultaneously support the Simulation Campaign and

45

4. METHODOLOGY

task-level parallelism methodologies. However, a PDES simulation is limited to utilising

at most all resources on a single compute node, as a Dask Worker process does not span

multiple compute nodes. Additionally, as shown in Figure 4.5c, resources are left unutilised

when a PDES task no longer fits in the currently available slots.

Worker

Slot #1

Slot #3

Slot #5

Slot #7

Slot #2

Slot #4

Slot #6

Slot #8

(a) Resource Controller Dask Worker empty slots.

Worker

SIM 1

Slot #1

SIM 3

Slot #3

SIM 5

Slot #5

SIM 7

Slot #7

SIM 2

Slot #2

SIM 4

Slot #4

SIM 6

Slot #6

SIM 8

Slot #8

(b) Worker slots filled with Campaign Simulations.

Worker

PDES 1

Slot #1

PDES 2

Slot #3

PDES 2

Slot #5

PDES 3

Slot #7

PDES 1

Slot #2

PDES 2

Slot #4

PDES 3

Slot #6

Slot #8

(c) Worker slots filled with PDES Simulations.
One slot is left, as no more PDES Simulation fits.

Worker

SIM 1

Slot #1

PDES 1

Slot #3

PDES 2

Slot #5

PDES 2

Slot #7

PDES 1

Slot #2

SIM 2

Slot #4

PDES 2

Slot #6

SIM 3

Slot #8

(d) Worker slots filled with a mix of Campaign
Simulations and PDES Simulations.

Figure 4.5: Resource Controller Dask Worker slots.

46

5

Evaluation

After having proposed a scalable workflow for an evaluation environment to be utilised in

DSE for dCPS, the evaluation section will investigate its behaviour, performance, and ap-

plicability. In order to evaluate the scalability of the environment, a (computing) platform

and system models are introduced in the setup. After the setup, the experiment definitions

are presented. An experiment definition covers various aspects by detailing the goal, cor-

responding research questions, hypotheses, metric collection, specialised setup factors, and

the corresponding analysis. To finish the evaluation chapter, the results of the experiments

are presented.

5.1 Setup

Before the experiments can be defined and performed, the setup for the evaluation needs to

be discussed. The evaluation setup will discuss the specifications of the chosen computing

platform, the versions of the critical software components, and the system models used

throughout the evaluation.

5.1.1 Platform

A distributed computing platform is imperative for the evaluation of a scalable environ-

ment. The DAS-6 compute cluster was utilised during the evaluation to perform the

experiments. Specifically, the UvA-SNE cluster site was host to the operation. As briefly

alluded to in Chapter 2, DAS-6 is the sixth iteration of Distributed ASCI Supercomputer

(DAS) and part of the cluster computing initiative by the Advanced School for Computing

and Imaging (ASCI). ASCI involves Dutch universities and research institutes [5]. Mul-

47

5. EVALUATION

tiple cluster sites are located at universities and research institutes, allowing researchers

and students to perform research on compute clusters.

DAS-6 contains both single- and dual-socket compute nodes, built by Lenovo [13] [5].

The most common CPU for the single-CPU compute node configuration is the 24-core

AMD EPYC-2 (Rome) 7402P CPU, and for the dual-CPU compute node configuration

there are two 16-core AMD EPYC-2 (Rome) 7282 CPUs. DAS-6 itself is a distributed

system spread over six clusters, which are located at five physical sites. The configuration

of DAS-6 differs per cluster. In the case of the UvA-SNE cluster site, it contains eight dual

16-core compute nodes with a base-clock of 2.8 GHz and each 128 GB of memory. Between

nodes, there is a 100 Gbit/s RoCE Ethernet interconnect. Four of the compute nodes are

equipped with a single NVIDIA A4000 or A5000 GPU. However, the GPUs themselves will

not be utilised throughout the evaluation process. The other four compute nodes contain

a large number of disks intended to be used for IO applications. During the evaluation

process, up to four of the non-IO-specialised compute nodes will be utilised to prevent

occupying the entire UvA-SNE cluster and its specialised nodes. The CMS utilised by the

DAS-6 system is Slurm [63].

Part of the evaluation platform is the software components involved. The scalable envi-

ronment utilised various software packages to provide its service. As stated in Chapter 4,

Python 3.10 is the programming language of choice. As such, well-known modules from

the Python standard library, like os, time, logger, subprocess, and json are used. A consid-

erable part of the scalability of the environment is provided by the resource controller. The

resource controller makes use of Dask, Dask Distributed, and Dask Jobqueue to distribute

the evaluation of design points on an HPC cluster.

5.1.2 Models

In order to perform experiments on the scalable evaluation environment, a set of system

models is required. The system models will be utilised to represent design points within

a DSE process. Firstly, related work on dCPS or CPS system models in OMNeT++

was sought after, as this could provide the desired simulation behaviour in the context of

DSE2.0. However, such a system model suitable for the evaluation process was not found.

Instead, a large Ethernet simulation model from the SPEC CPU® 2017 benchmark suite

[1] (specifically, the model is part of its Integer suite) was chosen as a baseline. The

model is included in INET, an open-source OMNeT++ model suite for wired, wireless and

mobile networks. Specifically, it is the LANs model from the Ethernet examples set. The

model represents a large Ethernet campus backbone, see Figure C.1, containing around

48

5.1 Setup

8000 computers and 900 switches and hubs. In the model, various Ethernet technologies

are mixed (100 Mb full-duplex, 10 Mb UTP, switched hubs, and more). Multiple levels

of medium and smaller networks are interconnected and attached to the backbone. The

model is configured to simulate 120 seconds of simulated time. Henceforth, this system

model will be referred to as INET-LANS.

While INET-LANS can be used throughout simulation campaigns, it is not applicable

to the PDES methodology. The INET suite was not built with parallelisation in mind

and certain modules violate the PDES constraints [59] in OMNeT++ [56]. A different

system model is required to perform evaluations of the scalable environment in this aspect.

The capabilities of the PDES methodology will be evaluated using three different models,

each representing one of the following system behavioural traits: (i) Compute Intensive,

(ii) Communication Intensive, and (iii) Subsystem Intensive. Specifically, compute inten-

sive refers to a system which can be split into distinct logical processes, where the logical

processes are dominated by computation and relatively little communication occurs be-

tween the logical processes. On the contrary, communication intensive refers to a system

which can be split into distinct logical processes, where the logical processes are dominated

by communication and relatively little computation occurs within the logical processes. A

composite of the two is subsystem intensive, where the logical processes contain multiple

systems, which can have a balance of communication and computation, and between the

logical processes there is communication (less prevalent as with communication intensive,

but present nevertheless).

Utilising distinct system models would complicate the evaluation of results between the

different behavioural PDES traits, as the system itself may significantly influence the per-

formance and behaviour. In order to prevent such complications, a single system that

can be configured to demonstrate the three different traits is preferred. One such system

is the Closed Queueing Network (CQN) model, which is also utilised by OMNeT++ to

demonstrate the concept of PDES [59] [45] (OMNeT++ version 6.0.1, CQN sample). Fig-

ure 5.1a illustrates the CQN system model. Inside the CQN, there are modules of Chained

Queues (CQs). Each CQ consists of a Switch (illustrated by the blue circles) and a se-

quence of queues (illustrated by the yellow boxes). Whenever a job arrives in a switch, it

forwards the job, at random, to one of the CQs, where it arrives at the first queue in the

CQ its sequence of queues. Built into the switch is a retention rate, which indicates the

percentage of jobs that should be retained in a CQ (as the retention of a job is based on

random samples, it may not match the retention rate exactly). The retention rate can be

used to increase the volume of communication between logical processes. Communication

49

5. EVALUATION

channels between a switch and all other queues are illustrated using a one-way arrow in

Figure 5.1a. When a job arrives in a queue, computation is simulated as a random wait

(based on an exponential distribution). Once a queue has processed a job, it forwards

the job to the next queue in sequence. The last queue in the sequence forwards the job

to the corresponding switch of the current CQ. Communication channel delays can be set

globally for the channels between a switch and a queue, and between two queues (where

the connection between the last queue and the switch is the same as between two queues).

Additionally, a predefined number of initial jobs can be set to be present in the queues.

Henceforth, this system model will be referred to as CQN.

As is illustrated in Figure 5.1a, the CQN model can be scaled in two ways, where a single

CQ can scale up or down the number of queues, and the CQN can scale up or down the

number of CQs. Combining the flexibility in the model structure with the configurability of

processing and communication channel delays enables the modelling of the three different

PDES traits using the CQN system. During a PDES simulation, the system model is

divided into logical processes by the CQs (i.e., each CQ will be its own independent logical

process).

The compute, communication, and subsystem intensive systems will be modelled as

described in Table 5.1. As can be seen, both the compute and communication intensive

models will consist of eight CQs, each containing a thousand queues long sequence. The

compute intensive system has a retention rate of 0.95, indicating that only 5% of the

jobs will be forwarded to a different CQ. On the contrary, the communication intensive

system has a retention rate of 0.1, where 90% of the jobs are forwarded to a different CQ.

Thereby, the communication intensive model will generate, relative to the computation

intensive model, a lot of communication (and therewith, synchronisation) between logical

processes. Additionally, the communication delay between a switch and a queue is set to

ten seconds for the computation intensive system and 0.1 seconds for the communication

intensive system, creating a low-frequency, high-latency communication channel and high-

frequency, low-latency communication channel, respectively, between logical processes. For

both the computation and communication intensive models, the queue-queue channel delay

and the queue processing time are 0.1 seconds. It should be noted that the delay between

queues, between a switch and a queue, and the processing time are reported as the average

of an exponential distribution. In the computation intensive system, the number of initial

jobs is set to 10, and for the communication intensive system, the number of initial jobs

is set to 1000. By increasing the number of jobs, the amount of communication between

logical processes is further increased, relative to the computation intensive system, for the

50

5.2 Experiment Definition

S0 Q0 Q1 Qn-1 Qn

CQ 0

Sx Q0 Q1 Qn-1 Qn

CQ z

S1 Q0 Q1 Qn-1 Qn

CQ 1

Sx-1 Q0 Q1 Qn-1 Qn

CQ z-1

(a) CQN system

Sx-1 Q0 Q1 Qn-1 Qn

CQ (z+1)y

S0 Q0 Q1 Qn-1 Qn

CQ 0

Sx Q0 Q1 Qn-1 Qn

CQ (z+1)y+z

S1 Q0 Q1 Qn-1 Qn

CQ z

Subsystem 0

Subsystem y

(b) CQN subsystem intensive model structure

Figure 5.1: CQN model structure.

communication intensive model. Concerning the subsystem intensive model, the setup

slightly deviates in structure from the previous two models. Figure 5.1b illustrates the

subsystem intensive model, where the logical processes will contain multiple CQs. Each of

the eight logical processes will contain 10 CQs, resulting in 80 CQs in total for the CQN.

Inside each CQ, 100 queues will be present with a retention rate of 0.9. For the delays

between a switch and a queue, between a queue and a queue, and the processing delay

inside a queue, the same parameter values as for the computation intensive system holds

(i.e., 10 seconds, 0.1 seconds, and 0.1 seconds respectively). The number of initial jobs is

set to 100 for each queue.

5.2 Experiment Definition

After having described the evaluation setup, the experiment definitions can be detailed. An

experiment definition characterises the various aspects, such as research questions, goals,

metrics, and any additional setup, involved in the evaluation. This section is divided into

the following three experiment definitions: (i) Simulation Campaign, (ii) Worker Size, and

(iii) PDES.

51

5. EVALUATION

Table 5.1: Configuration parameters of the CQN models.

Comp. Intensive Comm. Intensive Sub. Intensive

CQs 8 8 80
Queues 1000 1000 100
Retention Rate 0.95 0.1 0.9
S-Q Delay (s) 10 0.1 10
Q-Q Delay (s) 0.1 0.1 0.1
Process Time (s) 0.1 0.1 0.1
Initial Jobs 10 1000 100
Subsystem Size N/A N/A 10

5.2.1 Experiment: Simulation Campaign

The evaluation process will start with the simulation campaign experiment, which focuses

on the behaviour of the environment and the performance of the simulation campaign

methodology. Comparisons against various baselines, such as sequential order simulation,

will be made to analyse the effectiveness of the solution. By investigating the performance

and potential overhead in the workflow, an assessment can be made of the utility that can

be provided by the environment to DSE for dCPS.

The simulation campaign experiment will support the exploration of Research Ques-

tions 1.1, 1, and 1 by analysing the behaviour and performance of applying the simulation

campaign methodology. Investigating the campaign methodology can show whether sim-

ulation campaigns are applicable, viable, performant, and advisable to be utilised in DSE

for dCPS. Additionally, the evaluation of the simulation campaign could uncover potential

adaptations or other considerations that need to be accounted for in future work when

implementing a distributed evaluation workflow to address scalability in DSE for dCPS.

In order to answer the corresponding research questions and create a baseline view of

the performance and utility provided by the environment, multiple sets of evaluations are

performed using the INET-LANS model. As this model provides a computationally de-

manding simulation, representing the demanding task of evaluating a complex dCPS design

point in a DSE process, it will grant insight into the applicability of the proposed solution.

During the evaluation, various metrics will be captured to address the previously stated

goals. Execution time is one of the metrics paramount to the analysis of the proposed

solution. However, the execution time can be considered at specific timeframes (i.e., spe-

52

5.2 Experiment Definition

cific starting and end points). During the simulation campaign experiment, the following

execution time timeframes will be captured and utilised during the analysis: (i) Environ-

ment Time, which is registered from the start of the initialisation up to the termination of

the environment. This time frame includes the initialisation of the environment, creation

of the DASK cluster, resource reservations through the CMS, evaluations in the environ-

ment, clean up of the environment, and the termination of the environment. Henceforth,

equations will refer to the Environment Time as Tcampaign. (ii) Simulation Time, which

is registered from the start up to the end of the simulation task performed by a DPO.

This time frame includes parsing the DPO configuration, execution of the simulation, and

storing the corresponding data and logs. (iii) Compilation Time, which is registered from

the start up to the end of the compilation task performed by a DPO. This time frame

includes parsing the DPO configuration, creation and execution of a Makefile, and storing

the corresponding data and logs. (iv) Worker Time, which is registered from the start

up to the end of a single task in the evaluation environment. This time frame concerns

the execution of an evaluation by a Dask Worker and thereby includes, amongst others,

the Simulation Time and Compilation Time of the corresponding DPO. For all timeframes

listed, the environment records the total time required and the timestamps of the start

and end points.

The other metrics present in the simulation campaign experiment are speedup and ef-

ficiency, which are metrics derived from the execution time. Speedup S is defined as the

ratio of execution time improvement for a solution Ts compared to a specific baseline Tb, as

shown in Equation (5.1). In order to assess the efficiency, the speedup is compared against

an ideal speedup. The ideal speedup is based on the increase in computing resources (i.e.,

going from a single-core setup to 32 cores yields an ideal speedup of 32). The efficiency and

speedup can be calculated using a variety of baselines. During the simulation campaign

experiment, the following baselines will be utilised: (i) Sequential, which represents the

(average) execution time required to perform a single sequential evaluation of the system

model. The execution time is measured as the time it takes to perform the compilation of

the model and the simulation through OMNeT++. An average execution time is captured

by, in sequence, performing ten sequential system evaluations. The evaluation environment

is not involved in this baseline. Henceforth, equations will refer to the Sequential baseline

time as Tseq. (ii) Sequential Multi, which represents, like Sequential, the (average) exe-

cution time required to perform a single sequential evaluation of the system model. The

execution time is measured as the time it takes to perform the compilation of the model

and the simulation through OMNeT++. However, where Sequential captures the average

53

5. EVALUATION

execution time by running evaluations in sequence, Sequential Multi performs multiple

(number is equal to the number of available cores) system evaluations concurrently on the

same computing resource. By performing multiple evaluations concurrently, the simula-

tion campaign behaviour is mimicked and other runtime artefacts (i.e., context switching

and OS interruptions) will be captured. The evaluation environment is not involved in

this baseline. Henceforth, equations will refer to the Sequential Multi baseline time as

Tseq_multi.

By measuring the Environment Time (Tcampaign) and the baseline timeframes, Equa-

tions (5.2)-(5.3) can be utilised to calculate a speedup and efficiency of the solution for

various runtime configurations, where n indicates the number of models evaluated in the

simulation campaign, and r indicates the number of resources available (i.e., 32 for a sin-

gle DAS-6 compute node, as it contains 32 CPUs). Both the speedup and efficiency can

provide insights into the applicability and potential overhead when employing the solution

in different runtime configurations.

S =
Tb

Ts
E =

S

r
(5.1)

Sseq =
Tseq ∗ n
Tcampaign

Eseq =
Sseq

r
(5.2)

Sseq_multi =
Tseq_multi ∗ n
Tcampaign

Eseq_multi =
Sseq_multi

r
(5.3)

The simulation campaign experiments will be performed from 1 up to 4 nodes (limit

imposed by the UvA-SNE DAS-6 cluster site), where a single worker process per nodes is

present. Both weak and strong scaling (as discussed in Section 2.3) will be investigated,

to investigate how the number of compute resources affects the speedup and efficiency

of the solution. Additionally, the performance behaviour when increasing the number of

evaluations for a fixed number of compute resources is analysed.

Throughout the simulation campaign experiment, the maximum number of evaluations

performed concurrently on a single compute node is equal to the number of cores available

in a single compute resource. However, the compute resources in the UvA-SNE cluster have

simultaneous multithreading (SMT) available, allowing two threads to be executed on a

single CPU core. By utilising SMT, the proposed solution can be scaled to 64 evaluation

on a single compute node. Nevertheless, sharing a single core could also potentially lead

to degradation of performance. The same runtime configurations described before will

54

5.2 Experiment Definition

also be executed using SMT in order to investigate the applicability during a simulation

campaign. Besides comparing execution times, Equation (5.4) demonstrates a relative

speedup Srel(x, y), where the SMT and non-SMT models are compared to analyse the

relative performance gain or degradation. In Equation (5.10), x and y indicate the use of

the SMT enabled or non-SMT version used in the comparisons, and Sx and Sy indicate the

corresponding speedup of the version, which can be based on the Sequential and Sequential

Multi execution time baselines.

Srel(x, y) =
Sx

Sy
− 1 (5.4)

5.2.2 Experiment: Worker Size

The evaluation process continues with the worker size experiment, which focuses on the

distribution of evaluations by the resource controller and the corresponding performance

impact of the simulation campaign methodology. Comparisons against two sequential

baselines will be made to analyse the potential performance improvement or degradation

when scaling the number of workers utilised in the solution. By investigating the potential

overhead in the resource controller, an assessment can be made of the resource distribution

configuration for the environment in the context of DSE for dCPS.

The worker size experiment will support the exploration of Research Questions 1.1, 1,

and 1 by analysing the behaviour and performance impact of scaling the number of workers

on a single compute node. By investigating the impact of scaling the worker size, insights

can be gained into the key design choices in the distributed workflow management and their

impact on the scalability and efficiency of the solution. Additionally, the evaluation of the

worker size scalability could uncover potential adaptations or other considerations that

need to be accounted for when employing the solution for different use cases or on different

HPC systems, where it needs to dynamically adapt to address the changing requirements

and needs for different DSE environments.

During the simulation campaign experiment, the number of workers per compute resource

was fixed to one. However, the number of workers can be scaled, potentially alleviating the

administrative workload, which could lead to an improvement in evaluation latency and

overall throughput. Nevertheless, increasing the number of workers per compute resource

could also have a negative impact on performance, as more processes will be running on a

single compute node, and more communication and synchronisation is present within the

resource controller.

55

5. EVALUATION

Similarly to the simulation campaign experiment, the INET-LANS model will be utilised

to represent an evaluation in the DSE of dCPS. Additionally, the Simulation Time, Compi-

lation Time, Worker Time, and Environment Time are recorded to investigate the impact

of different resource controller configurations. In order to analyse the behaviour, compar-

isons will be made against the Sequential and Sequential Multi baselines, as described in

the definition of the simulation campaign experiment.

The worker size experiments will be performed from 1 up to 4 nodes (limit imposed

by the UvA-SNE DAS-6 cluster site), where the number of worker processes per compute

node is scaled by powers of two (i.e., 1, 2, 4, 8, 16, 32). Similarly to the simulation

campaign experiment, both weak and strong scaling (pertaining to the number of compute

nodes) will be covered. The workload per worker process is determined by the weak and

strong scaling primitive of the compute nodes, where the workload, given a fixed number of

workers, stays the same with weak scaling, but decreases with strong scaling. Furthermore,

when the number of compute nodes is fixed, the workload per worker process increases when

the number of workers decreases, and the workload per worker process decreases when the

number of workers increases.

5.2.3 Experiment: PDES

Both the simulation campaign and worker size experiments concerned the simulation cam-

paign methodology of the proposed evaluation environment. During this experiment, the

focus is shifted towards the PDES methodology, which is also available in the proposed

solution. As such, the Compute, Communication, and Subsystem Intensive configurations

of the CQN model, detailed in Table 5.1, will be utilised throughout the evaluation process.

By investigating the performance impact of different behavioural traits in system models,

insights can be gained on the applicability of the PDES methodology for different kinds

of systems. The DSE process might prefer the PDES methodology over the simulation

campaign methodology, depending on the system model itself.

The PDES experiment will support the exploration of Research Questions 1.1, 1, and 1 by

analysing the behaviour and performance of applying the PDES campaign methodology, as

opposed to utilising the sequential simulation campaign methodology. The evaluation of the

PDES methodology investigates the applicability, viability, performance, and advisability

of utilising it in DSE for dCPS. The evaluation of PDES will also provide insights into the

use of PDES on a variety of system model behavioural classes, which can guide a designer

in deciding whether PDES is advisable for all models in their DSE for dCPS (or only for

a subset of the models). Additionally, the evaluation of the PDES could uncover potential

56

5.2 Experiment Definition

adaptations or other considerations that need to be accounted for when implementing a

distributed evaluation workflow to address scalability in DSE for dCPS.

Similarly to the simulation campaign and worker size experiments, the Simulation Time,

Compilation Time, Worker Time, and Environment Time are the main execution time

timeframes recorded. Based on these timeframes, the speedup and efficiency metrics are

calculated. During the PDES experiment, a variety of baselines will be utilised to cal-

culate the efficiency and speedup. Included in the baselines are the Tseq and Tseq_multi

already discussed in Subsection 5.2.1. The following additional baselines will be present in

the PDES experiment: (i) Sequential Campaign, which represents the (average) execution

time required to perform a single campaign that performs an equal amount of sequential

system model evaluations. The execution time is measured as the time it takes to perform

the entire campaign, from the initialisation up to the shutdown of the evaluation envi-

ronment. An average execution time is captured by performing five individual simulation

campaigns, each utilising an independent evaluation environment. Henceforth, equations

will refer to the Sequential Campaign baseline time as Tseq_campaign. (ii) Sequential PDES,

which represents the (average) execution time required to perform a single PDES evaluation

of the system model. The execution time is measured as the time it takes to perform the

compilation of the model and the simulation through OMNeT++. An average execution

time is captured by, in sequence, performing 10 PDES system evaluations. The evaluation

environment is not involved in this baseline. Henceforth, equations will refer to the Se-

quential PDES baseline time as Tseq_pdes. (iii) Sequential PDES Multi, which represents

the (average) execution time required to perform a single PDES evaluation of the system

model. The execution time is measured as the time it takes to perform the compilation

of the model and the simulation through OMNeT++. However, where Sequential PDES

captures the average execution time by running PDES evaluations in sequence, Sequential

PDES Multi performs multiple (the number is equal to the number of PDES models that

fit on the available cores) PDES system evaluations concurrently on the same computing

resource (which is repeated ten times). By performing multiple evaluations concurrently,

the simulation campaign behaviour is mimicked and other runtime artefacts (i.e., context

switching and OS interruptions) will be captured. The evaluation environment is not in-

volved in this baseline. Henceforth, equations will refer to the Sequential PDES Multi

baseline time as Tseq_pdes_multi.

By measuring the Environment Time (Tcampaign) and the baseline timeframes, Equa-

tions (5.5)-(5.9) can be utilised to calculate a speedup and efficiency of the solution for

various runtime configurations, where n indicates the number of models evaluated in the

57

5. EVALUATION

simulation campaign, r indicates the number of resources available (i.e., 32 for a single

DAS-6 compute node, as it contains 32 CPUs), and lp indicates the number of LPs in the

PDES model. Both the speedup and efficiency can provide insights into the applicability

and potential overhead when employing the solution in different runtime configurations.

Sseq =
Tseq ∗ n
Tcampaign

Eseq =
Sseq

r
(5.5)

Sseq_multi =
Tseq_multi ∗ n
Tcampaign

Eseq_multi =
Sseq_multi

r
(5.6)

Sseq_campaign =
Tseq_campaign
Tcampaign

Eseq_campaign =
Sseq_campaign

1
(5.7)

Sseq_pdes =
Tseq_pdes ∗ n
Tcampaign

Eseq_pdes =
Sseq_pdes

r
lp

(5.8)

Sseq_pdes_multi =
Tseq_pdes_multi ∗ n

Tcampaign
Eseq_pdes_multi =

Sseq_pdes_multi
r
lp

(5.9)

Besides comparing execution times, speedup, and efficiency, Equation (5.10) demon-

strates a relative speedup Srel(x, y), where two system models are compared to analyse

the relative performance gain or degradation. In Equation (5.10), x and y indicate the two

system models used in the comparisons, and Sx and Sy indicate the corresponding speedup

of the system models, which can be based on the Sequential, Sequential Multi, Sequential

Campaign, Sequential PDES, and Sequential PDES Multi execution time baselines.

Srel(x, y) =
Sx

Sy
− 1 (5.10)

The PDES experiments will be performed from 1 up to 4 nodes (limit imposed by the

UvA-SNE DAS-6 cluster site), where a single worker process per node is present. Both

weak and strong scaling (as discussed in Section 2.3) will be investigated, as was the case

for the simulation campaign experiment, to analyse how the number of compute resources

affects the speedup and efficiency of the solution. By comparing the speedup and efficiency

for the three different CQN system models, the behaviour, performance, and applicability

of the PDES methodology for DSE of dCPS can be analysed.

5.3 Results

Based on the experiment definitions presented in the previous section, evaluations were

performed according to their respective specifications. All unprocessed data collected and

58

5.3 Results

utilised, together with further visualisations, is presented in Appendix A and B. Analysis

and interpretation of the data will be part of Chapter 6. Nevertheless, this section will

present the experiment outcomes and highlight aspects of the data.

5.3.1 Simulation Campaign

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(a) Speedup for weak scaling

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(b) Speedup for strong scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(c) Efficiency for weak scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(d) Efficiency for strong scaling

Figure 5.2: Efficiency and Speedup for strong and weak scaling with 32 evaluations as
baseline for the single node configuration and the Sequential and Sequential execution time
baselines.

The first experiment performed in the evaluation chapter is the simulation campaign ex-

periment, with the goal of analysing the effectiveness of the solution and utility that can be

provided by the environment to DSE for dCPS. Firstly, data corresponding to the speedup

and efficiency in different node configurations for both weak and strong scaling is displayed

in Figure 5.2. The baseline number of evaluations for a single node is 32, where weak scal-

ing scales the number of evaluations accordingly (i.e., 64 for two nodes, 96 for three nodes,

59

5. EVALUATION

and 128 for four nodes), and strong scaling keeps the number of evaluations consistent for

all node configurations. Two bars per node configuration are shown for the speedup and

efficiency bar plots, where each bar represents the speedup and efficiency for a different

baseline (in this case, the Sequential and Sequential Multi execution time baselines). Weak

scaling demonstrates a steady increase in speedup and consistent efficiency, whereas strong

scaling shows consistent speedup and decreasing efficiency. Additionally, both speedup and

efficiency are consistently greater for the Sequential Multi baseline.

32 64 96 128 160 192 224 256
Number of Evaluations

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Speedup with Sequential baseline

32 64 96 128 160 192 224 256
Number of Evaluations

0.0

0.2

0.4

0.6

0.8

1.0
Ef

fic
ie

nc
y

Efficiciency for an increasing number of evaluations

Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Efficiency with Sequential baseline

32 64 96 128 160 192 224 256
Number of Evaluations

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Speedup with Sequential Multi baseline

32 64 96 128 160 192 224 256
Number of Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiciency for an increasing number of evaluations

Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Efficiency with Sequential Multi baseline

Figure 5.3: Efficiency and Speedup for increasing number of simulations with both the
Sequential and Sequential Multi execution time baseline.

Instead of addressing weak and strong scaling for different node configurations, Fig-

ure 5.3 captures the speedup and efficiency behaviour of the evaluation environment when

increasing the number of evaluations. All four node configurations each exhibit different

behaviour. Nevertheless, when increasing the number of evaluations, a general trend up-

ward for both speedup and efficiency is visible. Figures 5.3a and 5.3b represent the speedup

60

5.3 Results

and efficiency when compared against the Sequential execution time baseline. Figures 5.3c

and 5.3d represent the speedup and efficiency when compared against the Sequential Multi

execution time baseline. As was also visible in Figure 5.2, when Sequential Multi is utilised

as baseline, the speedup and efficiency are greater. Figure 5.3d shows that the single node

configuration with the Sequential Multi baseline approaches an efficiency of 1.0. Dips in

both speedup and efficiency are visible for all multi-node configurations. Nevertheless, the

trend for multi-node configurations in speedup and efficiency remains upward, where each

peak in efficiency or speedup is greater than the previous peak (or at least equal).

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(a) Speedup for weak scaling

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120
Sp

ee
du

p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(b) Speedup for strong scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(c) Efficiency for weak scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(d) Efficiency for strong scaling

Figure 5.4: Efficiency and Speedup for strong and weak scaling with 64 evaluations as
baseline for the single node configuration and the Sequential and Sequential Multi execution
time baselines when SMT is enabled.

The last part of the simulation campaign experiment investigates the use of SMT. Where

the maximum number of evaluations performed concurrently on a single compute node

was equal to the number of cores available in a single compute resource for Figures 5.2

and 5.3, the maximum number of evaluations is doubled by supporting the use of SMT in

61

5. EVALUATION

Figures 5.4 and 5.5. The results shown in Figure 5.4 are based on the same weak and strong

scaling of the number of nodes experiments as demonstrated in Figure 5.2, but the single

node baseline is 64 evaluations instead of 32 evaluations to fill an entire node. As before,

weak scaling demonstrates a steady increase in speedup and consistent efficiency, whereas

strong scaling shows consistent speedup and decreasing efficiency. The Sequential Multi

execution time baseline also consistently demonstrates a greater speedup and efficiency

when compared against the Sequential execution time baseline.

32 64 96 128 160 192 224 256
Number of Evaluations

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Speedup with Sequential baseline

32 64 96 128 160 192 224 256
Number of Evaluations

0.0

0.2

0.4

0.6

0.8

1.0
Ef

fic
ie

nc
y

Efficiciency for an increasing number of evaluations

Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Efficiency with Sequential baseline

32 64 96 128 160 192 224 256
Number of Evaluations

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Speedup with Sequential Multi baseline

32 64 96 128 160 192 224 256
Number of Evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiciency for an increasing number of evaluations

Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Efficiency with Sequential Multi baseline

Figure 5.5: Efficiency and Speedup for an increasing number of evaluations of the INET-
LANS model with both the Sequential and Sequential Multi execution time baselines when
SMT is enabled.

Similarly to Figure 5.3, Figure 5.5 captures the speedup and efficiency behaviour of the

evaluation environment when increasing the number of evaluations. A general trend up-

wards is shown for both speedup and efficiency when increasing the number of evaluations.

When Sequential Multi is utilised as baseline, the speedup and efficiency are greater, as

62

5.3 Results

was also visible in Figure 5.4. Figure 5.5b shows that the single node configuration with

the Sequential baseline approaches an efficiency of 1.0. In the case of the Sequential Multi

baseline, an efficiency greater than 1.0 is achieved. As was the case in Figure 5.3, dips

in both speedup and efficiency are visible for all multi-node configurations. Nevertheless,

the general trend for multi-node configurations in speedup and efficiency remains upwards,

where each peak in efficiency or speedup is greater than the previous peak (or at least

equal).

32 64 96 128 160 192 224 256
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Relative speedup for SMT against non-
SMT with Sequential baseline and strong scaling
(Srel(SMT, regular))

32 64 96 128 160 192 224 256
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Re

la
tiv

e
sp

ee
du

p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Relative speedup for SMT against non-SMT
with Sequential Multi baseline and strong scaling
(Srel(SMT, regular))

Figure 5.6: Relative speedup Srel for an increasing number of evaluations of the INET-
LANS model with both the Sequential, Sequential Multi execution time baselines when SMT
is enabled or disabled.

In order to compare the non-SMT and SMT enabled approaches, Figure 5.6 demonstrates

the relative speedup Srel for an increasing number of evaluations with both the Sequential

and Sequential Multi baselines. It is shown that the SMT enabled approach performs,

relative to the non-SMT approach, worse with a lower number of evaluations. However,

the SMT enabled approach improves and eventually reaches greater performance, relative

to the non-SMT approach, for larger number of evaluations. For all number of evaluations

considered, the single-node configuration shows improved relative performance when en-

abling SMT. An increased number of compute nodes also demonstrates a higher number

of evaluations before the relative performance has equalised, and afterwards surpassed, for

the SMT enabled approach compared to the non-SMT approach.

63

5. EVALUATION

5.3.2 Worker Size

120

125

130

135

140

145

150

155

Ex
ec

ut
io

n
tim

e
(s

)

Execution time for increasing worker sizes

Sequential baseline
Sequential Multi baseline
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

1 2 4 8 16 32
Worker Size

0

(a) Evaluation time for weak scaling

120

125

130

135

140

145

150

155

Ex
ec

ut
io

n
tim

e
(s

)

Execution time for increasing worker sizes

Sequential baseline
Sequential Multi baseline
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

1 2 4 8 16 32
Worker Size

0

(b) Evaluation time for strong scaling

Figure 5.7: Evaluation time when increasing the number of workers on a single node for
both weak and strong scaling with 32 evaluations as baseline for the single node configuration.

After the simulation campaign experiment follows the worker size experiment, where the

goal is to analyse the performance impact of employing different worker configurations

in the resource controller. Firstly, data corresponding to the execution time of a single

evaluation is displayed in Figure 5.7, where the Sequential and Sequential Multi execution

time baselines are illustrated by the grey dotted horizontal line and striped horizontal

line respectively. The baselines are the addition of Compilation Time and Simulation

Time, and the single evaluation time shown is based on the Worker Time (as explained

in Subsection 5.2.2). Figure 5.7a displays the evaluation time for weak scaling (i.e., for a

single node the workload is 32, for two nodes it is 64, for three nodes it is 96, and for four

nodes it is 128). Figure 5.7b displays the evaluation time for strong scaling (i.e., for all

node configurations, the total workload is 32 evaluations). Overall, an increase in execution

time is visible when increasing the number of workers on a single node for all node counts,

where strong scaling shows more variability between node configurations.

64

5.3 Results

5.3.3 PDES

1 2 3 4
Number of Nodes

0

10

20

30

40

50

60

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(a) Communication intensive with weak scaling

1 2 3 4
Number of Nodes

0

10

20

30

40

50

60

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(b) Communication intensive with strong scaling

1 2 3 4
Number of Nodes

0

10

20

30

40

50

60

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(c) Computation intensive with weak scaling

1 2 3 4
Number of Nodes

0

10

20

30

40

50

60

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(d) Computation intensive with strong scaling

1 2 3 4
Number of Nodes

0

10

20

30

40

50

60

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(e) Subsystem intensive with weak scaling

1 2 3 4
Number of Nodes

0

10

20

30

40

50

60

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(f) Subsystem intensive with strong scaling

Figure 5.8: Speedup for strong and weak scaling with 4 PDES evaluations of a CQN model
as baseline for the single node configuration and the Sequential, Sequential Multi, Sequential
Campaign, Sequential PDES, and Sequential PDES Multi execution time baselines.

The final experiment targets the PDES methodology from the proposed solution, whereas

the baseline and worker size experiments employed the simulation campaign methodology.

65

5. EVALUATION

Initially, various baselines are set in Appendix B Figures B.2, B.3, and B.4, which present

the performance for the sequential versions of the communication, computation, and sub-

system intensive systems with both the Sequential and Sequential Multi baselines. Similar

behaviour is demonstrated, regarding speedup and efficiency for weak and strong scaling

of the compute nodes, as was observed in the simulation campaign experiment.

1 2 3 4
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(a) Communication intensive with weak scaling

1 2 3 4
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(b) Communication intensive with strong scaling

1 2 3 4
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(c) Computation intensive with weak scaling

1 2 3 4
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(d) Computation intensive with strong scaling

1 2 3 4
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(e) Subsystem intensive with weak scaling

1 2 3 4
Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi
Sequential Campaign
Sequential PDES
Sequential PDES Multi

(f) Subsystem intensive with strong scaling

Figure 5.9: Efficiency for strong and weak scaling with 4 PDES evaluations of a CQN model
as baseline for the single node configuration and the Sequential, Sequential Multi, Sequential
Campaign, Sequential PDES, and Sequential PDES Multi execution time baselines.

66

5.3 Results

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Computation against communication intensive

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Subsystem against communication intensive

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Computation against subsystem intensive

Figure 5.10: Relative speedup Srel(x, y) com-
paring model x against model y for increasing
number of PDES CQN model evaluations with
the Sequential Multi execution time baseline.

Figures 5.8 and 5.9 present the speedup

and efficiency for the PDES enabled ver-

sions of the communication intensive,

computation intensive, and subsystem

intensive systems for the Sequential, Se-

quential Multi, Sequential Campaign, Se-

quential PDES, and Sequential PDES

Multi execution time baselines. As is

shown, the system models demonstrate

similar behaviour with regard to speedup

and efficiency for weak and strong scaling

of the compute nodes as was observed

in the simulation campaign experiment.

However, both the speedup and efficiency

are significantly lower when compared to

the Sequential and Sequential Multi base-

line data shown in Figure 5.2. However,

for the Sequential PDES and Sequen-

tial PDES Multi baselines, similar per-

formance is shown. The efficiency com-

pared against the Sequential Campaign

approaches roughly 3.0 for both weak and

strong scaling. Between the communi-

cation, computation, and subsystem in-

tensive models, similar performance pat-

terns with respect to the different base-

lines are demonstrated.

Figures 5.10 and 5.11 show the rela-

tive speedup Srel between the communi-

cation intensive, computation intensive,

and subsystem intensive models for the

Sequential Multi and Sequential PDES

Multi execution time baselines respec-

tively. To concentrate on the impact of the behavioural traits during PDES campaigns

compared against a baseline representing full concurrent utilisation of a compute resource,

67

5. EVALUATION

only relative speedups are shown for the Sequential Multi and Sequential PDES Multi

execution time baselines. All relative speedups Srel, including the remaining execution

time baselines (i.e., Sequential, Sequential Campaign, and Sequential PDES Multi), are

demonstrated together in Appendix B.

Figures 5.10 and 5.11 show that the subsystem intensive system model demonstrates

a greater relative speedup when compared against the communication and computation

intensive models the respective execution time baselines. The communication intensive

model shows a greater relative speedup compared to the computation intensive model for

the Sequential Multi execution time baseline. However, for the Sequential PDES Multi

execution time baseline, the computation intensive model shows a greater relative speedup

compared against the communication intensive model.

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Computation against communication intensive

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Subsystem against communication intensive

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Computation against subsystem intensive

Figure 5.11: Relative speedup Srel(x, y) comparing model x against model y for increasing
number of PDES CQN model evaluations with the Sequential PDES Multi execution time
baseline.

68

6

Discussion

After having evaluated the proposed solution, a scalable workflow for an evaluation envi-

ronment to be utilised in DSE for dCPS, the corresponding outcomes will be analysed and

interpreted in this chapter. Specifically, the behaviour, performance, effectiveness, and ap-

plicability of the proposed solution will be studied for a variety of use cases. The discussion

will cover each experiment, where the evaluation results will be connected and interpreted

relative to the research questions, objectives, and context of the research. Finally, an over-

all reflection is presented on the objectives of the research, its research questions, and the

contributions to the research field.

6.1 Simulation Campaign

The first experiment defined in the evaluation chapter is the simulation campaign ex-

periment, with the goal to analyse the effectiveness of the solution and utility that can

be provided by the proposed environment to DSE for dCPS. Specifically, the simulation

campaign methodology is investigated. Figure 5.2 demonstrates, for both speedup and ef-

ficiency, the weak and strong scaling behaviour when the INET-LANS model is evaluated

in a simulation campaign with 32 evaluations as baseline for the single node configura-

tion. Weak scaling shows a steady proportional growth in speedup when the number of

nodes is increased, which translates to a practically consistent efficiency with a standard

deviation of 0.02 overall for both execution time baselines. As the efficiency remains con-

sistent, the overhead of scaling the number of compute nodes does not significantly affect

the performance of the solution. By providing a steady efficiency when scaling the number

of compute nodes, the solution facilitates a predictable service. Strong scaling shows the

opposite of weak scaling, where the speedup is practically consistent, which translates to

69

6. DISCUSSION

a steady proportional decline in efficiency. The average standard deviation, pertaining to

the standard deviations of node configurations, of 0.005 in efficiency for both execution

time baselines with strong scaling shows there is less variability in comparison to weak

scaling, which has an average standard deviation, pertaining to the standard deviations of

node configurations, of 0.015 and 0.017 for the Sequential and Sequential Multi execution

time baselines respectively.

Figure 5.2 also shows that the speedup and efficiency improve when comparing the

environment time of the simulation campaign against the Sequential Multi baseline instead

of the Sequential baseline. Due to the Sequential Multi baseline utilising all cores on a

machine, it is likely that OS interruptions and context switching result in a 10.4% slower

execution time baseline. As the Sequential Multi baseline is slightly slower in comparison

to the Sequential baseline, the speedup and efficiency will be slightly greater.

Figure 5.2 only demonstrates the speedup and efficiency for 32 evaluations as baseline for

weak and strong scaling on the number of compute nodes. However, the performance and

behaviour when scaling the number of evaluations is also of interest, which is presented in

Figure 5.3 for both the Sequential and Sequential Multi baseline. The graphs show strong

scaling, as the number of evaluations is consistent between all node configurations. Both

the speedup and efficiency graphs demonstrate patterns with drops, which differ for each

node configuration. Specifically, the two-node configuration shows drops at 96, 160, and

224 evaluations and peaks at 64, 128, 192, and 256 evaluations in Figures 5.3a, 5.3b, 5.3c,

and 5.3d. The pattern of peaks and drops aligns with the multiples of the number of cores

available for each node configuration. When the number of evaluations is a multiple of

the number of cores available, all nodes will be fully utilised. However, when the number

of evaluations is not a multiple of the number of cores available, dividing the evaluations

will result in some of the available cores waiting on remaining evaluations to be completed

(i.e., there is a remainder = evalutions mod cores, which does not occupy the entirety

of the cores available). As such, the environment time of the simulation campaign will

be increased by the time of a single evaluation (assuming a perfect transition between

evaluations and no additional overhead), but the workload does not grow relatively to the

case where the number of evaluations is a multiple of cores. This effect is not seen for

the single node configuration, as every sample point is a multiple of its number of cores

available.

Figures 5.3b and 5.3d show a growing trend in efficiency when increasing the number

of evaluations for all node configurations. A growing trend in efficiency indicates that

70

6.1 Simulation Campaign

the solution benefits from an increased number of evaluations, where the cost of initialisa-

tion is masked by an increasing environment time caused by the increment in number of

evaluations. Especially, the single node configuration with the Sequential Multi baseline

approaches an efficiency of 1.0, which indicates that there is little overhead induced by the

runtime of the proposed solution (compared against the Sequential Multi baseline) and the

initial lower efficiency is likely caused by the single-time cost of initialisation. The multi-

node configurations also demonstrate a trend towards an efficiency of 1.0 and presumably

require more evaluations to close the gap. Additionally, when considering the speedup

of multi-node configurations in Figures 5.3a and 5.3c, it is demonstrated that employing

more compute nodes on an identical number of evaluations results in a speedup (approxi-

mately) equal or greater. Consequently, based on the multi-node configurations evaluated,

it can be concluded that the evaluation environment will show improved performance when

increasing the number of compute nodes available. However, adding additional compute

nodes for improved performance can be considered a trade-off, as it can (eventually) show

a diminishing return on investment. For example, when evaluating 128 system models,

Figure 5.3a shows a slight improvement when employing three compute nodes over two

compute nodes. However, this slight increase in performance might not be worth it to the

designer or system administrator to employ an additional compute node. Furthermore,

when the evaluations become thinly spread over the compute nodes (or when there are

more compute nodes than evaluations), adding an additional compute node might intro-

duce more overhead than it will provide additional performance to the system.

Lastly, the impact of Simultaneous MultiThreading (SMT) was analysed. Figure 5.4

demonstrates the weak and strong scaling behaviour when enabling SMT, with 64 evalua-

tions as the baseline for a single node configuration. Comparing the data to the non-SMT

approach outcomes shown in Figure 5.2 demonstrates similar behaviour with an overall

slightly higher speedup and efficiency. SMT could therefore have better utilisation of the

compute node resources. However, the improvement could also be caused by the increased

number of evaluations, which can improve the overall speedup and efficiency, as was shown

for the non-SMT approach data in Figure 5.3. Figure 5.5 demonstrates the speedup and

efficiency when scaling the number of evaluations with SMT-enabled. When comparing

Figures 5.3 (non-SMT) and 5.5 (SMT-enabled) to analyse the behaviour and impact of

enabling SMT, it is observed that for lower number of evaluations the speedup and effi-

ciency are significantly lower when enabling SMT (i.e., a 44.1% decrease from non-SMT

to SMT enabled for the three nodes with 96 evaluations configuration). This initial phase

of worse performance is caused by the division of evaluations over the compute nodes.

71

6. DISCUSSION

As each node now supports 64 evaluations, performing 64 evaluations on two nodes only

utilises all 64 available spots on a single node. If the workload division in the initial phase

would be distributed more equally, the performance would likely equal the non-SMT ap-

proach. Nevertheless, once the full capacity of the compute node(s) has been reached,

the SMT-enabled approach outperforms the non-SMT approach for the same number of

evaluations (i.e., a 3% increase from non-SMT to SMT enabled for the four nodes with

256 evaluations configuration and 12.2% increase from non-SMT to SMT enabled for the

two nodes with 224 evaluations configuration). Additionally, the pattern of drops will be

of lower frequency, as the tipping points require more evaluations. Where the single node

configuration approached 1.0 and the multi-node configurations demonstrated a similar

trend in Figure 5.3d, when enabling SMT, the single node configuration beats the 1.0 effi-

ciency and the two- and three-node configurations approach 1.0. Figure 5.6 demonstrates

the relative speedup between the SMT-enabled and non-SMT versions, showing the advan-

tage of non-SMT at a lower number of evaluations, and SMT providing greater speedups

for a larger number of evaluations. By enabling SMT, the theoretical peak performance,

which considers the full utilisation of a single core by a single evaluation based on the

respective execution time baseline, is beaten. Thereby demonstrating that enabling SMT

significantly improves the utilisation of a compute node, providing an increase in perfor-

mance compared to the non-SMT approach for both the Sequential and Sequential Multi

execution time baselines.

When considering Research Question 1.1 on enabling efficient and scalable evaluation of

the vast design space of complex, distributed Cyber-Physical Systems, the proposed solu-

tion shows it can provide efficient and scalable evaluation when employing the simulation

campaign methodology with the complex INET-LANS model mimicking a dCPS. Both

experiments on scalability in compute nodes and scalability in the number of evaluations

demonstrate the capability of the proposed solution to facilitate scalable and efficient eval-

uation when scaling the number of compute nodes and number of evaluations. When SMT

is enabled, the efficiency of the simulation campaign methodology increases further and

the environment achieves a greater utilisation of the available compute nodes.

6.2 Worker Size

The second experiment defined in the evaluation chapter is the worker size experiment,

with the goal to analyse the performance impact of employing different worker configu-

rations in the resource controller. Similarly to the simulation campaign experiment, the

72

6.2 Worker Size

simulation campaign methodology is investigated together with the INET-LANS model.

However, instead of investigating the performance and behaviour when scaling the number

of compute nodes or number of evaluations, the impact of the number of workers present

on a single compute node is analysed. The number of workers indicates the number of

node-local task manager processes, where each worker can manage multiple tasks (i.e.,

a single worker could manage 32 evaluations, or four workers could each manage eight

evaluations).

Figures 5.7a and 5.7b show the impact of scaling the number of workers on a single

node for both weak and strong scaling, with 32 evaluations as baseline for the single node

configuration. Both the weak scaling and strong scaling graphs demonstrate an upwards

trend in evaluation time, where an increase in worker size yields a slowdown in evaluation

time. Where weak scaling shows consistent behaviour between node configurations, strong

scaling shows more variability between node configurations. This difference is likely caused

by the division of work, causing reduced workloads per additional compute node added,

which is inherent to strong scaling. The upwards trend in evaluation time indicates that

the increase in worker size reduces the performance of the solution, likely caused by the

overhead of additional processes present on the compute nodes. At the scale of the number

of compute nodes evaluated, there does not seem to be a significant impact on the evalua-

tion time when scaling the number of compute nodes (and the number of worker processes

per compute node remains the same) for weak scaling.

Besides the increase in evaluation time, the increase in number of workers could also

degrade the performance of the internal Dask Scheduler, which is responsible for the inter-

nal communication. An increased number of workers will result in more communication,

synchronisation, and administration overhead in the resource controller. However, this is

likely to only occur with a significantly larger number of compute nodes. Nevertheless,

reducing the number of workers required per compute node will reduce the likelihood of

encountering this problem.

The choice for the number of workers can depend on multiple factors, such as redundancy

and global locks. In the case of simulations through OMNeT++, it is shown that a single

worker suffices. The reason a single worker suffices is likely caused by the Python GIL

(Global Interpreter Lock) [62]. As the OMNeT++ process launched by a task in the worker

process does not occupy the GIL, a worker can manage multiple evaluations in parallel.

Whenever tasks would require the GIL, multiple worker processes would be advisable in

order to reduce contention (i.e., if all tasks require the GIL, a single worker per task will

likely be appropriate).

73

6. DISCUSSION

When considering Research Question 1.1 on enabling efficient and scalable evaluation

of the vast design space of complex, distributed Cyber-Physical Systems, the worker size

experiment shows, when employing the proposed solution with the INET-LANS model

mimicking a dCPS, scalable and efficient evaluation is best achieved when applying a single

worker process per compute node. However, considering Research Question 1, different

workloads utilising the same workflow might require a different configuration.

6.3 PDES

The last experiment defined in the evaluation chapter is the PDES experiment, with the

goal of investigating the performance impact of different behavioural traits in system mod-

els and gaining insights into the applicability of the PDES methodology for different kinds

of systems. Where the simulation campaign and worker size experiments concerned the

simulation campaign methodology, the DSE process might prefer (or require) the PDES

methodology over the simulation campaign methodology, depending on the system mod-

els to be explored. Compared against the simulation campaign experiment, the sequential

versions of the communication, computation, and subsystem intensive CQN models demon-

strate similar behaviour pertaining to the speedup and efficiency of weak and strong scaling

(see Figures B.2, B.3, and B.4 respectively).

The speedup and efficiency achieved by performing a simulation campaign with four

instances of the PDES-enabled CQN models as baseline for the single node configuration

are shown in Figures 5.8 and 5.9. As was the case for their respective sequential models,

the behaviour pertaining to weak and strong scaling of compute nodes is similar to the

simulation campaign experiment. Additionally, the different models demonstrate roughly

similar performance. However, the subsystem intensive CQN model has a slightly higher

speedup and efficiency overall. The efficiency of the PDES campaign compared to the

Sequential and Sequential Multi execution time baselines is relatively low (below 0.5) for

all CQN models. Nevertheless, when compared against the Sequential PDES and Sequential

PDES Multi execution time baselines, the performance approaches the efficiency as was

seen in the simulation campaign experiment. Therefore, the integration of PDES-enabled

system models in a simulation campaign does not significantly alter the behaviour and

performance relative to a sequential system model execution campaign, which is compared

against a sequential system model execution baseline (i.e., the Sequential and Sequential

Multi baselines). An outlier in efficiency is demonstrated when considering the Sequential

Campaign execution time baseline. As the simulation campaign on four sequential versions

74

6.3 PDES

of the corresponding CQN model is highly inefficient considering the utilisation of the

available compute capacity, the efficiency of four PDES-enabled CQN models utilising the

entire compute node compared against the inefficient sequential simulation campaign is

significantly above 1.0 (i.e., 2.78, 2.14, and 3.02 average efficiency for the communication,

computation, and subsystem intensive model respectively with weak scaling).

In order to compare the communication, computation, and subsystem intensive CQN

models, Figures 5.10 and 5.11 demonstrate the relative speedup Srel for the Sequential Multi

and Sequential PDES Multi execution time baselines respectively. The relative speedups

for the Sequential, Sequential Campaign, and Sequential PDES execution time baselines

can be found in Figures B.5, B.7, and B.8 respectively. The relative speedup Srel enables

a clear comparison of the three models, each representing a different behavioural trait, for

the different execution time baselines. It is demonstrated that the subsystem intensive

CQN model has a greater relative speedup compared to both the communication and com-

putation intensive models for all execution time baselines. Comparing the communication

and computation intensive CQN models shows that the communication intensive system

has greater relative speedup for the Sequential, Sequential Multi, and Sequential Campaign

baselines. However, for the Sequential PDES and Sequential PDES Multi baselines, the

computation intensive model surpasses the communication intensive model. Therefore,

the communication intensive model demonstrates a greater relative speedup for all se-

quential system execution baselines, whereas the computation intensive model exceeds the

communication intensive model for all parallel system execution baselines. One possible

explanation for this behaviour is that decomposing a computational intensive model adds

(relatively) more overhead, thereby creating a relatively slower PDES-based execution time

baseline, than is the case for a communication intensive model. However, a more in-depth

and extensive analysis would be required to answer conclusively.

Overall, all three CQN PDES system models exhibit similar performance behaviour

related to weak and strong scaling of the number of compute nodes and when scaling

the number of evaluations. The subsystem intensive CQN model slightly outperforms the

communication intensive and computation intensive models. As the PDES implementation

in OMNeT++ utilises conservative synchronisation, the differences in performance of the

three different behavioural traits might be more pronounced when employing different,

more optimistic synchronisation protocols.

When considering Research Question 1.1 on enabling efficient and scalable evaluation

of the vast design space of complex, distributed Cyber-Physical Systems, the proposed

solution shows it can provide efficient and scalable evaluation when employing the PDES

75

6. DISCUSSION

methodology with a variety of PDES-enabled CQN models. A difference in performance

between system models, each exhibiting a distinct behavioural trait, was demonstrated.

The difference in performance poses a key consideration (Research Question 1) when util-

ising the proposed solution, as the characteristics of a system could influence the choice

between sequential evaluation or PDES-enabled evaluation and the decomposition of the

model during the DSE process.

6.4 General

The objective of this research, set in Chapter 1, was to address the challenge of scala-

bility in the evaluation environment of the design process employed by researchers and

designers of the next-generation dCPS. Thereby investigating and developing a scalable

and efficient approach that can evaluate a vast number of complex dCPS design points by

exploiting distributed simulation techniques. In order to address the objectives, a main

research question and subsequent research questions extending it, were formulated. The

main Research Question 1.1 investigated how a distributed evaluation workflow can be

designed and dynamically adapted to enable efficient and scalable evaluation of the vast

design space of complex, distributed Cyber-Physical Systems. In this thesis, an evaluation

environment was proposed to facilitate scalable and efficient evaluation in the context of

DSE for dCPS. Throughout the approach and methodology, the current state-of-the-art

was considered (and applied where necessary), whilst also considering innovative, novel

approaches and taking into account requirements and desirable features with regards to

DSE for dCPS. Identifying and exploring design considerations to develop a distributed

evaluation workflow for efficient and scalable evaluation of complex, distributed cyber-

physical systems corresponds to Research Question 1. By inspecting, utilising, evaluating,

and combining the various design possibilities, a complete evaluation environment was

proposed, implemented, and evaluated. Through the evaluation, Research Question 1 was

addressed, and the solution demonstrated a distributed evaluation workflow designed to

scale evaluations efficiently across multiple computing resources. The considerable breadth

of design considerations, extensive evaluation, and significant context dependant implemen-

tation requirements discovered during the study of the state-of-the-art, design proposal,

and implementation of the workflow, have contributed to a variety of possible future re-

search directions for improving distributed evaluation workflows and addressing scalability

challenges in the design space exploration of complex, distributed cyber-physical systems.

76

6.4 General

Besides investigating the efficiency and scalability, the solution has a variety of features

and facilities to enable and cater to a diverse set of DSE for dCPS environments. Firstly,

the hierarchical implementation of design point queues, where each queue is regulated by its

own scheduling policy, allows the designer to configure dynamic input handling, enabling

complex interactions between the evaluation environment and the search algorithm (or

other external applications). Another feature of the evaluation environment, enabling it to

cater to a variety of deployments for DSE of dCPS, is that its agnostic to the underlying

simulator infrastructure. The evaluation environment utilises a DPO to communicate the

design points between workflow components, where only a subset (i.e., general data like the

UID and local storage location) of the DPO parameters are accessed by the environment.

Inside each DPO is defined where the design point data is stored and how it should compile

and execute the respective design point. Other simulator frameworks can be supported

inside the evaluation framework by configuring the compilation and execution functionality

of the DPO according to the respective simulator. Together with the DPO, the task

distributed by the Dask framework can be adjusted to integrate more functionality required

(currently, it only calls the compile and execution functionality of the DPO).

Another area where the evaluation environment can be adapted is the compute infras-

tructure. The configuration of the environment parses the compute infrastructure settings

and forwards them accordingly to Dask, enabling the solution to easily be scaled up and

down (from simple tests on a laptop to full-scale deployment on a large cluster) and utilise

a variety of commonly used CMS like PBS, SLURM, LSF, and SGE. Facilitating small-

scale tests and a variety of common infrastructures allows the evaluation environment to be

adopted and utilised in a broad range of environments targeting DSE for dCPS or similar

applications.

During the approach, methodology, and evaluation of the proposed evaluation envi-

ronment, simulation campaigns and PDES were the two main scalability methodologies

discussed. By facilitating both workload-level and task-level parallelism, the solution sup-

ports the utilisation of the two methodologies both independently and simultaneously.

The support of the simulation campaign is inherently available through the distribution of

the workload over compute resources. Task-level parallelism is enabled through the slot-

mechanic, described in Subsection 4.2.3, supporting a variety of paradigms (i.e., PDES and

OMNeT++ native parameter studies). Additionally, the slots mechanic enables the inclu-

sion of custom task-level approaches, as the task-level parallelism is encoded in the DPO

simulation execution definition and not accessed by the workflow components. Thereby,

not only are the PDES paradigm and the OMNeT++ native parameter study supported,

77

6. DISCUSSION

future task-level parallelism execution of other simulator frameworks or DSE-related ap-

plications are facilitated.

78

7

Conclusion

This thesis considers the entirety of the evaluation environment to address the scalabil-

ity challenge in the design process employed by researchers and designers of the next-

generation complex dCPS. The research builds on a prior literature study investigating

state-of-the-art methods and techniques for the scalability of system-level simulation envi-

ronments applicable to the evaluation of dCPS designs [30]. Both the literature study and

this thesis were conducted in the context of the DSE2.0 project [24], where the entirety

of the state-of-the-art in Design Space Exploration is under scrutiny. Two challenges in

advancing the field towards efficient and scalable DSE for distributed Cyber-Physical Sys-

tems were identified by the DSE2.0 project; (i) Modelling complex dCPS, and (ii) Scalable

DSE.

Especially challenge (ii) was of interest to the research in this thesis. In order to ad-

dress the scalability challenge in DSE of complex dCPS, the research started by creating

a baseline of understanding of the state-of-the-art, its complexity, research directions, and

challenges. Research areas such as CPS, DSE, Scalability, and Distributed Computing

were considered. A related works section discussed the state-of-the-art methods and tech-

niques researching scalability of system-level simulation environments applicable to DSE

of dCPS. The capability and applicability of existing scalability and DSE methodologies

were investigated, where it was argued that existing approaches do not sufficiently address

the challenge of scalability in the context of DSE for complex dCPS.

After having investigated, reviewed, and discussed the background and related works per-

taining to the challenge of scalability in the evaluation environment for the DSE of dCPS, a

solution was proposed in the approach and methodology. The proposed evaluation environ-

ment aims to provide scalability by distributing the workload over compute resources in a

79

7. CONCLUSION

compute cluster and enabling the search algorithm (or other external applications) to sub-

mit design points to be evaluated, where a hierarchical input queue can adapt to facilitate

dynamic, complex interactions. The environment simultaneously supports workload-level

and task-level parallelism by distributing evaluations (simulation campaigns) and facili-

tating task-level parallelism paradigms (i.e., PDES and parameter studies). Evaluation

of design points is simulator agnostic, enabling the solution to be adopted in a variety of

DSE environments. Furthermore, integration of the solution on a diverse set of compute

infrastructures is supported by the resource controller, which can be configured to utilise

a variety of well-known Cluster Management Software environments (e.g., SLURM, PBS,

and LSF). Overall, the proposed evaluation environment provides a scalable and efficient

workflow, facilitating complex and dynamic interactions with external applications while

also providing the freedom of adapting and integrating the solution with a diverse set of

infrastructures, environments, and use cases.

The evaluation of the proposed solution investigated the performance and behaviour

of the simulation campaign scalability methodology, the configuration of the resource con-

troller, and the influence of different system characteristics on the effectiveness of the PDES

scalability methodology. Throughout the evaluation, a variety of system models and exe-

cution time baselines (i.e., single sequential evaluation and multiple sequential evaluations)

were used to calculate the corresponding speedup and efficiency. A large Ethernet campus

backbone model, containing around 8000 computers and 900 switches and hubs, was utilised

to represent a design point during DSE of dCPS for both the simulation campaign scala-

bility methodology and the configuration of the resource controller evaluations. Analysing

the results of the baseline simulation campaign evaluation showed consistent weak scaling

behaviour (pertaining to the scaling of compute nodes) and an efficiency trend towards 1.0

when scaling the number of evaluations, demonstrating a scalable and efficient solution by

distributing the workload using simulation campaigns. Additionally, when enabling SMT,

compute resource utilisation grows when scaling the number of evaluations, amplifying the

efficiency to slightly above 1.0, demonstrating an improved utilisation compared against the

full utilisation of the compute resource by the respective execution time baseline. During

the evaluation of the resource controller configuration, the impact of the number of worker

processes present on a single compute node is evaluated. The results showed that for the

simulation workload employed in this research, a single worker suffices, and increasing the

number of workers per compute node amounts to an increased evaluation execution time.

In the PDES methodology evaluation, three different Closed Queueing Network (CQN)

system models were utilised to analyse the behaviour and performance impact of a system

80

its behavioural characteristics, where a single model represented either a communication,

computation, or subsystem intensive system. All sequential versions of the CQN mod-

els demonstrated similar performance and behaviour as was shown during the baseline

simulation campaign evaluation. When comparing the campaigns of PDES-enabled sys-

tem models against the PDES-enabled execution time baselines, similar (although slightly

lower) performance and behaviour are demonstrated pertaining to the weak and strong

scaling of compute nodes when compared against the respective model its sequential sim-

ulation campaigns. However, when comparing the PDES-enabled simulation campaign

to the sequential execution time baselines, the efficiency does not surpass 0.5. A lower

efficiency indicates a reduced, less-optimal utilisation of the available compute resources

when enabling PDES compared against sequential evaluation. Analysing the performance

and behaviour of the three different behavioural traits, it was shown that the subsystem

intensive system model outperforms, based on relative speedup, the communication and

computation intensive models for all execution time baselines. Between the communication

and computation intensive models, the relative performance depends on the execution time

baseline. As it is a case study utilising three system models, the observations can not be

generalised to a conclusion for all systems or behavioural traits. The efficiency and utility

of enabling PDES will, therefore, depend on the system to be evaluated, the use case, and

the DSE process. Nevertheless, it is shown that enabling PDES can provide improved

evaluation performance, and a system model its behavioural characteristics could influence

the performance of its evaluation.

Based on the evaluation of the proposed solution, the simulation campaign with a sin-

gle worker process per compute node would provide a suitable baseline for scalability in

the context of DSE2.0, providing high efficiency when scaling the number of evaluations

and enabling SMT. The PDES methodology, or other task-level parallelism paradigms,

demonstrate improved single evaluation performance, but have lower simulation campaign

efficiencies. Utilising such paradigms effectively will, therefore, depend on the use case or

system model itself (i.e., a large system model might require additional resources to be

processed effectively). Nevertheless, the proposed solution enables the designer to combine

both simulation campaigns and PDES, allowing system models that require the PDES

methodology to utilise it and other systems models to remain sequential evaluations in the

simulation campaign. Furthermore, the solution facilitates the adaptation and integration

into a variety of computing infrastructures, external applications, and use cases by en-

abling the configuration and customisation of task-level parallelism paradigms, simulator

execution and frameworks, dynamic-input handling, and Cluster Management Software.

81

7. CONCLUSION

Overall, the research presents a design, implementation, and evaluation of a distributed

evaluation workflow dynamically adaptable to its use case and infrastructure, enabling

efficient and scalable evaluation of a vast collection of system models to address the chal-

lenge of scalable and efficient evaluation of the vast design space of complex, distributed

Cyber-Physical Systems.

7.1 Future Work

Throughout the research, analysis, and implementation efforts to investigate and realise a

scalable and efficient evaluation environment for DSE of dCPS in the context of DSE2.0,

various areas of future research were identified that can provide insights to further the

facilitation of scalable design space exploration for dCPS. Firstly, the evaluation of the

proposed solution demonstrated promising results pertaining to the behaviour and perfor-

mance when scaling the number of evaluations, the number of compute resources, or both.

Nevertheless, a higher statistical accuracy could be achieved with more extensive evalu-

ation (i.e., performing additional executions of the experiments). Moreover, additional

experiments with different characteristics could be performed to further investigate and

understand the behaviour and performance of the proposed evaluation environment. For

instance, analyse the behaviour when employed by an actual search algorithm in the con-

text of DSE, or analyse the impact of large quantities of compute resources (and thereby

worker processes) on the efficiency of the solution.

An area where additional research could be performed is the internal components of

the proposed workflow. A hierarchical set of design point queues are available inside the

proposed workflow, facilitating complex interactions between the search algorithm (or any

other external application) and the resource controller. However, the set of design point

queues is not aware of the current state of the compute resources. Advanced integration of

the design point queues could enable resource-aware scheduling policies, which can assess

the state of the environment and schedule design points more intelligently (i.e., schedule

to more energy-efficient resources when possible or try to distribute the workload more

evenly based on real-time hardware performance). An additional research direction could

investigate complex and advanced similarity analysis of the design points to improve its

efficacy significantly. Another area in the workflow that can be investigated further is the

interaction between the workflow components. Currently, only the resource controller can

process the design points asynchronously. When all workflow components would function

asynchronously, more complex workflows could be supported. For instance, instead of the

82

7.1 Future Work

search algorithm initiating the evaluation of design points, the resource controller could

continuously request design points in case compute resources become available.

Currently, the evaluation environment contains a single resource controller facilitating

the distribution of the workload and managing the available compute resources. However,

supporting a collection of resource controllers could enable a more complex interaction

between the search algorithm, workload, and compute resources. A potential use case for

additional resource controllers could be to pair them with a set of design point queues,

allowing the evaluation environment to implement priority-based scheduling and execu-

tion or to introduce more complex workflows. Furthermore, separate resource controllers

could enable the evaluation environment to interface with multiple compute clusters, each

implementing its own CMS.

Another area of interest in the resource controller could be to investigate task-level

parallelism on multiple nodes. Currently, task-level parallelism (e.g., PDES) can only be

performed within a single compute node. By supporting multi-node task-level parallelism,

more complex evaluations or task-level parallelism paradigms can be supported.

Considering the PDES methodology, the evaluation thereof utilised a set of system mod-

els as a case study. Further research could investigate the impact of a system its behavioural

characteristics in more detail, potentially reaching a verdict generalisable to dCPS system

models. During the execution of a PDES-enabled system model, the decomposition of the

model into its logical processes has to manually be performed beforehand (i.e., the model

is not automatically decomposed into a set of independent processes by OMNeT++). To-

gether with further research on behavioural characteristics, another area of interest could

be to automatically (optimally) decompose system models based on property analysis.

83

Bibliography

[1] 520.omnetpp_r. url: https://www.spec.org/cpu2017/Docs/benchmarks/520.

omnetpp_r.html (visited on 06/20/2023).

[2] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I.

Davis. “A comprehensive survey of industry practice in real-time systems”. In: Real-

Time Systems (2021). Publisher: Springer, pp. 1–41.

[3] Gene M. Amdahl. “Validity of the single processor approach to achieving large scale

computing capabilities”. In: Proceedings of the April 18-20, 1967, spring joint com-

puter conference. 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

[4] Radhakisan Baheti and Helen Gill. “Cyber-physical systems”. In: The impact of con-

trol technology 12.1 (2011), pp. 161–166.

[5] Henri Bal, D. Epema, Cees Laat, Rob Van Nieuwpoort, John Romein, Frank Seinstra,

Cees Snoek, and Harry Wijshoff. “A Medium-Scale Distributed System for Computer

Science Research: Infrastructure for the Long Term”. In: IEEE Computer 49 (May 1,

2016), pp. 54–63. doi: 10.1109/MC.2016.127.

[6] Daniel Balouek, Alexandra Amarie, Ghislain Charrier, Frédéric Desprez, Emmanuel

Jeannot, Emmanuel Jeanvoine, Adrien lèbre, David Margery, Nicolas Niclausse, Lu-

cas Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel, Cyril Rohr, and

Luc Sarzyniec. Adding Virtualization Capabilities to Grid’5000. Vol. 367. Journal

Abbreviation: Communications in Computer and Information Science Publication

Title: Communications in Computer and Information Science. July 31, 2012. isbn:

978-3-319-04518-4. doi: 10.1007/978-3-319-04519-1_1.

[7] Pablo Andrés Barbecho Bautista, Luis Felipe Urquiza-Aguiar, Leticia Lemus Cár-

denas, and Mónica Aguilar Igartua. “Large-scale simulations manager tool for OM-

NeT++: expediting simulations and post-processing analysis”. In: IEEE access 8

(2020). Publisher: IEEE, pp. 159291–159306. doi: 10.1109/ACCESS.2020.3020745.

85

https://www.spec.org/cpu2017/Docs/benchmarks/520.omnetpp_r.html
https://www.spec.org/cpu2017/Docs/benchmarks/520.omnetpp_r.html
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1109/ACCESS.2020.3020745

BIBLIOGRAPHY

[8] Adam L. Beberg, Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq, and Vijay S.

Pande. “Folding@ home: Lessons from eight years of volunteer distributed comput-

ing”. In: 2009 IEEE International Symposium on Parallel & Distributed Processing.

IEEE, 2009, pp. 1–8. doi: 10.1109/IPDPS.2009.5160922.

[9] Behzad Boroujerdian, Ying Jing, Devashree Tripathy, Amit Kumar, Lavanya Subra-

manian, Luke Yen, Vincent Lee, Vivek Venkatesan, Amit Jindal, Robert Shearer, and

Vijay Janapa Reddi. “FARSI: An Early-stage Design Space Exploration Framework

to Tame the Domain-specific System-on-chip Complexity”. In: ACM Transactions on

Embedded Computing Systems 22.2 (Jan. 24, 2023), 31:1–31:35. issn: 1539-9087. doi:

10.1145/3544016. url: https://dl.acm.org/doi/10.1145/3544016 (visited on

03/21/2023).

[10] Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli. “Accuracy

evaluation of gem5 simulator system”. In: 7th International workshop on reconfig-

urable and communication-centric systems-on-chip (ReCoSoC). IEEE, 2012, pp. 1–7.

doi: 10.1109/ReCoSoC.2012.6322869.

[11] Lukai Cai and Daniel Gajski. “Transaction level modeling: an overview”. In: First

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-

tems Synthesis (IEEE Cat. No. 03TH8721). IEEE, 2003, pp. 19–24.

[12] Celery - Distributed Task Queue — Celery 5.3.1 documentation. url: https://

docs.celeryq.dev/en/stable/ (visited on 02/10/2023).

[13] DAS-6: Distributed ASCI Supercomputer 6. url: https://www.cs.vu.nl/das/

(visited on 07/03/2023).

[14] Dask — Dask documentation. url: https://docs.dask.org/en/stable/ (visited

on 06/20/2023).

[15] Dask | Scale the Python tools you love. url: https://www.dask.org/ (visited on

06/20/2023).

[16] Dask-Jobqueue — Dask-jobqueue 0.8.2+0.gff47d71.dirty documentation. url: https:

//jobqueue.dask.org/en/latest/ (visited on 06/20/2023).

[17] Dask.distributed — Dask.distributed 2023.6.0 documentation. url: https://distributed.

dask.org/en/stable/ (visited on 06/20/2023).

[18] Thomas Dreibholz. “Evaluation and Optimisation of Multi-Path Transport using the

Stream Control Transmission Protocol”. PhD thesis. Mar. 13, 2012.

86

https://doi.org/10.1109/IPDPS.2009.5160922
https://doi.org/10.1145/3544016
https://dl.acm.org/doi/10.1145/3544016
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://docs.celeryq.dev/en/stable/
https://docs.celeryq.dev/en/stable/
https://www.cs.vu.nl/das/
https://docs.dask.org/en/stable/
https://www.dask.org/
https://jobqueue.dask.org/en/latest/
https://jobqueue.dask.org/en/latest/
https://distributed.dask.org/en/stable/
https://distributed.dask.org/en/stable/

BIBLIOGRAPHY

[19] Greg Ewing, Krzysztof Pawlikowski, and Don McNickle. “Akaroa-2: Exploiting net-

work computing by distributing stochastic simulation”. In: (1999). Publisher: SCSI

Press.

[20] Julius Flohr. Neurogenesis. original-date: 2016-07-20T16:02:39Z. July 21, 2021. url:

https://github.com/juliusf/Neurogenesis (visited on 04/10/2023).

[21] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. “Cloud computing and grid

computing 360-degree compared”. In: 2008 grid computing environments workshop.

Ieee, 2008, pp. 1–10. doi: 10.1109/GCE.2008.4738445.

[22] GEM5. gem5: About. url: https://www.gem5.org/about/ (visited on 11/23/2023).

[23] John L. Gustafson. “Reevaluating Amdahl’s law”. In: Communications of the ACM

31.5 (1988). Publisher: ACM New York, NY, USA, pp. 532–533. doi: 10.1145/

42411.42415.

[24] Marius Herget, Faezeh Sadat Saadatmand, Martin Bor, Ignacio González Alonso,

Todor Stefanov, Benny Akesson, and Andy D. Pimentel. “Design Space Exploration

for Distributed Cyber-Physical Systems: State-of-the-art, Challenges, and Direc-

tions”. In: 2022 25th Euromicro Conference on Digital System Design (DSD). IEEE,

2022, pp. 632–640. isbn: 978-1-66547-404-7. doi: 10.1109/DSD57027.2022.00090.

[25] Mark D. Hill. “What is scalability?” In: ACM SIGARCH Computer Architecture

News 18.4 (1990). Publisher: ACM New York, NY, USA, pp. 18–21. doi: 10.1145/

121973.121975.

[26] Nasser Jazdi. “Cyber physical systems in the context of Industry 4.0”. In: 2014 IEEE

international conference on automation, quality and testing, robotics. IEEE, 2014,

pp. 1–4. doi: 10.1109/AQTR.2014.6857843.

[27] Pritish Jetley, Lukasz Wesolowski, Filippo Gioachin, Laxmikant V. Kalé, and Thomas

R. Quinn. “Scaling hierarchical N-body simulations on GPU clusters”. In: SC’10:

Proceedings of the 2010 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 2010, pp. 1–11. doi: 10.1109/

SC.2010.49.

[28] Zai Jian Jia, Tomás Bautista, Antonio Núñez, Andy D. Pimentel, and Mark Thomp-

son. “A system-level infrastructure for multidimensional MP-SoC design space co-

exploration”. In: ACM Transactions on Embedded Computing Systems 13.1 (Nov.

2013), pp. 1–26. issn: 1539-9087, 1558-3465. doi: 10.1145/2536747.2536749. url:

https://dl.acm.org/doi/10.1145/2536747.2536749 (visited on 02/04/2021).

87

https://github.com/juliusf/Neurogenesis
https://doi.org/10.1109/GCE.2008.4738445
https://www.gem5.org/about/
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1109/DSD57027.2022.00090
https://doi.org/10.1145/121973.121975
https://doi.org/10.1145/121973.121975
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/SC.2010.49
https://doi.org/10.1109/SC.2010.49
https://doi.org/10.1145/2536747.2536749
https://dl.acm.org/doi/10.1145/2536747.2536749

BIBLIOGRAPHY

[29] Zai Jian Jia, Andy D. Pimentel, Mark Thompson, Tomás Bautista, and Antonio

Núñez. “NASA: A generic infrastructure for system-level MP-SoC design space ex-

ploration”. In: 2010 8th IEEE Workshop on Embedded Systems for Real-Time Mul-

timedia. ISSN: 2325-1301 tex.eventtitle: 2010 8th IEEE Workshop on Embedded

Systems for Real-Time Multimedia. Oct. 2010, pp. 41–50. doi: 10.1109/ESTMED.

2010.5666979.

[30] Herman Kelder. Exploring Scalability in System-Level Simulation Environments for

Distributed Cyber-Physical Systems. Jan. 11, 2023. doi: 10.13140/RG.2.2.36399.

71846.

[31] Minyoung Kim, Sudarshan Banerjee, Nikil Dutt, and Nalini Venkatasubramanian.

“Design space exploration of real-time multi-media MPSoCs with heterogeneous

scheduling policies”. In: Proceedings of the 4th international conference on Hard-

ware/software codesign and system synthesis. 2006, pp. 16–21. doi: 10.1145/1176254.

1176261.

[32] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed computing: principles, algo-

rithms, and systems. Cambridge University Press, 2011.

[33] Leslie Lamport and Nancy Lynch. “Distributed computing: Models and methods”.

In: Formal models and semantics. Elsevier, 1990, pp. 1157–1199.

[34] Darren R. Law. “Scalable means more than more: a unifying definition of simu-

lation scalability”. In: 1998 Winter Simulation Conference. Proceedings (Cat. No.

98CH36274). Vol. 1. IEEE, 1998, pp. 781–788. doi: 10.1109/WSC.1998.745064.

[35] Edward A. Lee. “Computing foundations and practice for cyber-physical systems: A

preliminary report”. In: University of California, Berkeley, Tech. Rep. UCB/EECS-

2007-72 21 (2007).

[36] Edward A. Lee. “The past, present and future of cyber-physical systems: A focus on

models”. In: Sensors 15.3 (2015). Publisher: MDPI, pp. 4837–4869. doi: 10.3390/

s150304837.

[37] Yang Liu, Yu Peng, Bailing Wang, Sirui Yao, and Zihe Liu. “Review on cyber-physical

systems”. In: IEEE/CAA Journal of Automatica Sinica 4.1 (2017). Publisher: IEEE,

pp. 27–40. doi: 10.1109/JAS.2017.7510349.

88

https://doi.org/10.1109/ESTMED.2010.5666979
https://doi.org/10.1109/ESTMED.2010.5666979
https://doi.org/10.13140/RG.2.2.36399.71846
https://doi.org/10.13140/RG.2.2.36399.71846
https://doi.org/10.1145/1176254.1176261
https://doi.org/10.1145/1176254.1176261
https://doi.org/10.1109/WSC.1998.745064
https://doi.org/10.3390/s150304837
https://doi.org/10.3390/s150304837
https://doi.org/10.1109/JAS.2017.7510349

BIBLIOGRAPHY

[38] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico

Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,

and Srikant Bharadwaj. “The gem5 simulator: Version 20.0+”. In: arXiv preprint

arXiv:2007.03152 (2020). doi: 10.48550/arxiv.2007.03152.

[39] Luigi batch jobs pipeline. url: https://luigi.readthedocs.io/en/stable/ (vis-

ited on 02/10/2023).

[40] Edward A. Luke. “Defining and measuring scalability”. In: Proceedings of Scalable

Parallel Libraries Conference. IEEE, 1993, pp. 183–186.

[41] Giovanni Mariani, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano. “DeS-

pErate: Speeding-up design space exploration by using predictive simulation schedul-

ing”. In: 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 2014, pp. 1–4.

[42] Giovanni Mariani, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano. “DeS-

pErate++: An enhanced design space exploration framework using predictive simu-

lation scheduling”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 34.2 (2014). Publisher: IEEE, pp. 293–306. doi: 10.1109/

TCAD.2014.2379634.

[43] Brit Meier, Mladen Skelin, Frans Beenker, and Wouter Leibbrandt. HTSM Systems

Engineering Roadmap. July 24, 2020.

[44] Alian Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst, Daehoon Kim,

and Nam Sung Kim. “dist-gem5: Distributed simulation of computer clusters”. In:

2017 IEEE International Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS). IEEE, 2017, pp. 153–162. doi: 10.1109/ISPASS.2017.7975287.

[45] OMNeT++. original-date: 2018-12-03T16:18:31Z. June 19, 2023. url: https://

github.com/omnetpp/omnetpp (visited on 06/20/2023).

[46] OMNeT++ simulation distribution. url: https://simdistribution.sourceforge.

net/index.html (visited on 06/29/2023).

[47] Andy D. Pimentel. “Exploring exploration: A tutorial introduction to embedded

systems design space exploration”. In: IEEE Design & Test 34.1 (2016). Publisher:

IEEE, pp. 77–90. doi: 10.1109/MDAT.2016.2626445.

89

https://doi.org/10.48550/arxiv.2007.03152
https://luigi.readthedocs.io/en/stable/
https://doi.org/10.1109/TCAD.2014.2379634
https://doi.org/10.1109/TCAD.2014.2379634
https://doi.org/10.1109/ISPASS.2017.7975287
https://github.com/omnetpp/omnetpp
https://github.com/omnetpp/omnetpp
https://simdistribution.sourceforge.net/index.html
https://simdistribution.sourceforge.net/index.html
https://doi.org/10.1109/MDAT.2016.2626445

BIBLIOGRAPHY

[48] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. “A systematic approach to

exploring embedded system architectures at multiple abstraction levels”. In: IEEE

transactions on computers 55.2 (2006). Publisher: IEEE, pp. 99–112. doi: 10.1109/

TC.2006.16.

[49] Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic, Augusto Vega,

Yoav Etsion, Alex Ramirez, and Mateo Valero. “On the simulation of large-scale

architectures using multiple application abstraction levels”. In: ACM Transactions

on Architecture and Code Optimization (TACO) 8.4 (2012). Publisher: ACM New

York, NY, USA, pp. 1–20. doi: 10.1145/2086696.2086715.

[50] Alejandro Rico, Alejandro Duran, Felipe Cabarcas, Yoav Etsion, Alex Ramirez, and

Mateo Valero. “Trace-driven simulation of multithreaded applications”. In: (IEEE

ISPASS) IEEE International Symposium on Performance Analysis of Systems and

Software. IEEE, 2011, pp. 87–96.

[51] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2: A cycle accu-

rate memory system simulator”. In: IEEE computer architecture letters 10.1 (2011).

Publisher: IEEE, pp. 16–19. doi: 10.1109/L-CA.2011.4.

[52] Bram van der Sanden, Yonghui Li, Joris van den Aker, Benny Akesson, Tjerk Bi-

jlsma, Martijn Hendriks, Kostas Triantafyllidis, Jacques Verriet, Jeroen Voeten, and

Twan Basten. “Model-Driven System-Performance Engineering for Cyber-Physical

Systems: Industry Session Paper”. In: 2021 International Conference on Embedded

Software (EMSOFT). IEEE, 2021, pp. 11–22. doi: 10.1145/3477244.3477985.

[53] G. S. Sangeetha, Vignesh Radhakrishnan, Prabhu Prasad, Khyamling Parane, and

Basavaraj Talawar. “Trace-driven simulation and design space exploration of network-

on-chip topologies on FPGA”. In: 2018 8th International Symposium on Embedded

Computing and System Design (ISED). IEEE, 2018, pp. 129–134. doi: 10.1109/

ISED.2018.8703884.

[54] Jianhua Shi, Jiafu Wan, Hehua Yan, and Hui Suo. “A survey of cyber-physical sys-

tems”. In: 2011 international conference on wireless communications and signal pro-

cessing (WCSP). IEEE, 2011, pp. 1–6. doi: 10.1109/WCSP.2011.6096958.

[55] Rene Steijl and George Barakos. “Sliding mesh algorithm for CFD analysis of heli-

copter rotor–fuselage aerodynamics”. In: International journal for numerical methods

in fluids 58.5 (2008). Publisher: Wiley Online Library, pp. 527–549. doi: 10.1002/

fld.1757.

90

https://doi.org/10.1109/TC.2006.16
https://doi.org/10.1109/TC.2006.16
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1145/3477244.3477985
https://doi.org/10.1109/ISED.2018.8703884
https://doi.org/10.1109/ISED.2018.8703884
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/10.1002/fld.1757
https://doi.org/10.1002/fld.1757

BIBLIOGRAPHY

[56] Mirko Stoffers, Ralf Bettermann, James Gross, and Klaus Wehrle. Enabling Dis-

tributed Simulation of OMNeT++ INET Models. Sept. 3, 2014. arXiv: 1409.0994[cs].

url: http://arxiv.org/abs/1409.0994 (visited on 06/20/2023).

[57] Prerit Terway, Kenza Hamidouche, and Niraj K Jha. “DISPATCH: Design Space

Exploration of Cyber-Physical Systems”. In: (2020), p. 14.

[58] UC Davis. Simulation Research and gem5. UC Davis Computer Architecture. url:

https://arch.cs.ucdavis.edu/projects/gem5 (visited on 11/23/2022).

[59] Andras Varga. OMNeT++ discrete event simulation system version 6.x user manual.

2022. url: https://doc.omnetpp.org/omnetpp/SimulationManual.pdf (visited

on 11/13/2022).

[60] David W. Walker and Jack J. Dongarra. “MPI: a standard message passing interface”.

In: Supercomputer 12 (1996). Publisher: ASFRA BV, pp. 56–68.

[61] Guangxi Wan and Peng Zeng. “Codesign of Architecture, Control, and Scheduling

of Modular Cyber-Physical Production Systems for Design Space Exploration”. In:

IEEE Transactions on Industrial Informatics 18.4 (2021). Publisher: IEEE, pp. 2287–

2296. doi: 10.1109/TII.2021.3097761.

[62] Worker — Dask.distributed 2023.6.0 documentation. url: https://distributed.

dask.org/en/stable/worker.html (visited on 06/22/2023).

[63] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux Utility

for Resource Management”. In: Job Scheduling Strategies for Parallel Processing.

Ed. by Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Lecture Notes in

Computer Science. Berlin, Heidelberg: Springer, 2003, pp. 44–60. isbn: 978-3-540-

39727-4. doi: 10.1007/10968987_3.

91

https://arxiv.org/abs/1409.0994 [cs]
http://arxiv.org/abs/1409.0994
https://arch.cs.ucdavis.edu/projects/gem5
https://doc.omnetpp.org/omnetpp/SimulationManual.pdf
https://doi.org/10.1109/TII.2021.3097761
https://distributed.dask.org/en/stable/worker.html
https://distributed.dask.org/en/stable/worker.html
https://doi.org/10.1007/10968987_3

Appendix A

Data

The Data appendix contains all raw data collected and utilised during the experiments

and visualisations presented in Chapter 5.

A.1 Experiment: Simulation Campaign

All raw data belonging to the simulation campaign experiment is presented in this section.

A.1.1 Baselines

Table A.1: Runtime data of sequential baselines with the INET-LANS model.

Timeframe Simulation Compilation
Measure (s) Mean Std Mean Std
Baseline

Sequential 125.09 1.12 0.27 0.01
Sequential Multi 138.09 2.50 0.24 0.07

A.1.2 Campaign

Table A.2: Runtime data of simulation campaigns with the INET-LANS model. All config-
urations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 32 152.41 2.36 142.64 2.23 0.56 0.04 143.22 2.22

Continued on next page

93

A. DATA

Table A.2: Runtime data of simulation campaigns with the INET-LANS model. All config-
urations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

64 292.66 1.96 141.14 2.98 0.41 0.16 141.55 3.10
96 430.14 1.30 139.54 2.84 0.35 0.18 139.90 2.97
128 570.51 2.81 139.40 2.52 0.32 0.15 139.71 2.63
160 713.36 4.21 139.43 2.67 0.29 0.14 139.72 2.76
192 854.39 3.38 139.29 2.51 0.28 0.14 139.57 2.59
224 992.79 2.45 139.34 2.30 0.28 0.14 139.62 2.38
256 1128.89 4.86 138.67 2.51 0.31 0.34 138.99 2.67

2 32 153.04 1.92 143.21 2.42 0.55 0.04 143.77 2.42
64 154.79 4.22 143.18 2.47 0.55 0.08 143.74 2.45
96 287.82 2.29 140.09 4.63 0.46 0.15 140.56 4.75
128 297.25 3.34 141.56 3.01 0.42 0.16 141.98 3.11
160 426.41 3.95 139.77 4.70 0.38 0.17 140.15 4.81
192 438.80 2.65 140.67 2.87 0.35 0.15 141.02 2.96
224 567.85 8.49 140.19 4.58 0.56 0.76 140.75 4.88
256 576.44 1.69 139.92 2.91 0.35 0.22 140.28 3.04

3 32 153.18 1.53 142.90 2.67 0.53 0.04 143.44 2.68
64 152.48 1.64 139.81 4.77 0.49 0.09 140.31 4.83
96 158.49 4.41 143.62 2.97 0.55 0.06 144.19 2.96
128 288.00 2.92 140.51 5.43 0.50 0.14 141.02 5.55
160 300.24 6.27 140.93 4.32 0.41 0.13 141.35 4.41
192 300.07 5.92 141.79 3.64 0.36 0.12 142.15 3.72
224 424.96 6.51 139.63 4.86 0.36 0.14 140.00 4.94
256 435.65 4.67 140.26 3.80 0.39 0.18 140.65 3.91

4 32 150.64 2.37 142.54 1.99 0.58 0.05 143.13 1.99
64 152.70 2.14 139.94 5.03 0.51 0.09 140.46 5.10
96 155.12 3.84 139.77 3.67 0.49 0.07 140.27 3.70
128 155.45 2.14 143.14 2.26 0.66 0.21 143.81 2.25
160 286.47 6.02 140.49 6.23 0.42 0.10 140.91 6.30
192 290.34 2.86 140.14 5.61 0.37 0.10 140.52 5.69
224 298.78 6.35 141.37 4.56 0.36 0.10 141.74 4.62
256 300.23 3.49 141.54 3.18 0.42 0.16 141.96 3.29

94

A.2 Experiment: Worker Size

Table A.3: Runtime data of SMT-enabled simulation campaigns with the INET-LANS
model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 32 152.40 1.67 142.65 2.55 0.56 0.04 143.22 2.55
64 283.85 6.68 260.53 4.37 1.06 0.15 261.61 4.36
96 414.32 0.59 221.57 56.47 0.86 0.32 222.46 56.79
128 545.74 7.14 258.13 6.80 0.75 0.32 258.89 6.98
160 674.21 2.75 236.48 46.84 0.69 0.32 237.19 46.98
192 808.59 2.99 258.03 7.51 0.67 0.35 258.71 7.64
224 930.96 4.95 241.76 39.87 0.64 0.32 242.40 39.96
256 1066.48 9.32 257.00 7.04 0.62 0.28 257.62 7.15

2 32 141.57 1.35 134.80 1.64 0.42 0.04 135.22 1.64
64 283.68 5.23 259.81 4.25 1.09 0.13 260.92 4.24
96 285.07 2.32 221.71 55.19 0.89 0.28 222.62 55.46
128 290.93 6.46 261.67 4.44 1.31 0.61 263.03 4.46
160 404.08 1.93 236.56 51.51 0.91 0.27 237.50 51.74
192 429.66 23.68 224.30 55.25 0.87 0.35 225.20 55.57
224 498.48 2.88 232.51 40.23 0.79 0.34 233.32 40.52
256 561.04 8.32 258.96 7.35 0.74 0.33 259.72 7.53

3 32 141.31 1.32 131.61 3.25 0.38 0.05 131.99 3.24
64 285.01 1.31 260.52 4.54 1.07 0.14 261.63 4.53
96 283.50 5.29 219.63 58.87 0.87 0.32 220.52 59.17
128 282.93 4.10 203.88 57.36 0.85 0.28 204.74 57.62
160 245.58 1.36 211.38 26.25 0.74 0.15 212.15 26.26
192 293.25 4.65 262.59 4.39 0.92 0.21 263.56 4.38
224 405.51 3.32 243.62 45.98 1.13 0.60 244.79 46.26
256 411.29 2.40 231.68 54.57 0.82 0.29 232.54 54.81

4 32 135.60 0.65 128.45 1.78 0.35 0.03 128.80 1.79
64 282.54 3.45 260.62 3.97 1.08 0.14 261.73 3.96
96 287.57 6.13 218.99 60.59 0.82 0.31 219.84 60.90
128 284.81 1.86 202.20 60.70 0.76 0.28 202.98 60.97
160 210.90 2.08 170.17 23.84 0.55 0.08 170.74 23.83
192 224.77 4.89 190.85 25.32 0.68 0.27 191.56 25.31
224 251.78 0.58 221.35 26.42 0.80 0.23 222.19 26.42
256 291.76 2.67 262.10 4.12 0.81 0.25 262.96 4.10

A.2 Experiment: Worker Size

All raw data belonging to the worker size experiment is presented in this section.

95

A. DATA

Table A.4: Runtime data of simulation campaigns with the INET-LANS model. All non-
single worker runtime data and the corresponding single worker runtime data.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Workers Evals

1 1 32 152.41 2.36 142.64 2.23 0.56 0.04 143.22 2.22
64 292.66 1.96 141.14 2.98 0.41 0.16 141.55 3.10
96 430.14 1.30 139.54 2.84 0.35 0.18 139.90 2.97
128 570.51 2.81 139.40 2.52 0.32 0.15 139.71 2.63

2 32 153.60 2.48 143.48 2.57 0.45 0.08 143.93 2.58
64 291.52 1.03 141.11 2.60 0.41 0.25 141.53 2.72

4 32 152.25 3.12 143.32 2.33 0.44 0.08 143.76 2.32
64 292.27 1.51 140.75 3.03 0.33 0.10 141.08 3.09

8 32 154.05 4.35 144.18 2.42 0.43 0.07 144.61 2.42
64 296.26 2.33 142.29 3.31 0.34 0.11 142.63 3.38

16 32 153.40 1.39 145.03 2.14 0.45 0.05 145.48 2.15
64 296.57 2.14 143.01 2.95 0.35 0.11 143.36 3.01

32 32 158.06 5.46 147.91 2.91 0.50 0.05 148.42 2.92
64 304.42 2.74 145.63 3.28 0.37 0.12 146.00 3.35

2 1 32 153.04 1.92 143.21 2.42 0.55 0.04 143.77 2.42
64 154.79 4.22 143.18 2.47 0.55 0.08 143.74 2.45
96 287.82 2.29 140.09 4.63 0.46 0.15 140.56 4.75
128 297.25 3.34 141.56 3.01 0.42 0.16 141.98 3.11

2 32 148.42 3.97 138.11 4.79 0.42 0.07 138.54 4.83
64 157.51 2.58 143.70 2.68 0.47 0.06 144.18 2.68

4 32 151.63 2.68 140.03 6.18 0.40 0.07 140.43 6.21
64 154.23 1.07 144.15 2.54 0.44 0.07 144.58 2.54

8 32 146.58 3.14 138.97 4.47 0.39 0.07 139.36 4.49
64 154.06 2.01 143.83 2.36 0.48 0.06 144.31 2.36

16 32 153.65 5.01 142.94 5.29 0.42 0.06 143.36 5.32
64 156.88 2.45 145.31 2.38 0.51 0.04 145.81 2.38

32 32 154.91 6.73 144.32 6.31 0.45 0.05 144.78 6.34
64 158.81 1.59 147.95 2.36 0.47 0.07 148.42 2.37

3 1 32 153.18 1.53 142.90 2.67 0.53 0.04 143.44 2.68
64 152.48 1.64 139.81 4.77 0.49 0.09 140.31 4.83
96 158.49 4.41 143.62 2.97 0.55 0.06 144.19 2.96
128 288.00 2.92 140.51 5.43 0.50 0.14 141.02 5.55

2 32 147.48 4.32 136.04 6.05 0.40 0.07 136.45 6.08
64 150.34 1.86 138.54 3.93 0.43 0.06 138.97 3.95
96 156.78 3.25 143.78 2.79 0.41 0.06 144.19 2.79

4 32 151.18 12.61 137.35 6.25 0.40 0.06 137.74 6.27
64 153.19 2.40 141.22 5.15 0.46 0.08 141.68 5.16

Continued on next page

96

A.3 Experiment: PDES

Table A.4: Runtime data of simulation campaigns with the INET-LANS model. All non-
single worker runtime data and the corresponding single worker runtime data.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Workers Evals

96 156.30 2.34 143.91 2.52 0.38 0.06 144.29 2.51
8 32 150.09 5.09 140.26 5.86 0.41 0.07 140.67 5.90

64 155.01 2.03 142.53 4.86 0.45 0.05 142.98 4.88
96 157.01 0.82 144.69 2.46 0.71 0.70 145.40 2.50

16 32 150.55 5.48 140.92 5.55 0.44 0.07 141.36 5.61
64 156.47 3.68 144.82 4.53 0.47 0.06 145.29 4.54
96 157.07 1.28 145.34 2.23 0.38 0.06 145.72 2.23

32 32 156.18 5.12 142.80 5.85 0.39 0.06 143.19 5.87
64 160.67 3.50 145.51 5.04 0.44 0.08 145.95 5.08
96 162.63 3.08 148.30 2.69 0.39 0.07 148.69 2.68

4 1 32 150.64 2.37 142.54 1.99 0.58 0.05 143.13 1.99
64 152.70 2.14 139.94 5.03 0.51 0.09 140.46 5.10
96 155.12 3.84 139.77 3.67 0.49 0.07 140.27 3.70
128 155.45 2.14 143.14 2.26 0.66 0.21 143.81 2.25

2 32 151.74 13.41 136.29 6.58 0.41 0.07 136.71 6.62
64 155.79 9.12 137.39 5.20 0.45 0.08 137.84 5.24
128 156.95 2.40 143.89 2.42 0.38 0.08 144.28 2.41

4 32 150.03 4.50 136.03 5.75 0.37 0.07 136.40 5.77
64 151.26 2.97 139.44 5.14 0.41 0.05 139.85 5.16
128 159.48 3.57 144.21 2.87 0.36 0.05 144.57 2.88

8 32 148.01 6.11 139.20 5.66 0.42 0.08 139.62 5.70
64 153.00 5.42 140.01 5.01 0.44 0.07 140.44 5.04
128 160.25 4.21 144.53 2.56 0.41 0.13 144.94 2.55

16 32 153.60 3.47 142.82 5.53 0.44 0.06 143.26 5.56
64 156.30 3.65 141.16 6.19 0.47 0.09 141.63 6.22
128 157.41 1.15 145.80 2.43 0.36 0.05 146.16 2.44

32 32 157.86 3.08 147.22 3.22 0.44 0.07 147.65 3.23
64 170.71 14.72 145.29 7.21 0.43 0.08 145.73 7.24
128 169.83 13.74 148.64 3.24 0.37 0.05 149.00 3.24

A.3 Experiment: PDES

All raw data belonging to the PDES experiment is presented in this section.

A.3.1 Baselines

97

A. DATA

Table A.5: Runtime data of baselines with the communication intensive CQN model.

Timeframe Simulation Compilation
Measure (s) Mean Std Mean Std
Baseline

Sequential 40.86 0.52 4.41 0.23
Sequential Multi 57.97 4.91 4.26 0.60
Sequential PDES 8.56 0.15 4.34 0.31
Sequential PDES Multi 9.96 0.52 4.53 0.32

Table A.6: Runtime data of baselines with the computation intensive CQN model.

Timeframe Simulation Compilation
Measure (s) Mean Std Mean Std
Baseline

Sequential 26.72 0.29 4.35 0.38
Sequential Multi 36.99 2.31 4.39 0.50
Sequential PDES 6.70 0.23 4.32 0.31
Sequential PDES Multi 7.53 0.35 4.59 0.34

Table A.7: Runtime data of baselines with the subsystem intensive CQN model.

Timeframe Simulation Compilation
Measure (s) Mean Std Mean Std
Baseline

Sequential 41.78 0.43 4.68 0.51
Sequential Multi 59.85 4.86 4.26 0.60
Sequential PDES 8.50 0.17 4.41 0.32
Sequential PDES Multi 9.74 0.54 4.62 0.30

A.3.2 Campaign: Sequential

Table A.8: Runtime data of simulation campaigns with the sequential communication inten-
sive CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 4 53.67 3.73 43.22 2.82 4.91 0.18 48.13 2.80

Continued on next page

98

A.3 Experiment: PDES

Table A.8: Runtime data of simulation campaigns with the sequential communication inten-
sive CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

8 51.11 1.47 41.88 1.12 4.95 0.31 46.83 1.11
12 60.41 3.17 47.34 4.66 4.96 0.33 52.30 4.67
16 60.72 1.74 50.58 1.28 5.01 0.37 55.58 1.31
20 66.98 3.26 52.61 2.97 5.01 0.37 57.62 3.00
24 64.87 0.83 54.44 0.94 5.00 0.41 59.45 0.99
28 67.23 2.43 53.89 2.00 4.91 0.31 58.80 2.01
32 66.57 0.95 55.97 1.00 5.03 0.22 61.00 0.98
64 130.50 3.70 56.07 1.66 4.16 0.87 60.23 1.82
96 188.56 3.62 55.93 1.54 3.82 0.78 59.75 1.76
128 252.56 5.87 56.15 1.86 3.76 0.82 59.91 2.03
256 497.18 5.60 56.35 2.34 3.49 0.62 59.84 2.42

2 4 53.97 2.92 43.46 2.42 4.83 0.24 48.29 2.50
8 53.23 3.42 42.21 2.10 4.89 0.15 47.10 2.09
12 56.22 4.52 42.87 2.86 4.87 0.28 47.74 2.86
16 51.98 1.73 42.04 1.21 4.91 0.24 46.96 1.22
20 60.66 2.08 45.07 4.45 4.92 0.32 49.99 4.50
24 62.25 3.22 47.54 4.52 5.03 0.31 52.57 4.52
28 61.92 3.23 49.03 3.24 5.00 0.37 54.03 3.25
32 67.27 1.91 55.91 1.14 5.17 0.25 61.08 1.13
64 71.81 4.31 56.15 1.61 5.11 0.26 61.26 1.63
96 124.07 4.17 54.34 3.06 4.51 0.81 58.85 3.74
128 134.67 0.78 56.32 1.81 4.24 0.90 60.57 1.95
256 257.78 4.52 56.48 2.41 3.77 0.83 60.25 2.52

3 4 53.54 3.62 42.90 2.83 4.64 0.34 47.54 3.01
8 53.70 2.45 43.12 2.27 4.83 0.26 47.95 2.32
12 55.17 3.69 42.92 2.46 4.90 0.23 47.83 2.51
16 58.78 2.21 43.11 2.90 4.88 0.29 47.99 2.90
20 58.18 4.08 42.30 2.40 4.91 0.29 47.21 2.43
24 53.56 1.71 42.31 1.47 4.93 0.26 47.24 1.46
28 63.60 0.87 44.74 4.66 4.91 0.32 49.65 4.72
32 67.74 3.86 55.95 1.47 5.04 0.30 60.98 1.52
64 67.13 1.28 53.18 3.13 5.03 0.33 58.21 3.19
96 71.36 3.34 56.20 1.50 4.99 0.25 61.19 1.52
128 126.04 5.10 54.26 4.45 4.79 0.79 59.05 4.99
256 193.77 3.05 55.77 2.47 4.02 0.87 59.79 2.75

4 4 51.69 2.69 42.27 1.89 4.58 0.30 46.85 1.83
8 55.70 1.78 44.35 2.81 4.83 0.28 49.19 2.82
12 56.10 0.82 43.87 2.81 4.80 0.27 48.67 2.76

Continued on next page

99

A. DATA

Table A.8: Runtime data of simulation campaigns with the sequential communication inten-
sive CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

16 53.94 2.27 42.50 1.92 4.91 0.21 47.41 1.92
20 56.34 3.14 42.84 2.43 4.91 0.24 47.75 2.42
24 55.96 5.11 42.43 2.19 5.13 0.69 47.57 2.22
28 60.63 3.90 43.95 3.84 4.92 0.24 48.87 3.87
32 68.65 3.55 55.96 1.42 5.11 0.27 61.07 1.43
64 67.40 1.85 52.33 5.01 5.05 0.29 57.38 5.04
96 69.47 1.43 54.75 1.26 4.94 0.39 59.69 1.29
128 71.44 4.54 56.27 1.45 5.17 0.25 61.44 1.46
256 134.94 3.82 56.35 1.50 4.43 1.18 60.78 2.03

Table A.9: Runtime data of simulation campaigns with the sequential computation intensive
CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 4 34.96 0.66 27.03 0.59 4.87 0.17 31.90 0.59
8 35.49 0.30 27.14 0.50 4.82 0.34 31.97 0.64
12 43.16 0.65 30.79 3.03 5.01 0.36 35.79 3.08
16 43.56 0.69 34.18 1.26 5.00 0.38 39.18 1.22
20 46.83 0.75 36.36 1.95 5.00 0.37 41.36 1.97
24 48.36 0.91 38.24 1.14 4.92 0.38 43.17 1.15
28 47.16 2.47 37.34 2.28 4.90 0.28 42.24 2.30
32 45.77 0.69 35.82 0.72 5.09 0.23 40.91 0.71
64 86.22 2.05 35.97 0.65 4.25 0.91 40.22 1.04
96 125.05 1.04 35.94 0.63 3.86 0.81 39.80 0.96
128 166.20 0.95 36.01 0.69 3.79 0.79 39.79 1.04
256 325.63 0.67 36.05 0.65 3.55 0.63 39.60 0.87

2 4 36.14 0.88 27.73 0.87 4.74 0.31 32.47 0.90
8 36.37 1.19 27.25 0.79 4.87 0.16 32.12 0.83
12 41.38 3.83 27.69 2.34 4.87 0.28 32.57 2.29
16 36.90 0.81 27.19 0.84 4.89 0.30 32.07 0.93
20 42.72 0.91 29.29 2.89 4.95 0.32 34.24 2.91
24 43.24 0.50 30.92 3.01 4.97 0.36 35.89 3.03
28 44.12 0.37 32.72 2.70 5.02 0.36 37.74 2.67
32 45.09 0.50 35.79 0.69 5.02 0.22 40.81 0.71

Continued on next page

100

A.3 Experiment: PDES

Table A.9: Runtime data of simulation campaigns with the sequential computation intensive
CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

64 46.57 0.31 35.90 0.61 5.15 0.27 41.05 0.64
96 85.19 1.70 35.40 1.37 4.57 0.73 39.97 1.84
128 87.33 1.03 35.93 0.62 4.33 0.98 40.27 1.12
256 167.48 0.72 36.10 0.78 3.85 0.81 39.96 1.19

3 4 35.48 0.88 27.44 0.81 4.64 0.42 32.08 0.85
8 36.46 1.16 27.49 1.05 4.78 0.29 32.27 0.99
12 36.03 0.53 27.26 0.56 4.82 0.26 32.08 0.53
16 41.03 3.83 27.59 1.87 4.81 0.31 32.39 1.93
20 39.77 2.40 27.37 1.32 4.87 0.31 32.24 1.36
24 37.23 1.42 27.17 0.76 5.04 0.40 32.22 0.87
28 41.74 0.69 28.86 2.54 4.88 0.32 33.74 2.56
32 45.30 0.56 35.79 0.66 5.03 0.24 40.82 0.66
64 47.74 0.97 35.25 1.83 5.07 0.33 40.32 1.87
96 46.53 0.57 35.86 0.60 4.92 0.26 40.78 0.61
128 85.65 1.63 35.03 2.64 4.83 0.70 39.86 3.09
256 129.13 1.83 36.28 1.23 4.25 0.90 40.54 1.43

4 4 35.02 0.64 26.99 0.60 4.41 0.34 31.40 0.69
8 36.82 1.47 27.70 1.04 4.79 0.28 32.49 1.07
12 37.05 0.93 27.41 0.99 4.79 0.26 32.20 1.04
16 37.23 1.19 27.26 0.89 4.83 0.26 32.09 0.89
20 38.22 1.00 27.56 1.26 4.82 0.28 32.38 1.19
24 39.75 2.49 27.35 1.42 4.88 0.27 32.23 1.47
28 42.89 3.32 27.70 2.01 4.84 0.32 32.54 2.02
32 45.22 0.67 35.79 0.71 5.02 0.25 40.82 0.70
64 46.96 1.14 33.68 3.48 5.09 0.32 38.78 3.57
96 48.89 0.82 38.36 0.72 4.96 0.39 43.32 0.80
128 48.64 2.15 36.29 0.82 6.61 1.87 42.91 1.98
256 88.39 0.81 35.99 0.65 4.33 0.87 40.33 1.06

Table A.10: Runtime data of simulation campaigns with the seqeuntial subsystem intensive
CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 4 52.92 4.05 43.38 2.68 4.88 0.24 48.26 2.67

Continued on next page

101

A. DATA

Table A.10: Runtime data of simulation campaigns with the seqeuntial subsystem intensive
CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

8 51.71 0.52 43.00 0.68 4.82 0.35 47.82 0.80
12 60.80 2.97 48.59 4.41 4.99 0.30 53.57 4.44
16 63.03 2.88 51.79 1.30 5.05 0.37 56.84 1.32
20 68.82 2.23 53.86 3.07 4.99 0.42 58.85 3.04
24 66.49 1.94 55.75 0.92 4.97 0.38 60.73 1.03
28 66.95 2.40 55.09 1.92 4.94 0.30 60.03 1.95
32 68.76 1.60 57.29 1.23 4.94 0.23 62.23 1.21
64 132.64 4.98 57.24 1.57 4.20 0.90 61.44 1.84
96 197.35 3.92 57.38 2.14 3.94 0.90 61.33 2.27
128 256.81 5.11 57.27 1.82 3.75 0.79 61.02 1.96
256 512.74 7.31 57.56 2.64 3.66 1.08 61.23 2.91

2 4 54.25 0.95 44.49 2.06 4.93 0.11 49.42 2.10
8 55.18 1.31 43.90 2.05 4.89 0.15 48.79 2.00
12 59.37 4.00 44.11 3.45 4.87 0.31 48.98 3.45
16 54.00 2.10 43.51 1.31 4.93 0.28 48.44 1.33
20 62.67 3.02 46.25 4.65 4.99 0.25 51.24 4.69
24 62.52 2.24 48.50 4.52 5.02 0.31 53.52 4.52
28 63.01 2.08 50.24 3.42 4.95 0.37 55.19 3.47
32 67.87 3.47 57.21 1.49 5.01 0.22 62.21 1.47
64 70.81 3.71 57.38 1.42 5.11 0.28 62.49 1.42
96 127.28 3.54 55.61 3.08 4.54 0.81 60.15 3.74
128 137.08 4.16 57.33 1.75 4.53 1.28 61.86 2.21
256 265.68 2.28 57.55 2.11 4.30 1.44 61.85 2.68

3 4 57.07 2.04 45.02 3.15 4.64 0.34 49.67 3.38
8 56.63 2.70 44.53 2.94 4.86 0.22 49.39 2.94
12 54.26 2.25 43.39 1.75 4.87 0.27 48.26 1.72
16 56.59 3.21 43.49 2.37 4.87 0.29 48.36 2.41
20 57.98 3.71 44.07 2.96 4.83 0.32 48.90 3.00
24 54.10 1.18 43.34 1.15 4.97 0.28 48.31 1.18
28 64.16 2.30 45.87 4.46 5.27 0.75 51.14 4.59
32 70.73 3.85 57.21 1.65 4.96 0.24 62.17 1.67
64 69.69 3.09 55.07 3.19 5.02 0.31 60.09 3.22
96 69.84 2.91 57.41 1.20 4.93 0.26 62.34 1.21
128 131.22 3.92 55.73 4.41 4.74 0.78 60.47 4.88
256 198.20 1.38 57.14 2.67 4.11 0.92 61.24 2.86

4 4 52.89 3.93 43.00 2.40 4.38 0.38 47.38 2.48
8 56.42 1.37 45.44 2.25 4.87 0.20 50.32 2.30
12 55.11 3.36 43.60 2.32 4.75 0.30 48.36 2.38

Continued on next page

102

A.3 Experiment: PDES

Table A.10: Runtime data of simulation campaigns with the seqeuntial subsystem intensive
CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

16 56.63 2.64 44.04 2.45 4.87 0.26 48.92 2.49
20 58.91 1.78 44.41 2.92 4.86 0.27 49.27 2.93
24 57.99 5.67 43.87 2.62 4.91 0.24 48.78 2.61
28 60.89 1.37 44.95 3.39 4.89 0.31 49.84 3.40
32 70.57 4.31 57.43 1.87 5.17 0.25 62.60 1.86
64 70.52 4.70 53.31 5.38 5.48 0.82 58.80 5.52
96 71.76 2.65 56.18 1.30 4.89 0.38 61.08 1.33
128 71.29 1.29 57.35 0.96 5.77 1.27 63.12 1.56
256 138.77 3.92 57.51 1.42 4.42 0.82 61.93 1.68

A.3.3 Campaign: PDES

Table A.11: Runtime data of simulation campaigns with the PDES-enabled communication
intensive CQN model. All configurations were set to a single worker process per compute
node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 4 18.43 0.71 10.29 0.59 4.94 0.18 15.23 0.66
8 33.22 1.11 10.22 0.62 4.70 0.32 14.92 0.76
12 47.66 0.98 10.11 0.71 4.62 0.35 14.73 0.81
16 71.14 7.58 12.22 2.18 4.52 0.41 16.74 2.11
20 93.90 8.06 13.40 2.02 4.59 0.35 17.98 2.02
24 108.65 11.19 12.89 2.23 4.58 0.37 17.47 2.28
28 108.59 4.06 10.42 0.89 4.55 0.34 14.97 0.94
32 140.55 16.66 12.44 2.26 4.58 0.34 17.02 2.24

2 4 17.63 0.79 9.43 0.52 4.90 0.30 14.33 0.67
8 18.36 0.61 10.02 0.54 4.88 0.21 14.90 0.64
12 36.05 4.43 10.66 1.90 4.72 0.37 15.38 1.87
16 37.81 4.02 11.12 2.06 4.68 0.37 15.80 2.10
20 56.90 9.75 11.31 2.83 4.65 0.38 15.96 2.81
24 47.88 1.14 9.81 0.57 4.62 0.44 14.42 0.76
28 66.90 10.38 10.53 1.94 4.66 0.43 15.19 2.01
32 63.04 1.56 9.82 0.63 4.65 0.35 14.47 0.78

3 4 16.99 0.33 9.08 0.30 4.71 0.37 13.79 0.53

Continued on next page

103

A. DATA

Table A.11: Runtime data of simulation campaigns with the PDES-enabled communication
intensive CQN model. All configurations were set to a single worker process per compute
node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

8 17.91 0.22 9.58 0.41 4.88 0.24 14.46 0.54
12 19.16 1.35 10.38 1.10 4.87 0.23 15.25 1.15
16 49.36 37.85 10.99 9.34 4.76 0.31 15.75 9.29
20 36.39 2.86 10.50 1.51 4.77 0.28 15.27 1.50
24 33.37 0.60 10.05 0.55 4.73 0.34 14.78 0.74
28 86.78 48.25 11.94 9.96 4.69 0.34 16.63 9.98
32 54.75 16.88 9.76 0.64 4.65 0.35 14.40 0.78

4 4 16.76 0.09 8.90 0.23 4.61 0.27 13.52 0.37
8 17.84 0.70 9.42 0.49 4.83 0.23 14.25 0.54
12 22.06 1.21 10.74 2.12 4.85 0.24 15.59 2.07
16 22.37 1.36 11.02 2.06 4.83 0.30 15.86 2.07
20 118.27 1.05 14.68 18.08 4.78 0.30 19.46 18.03
24 32.82 0.39 9.91 0.69 4.79 0.29 14.70 0.85
28 39.54 2.08 10.70 1.83 4.70 0.35 15.40 1.90
32 79.23 75.84 10.58 1.48 4.71 0.35 15.29 1.52

Table A.12: Runtime data of simulation campaigns with the PDES-enabled computation
intensive CQN model. All configurations were set to a single worker process per compute
node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 4 16.10 0.92 8.13 0.58 4.94 0.22 13.07 0.71
8 27.78 0.27 7.71 0.38 4.62 0.34 12.33 0.45
12 39.81 1.33 7.49 0.47 4.66 0.31 12.14 0.64
16 53.04 2.04 7.91 0.65 4.63 0.29 12.54 0.62
20 84.92 2.85 11.57 1.13 4.67 0.35 16.24 1.20
24 76.45 0.31 7.61 0.62 4.58 0.35 12.20 0.77
28 92.63 7.48 8.28 1.18 4.52 0.36 12.80 1.21
32 125.98 15.91 10.84 2.04 4.53 0.37 15.37 2.05

2 4 15.42 0.41 7.29 0.32 5.08 0.39 12.37 0.52
8 15.81 0.55 7.84 0.40 4.82 0.32 12.66 0.57
12 27.71 0.54 7.63 0.56 4.76 0.33 12.38 0.74
16 29.26 2.49 7.81 0.96 4.62 0.37 12.43 1.10

Continued on next page

104

A.3 Experiment: PDES

Table A.12: Runtime data of simulation campaigns with the PDES-enabled computation
intensive CQN model. All configurations were set to a single worker process per compute
node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

20 46.53 9.71 8.50 2.50 4.66 0.30 13.16 2.52
24 40.49 0.74 7.60 0.50 4.63 0.35 12.23 0.58
28 64.24 12.43 8.88 2.73 4.62 0.31 13.50 2.74
32 56.15 8.36 8.01 1.48 4.56 0.36 12.57 1.48

3 4 14.84 0.26 6.94 0.29 4.67 0.33 11.61 0.42
8 15.74 0.46 7.44 0.40 4.90 0.27 12.33 0.50
12 16.14 0.26 7.85 0.45 4.88 0.23 12.72 0.56
16 54.01 36.33 9.70 9.81 4.79 0.30 14.49 9.75
20 28.79 1.65 7.66 0.49 4.91 0.67 12.57 0.96
24 28.71 0.62 7.63 0.58 4.70 0.36 12.34 0.71
28 41.73 4.57 7.73 0.95 4.71 0.28 12.44 1.02
32 44.53 6.28 8.07 1.47 4.63 0.35 12.70 1.51

4 4 14.37 0.15 6.73 0.22 4.50 0.24 11.23 0.27
8 15.32 0.30 7.16 0.36 4.80 0.28 11.96 0.38
12 15.97 0.17 7.61 0.43 4.87 0.21 12.49 0.48
16 20.23 1.02 8.71 2.12 4.84 0.32 13.55 2.20
20 72.55 0.70 12.87 12.34 4.94 0.43 17.81 12.18
24 27.98 0.18 7.56 0.49 4.75 0.31 12.31 0.65
28 35.46 0.13 8.52 1.89 4.71 0.41 13.23 1.97
32 30.96 1.62 7.97 0.98 4.69 0.37 12.65 1.07

Table A.13: Runtime data of simulation campaigns with the PDES-enabled subsystem in-
tensive CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

1 4 17.35 0.58 9.64 0.52 4.75 0.35 14.39 0.65
8 31.51 0.79 9.59 0.45 4.62 0.36 14.21 0.59
12 46.65 1.14 9.67 0.52 4.69 0.28 14.36 0.63
16 63.69 6.50 10.41 1.48 4.62 0.35 15.03 1.55
20 75.60 2.28 9.70 0.61 4.68 0.33 14.38 0.71
24 89.54 1.71 9.67 0.66 4.58 0.37 14.25 0.78
28 108.19 5.14 10.35 1.03 4.59 0.34 14.94 1.06
32 126.16 15.35 10.57 1.89 4.62 0.30 15.19 1.90

Continued on next page

105

A. DATA

Table A.13: Runtime data of simulation campaigns with the PDES-enabled subsystem in-
tensive CQN model. All configurations were set to a single worker process per compute node.

Timeframe Environment Simulation Compilation Worker
Measure (s) Mean Std Mean Std Mean Std Mean Std

Nodes Evals

2 4 19.59 3.05 10.29 2.49 4.85 0.25 15.14 2.51
8 18.20 0.41 9.80 0.51 4.93 0.28 14.74 0.66
12 31.64 0.82 9.47 0.58 4.71 0.36 14.18 0.76
16 32.99 0.89 9.73 0.68 4.69 0.34 14.42 0.83
20 54.84 9.27 10.92 2.58 4.68 0.35 15.60 2.60
24 47.06 0.89 9.68 0.69 4.64 0.34 14.32 0.82
28 63.32 8.05 9.81 1.56 4.59 0.33 14.40 1.61
32 60.90 2.80 9.54 0.66 4.53 0.39 14.07 0.82

3 4 16.71 0.41 8.75 0.27 4.67 0.33 13.42 0.51
8 17.55 0.37 9.27 0.52 4.77 0.31 14.05 0.62
12 18.42 0.46 9.70 0.53 4.90 0.23 14.60 0.60
16 30.96 0.52 9.44 0.68 4.79 0.32 14.23 0.89
20 34.81 2.75 10.02 1.27 4.72 0.35 14.74 1.30
24 33.14 1.38 9.61 0.54 4.83 0.50 14.44 0.77
28 81.79 50.58 11.12 9.96 4.63 0.37 15.75 9.98
32 47.26 1.97 9.55 0.65 4.69 0.31 14.24 0.77

4 4 16.22 0.20 8.62 0.14 4.41 0.42 13.03 0.43
8 17.41 0.45 9.13 0.39 4.92 0.16 14.05 0.42
12 18.05 0.40 9.41 0.58 4.83 0.23 14.24 0.68
16 18.62 0.86 9.80 0.60 4.84 0.29 14.64 0.71
20 75.06 0.32 12.09 9.02 4.81 0.30 16.90 8.98
24 32.38 0.32 9.74 0.66 4.80 0.30 14.54 0.85
28 39.74 1.78 10.51 1.99 4.90 0.59 15.42 1.95
32 36.70 1.29 10.20 1.21 4.73 0.39 14.93 1.31

106

Appendix B

Visualisations

The Visualisation appendix contains additional informational figures generated during the

experiments, but not presented (or presented differently) in Chapter 5.

107

B. VISUALISATIONS

B.1 Experiment: Simulation Campaign

All additional figures belonging to the simulation campaign experiment are presented in

this section.

B.1.1 SMT Enabled

32 64 96 128 160 192 224 256
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Relative speedup for SMT against non-
SMT with Sequential baseline and strong scaling
(Srel(SMT, regular))

32 64 96 128 160 192 224 256
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Relative speedup for SMT against non-SMT
with Sequential Multi baseline and strong scaling
(Srel(SMT, regular))

32 64 96 128 160 192 224 256
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Relative speedup for non-SMT against SMT
with Sequential baseline and strong scaling
(Srel(regular, SMT))

32 64 96 128 160 192 224 256
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Relative speedup for non-SMT against SMT
with Sequential Multi baseline and strong scaling
(Srel(regular, SMT))

Figure B.1: Relative speedup Srel for an increasing number of evaluations of the INET-
LANS model with both the Sequential, Sequential Multi execution time baselines when SMT
is enabled or disabled.

B.2 Experiment: PDES

All additional figures belonging to the PDES experiment are presented in this section.

108

B.2 Experiment: PDES

B.2.1 Sequential Campaign

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(a) Speedup for weak scaling

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(b) Speedup for strong scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(c) Efficiency for weak scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(d) Efficiency for strong scaling

Figure B.2: Efficiency and Speedup for strong and weak scaling with 32 sequential evalua-
tions of the communication intensive CQN model as baseline for the single node configuration
and the Sequential and Sequential Multi execution time baselines.

109

B. VISUALISATIONS

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(a) Speedup for weak scaling

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(b) Speedup for strong scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(c) Efficiency for weak scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(d) Efficiency for strong scaling

Figure B.3: Efficiency and Speedup for strong and weak scaling with 32 sequential evalua-
tions of the computation intensive CQN model as baseline for the single node configuration
and the Sequential and Sequential Multi execution time baselines.

110

B.2 Experiment: PDES

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(a) Speedup for weak scaling

1 2 3 4
Number of Nodes

0

20

40

60

80

100

120

Sp
ee

du
p

Speedup for an increasing number of nodes
Sequential
Sequential Multi

(b) Speedup for strong scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(c) Efficiency for weak scaling

1 2 3 4
Number of Nodes

0.0

0.2

0.4

0.6

0.8

1.0
Ef

fic
ie

nc
y

Efficiency for an increasing number of nodes
Sequential
Sequential Multi

(d) Efficiency for strong scaling

Figure B.4: Efficiency and Speedup for strong and weak scaling with 32 sequential evalua-
tions of the subsystem intensive CQN model as baseline for the single node configuration and
the Sequential and Sequential Multi execution time baselines.

111

B. VISUALISATIONS

112

B.2 Experiment: PDES

B.2.2 Relative Speedup

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Relative speedup for computation in-
tensive against communication intensive
(Srel(comp, comm)) with Sequential baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Relative speedup for subsystem intensive
against communication intensive (Srel(sub, comm))
with Sequential baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Relative speedup for communication intensive
against computation intensive (Srel(comm, comp))
with Sequential baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Relative speedup for subsystem intensive
against computation intensive (Srel(sub, comp))
with Sequential baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(e) Relative speedup for communication intensive
against subsystem intensive (Srel(comm, sub)) with
Sequential baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(f) Relative speedup for computation intensive
against subsystem intensive (Srel(comp, sub)) with
Sequential baseline

Figure B.5: Relative speedup Srel for increasing number of PDES CQN model evaluations
with the Sequential execution time baseline.

113

B. VISUALISATIONS

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Relative speedup for computation in-
tensive against communication intensive
(Srel(comp, comm)) with Sequential Multi
baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Relative speedup for subsystem intensive
against communication intensive (Srel(sub, comm))
with Sequential Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Relative speedup for communication intensive
against computation intensive (Srel(comm, comp))
with Sequential Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Relative speedup for subsystem intensive
against computation intensive (Srel(sub, comp))
with Sequential Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(e) Relative speedup for communication intensive
against subsystem intensive (Srel(comm, sub)) with
Sequential Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(f) Relative speedup for computation intensive
against subsystem intensive (Srel(comp, sub)) with
Sequential Multi baseline

Figure B.6: Relative speedup Srel for increasing number of PDES CQN model evaluations
with the Sequential Multi execution time baseline.

114

B.2 Experiment: PDES

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Relative speedup for computation in-
tensive against communication intensive
(Srel(comp, comm)) with Sequential Cam-
paign baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Relative speedup for subsystem intensive
against communication intensive (Srel(sub, comm))
with Sequential Campaign baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Relative speedup for communication intensive
against computation intensive (Srel(comm, comp))
with Sequential Campaign baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Relative speedup for subsystem intensive
against computation intensive (Srel(sub, comp))
with Sequential Campaign baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(e) Relative speedup for communication intensive
against subsystem intensive (Srel(comm, sub)) with
Sequential Campaign baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(f) Relative speedup for computation intensive
against subsystem intensive (Srel(comp, sub)) with
Sequential Campaign baseline

Figure B.7: Relative speedup Srel for increasing number of PDES CQN model evaluations
with the Sequential Campaign execution time baseline.

115

B. VISUALISATIONS

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Relative speedup for computation in-
tensive against communication intensive
(Srel(comp, comm)) with Sequential PDES
baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Relative speedup for subsystem intensive
against communication intensive (Srel(sub, comm))
with Sequential PDES baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Relative speedup for communication intensive
against computation intensive (Srel(comm, comp))
with Sequential PDES baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Relative speedup for subsystem intensive
against computation intensive (Srel(sub, comp))
with Sequential PDES baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(e) Relative speedup for communication intensive
against subsystem intensive (Srel(comm, sub)) with
Sequential PDES baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(f) Relative speedup for computation intensive
against subsystem intensive (Srel(comp, sub)) with
Sequential PDES baseline

Figure B.8: Relative speedup Srel for increasing number of PDES CQN model evaluations
with the Sequential PDES execution time baseline.

116

B.2 Experiment: PDES

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(a) Relative speedup for computation in-
tensive against communication intensive
(Srel(comp, comm)) with Sequential PDES
Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(b) Relative speedup for subsystem intensive
against communication intensive (Srel(sub, comm))
with Sequential PDES Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(c) Relative speedup for communication intensive
against computation intensive (Srel(comm, comp))
with Sequential PDES Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(d) Relative speedup for subsystem intensive
against computation intensive (Srel(sub, comp))
with Sequential PDES Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(e) Relative speedup for communication intensive
against subsystem intensive (Srel(comm, sub)) with
Sequential PDES Multi baseline

4 8 12 16 20 24 28 32
Number of Evaluations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

sp
ee

du
p

Relative speedup for an increasing number of evaluations
Nodes: 1
Nodes: 2
Nodes: 3
Nodes: 4

(f) Relative speedup for computation intensive
against subsystem intensive (Srel(comp, sub)) with
Sequential PDES Multi baseline

Figure B.9: Relative speedup Srel for increasing number of PDES CQN model evaluations
with the Sequential PDES Multi execution time baseline.

117

Appendix C

Models

The Models appendix contains additional figures representing models used throughout the

evaluation, but not presented (or presented differently) in Chapter 5.

C.1 INET-LANS

All additional figures belonging to the INET-LANS model are presented in this section.

119

C. MODELS

La
rg
eN

et

sw
it
ch

B
B
[0
]

sw
it
ch

B
B
[1
]

sw
it
ch

B
B
[2
]

sw
it
ch

B
B
[3
]

sw
it
ch

B
B
[4
]

sw
it
ch

B
B
[5
]

sw
it
ch

B
B
[6
]

sw
it
ch

B
B
[7
]

sl
an

B
B
[0
]

sl
an

B
B
[1
]

sl
an

B
B
[2
]

sl
an

B
B
[3
]

sl
an

B
B
[4
]

sl
an

B
B
[5
]

sl
an

B
B
[6
]

sl
an

B
B
[7
]

m
la
nB

B
[0
]

m
la
nB

B
[1
]

m
la
nB

B
[2
]

m
la
nB

B
[3
]

m
la
nB

B
[4
]

m
la
nB

B
[5
]

m
la
nB

B
[6
]

m
la
nB

B
[7
]

lla
nB

B
[0
]

lla
nB

B
[1
]

lla
nB

B
[2
]

lla
nB

B
[3
]

lla
nB

B
[4
]

lla
nB

B
[5
]

lla
nB

B
[6
]

lla
nB

B
[7
]

sw
it
ch

A
se

rv
er
A

sl
an

A
[0
]

m
la
nA

[0
]

lla
nA

[0
]

sw
it
ch

B
se

rv
er
B

sl
an

B
[0
]

m
la
nB

[0
]

lla
nB

[0
]

sw
it
ch

C
se

rv
er
C

sl
an

C
[0
]

m
la
nC

[0
]

lla
nC

[0
]

sw
it
ch

D
se

rv
er
D

sl
an

D
[0
]

m
la
nD

[0
]

lla
nD

[0
]

Figure C.1: Visualisation of the INET-LANS model. Each LAN edge-node in the graph,
visualised by a cloud, contains a small, medium, or large LAN with hosts connected to a
switch and hub.

120

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Objectives and Contributions
	1.3 Structure

	2 Background and Related Works
	2.1 Cyber-Physical Systems
	2.2 DSE
	2.3 Scalability
	2.4 Simulation
	2.5 Distributed Computing
	2.6 Related Works
	2.6.1 Scaling Frameworks
	2.6.1.1 Simulator Capabilities
	2.6.1.2 Scalability Toolchains

	2.6.2 DSE Frameworks

	3 Approach
	3.1 Simulation
	3.1.1 Design Points
	3.1.2 Scalability

	3.2 Distributed Computing
	3.2.1 Interaction
	3.2.2 Facilities
	3.2.3 Data Management

	4 Methodology
	4.1 Design
	4.2 Implementation
	4.2.1 Configuration
	4.2.2 Design Point Object
	4.2.3 Distributed Computing

	5 Evaluation
	5.1 Setup
	5.1.1 Platform
	5.1.2 Models

	5.2 Experiment Definition
	5.2.1 Experiment: Simulation Campaign
	5.2.2 Experiment: Worker Size
	5.2.3 Experiment: PDES

	5.3 Results
	5.3.1 Simulation Campaign
	5.3.2 Worker Size
	5.3.3 PDES

	6 Discussion
	6.1 Simulation Campaign
	6.2 Worker Size
	6.3 PDES
	6.4 General

	7 Conclusion
	7.1 Future Work

	A Data
	A.1 Experiment: Simulation Campaign
	A.1.1 Baselines
	A.1.2 Campaign

	A.2 Experiment: Worker Size
	A.3 Experiment: PDES
	A.3.1 Baselines
	A.3.2 Campaign: Sequential
	A.3.3 Campaign: PDES

	B Visualisations
	B.1 Experiment: Simulation Campaign
	B.1.1 SMT Enabled

	B.2 Experiment: PDES
	B.2.1 Sequential Campaign
	B.2.2 Relative Speedup

	C Models
	C.1 INET-LANS

