
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

Performance estimation technique for optimizing
and integrating IPs in MPSoCs

Anand Subhash Khot

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-12

Over the last decade, the complexity of system-on-chips (SoCs) has
continuously increased owing to the increasing demand for high per-
formance IPs and SoCs. However, the productivity of chip designers
has not scaled up at the same rate. This has led to an enormous
design productivity gap. At the same time, the increasing time-to-
market pressure and the high risk of design failure have all fostered
the development of IP re-use based designs. One of the major chal-
lenges in re-using IPs is that it is difficult to configure and verify
the performance of IPs/ IP subsystems after they are integrated
into an existing SoC with a given infrastructure (on-chip network,
memory subsystem, etc.). To overcome these challenges, we propose
two performance estimation techniques that are based on high-level
performance modeling of IPs and SoC infrastructure. These models
capture some of their key performance characteristics (e.g. latency
tolerance of IPs) and help relate the performance dependence of IPs
on the service provided by the SoC infrastructure. Along with the
advantage of re-using the high-level IP models in multiple SoC de-
signs, the models allow the SoC designer to iteratively estimate the
performance of a SoC over a range of IP and SoC infrastructure con-
figurations, thereby aiding the design space exploration process. The

proposed performance estimation techniques are particularly useful in rapidly re-assessing the performance
of all IP/ IP subsystems once they are integrated into a given SoC design. The performance estimates
provided by these techniques in the early SoC design stages saves a significant portion of the precious
design time. The performance estimation techniques therefore simplify the process of integrating new IPs/
IP subsystems into existing SoC designs.





Performance estimation technique for optimizing
and integrating IPs in MPSoCs

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Anand Subhash Khot
born in Belgaum, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology





Performance estimation technique for optimizing
and integrating IPs in MPSoCs

by Anand Subhash Khot

Abstract

O
ver the last decade, the complexity of system-on-chips (SoCs) has continuously increased
owing to the increasing demand for high performance IPs and SoCs. However, the produc-
tivity of chip designers has not scaled up at the same rate. This has led to an enormous

design productivity gap. At the same time, the increasing time-to-market pressure and the high
risk of design failure have all fostered the development of IP re-use based designs. One of the
major challenges in re-using IPs is that it is difficult to configure and verify the performance of
IPs/ IP subsystems after they are integrated into an existing SoC with a given infrastructure
(on-chip network, memory subsystem, etc.). To overcome these challenges, we propose two per-
formance estimation techniques that are based on high-level performance modeling of IPs and
SoC infrastructure. These models capture some of their key performance characteristics (e.g.
latency tolerance of IPs) and help relate the performance dependence of IPs on the service pro-
vided by the SoC infrastructure. Along with the advantage of re-using the high-level IP models in
multiple SoC designs, the models allow the SoC designer to iteratively estimate the performance
of a SoC over a range of IP and SoC infrastructure configurations, thereby aiding the design space
exploration process. The proposed performance estimation techniques are particularly useful in
rapidly re-assessing the performance of all IP/ IP subsystems once they are integrated into a
given SoC design. The performance estimates provided by these techniques in the early SoC
design stages saves a significant portion of the precious design time. The performance estimation
techniques therefore simplify the process of integrating new IPs/ IP subsystems into existing SoC
designs.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-12

Committee Members :

Advisor: Prof. Kees Goossens, ES, TU Eindhoven

Advisor: Dr. ir. Pieter van der Wolf, Synopsys

Chairperson: Dr. ir. Sorin Cotofana, CE, TU Delft

Member: Dr. ir. Georgi Kuzmanov, CE, TU Delft

i



ii



To my parents

iii



iv



Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 System-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 SoC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 IP re-use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 IP customization and integration . . . . . . . . . . . . . . . . . . . 3

1.4.2 Performance verification . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 General High level Performance Modeling 9

2.1 Functional modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Generic architecture of IPs: . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Classification of functional modules . . . . . . . . . . . . . . . . . . 10

2.2 Model for functional modules . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 External memory request trace . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Execution behaviour of functional modules . . . . . . . . . . . . . 19

2.2.3 Performance impact of the SoC infrastructure . . . . . . . . . . . . 19

2.2.4 Performance impact of the IPs . . . . . . . . . . . . . . . . . . . . 20

2.2.5 Total execution time (E): . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 No-stall interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.7 Perceived latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.8 Derived Benefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Performance modeling of functional modules . . . . . . . . . . . . . . . . . 23

2.4 Performance modeling of the SoC infrastructure . . . . . . . . . . . . . . . 23

2.5 The complete SoC model . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Basics of Performance Estimation . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Characterization of functional modules and the SoC infrastructure 26

2.6.2 Execution of the external memory request trace . . . . . . . . . . . 27

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



3 Trace-based Performance Estimation 29
3.1 Trace simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Experiments based on the trace simulator . . . . . . . . . . . . . . . . . . 29

3.2.1 Simple Blocking Processor . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Experiments for split and pipelined IPs . . . . . . . . . . . . . . . 33

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Simplified equation-based Performance estimation 45
4.1 Performance estimation using simplified equations . . . . . . . . . . . . . 45
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Blocking IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Split IPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Pipelined IPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Application of the performance estimation techniques . . . . . . . . . . . 57
4.3.1 Performance estimation using trace simulator . . . . . . . . . . . . 57
4.3.2 Performance estimation using simplified equation . . . . . . . . . . 59

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Related work 61

6 Conclusion and Future work 65
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 70

A Algorithm for computing the derived benefit of external memory re-
quests 71

vi



List of Figures

1.1 A contemporary system-on-chip (SoC) . . . . . . . . . . . . . . . . . . . . 1

2.1 Examples of functional modules in SoCs . . . . . . . . . . . . . . . . . . . 10
2.2 Examples of functional modules in SoCs . . . . . . . . . . . . . . . . . . . 11
2.3 Assembly code of a task executing on the core IP. . . . . . . . . . . . . . . 16
2.4 Memory trace resulting from executing audio application on a processor

with an ideal memory subsystem. . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Memory trace generated by the cache (assistance unit) of the functional

module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Memory trace resulting from the execution of real-time video application

on a streaming graphics engine with an ideal memory subsystem. . . . . . 18
2.7 Memory trace generated by the pre-fetcher (assistance unit) of the func-

tional module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 System level representation of the SoC . . . . . . . . . . . . . . . . . . . . 24
2.9 Model of the complete SoC . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Simit-ARM experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Performance of blocking processor . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Performance of split processor . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Comparison of the performance of pipelined processors . . . . . . . . . . . 38
3.5 Comparison between performance of all processors . . . . . . . . . . . . . 39
3.6 Effect of the spread in no-stall interval on the performance of

split/pipelined IPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Effect of the spread in actual latency on the performance of blocking, split

and pipelined IPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Error plot for the simulation and simplified equation-based technique . . . 48
4.2 Correction factor plot for computing the equivalent actual latency . . . . 50
4.3 Error plot for the simulation and simplified equation-based technique . . . 52
4.4 Correction factor plot for computing the equivalent no-stall interval . . . 54

vii



viii



List of Tables

2.1 Classification of functional modules . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Semantics for specifying RD and CD . . . . . . . . . . . . . . . . . . . . 15

3.1 Simit-ARM v/s Trace simulator results . . . . . . . . . . . . . . . . . . . . 31
3.2 Blocking processor results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Split processor results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Pipelined processor results . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Comparison between the results of the trace-based and the equation-based
performance estimation techniques for blocking IPs . . . . . . . . . . . . . 46

4.2 Comparison between the performance results when there is no spread in
the actual latency and the no-stall interval values . . . . . . . . . . . . . . 47

4.3 Comparison between the results of the trace-based technique and the
equation-based estimation technique for pipelined IPs . . . . . . . . . . . 56

4.4 Performance estimation results of a DSP (Nmax = 4) executing a typical
audio decoder application trace. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Performance estimation results of a video IP (Nmax = 4) executing a
typical video application trace. . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



x



Acknowledgements

Firstly, I would like to thank Prof. Kees Goossens and Dr. Pieter van der Wolf for giving
me the opportunity to conduct my MSc thesis at Synopsys under their guidance and
mentorship. I am grateful for Prof. Goossens’s reviews, suggestions for improvements
and expert guidance throughout the thesis. I am equally grateful to Pieter for his
encouragement, valuable advice and supervision at Synopsys. I would like to express
my deepest gratitude to Dr. Benny Akesson (Post. Doc at TU, Eindhoven) for his
suggestions and thorough review of my work. I would specially like to thank Prof. Sorin
Cotofana for accepting to supervise my thesis from Delft. I would also like to thank
Prof. Georgi Kuzmanov for accepting to judge my thesis defense. I am grateful to the
staff of Synopsys and the Memory Team at TU Eindhoven, especially Firew, Sven, Tim,
Karthik, Manil and Davit for creating a pleasant work environment.

Finally, I would like to thank my parents and my sister for their love, care and
support. Last but not the least, I would like to thank my friends in the Netherlands,
especially my flatmates in Delft and Eindhoven, for making the last 2 years special in
my life.

Anand Subhash Khot
Delft, The Netherlands
June 23, 2011

xi



xii



Introduction 1
1.1 System-on-Chip

System-on-Chip (SoC) refers to the technology of integrating all components of an elec-
tronic system into a single integrated circuit. Figure 1.1 depicts a system level rep-
resentation of a typical SoC. It can be observed from Figure 1.1 that a contemporary
system-on-chip contains various intellectual property (IP) elements such as processing
cores (e.g. ARM, MIPS), DSPs, video engines, on-chip network, audio/video subsystem,
memory subsystem etc., along with analog and RF components such as PLLs, ADCs,
wireless transceivers, data converters etc. IPs such as processors, DSPs and other pro-
cessing engines execute the associated software to provide the intended functionality.
Thus, both the hardware (IPs) and the associated software are an integral part of a
system-on-chip.

Figure 1.1: A contemporary system-on-chip (SoC)

1.2 SoC Design

Over the last several years, SoCs have become increasingly complex. This is primarily
because of the increasing number of multimedia and real time applications supported by
modern day SoCs. Due to these applications, the demand for high performance IPs and
SoCs has increased. Consequently the number and types of IPs developed to execute
these applications have increased over the years.

However, in spite of the ever-increasing growth in the demand for advanced SoCs and
the semiconductor process technology, the productivity of chip designers has not scaled

1



2 CHAPTER 1. INTRODUCTION

up at the same rate. Over the last decade, the number of raw transistors increased at
58% per year (according to Moore’s law), whereas the capability of chip designers to
design them increased only at a rate of 20% per year, thereby creating an enormous
design productivity gap [9]. The design productivity gap is predicted to further widen in
the coming future, suggesting that the effort required to design complex chips will only
increase. Also, the high cost associated with a design re-spin makes it inevitable for SoC
designers to be ’first time right’ with each and every SoC design. Thus, the increasing
design productivity gap and the high risk of failure associated with SoC designs are the
two main SoC design challenges. Along with this, SoC designers are also faced with
the challenge of finding the right balance between the power, area, performance, cost
(in dollars) and time-to-market constraints of modern SoCs. Due to all these factors,
designing next generation SoCs has become extremely challenging and time consuming.

To address the issues of design productivity and design verification, several ap-
proaches have been developed. One approach is to develop new design methodologies
and tools which allow designers to abstract the design at a higher level, thereby simpli-
fying the design process [2, 6]. It mainly addresses the design complexity issues of SoC
design. These methodologies and tools help raise the abstraction level at which SoCs
are designed and thus, help designers build larger and more complex systems. Some of
the design tools are equipped with fast simulators and formal verification techniques to
improve design verification and thus, reduce the risk of design failures.

Another approach is to encourage and maximize IP re-use [3, 16, 17], which allows
large SoC designs to be partitioned into smaller IP subsystems with specific, well-defined
functionality. The reuse of qualified, pre-verified IPs in multiple SoC designs minimizes
the risk of design failures and reduces the time-to-market and the high NRE cost asso-
ciated with SoC designs. To summarize, IP re-use offers the following advantages:

1. Reduced time-to-market.

2. Reduced NRE cost.

3. Reduced risk of design failures.

4. Simplified design analysis and customization.

Over the last couple of decades, the market dynamics, the increasing SoC complexity
and the time-to-market pressures have all led to the adoption and development of IP
re-use based designs.

1.3 IP re-use

In general, IP re-use refers to the concept of directly using an IP or an IP subsystem
from an existing SoC design. Such re-use of IPs is commonly found within the design
groups of a semiconductor company [17]. The IP re-use based design methodology is
particularly useful in rapidly evolving and highly competitive markets (such as mobile
phones, consumer electronics, etc.), where the next generation SoCs are not designed
from scratch, but are built by re-using a considerable portion of an existing SoC.



1.4. PROBLEM STATEMENT 3

SoC design based on IP re-use typically involves starting the design process with an
existing SoC and then, adding/replacing new IP subsystems as per the design require-
ments. In case the required IPs/ IP subsystems are not available with the design house,
they are directly purchased from third party IP vendors [16]. The IP subsystems sold by
the IP vendors are pre-verified for functional correctness and support industry standard
interfaces (AHB, AXI, etc.), such that they can be integrated easily into custom SoC
designs. Since the IP subsystems provide some commonly required functionality, they
are generic enough to allow some of the design parameters (e.g. size of data buffers, etc.)
to be tweaked and reconfigured as per the performance requirements of individual SoC
designs. In this thesis, we consider that the on-chip network, the memory subsystem
and the external DRAM memory together form the common, shared SoC infrastructure
that is used by all IPs/ IP subsystems.

The task of the SoC designer is to verify if the newly added IP/ IP subsystem
(with a given configuration) performs as expected when it is coupled to the shared SoC
infrastructure. This may require exploring the different possible configurations of the
IPs/ IP subsystems and the SoC infrastructure such that they fulfill all the performance
requirements of real-time applications. Also, the addition/replacement of an IP/ IP
subsystem may invalidate the performance guarantees of other IPs/ IP subsystems of the
original SoC. Therefore, it is crucial to ensure that all IPs/ IP subsystems of the original
SoC still perform as expected even after the integration of new IP/ IP subsystems.

Thus, as explained above, there are a number of challenges involved in adopting the
IP re-use based design methodology . To summarize, it is extremely tedious and time
consuming to customize (through configuration) both the IPs and the SoC infrastructure
such that they fulfil their performance requirements. Also, the system level performance
verification of IPs and SoC infrastructure every time a new IP/ IP subsystem is added to
an existing SoC design consumes a significant portion of the precious design time. Thus,
rapid customization, integration and performance verification of IPs and the supporting
SoC infrastructure are the key challenges in simplifying and enhancing the IP re-use
based design methodology, which in turn, increases design productivity and minimizes
time to market and the risk of design failure.

1.4 Problem Statement

In this thesis, we focus on IP re-use based designs (explained in the Section 1.3) and
investigate in detail, the following two critical design challenges:

1. IP customization and integration

2. Performance verification

1.4.1 IP customization and integration

In the context of this work, we use the term IP customization and integration to denote
the challenges involved in customizing both the IP/ IP subsystems and the supporting
infrastructure of a given SoC design. As explained previously, SoC designers typically re-
use existing SoC designs and hence, do not need to select the IPs or the SoC infrastructure



4 CHAPTER 1. INTRODUCTION

per se. However, SoC designers often need to tweak the IP/ IP subsystems to suit a
given application [19]. At the same time, they need to appropriately dimension the SoC
infrastructure such that it successfully supports the performance requirements of all IP/
IP subsystems. The key questions which we specifically try to answer in this thesis are
as follows:

1. Does an IP/ IP subsystem satisfy all the performance requirements of the applica-
tion after it is integrated into a SoC with a given infrastructure? If not, can they
be reconfigured to achieve the desired level of performance?

2. If a given IP/ SoC infrastructure does satisfy all the performance requirements, is
there any headroom available to optimize it further?

3. In the case of pipelined multi-threaded IPs, how many outstanding memory re-
quests should it ideally support in order to satisfy the performance requirements
of all real time functions it executes?

4. In the case of IPs employing an advanced pre-fetching cache, how large should
the pre-fetch data buffers be in order to allow sufficient pre-fetching of the nec-
essary data, thereby fulfilling all the performance requirements of the IP and the
application?

5. Given a SoC infrastructure, how do we configure it such that all IPs/ IP subsystems
meet their performance requirements? The configuration of the SoC infrastructure
typically involves configuring the network topology, the memory controller arbitra-
tion technique, etc.

In this thesis, we consider that one of the key concerns while answering the above
questions, is to satisfy the performance requirements of all IPs/ IP subsystems sharing
the SoC infrastructure. Although the performance requirements of the IP/ IP subsystems
are determined by a variety of factors such as the net available bandwidth, the service
latency of external memory requests, etc., in this thesis, we associate the performance of
an IP/ IP subsystem with its latency tolerance and latency criticality. Latency tolerance
and latency criticality are defined as follows:

Latency Tolerance

Latency tolerance of an IP/ IP subsystem is the ability of the IP to continue execution
of the application code after issuing a memory request, until it finally stalls for the
requested data. An IP/ IP subsystem which is not latency tolerant is termed as latency
sensitive and vice versa.

Latency Criticality

Latency criticality of an IP/ IP subsystem is a measure of the severity of stalling the
IP, with respect to the overall functionality of the application or the SoC. An IP/ IP
subsystem which is not latency critical is termed as latency non-critical and vice versa.



1.4. PROBLEM STATEMENT 5

Latency criticality and latency tolerance are orthogonal properties of an IP/ IP sub-
system. It can be seen from Table 2.1 that is it possible to classify all IPs/ IP subsystems
into the four possible combinations of latency tolerance and latency criticality. The con-
cept of latency tolerance and latency criticality of IPs/ IP subsystems allows us to relate
the performance of IPs with the service latency of the SoC infrastructure.

1.4.2 Performance verification

In the context of this work, we use the term performance verification to denote the pro-
cess of performing system level performance verification of the entire SoC every time a
new IP/ IP subsystem is added to the original SoC. Performance verification is a tedious
and time consuming task, especially if the SoC designer undertakes design space explo-
ration to find the right configuration of the IP/ IP subsystem or the SoC infrastructure.
With respect to performance verification, we try to address the following key concerns:

1. Does a given IP/ IP subsystem (with specific configuration) satisfy all the perfor-
mance requirements of the application when it is coupled to a SoC infrastructure
(with specific configuration)?

2. Does addition of an IP/ IP subsystem invalidate the performance guarantees of
other IPs/ IP subsystems already integrated into the SoC? Do all IPs/ IP subsys-
tems still perform as expected?

These questions are crucial for the success of the SoC implementation. While re-using
a considerable portion of an existing SoC design, the inclusion/replacement of a new IP/
IP subsystem should not degrade the performance of the other IP/ IP subsystems that
share the common SoC infrastructure (i.e. NoC, memory subsystem, external DRAM
memory). Thus, system level verification is necessary to verify whether the performance
of all IPs/ IP subsystems are within their expected bounds after they are all integrated
into the SoC.

Currently, performance verification is performed either by using cycle-accurate sim-
ulators/emulators [14, 10, 21] or by using analytical verification techniques[18, 12]. Sim-
ulation based verification is performed for the entire system, from processors/IPs to the
on-chip network to the memory subsystem, which requires their HDL/ system-C models
along with the entire application code. Furthermore, simulating the entire application
using the IP’s HDL/system-C model or an instruction set simulator, for a variety of
different IP and SoC infrastructure configurations is extremely slow. On the other hand,
analytical verification is fast, but relies on high level models that lack accuracy. Some-
times, analytical verification is performed using worst-case assumptions which works
well with real time applications, but is not sufficiently realistic for soft/non real-time
applications.

While integrating and optimizing IPs, designers often rely on past experiences and
performance specifications of IPs/ SoC infrastructure to select and configure them. Often
these IPs are over-dimensioned (by compromising on the bill of materials) to allow some
headroom and thus, ensure performance guarantees. Even with over-dimensioning of
the IPs/ SoC infrastructure, the performance guarantees need to be verified for every



6 CHAPTER 1. INTRODUCTION

change in the design. The fundamental issue behind all these challenges is the lack
of performance estimation techniques that would allow SoC designers to rapidly select,
configure and verify the performance of IPs and SoC infrastructure.

1.5 Aim

The aim of this thesis is to solve the challenges encountered in the integration, customiza-
tion and system level performance verification of IPs and SoC infrastructure after they
are integrated into a system-on-chip. One of the key challenges in successfully verifying
the performance of an IP lies in our ability to characterize the IP by its latency tolerance
and latency criticality. The thesis thus, aims to provide high level performance models
which capture the latency tolerance and latency criticality of IPs, along with their inter-
action with the SoC infrastructure. The high level performance models allow rapid and
accurate performance estimation of IPs and the SoC infrastructure. Any change in the
configuration of the IPs and the SoC infrastructure is reflected in the model parameters,
thereby allowing the SoC designer to perform rapid system-level verification of the entire
SoC for a range of IP and SoC infrastructure configurations.

1.6 Proposed Solution

In this thesis, we propose two performance estimation techniques that allow rapid cus-
tomization, integration and verification of IPs and the supporting SoC infrastructure.
The performance estimation techniques are based on abstracting the IPs/ IP subsystems
and the SoC infrastructure to their high level performance models. These performance
models capture the key performance characteristics of IPs/ IP subsystems, such as their
latency tolerance and latency criticality.

The latency tolerance of an IP is determined by analyzing the trace of external
memory requests issued by that IP to the SoC infrastructure. Application developers
generally provide a set of worst-case external memory request traces as a means for
SoC designers to verify the performance of IPs for the worst-case application execution
behaviour. In case the worst-case external memory request traces are not available, they
can be easily extracted from the actual execution of the application code on the respective
IPs/ IP subsystems. We choose to characterize the IPs/ IP subsystems using their
external memory request traces since trace analysis is simple, quick and computationally
cheap. Also, the characterization of IPs/ IP subsystems, once performed, can be re-used
for customizing and integrating the respective IPs/ IP subsystems in all subsequent SoC
designs.

The proposed performance estimation technique allows SoC designers to verify the
performance of the SoC by either using an accurate trace simulator or a set of simplified
equations utilizing average values. We call these performance estimation techniques as
trace-based performance estimation and simplified equation-based performance estima-
tion, respectively. Both these performance estimation techniques are applied to the SoC
design after all IPs and the SoC infrastructure are abstracted to their simplified high-level
performance models. The trace simulator performs cycle accurate performance estima-



1.6. PROPOSED SOLUTION 7

tion by analyzing the memory request trace on a request-by-request basis, whereas the
equation-based estimation technique estimates the performance of the entire SoC by
using simple performance values. Both these performance estimation techniques allow
rapid system-level performance estimation of the SoC in the early stages of SoC design.

Since the high-level performance models capture the key performance characteristics
of the IP/ IP subsystems and the SoC infrastructure, any change in the configuration of
the IP/ IP subsystem or the SoC infrastructure is reflected in the performance model also.
Thus, by using the performance model, SoC designers can rapidly iterate over several IP
and SoC infrastructure configurations to perform rapid design space exploration. Also,
since the performance model allows SoC designers to quantify the tolerance of IPs, they
can utilize any available headroom while configuring the IP or the SoC infrastructure.

Organization
The rest of the thesis is organized as follows. Chapter 2 introduces the high-level

performance models for IPs and the SoC infrastructure. It briefly explains the basics
of performance estimation and introduces the two performance estimation techniques.
Chapter 3 presents the trace-based performance estimation technique and illustrates sev-
eral experiments verifying the approach. Chapter 4 deals with the simplified equation-
based performance estimation technique. The chapter provides thorough explanation
of the approach, followed by experiments confirming its validity. Later the two perfor-
mance estimation techniques are applied for verifying and integrating IP/ IP subsystems
commonly found in real-life SoC designs. Chapter 5 presents the related work and high-
lights the differentiated solution offered by this thesis. Finally, chapter 6 summarizes the
conclusions of the thesis, proposes several recommendations on using the performance
estimation techniques and lastly, presents the possible future work.



8 CHAPTER 1. INTRODUCTION



General High level
Performance Modeling 2
In Chapter 1, we discussed the various challenges associated with SoC design, especially
from the IP re-use point of view. As a solution to the various challenges encountered in
the customization, integration and verification of IPs in complex SoCs, we propose two
novel performance estimation techniques. The goal of performance estimation is to instill
confidence regarding the performance of an IP/ IP subsystem in co-ordination with a
given SoC infrastructure early in the design phase. The proposed performance estimation
techniques are based on the high-level performance models of IP/ IP subsystems and the
SoC infrastructure. The performance models capture the execution behaviour of IP/ IP
subsystems and the SoC infrastructure at a higher abstraction level. In this chapter, we
study the performance models for IP/ IP subsystems and the SoC infrastructure.

2.1 Functional modules

The functionality of a typical SoC is achieved by executing a set of applications on a
variety of IPs. In the context of this work, we consider that an application is made up of
a number of functions, each of which is mapped to an IP. A function mapped to an IP
constitutes a functional module. Each functional module performs a specific, well-defined
function of the application and in most cases, interacts with other SoC elements such as
the shared DRAM memory via the shared on-chip network. Henceforth, we use the term
functional module to denote the combination of hardware (IP/ IP subsystem) and the
associated software, whereas the term IP/ IP subsystem is used to specifically denote the
hardware component of the functional module. We consider that the on-chip network,
the shared memory subsystem and the external DRAM memory together constitute the
SoC infrastructure.

2.1.1 Generic architecture of IPs:

Each IP (such as CPUs, GPUs, etc.) which constitutes a functional module, consists of
a core, an assistance unit and read/write buffers. The core of an IP executes the given
application code and is responsible for the actual data processing. The assistance unit of
an IP, such as the on-chip cache, etc., assists the IP core(s) by providing them with the
necessary data. If the IP is provided with an on-chip cache, all read/write requests issued
by the core are catered by the cache itself. In case the requested data is not available in
the cache, external memory requests are issued to the SoC infrastructure. Similarly, if
the IP is provided with an advanced pre-fetching cache, the core collects the pre-fetched
data directly from the on-chip pre-fetch data buffers. In this case, the pre-fetching cache
of the IP issues all external memory requests (in advance) to the SoC infrastructure.
The ability of the IPs to issue multiple outstanding read/write requests to the off-chip

9



10 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

(a) (b)

Figure 2.1: Examples of functional modules in SoCs

DRAM memory is directly dependent on the number of read/write buffers available in
the IP.

2.1.2 Classification of functional modules

Functional modules can be characterized using a range of different parameters. How-
ever, as explained in Chapter 1, we characterize the functional modules by their latency
tolerance and latency criticality. Based on their latency tolerance and latency criticality,
functional modules can be classified into four categories as shown in Table 2.1. Given
below are four functional modules that are commonly found in modern day SoCs. Each
functional module belongs to one of the four functional module categories.

Basic CPU

A processor executing general purpose applications and assisted by a cache is shown
in Figure 2.1(a). This functional module is latency sensitive since the processor
stalls if its external memory requests are not served within a few (typically 3-4)
clock cycles, thereby drastically reducing its performance. However, the functional
module is latency non-critical since the consequences of stalling the processor while
it executes general purpose applications are not severe with respect to the overall
functionality of the SoC.

Pre-fetching CPU

An advanced processor executing general purpose applications and assisted by
an advanced pre-fetching cache is shown in Figure 2.1(b). In this example, the
functional module has higher latency tolerance than the basic CPU (i.e it can
tolerate a higher SoC infrastructure service latency before it stalls). This is mostly
because of the advanced pre-fetching capability of the cache, which starts pre-
fetching the unavailable data as soon as it detects a pattern in the addresses of the



2.1. FUNCTIONAL MODULES 11

(a) (b)

Figure 2.2: Examples of functional modules in SoCs

issued memory requests. Again, the functional module is latency non-critical due
to the nature of the general purpose applications that it executes.

DSP

A digital signal processor (DSP) executing hard real-time audio applications is
shown in Figure 2.2(a). In this example, the functional module is latency sensitive
and extremely latency critical, since missing audio sample deadlines leads to quick
deterioration of the audio output which is unacceptable. In modern DSPs, caches
and/or pre-fetch units are employed to take advantage of the streaming nature of
audio applications. However, the code structure of audio applications is such that
there are few opportunities to exploit memory level parallelism, thereby making
these IPs latency sensitive.

Video Engine

A streaming video engine/ video decoder executing real-time video applications
and assisted by a pre-fetch unit is shown in Figure 2.2(b). Both the streaming
video engine and the video decoder exhibit high latency tolerance, but at the same
time, are latency critical. Streaming video engines issue memory requests with
a predictable address pattern, whereas the addresses of the requests issued by a
typical video decoder are more random in nature. However, numerous algorithmic
optimizations are performed on the decoding application, thereby allowing the
decoder IP to successfully hide a large part of the external memory related latency.
This makes the decoder IP latency tolerant. Similar to the audio applications,
video applications also stream data from the external memory in a regular and
predictable manner. Thus, a pre-fetch unit is employed to pre-fetch and store
the required data in large data buffers. Missing a few external memory request
deadlines for both, the streaming video IP and the video decoder IP is acceptable



12 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

as long as the collective deadline for a set of requests is met in time. Missing
the collective deadline could result in dead pixels at the video output which is
unacceptable from the performance point of view.

Table 2.1: Classification of functional modules
Latency Tolerant Latency Sensitive

Latency Critical Video Engine DSP

Latency Non-critical Pre-fetching CPU Basic CPU

2.2 Model for functional modules

The functional module, as the name suggests, performs a specific, well-defined function.
It is essentially made up of IPs that execute specific function(s) on their core(s). At
the lowest abstraction level, functions are made up of simple instructions such as add/-
subtract/multiply (data processing), do-while/if-else/jump (flow control) and load/store
(data movement).

Data processing and flow control instructions manipulate the application data and
provide the intended functionality of the application. On the other hand, data movement
instructions, such as the load/store instructions, help move the application data to and
from the memory. The execution of the data movement instructions results into memory
requests being issued by the core of the IP to the assistance unit. The core translates
the load and store instructions to issue read and write memory requests respectively.

The data processing and flow control instructions are typically executed in fixed
number of clock cycles. However, data movement instructions require variable number
of clock cycles depending on where the required data is stored. If the requested data is
available with the assistance unit of the IP, the request is served within a few clock cycles.
However, when the requested data is not available with the assistance unit, it (assistance
unit) issues multiple external DRAM memory requests to the SoC infrastructure. The
number of clock cycles required to retrieve the data from the external off-chip memory
then depends on the service latency of the SoC infrastructure.

The performance of a functional module is directly dependent on the timely avail-
ability of the necessary data. If the SoC infrastructure takes a long time to fetch the
necessary data from the external DRAM memory, the core of the IP could stall while
waiting for the necessary data. The execution behaviour of the functional modules is
therefore directly dependent on how external memory requests are served by the SoC
infrastructure. Thus, the performance model for the functional modules captures both
the execution behaviour and the performance dependence of the functional modules on
the service provided by the SoC infrastructure.

Since we are primarily interested in the interaction of the functional module and the
SoC infrastructure, we can abstract the execution of application code to the execution of
the external memory request trace. As a result, we can model the execution behaviour of
the functional modules by modeling the execution of the external memory request trace,
as explained in the next subsection.



2.2. MODEL FOR FUNCTIONAL MODULES 13

2.2.1 External memory request trace

The external memory requests issued by a functional module constitute the memory
request trace. The memory request trace is derived from the actual execution of the
application code on an IP which is coupled to an ideal SoC infrastructure. Since the
application code typically involves complex conditional and unconditional branching,
each of which generates a unique external memory trace, we assume that a given trace
is derived from the actual execution of the application code (with a specific user input
data set) on the given IP. The ideal SoC infrastructure is made up of a zero latency
memory subsystem (including the DRAM memory) and a zero latency on-chip network.
This assumption is essential since the issuance of an external memory request directly
depends on the service provided by the SoC infrastructure to the previous requests.
The assumption guarantees generation of a unique external memory trace for a give
application code executing on an IP and decouples the SoC infrastructure from the
characterization of the functional module. Along with the application code, the hardware
capabilities of the IP, especially its ability to pipeline multiple memory requests, directly
influences the issuance of memory requests and hence the external memory request trace.
Based on their ability to pipeline external memory requests, the IPs can be classified as:

Blocking IP

IPs which stall immediately after issuing a memory request are termed as blocking
IPs. A blocking IP can issue a maximum of one outstanding memory request
(Nmax).

Split IP

An IP is classified as a split IP if, unlike a blocking IP, it can proceed with further
execution even after issuing a memory request. The split IP does not stall for the
response of the issued request until it (response) is required by an instruction. The
maximum number of outstanding requests (Nmax) supported by a split IP is equal
to one.

Pipelined IP (Nmax)

An IP is classified as a pipelined IP if it can issue multiple outstanding requests
without stalling for the response of previously issued requests, unless an explicit de-
pendence exists in the application code. A pipelined IP is, by definition, also split.
The maximum number of outstanding requests (Nmax) supported by a pipelined
IP is called as its pipeline depth and is always greater than one.

Thus, the actual execution of the application code on a given IP coupled to an
ideal SoC infrastructure and the hardware capabilities of the IP together determine the
external memory request trace.

2.2.1.1 Specification of the Trace

A trace is primarily defined by the inter-request intervals of the external memory re-
quests. The inter-request interval indicates the temporal distribution of all external



14 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

memory requests issued by the functional module. Since the trace is essentially de-
rived from the execution of the application code, the inter-request interval indicates the
number of clock cycles consumed by the data processing and flow-control instructions.

The trace can additionally, but not necessarily, specify the dependencies associated
with memory requests. In the context of this work, we consider two dependencies,
namely the request dependence and the code dependence. Request dependence exists
between two memory requests, whereas code dependence exists between a request and a
non memory movement instruction of the application. The inter-request interval and the
request/code dependencies, which characterize and uniquely define a given trace, can be
represented using different semantics. The semantics chosen to express these phenomena
should allow their easy representation and manipulation. At the same time, they should
express each of the phenomenon precisely without any contradictions or ambiguity. In
our model, a memory request trace is completely specified with the following parameters:

Inter-request interval (T)

The inter-request interval (Ti) of request Ri is defined as the number of clock
cycles required by the functional module to issue request Ri+1 after request Ri has
been issued, with the assumption that all requests are completely independent and
served instantaneously by an ideal (zero latency) SoC infrastructure.

Request dependence (RD)

A request Ri has a request dependence associated with it, if a future request, say
Rj (j > i) cannot be issued until the response for request Ri has been successfully
received. The request dependence of a request Ri, i.e RDi, specifies the number of
requests which can be issued after issuing request Ri, without the need to wait for
the response of request Ri to have been successfully received. In other words, it
specifies the number of requests which can be issued after issuing the request Ri,
such that it is guaranteed the core of the IP will not stall until the issuance of RDi

further requests. The functional module could however, stall before issuing these
RDi number of requests due to dependencies of other requests or the hardware lim-
itation of the IP, but it is guaranteed that the functional module will never stall due
to the request Ri itself. In our model, the request dependence (RDi) of a request
Ri is upper bounded by the hardware capability of the IP to issue a maximum of
Nmax outstanding requests, i.e RDi < Nmax. If the request dependence associated
with request Ri exceeds Nmax, i.e RDi ≥ Nmax, then the dependence associated
with request Ri is ignored and the request is considered as an independent request.

Code dependence (CD)

A request Ri has a code dependence associated with it, if a particular non memory
movement instruction (such as add/subtract/if-else) cannot be executed until the
response of request Ri is successfully received. This is observed in scenarios where
the critical instruction requires the data returned by request Ri to perform the
necessary data manipulation or take the appropriate control decision.

The code dependence of request Ri, i.e CDi, specifies the number of clock cycles
that the core of the functional module can execute after having issued RDi further



2.2. MODEL FOR FUNCTIONAL MODULES 15

requests, before it stalls for the requested data. The code dependence of a request
Ri is thus bounded by the inter-request interval of request R(i+RDi), which is
T(i+RDi).

A trace of size N can be exactly described by specifying three vectors, as shown in
Equation 2.1

Trace(N) =


Inter-request interval [Ti] ∀i ∈ [1, N ], Ti ∈ [1,∞]
Request dependence [RDi] ∀i ∈ [1, N ], RDi ∈ [−1, Nmax − 1]
Code dependence [CDi] ∀i ∈ [1, N ], CDi ∈ [−1, T(i+RDi) − 1]

(2.1)

Along with the above definitions, the specification of request dependence (RD) and
code dependence (CD) depend on the type of the IP and follow the semantics given in
Table 2.2.

Table 2.2: Semantics for specifying RD and CD
Request characteristic RDi CDi

Independent Ri −1 −1

Rj depends on Ri (j − i− 1) T(j-1) − 1

Ri on blocking IP 0 0

Ri on split IP 0 [−1, Ti − 1]

Ri on pipelined IP [0, Nmax − 1] [−1, T(i+RDi) − 1]

2.2.1.2 Sample Traces

In this subsection, we examine a few traces typically generated by the following functional
modules:

1. A processor executing a general purpose application (Figure 2.1(a))

2. A streaming video engine executing a real-time video application (Figure 2.2(b))

These examples illustrate how the execution of application code generates the mem-
ory request traces and how the dependencies within the application code get transferred
to the memory request traces. The examples show how different memory request traces
exist at different points within the SoC and how they are correlated to each other. Us-
ing these examples, we also highlight the specific memory request trace that we analyze
while characterizing the functional modules.

2.2.1.3 A processor executing a general purpose application

Figure 2.3 presents a sample general purpose application code written in assembly lan-
guage. Figure 2.4 shows the trace derived from the execution of the above application
code on a simple processor employing a simple, conventional cache. It presents the trace



16 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

Figure 2.3: Assembly code of a task executing on the core IP.

Figure 2.4: Memory trace resulting from executing audio application on a processor with
an ideal memory subsystem.

of memory requests issued by the processor to the cache, observed at point A of the
Figure 2.1(a). The mathematical representation of the trace is given by Equation (2.2).



2.2. MODEL FOR FUNCTIONAL MODULES 17

Trace(15) =


Inter-request interval [ 2, 4, 6, 2, 10, 2, 2, 2, 4, 8, 8, 6, 6, 6, 12]
Request dependence [-1, -1, 3, 6, 2, -1, -1, 4, -1, 3, 1, 0, -1, 3, 0]
Code dependence [-1, -1, 1, 3, 0, -1, -1, 3, -1, 2, 1, 0, -1, 0, 0]

(2.2)

Figure 2.5: Memory trace generated by the cache (assistance unit) of the functional
module.

Caches are designed such that most of the memory requests issued by the proces-
sor to the cache result in a cache hit. However, whenever there is a cache miss, the
cache controller, on behalf of the processor, issues external memory requests to the SoC
infrastructure. These memory requests constitute the trace observed at point B of Fig-
ure 2.1(a). It is clear that the trace generated by the cache controller consists only of
external memory requests. This trace is essentially derived from the original trace issued
by the processor to the cache, but has fewer requests. The trace generated by the cache
controller is as shown in Figure 2.5. In this thesis, we are mainly concerned with the
performance dependence of the functional modules on the service provided by the SoC
infrastructure. To assess this performance dependence, we inspect and analyze only the
external memory request trace of each functional module.

In the given example, requests R1, R4, R10 and R14 of the processor trace result into
cache misses and subsequently get manifested as requests R1, R2, R3 and R4 respectively,
in the trace generated by the cache controller. The cache controller trace is derived from
the processor trace and hence, the two traces are inter-related. The issuing instants
of the corresponding requests from both traces are assumed to be exactly the same,
along with their dependencies. Although the cache trace is derived from the processor
trace, the specifications of the two traces in our model are distinct. The processor trace
(Figure 2.4) and the cache trace (Figure 2.5) are specified using Equation (2.2) and
Equation (2.3) respectively.



18 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

Trace(4) =


Inter-request interval [12, 22, 28, 18]
Request dependence [-1, 1, 0, 1]
Code dependence [-1, 3, 24, 8]

(2.3)

Figure 2.6: Memory trace resulting from the execution of real-time video application on
a streaming graphics engine with an ideal memory subsystem.

2.2.1.4 A streaming video engine executing a real-time video application

For IPs like video engines or custom hardware accelerators, all memory requests are
issued to the pre-fetch unit, which is responsible to have already fetched and stored the
necessary data in its data buffer. These requests constitute a trace which is presented in
Figure 2.6. It is representative of the trace typically observed at point A of Figure 2.2(b).

The pre-fetch unit, on the other hand, issues external memory requests to the SoC
infrastructure so that it can pre-fetch the necessary data in advance. The pre-fetched
data is temporarily held in the data buffers until it is eventually consumed by the core
of the functional module. The external memory requests that are issued by the pre-fetch
unit constitute the trace shown in Figure 2.7. It represents the trace observed at point
B of Figure 2.2(b)

Similar to the previous example, the trace generated by the pre-fetch unit is related
to the streaming video engine trace. The request R2 of the pre-fetch unit trace requests
for the data required by requests R6, R7, R8 and R9 of the streaming video engine trace.
For simplicity, we assume that the instant the data is received by the pre-fetch unit, it
is immediately available to the streaming video engine via the data buffers. Again, in
this thesis, we are only interested in the external memory trace, which, in this example,
is the pre-fetch unit trace.



2.2. MODEL FOR FUNCTIONAL MODULES 19

Figure 2.7: Memory trace generated by the pre-fetcher (assistance unit) of the functional
module.

2.2.2 Execution behaviour of functional modules

To derive the high-level performance models of functional modules, it is necessary to
capturing their execution behaviour. The execution behaviour of functional modules is
influenced by two factors:

1. Performance of the SoC infrastructure

2. Performance of the IPs

2.2.3 Performance impact of the SoC infrastructure

The SoC infrastructure is composed of the on-chip network, the memory subsystem and
the external DRAM memory. Thus, the performance of the SoC infrastructure is a
combination of the performance of the on-chip network, the memory subsystem and the
external DRAM memory. It is influenced by a variety of factors such as the quality of
service (QoS) facilities it provides, the protocol it uses, arbitration policy for the NoC and
memory controller, etc. The performance of the SoC infrastructure can be measured by
different parameters such as the bandwidth, service latency etc. However, in this thesis,
we are interested in the service latency aspect of the SoC infrastructure and thus relate
the performance of the SoC infrastructure to its service latency. The service latency for
any memory request issued to the SoC infrastructure involves the latency of the memory
subsystem to retrieve the data from the external memory along with the latency of the
on-chip network to transport the data from the memory subsystem to the functional
module. This service latency is the actual latency required to serve the requests from
the instant they are issued by the functional module. We formally define actual latency
as follows:



20 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

Actual latency (AL)

1. Read Request: Actual latency (ALi) of a read request Ri specifies the num-
ber of clock cycles required by the functional module to receive the entire
requested data in its buffer, from the instant it issues request Ri.

2. Write Request: The actual latency (ALi) of a posted write request Ri is con-
sidered to be zero since we do not wait for the acknowledgement associated
with such write requests. However, for non-posted write requests, the actual
latency (ALi) specifies the number of clock cycles required by the functional
module to receive an acknowledgement from the SoC infrastructure after suc-
cessfully writing the data to the external memory.

In our model, the actual latency of the processor trace (Figure 2.4) is represented by
a vector of trace size (N) as indicated by Equation (2.4).

Actual Latency (N) = [12, 10, 14, 14, 12, 10, 12, 12, 14, 14, 14, 12, 10, 8, 14] (2.4)

2.2.4 Performance impact of the IPs

The IP executes the application code, thereby generating the external memory request
trace. The performance of an IP is significantly affected by the amount of stalling
it experiences. In fact, in this work, we determine the performance of a given IP by
accounting all the stall cycles it experiences. Thus, to determine the performance impact
of the IPs, we need to understand the phenomenon of stalling of the IP.

The stalling of the IP (or functional module) can be defined as a temporary suspen-
sion of code execution on the core of the IP. We assume that it is the core of the IP
that executes the application code, thereby providing the expected functionality of the
functional module. Due to the hardware capabilities of the IPs and the application code
structure, all IPs experience some amount of stalling, which is acceptable. However,
too much stalling of the IP core can prove detrimental to its performance. Thus, SoC
designers must ensure that the stalling experienced by the IP core(s) is within the given
bounds.

Reasons for the stalling of IP core
Typically, the core of the IP stalls whenever the assistance unit, in co-operation with

the SoC infrastructure, is incapable of providing it with the necessary data before a
fixed deadline. Thus, the stalling of the processing core is directly dependent on the
performance of the assistance unit and the SoC infrastructure. The stalling of the IP
cores is attributed to two fundamental restrictions imposed on the IP.

Hardware restriction

The hardware restriction is imposed on an IP by its pipeline depth. The pipeline
depth of the IP is defined by its ability to issue a certain number of maximum
outstanding requests (Nmax). The ability of the IP to issue a maximum of Nmax

requests depends on the hardware support built into it to perform the necessary



2.2. MODEL FOR FUNCTIONAL MODULES 21

bookkeeping of all in-flight requests. If the number of outstanding requests issued
at any given time is equal to Nmax, a new memory request cannot be issued until the
response of a previous request is successfully received. This causes the processing
core to stall even though there is no explicit dependence prohibiting the issuance
of the next request.

Software restriction

The software restrictions are imposed on an IP by the request and code dependen-
cies associated with the memory requests as explained in Chapter 1. During the
execution of a given application on an IP core, if a request dependence or a code
dependence (associated with a request) is encountered, the core of the IP stalls,
irrespective of its hardware capability to issue further requests.

Along with the hardware restrictions mentioned above, the assistance unit can also
stall due to the finite size of the pre-fetch data buffers. However, the stalling of the
assistance unit does not necessarily lead to the stalling of the functional module.

Due to the stalling of the functional module, the service latency of the SoC infrastruc-
ture for memory requests, as experienced by the core of the functional module varies. To
mathematically express the phenomenon of stalling, we introduce the following concepts:

1. Total execution time (E)

2. No-stall interval (NI)

3. Perceived latency (PL)

4. Derived benefit (DB)

2.2.5 Total execution time (E):

The total execution time (E) is defined as the number of clock cycles required by a given
IP to execute the entire application code. The total execution time is a direct measure
of the performance of an IP to execute a given application code. It is dependent on a
variety of factors such as:

1. Application characteristics (e.g. length of application code, the number of memory
movement instructions, etc.)

2. IP characteristics (e.g. latency tolerance of the processor/ IP, cache size, cache
hit-rate, etc.)

3. SoC infrastructure characteristics (e.g. service latency of the SoC infrastructure,
etc.)

The total execution time (E) of the base trace executed on a trace simulator coupled
to an ideal (zero service latency) SoC infrastructure is defined as base time (E0). It is
mathematically defined by Equation (2.5).



22 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

E0 =
N∑
i=1

Ti (2.5)

For a SoC infrastructure with a non-zero service latency, the total execution time is
generally greater than the base time.

2.2.6 No-stall interval

The no-stall interval (NIi) of a request Ri is the time interval during which the core
can continue with the application execution without stalling for the data requested by
request Ri. It can also be seen as an allowance period given to the SoC infrastructure to
produce the requested data, after the functional module issues the corresponding memory
request. Every request Ri has a fixed no-stall interval (NIi) which can be derived by
analyzing the application code or the external memory request trace. Equation (2.6) can
be used to determine the no-stall interval (NIi) of a given request Ri.

NIi = (

(i+RDi)∑
j=i

Tj) + CDi (2.6)

2.2.7 Perceived latency

The perceived latency (PLi) of a request Ri is the number of clock cycles for which the
core of the functional module actually stalls while waiting for the response of request
Ri. Here, we assume that the sole reason for the IP to stall is the inability of the SoC
infrastructure to successfully produce the requested data within the no-stall interval of
request Ri.

For a given application code, the total execution time of the functional module is at
least equal to the base time (E0). This generally happens when the functional module is
coupled to an ideal (zero service latency) SoC infrastructure. For a SoC infrastructure
with a non-zero service latency, the total execution time is greater than the base time
if the non-zero service latency of the SoC infrastructure leads to the stalling of the
functional module. In fact, the total execution time of a functional module can be
determined by adding the base time (E0) to the sum of perceived latencies of all external
memory requests issued by the functional module. The total execution time (E) of a
trace (size N, base time (E0)), executing on an IP coupled to a SoC infrastructure with
a non-zero service latency is given by using Equation (2.7).

E = E0 +
N∑
i=1

PLi (2.7)

2.2.8 Derived Benefit

The perceived latency for a given memory request Ri does not account for the stalls
caused by any of the previous or next (Nmax − 1) requests. The stalling of the IP due
to a given request provides additional no-stall interval to all the current outstanding



2.3. PERFORMANCE MODELING OF FUNCTIONAL MODULES 23

requests. This additional no-stall interval available to all outstanding requests is termed
as derived benefit. The derived benefit is propagated to the neighbouring outstanding
requests, both in the forward and the backward direction. In our model, we use the
term derived benefit of request Ri, represented by DBi, to denote the cumulative sum
of derived benefits provided by all neighbouring requests of the given request Ri. In
essence, the derived benefit of a given request is the sum of the perceived latencies of all
neighbouring requests which overlap with the given request. The parameter of derived
benefit is computed dynamically (at run-time) based on the knowledge of which requests
overlap with the given request. The method of computing the derived benefit is presented
as an algorithm explained in Appendix A.

Mathematically, perceived latency can be expressed in terms of the actual latency,
the no-stall latency and the derived benefit using Equation (2.8).

PLi = max(0,ALi −NIi −DBi) (2.8)

The no-stall interval, perceived latency, actual latency and the derived benefit to-
gether allow us to capture the execution of the external memory request trace. At the
same time, these parameters capture the performance dependence of the functional mod-
ules on the service provided by the SoC infrastructure. Thus, by analyzing the external
memory request trace with respect to these parameters, the execution behaviour of the
functional modules can be captured in their performance models.

2.3 Performance modeling of functional modules

The functional module can be abstracted to a high-level model by capturing its execu-
tion behaviour and its performance dependence on the SoC infrastructure, especially its
latency tolerance towards the service latency of the SoC infrastructure. The parameter
of no-stall interval mainly quantifies and expresses the latency tolerance of functional
modules. The model thus uses the parameter of no-stall interval for characterizing the
functional module.

The advantage of using the no-stall interval to characterize the functional module
is that the no-stall interval is solely dependent on the functional module (i.e the ap-
plication code and the hardware capabilities of the IP). It is completely independent
of the supporting SoC infrastructure and is also independent of other functional mod-
ules sharing the SoC infrastructure. Thus, the functional modules can be independently
characterized at design time by using the parameter of no-stall interval.

2.4 Performance modeling of the SoC infrastructure

The performance model for the SoC infrastructure mainly captures the performance of
the SoC infrastructure in terms of its service latency. The service latency of the SoC
infrastructure for a given memory request is a combination of the latency of the memory
subsystem to retrieve the data from the external memory along with the latency of the
on-chip network to transport the data from the memory subsystem to the functional
module. This service latency is the actual latency required to serve the requests from



24 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

Figure 2.8: System level representation of the SoC

the instant they are issued to the SoC infrastructure by the functional modules. Thus,
we model the performance of the SoC infrastructure by the parameter of actual latency,
which is a direct measure of its service latency.

The actual latency of a SoC infrastructure is directly dependent on the characteris-
tics of the on-chip network (topology, configuration, arbitration, QoS capabilities, etc.),
the memory subsystem (configuration, arbitration, QoS capabilities) and the external
DRAM memory (gross available bandwidth, etc.). It is also dependent on the request
issuing behaviour and the performance of functional modules. The actual latency value
is therefore determined either by measuring the actual latency for each external memory
request issued by the functional module or by simply considering the average/ worst-
case service latency of the SoC infrastructure. At times, the SoC designer can utilize
statistical data and approximate the actual latency of individual requests by providing
an average actual latency value along with the deviation (or spread) of the values over
the length of a given trace.

2.5 The complete SoC model

The system on chip can be viewed as a collection of functional modules connected to
each other and the SoC resources (like external memory, display system etc.) via the
SoC infrastructure (Figure 2.8). Thus, the entire SoC can be modeled by connecting
together the performance models of individual functional modules to the performance
model of the SoC infrastructure. The performance model of the complete SoC is thus,
built using the performance models of the functional modules and the SoC infrastructure
as shown in Figure 2.9.

The interaction of the functional modules and the SoC infrastructure is captured
using the perceived latency. The perceived latency indicates the number of stall cycles



2.6. BASICS OF PERFORMANCE ESTIMATION 25

experienced by the functional module while receiving service from the SoC infrastructure.
It can also be viewed as a figure of merit for the performance of the functional module
in association with a given SoC infrastructure.

Figure 2.9: Model of the complete SoC

2.6 Basics of Performance Estimation

The high-level performance models discussed earlier are used for the performance estima-
tion of the functional modules and the SoC infrastructure. Rapid performance estimation
ultimately enables the SoC designer to efficiently integrate and verify the performance
of IPs. Performance estimation can be achieved by using either a cycle-accurate trace
simulator or a set of simplified equations based on average performance metrics. Both
the approaches use the same performance models and hence, are conceptually identical.
However, they differ in their complexity, accuracy, verification time and implementation
effort.

Performance estimation requires the designer to execute a given task on a functional
module coupled to a given SoC infrastructure and by some means, estimate its per-
formance. As discussed previously, the execution of application code on an IP can be
abstracted with the execution of its external memory request trace. The execution of
the external memory request trace can be performed using either a trace simulator or
can be approximated using a set of average performance values. Performance estimation
is therefore performed in two steps:

1. Characterization of functional modules and the SoC infrastructure.

2. Execution of the external memory request trace.



26 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING

2.6.1 Characterization of functional modules and the SoC infrastruc-
ture

Characterization of functional modules

The characterization of a functional module is performed differently depending on
which performance estimation technique is used. In the trace-based performance estima-
tion technique, the functional module is characterized by going through the (worst-case)
application trace on a per-request basis and evaluating the no-stall interval of each re-
quest. To evaluate the no-stall interval of each request, it is also necessary to specify the
hardware capabilities of the IP, mainly its ability to issue multiple outstanding requests
Nmax. The trace-based technique thus uses the application trace to characterize the
functional module.

On the other hand, the simplified equation-based performance estimation technique
utilizes average performance values for characterizing the functional module. These
average performance values can be determined by analyzing the trace and extracting
the average no-stall interval per request NIavg and the spread of the no-stall interval
NIspread about the average value. They can also be determined by simply considering the
worst-case values or making a calculated guess based on past experiences. The functional
module can then be abstracted to a black box characterized by the parameters of average
no-stall interval (NIavg) and its spread (NIspread).

The parameter of no-stall interval characterizes the latency tolerance of the functional
module. A high value of average no-stall interval suggests that the functional module can
tolerate a large service latency per request until it finally stalls for the requested data.
At the same time, the spread in no-stall interval suggests how far the no-stall intervals
of individual requests deviate from the average value. A large value of spread in no-stall
interval indicates that the no-stall interval of individual requests varies significantly about
the average value, possibly due to the bursty request issuing nature of the functional
module. Likewise, a small value of spread in no-stall interval is indicative of a more
regular request issuing behaviour of the functional module.

Characterization of the SoC infrastructure

The SoC infrastructure is characterized by the parameter of actual latency. For
characterizing the SoC infrastructure, we assume that each request issued to the SoC
infrastructure is served with a given average actual latency (ALavg). Along with the
average actual latency, we also utilize the spread in actual latency (ALspread). The
average actual latency value is determined either by using statistical data or by simply
considering the worst-case service latency, whereas the spread is mainly determined by
using statistical data.

The average actual latency (ALavg) indicates the average service latency of the SoC
infrastructure to serve any given external memory request. The spread of actual latency
(ALspread) indicates the deviation in the service latency provided to individual memory
requests as compared to the average actual latency value. A high value of spread indicates
that the SoC infrastructure is not consistent in providing service to individual memory
requests. It could also indicate that the functional modules coupled to the given SoC
infrastructure issue requests for localized data in a bursty manner, due to which some



2.7. CONCLUSION 27

requests are served with a large service latency, whereas others are served with a relatively
small service latency.

The functional module and the SoC infrastructure are characterized and abstracted
to their respective performance models independently. For a given functional module,
the characterization step is performed only once. The performance model of the func-
tional module can then be used over multiple SoC designs. This is particularly useful
from the design re-use point of view. The performance model of the SoC infrastruc-
ture captures the performance dependence of the SoC infrastructure (on parameters like
burstiness, bandwidth, request behaviour, priority, etc.) into a single parameter of actual
latency, thereby simplifying the performance estimation process. The characterization
of functional modules and the SoC infrastructure is essential in both the performance
estimation techniques.

2.6.2 Execution of the external memory request trace

After the functional module and the SoC infrastructure are characterized, the external
memory request trace is executed to estimate the performance of the functional module
when it is coupled to the given SoC infrastructure. The execution of the memory request
trace determines the derived benefit and the perceived latency of each request. The in-
dividual derived benefit values allow us to determine the average derived benefit (DBavg)
and its spread (DBspread). Likewise, the individual perceived latency values allow us to
determine the average perceived latency (PLavg).

The average perceived latency (PLavg) is a critical parameter determining the perfor-
mance of functional modules and the SoC infrastructure. It specifies the average number
of stall cycles encountered by the functional module per request, when it is coupled to
the given SoC infrastructure. A high value of average perceived latency indicates that
the functional module stalls for a considerable amount of clock cycles per request, which
might not be tolerable to a real-time application. If the given SoC infrastructure fails
to provide the expected quality of service to the functional module, it is reflected by
the average perceived latency value of the worst-case application trace exceeding some
pre-defined threshold value. The average perceived latency value thus, instills confidence
in the SoC designer regarding the performance of the complete SoC in the early design
stages.

2.7 Conclusion

Using the performance models, we aim to characterize the execution behaviour of func-
tional modules and the SoC infrastructure. Such a characterization of execution be-
haviour eventually allows us to correlate the performance of functional modules with the
service latency of the SoC infrastructure. Once the high-level models of the functional
modules are derived, they can be re-used over multiple SoC designs, thereby promoting
IP re-use. These high-level performance models of functional modules and SoC infras-
tructure play a central role in the proposed performance estimation techniques (explained
in Chapter 3 and Chapter 4). In the next chapter (Chapter 3), we study the trace-based
performance estimation technique.



28 CHAPTER 2. GENERAL HIGH LEVEL PERFORMANCE MODELING



Trace-based Performance
Estimation 3
In Chapter 2, we presented the high-level performance models of functional modules and
the SoC infrastructure. These high-level performance models play a central role in the
trace-based and the equation-based performance estimation techniques. In Chapter2, we
also explained in detail the basics of the proposed performance estimation techniques.
In this chapter, we study the trace-based performance estimation technique in detail.

The trace-based performance estimation technique is one of the two proposed per-
formance estimation techniques. It utilizes a trace simulator to simulate the execution
of the external memory request trace. In this estimation technique, we characterize the
functional module by analyzing the entire external memory request trace on a request-
by-request basis. The trace analysis allows us to extract the no-stall interval of individual
memory requests. Finally, we estimate the performance of the functional modules by
simulating the execution of their external memory request traces on the trace simulator.

3.1 Trace simulator

To simulate the execution of the external memory request trace, a cycle accurate trace
simulator was implemented in Matlab. The simulator uses the high-level performance
models of the functional modules and the SoC infrastructure introduced in Chapter 2.
The input to the trace simulator is an external memory request trace that is generated
from the execution of the application code on an IP that is coupled to an ideal SoC infras-
tructure. The trace is specified according to the semantics explained in Chapter 2. The
external memory request trace represents the application code at a higher abstraction
level. The trace simulator can be configured to execute a given memory request trace as
either a blocking, split or pipelined IP. The simulator outputs the estimated performance
(in terms of the perceived latency (PL)) of the functional module in association with the
given SoC infrastructure.

In Section 3.2, we present the experiments performed using the trace simulator. The
experiments offer significant insights into the execution behaviour of the functional mod-
ules and their performance dependence on the service provided by the SoC infrastructure.

3.2 Experiments based on the trace simulator

To illustrate the performance estimation technique using the trace simulator discussed in
the Section 3.1, we perform a set of experiments. The experiments start with illustrating
the performance estimation technique for simple blocking processors and later deal with
the more complicated pipelined processors.

29



30 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION

3.2.1 Simple Blocking Processor

The experiment involves using a standard instruction set simulator (Simit-ARM) to
execute a typical audio decoder application so as to compare its performance results
with that of the trace simulator executing the external memory request trace of the same
application. The goal of this experiment is to illustrate that the execution of application
code on a given IP can be abstracted to the execution of its external memory request
trace on a simple trace simulator. To highlight the similarity in the temporal behaviour
of the two simulators, we measure and compare the total execution time of the audio
decoder application (executing on the Simit-ARM simulator) with the total execution
time of its external memory request trace (executing on the trace simulator).

Simit-ARM simulator:

The Simit-ARM simulator [1] takes the compiled binary of an audio decoding appli-
cation and executes it instruction by instruction. Whenever a load/store instruction is
executed, the Simit-ARM simulator issues read/write requests to its bus interface unit
(BIU) which is also a part of the simulation environment. The bus interface unit mim-
ics the behaviour of the memory subsystem that serves all read/write requests with a
fixed read/write service latency respectively. The bus interface unit parameters, i.e the
read/write service latency, can be specified for every simulation run.

Trace simulator:

The trace simulator uses the performance models of a blocking processor and the
SoC infrastructure. Every external memory request issued by the blocking processor is
considered to have a no-stall interval (NIi) of zero clock cycles. The no-stall interval
of zero clock cycles is in accordance with the behavior of blocking IPs that stall imme-
diately after issuing a memory request. The external memory requests issued by the
blocking processor are served by the SoC infrastructure that is abstracted to a black box
characterized by its service latency. For the sake of simplicity, it is considered that the
SoC infrastructure serves all external memory requests with a fixed service latency of
ALavg. The SoC infrastructure service latency, i.e. the average actual latency (ALavg)
can be specified for every simulation run.

The experiment is performed in two stages.

• Stage 1

In the first stage, the audio decoder application is executed on the Simit-ARM
simulator coupled to an ideal memory subsystem. The Simit-ARM simulator sim-
ulates the StrongARM 1100 processor core. It mimics the behaviour of a blocking
processor that stalls immediately after issuing an external memory request. The
read/write latency of the bus interface unit coupled to the Simit-ARM simulator
is set to zero so as to extract the external memory trace without the influence
of the memory subsystem latency. The external memory request trace generated
from the execution of audio decoder application code on the Simit-ARM simulator
coupled to a perfect memory subsystem is denoted as the base trace.



3.2. EXPERIMENTS BASED ON THE TRACE SIMULATOR 31

• Stage 2

In the second stage, the base trace (generated in stage 1) is executed on the trace
simulator. It is only by executing the external memory request trace that we can
estimate the performance of the functional module coupled to a given SoC in-
frastructure. Thus, stage 2 is responsible for estimating the performance of the
functional modules for the different SoC infrastructure configurations. Since we
are interested in estimating the performance of functional modules when they are
coupled to SoC infrastructures with varying configurations, we repeat the simu-
lation for varying values of ALavg. At the same time, the Simit-ARM simulator
simulates the application execution for the same set of bus interface unit (BIU) con-
figurations. While the simulations on the Simit-ARM simulator are performed by
changing the BIU’s read/write latencies, the simulations on the trace simulator are
performed by changing the value of ALavg associated with the SoC infrastructure.

Results:

The results of the experiment are presented in Table 3.1 and are also plotted in a
graph of total execution time v/s actual latency (Figure 3.1). Table 3.1 presents the
total execution time of the Simit-ARM simulator and the trace simulator, for varying
values of their memory subsystem service latencies (ALavg). The table also presents the
difference in the execution times of the two simulators and highlights the percentage
error introduced thereof. It can be observed from the table that the percentage error is
less than 1%.

Table 3.1: Simit-ARM v/s Trace simulator results
Memory subsystem Simit-ARM Trace simulator Difference Percent Error

service latency Execution Time Execution Time
(clock cycles) (clock cycles) (clock cycles) (clock cycles) (%)

0 39107 38844 263 0.67
5 150216 150576 360 0.21
10 267310 267726 416 0.15
15 384440 384876 436 0.11
20 501570 502026 456 0.09
30 735830 736326 496 0.06
40 970090 970626 536 0.05
50 1204350 1204926 576 0.04
70 1672870 1673526 656 0.03

The graph, shown in Figure 3.1 plots:

1. The total execution time (in clock cycles) of the application code executed on the
Simit-ARM simulator against the service latency of the BIU

2. The total execution time of the base trace executed on the trace simulator against
the actual latency of the SoC infrastructure coupled to it.



32 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION

It can be seen from the plot that the results for the Simit-ARM simulator and the
trace simulator are perfectly matched, due to which, the two curves overlap each other.
Also, the total application execution time increases linearly with the increasing service
latency of the SoC infrastructure. This is intuitively correct since the higher the service
latency of the SoC infrastructure, the longer it takes for the IP to execute the given
application code. The linear increase in the total execution time of the blocking processor
suggests that the memory latency is a highly dominant factor in the performance of
blocking processors.

Figure 3.1: Simit-ARM experiment

Conclusions

The results produced by the trace simulator are very close (1% error) to those pro-
duced by the Simit-ARM simulator. The high level of similarity observed in the results
of the two simulators illustrates that the execution of application code on the Simit-ARM
simulator (ISS) is identical to the execution of the external memory request trace on the
trace simulator when both the simulators are coupled to identical memory subsystems.
In other words, the temporal behaviour of an IP executing a given application code is
equivalent to the temporal behaviour of the trace simulator executing its base trace.



3.2. EXPERIMENTS BASED ON THE TRACE SIMULATOR 33

The base trace can therefore be repeatedly used to emulate the application execution for
various SoC infrastructure configurations. This offers the advantage of extracting the
trace only once and later, re-using the same trace to perform multiple trace simulations
(with varying SoC infrastructure configurations) for aiding the design space exploration
process. Also, the simulation of traces is much faster and computationally cheaper than
simulating the entire application on instruction set simulators/ HDL models.

The results also prove that the performance model of the blocking processors and
the SoC infrastructure captures their execution behaviour as accurately as their true
simulators. It is important to note that Simit-ARM uses a constant read/write latency
for all external memory request (independent of the address, request behaviour of the
processor, etc.) which is similar to the constant actual latency value used by the trace
simulator. This is one of the important reasons for the similarity in results of the two
simulators. In reality, the service latency of the SoC infrastructure varies due to a range
of factors (such as addresses of memory requests, issuing behaviour of IPs, etc.) and
SoC designers using this performance estimation technique should appropriately adjust
the average actual latency (ALavg) values to account for these influences.

3.2.2 Experiments for split and pipelined IPs

The following experiments illustrate the performance modeling of split and pipelined
processors and provide insights into their execution behaviour. The pipelined processors
are more complex to model since they can issue Nmax outstanding requests, thereby
making their execution behaviour difficult to capture in a model. The experiments are
conducted using synthetically generated traces. In real SoC design environments, the
traces would be generated by the actual execution of the application code on either the
actual split/pipelined processor or its instruction set simulator. Once the base trace is
extracted from the application code, it can be used for characterizing the split/pipelined
processors to generate their high-level models.

High-level performance model of pipelined processors

We investigate three experiments involving split and pipelined processors. The ex-
periments focus on analyzing the execution behaviour of the split/pipelined processors
and estimating the effect of various parameters on their performance. We study the
following three experiments:

1. Experiment to compare the performance of split and pipelined processors to that
of the blocking processors.

2. Experiment to analyze the effect of the spread in no-stall interval on the perfor-
mance of split/pipelined IPs.

3. Experiment to analyze the effect of the spread in actual latency on the performance
of split/pipelined IPs.



34 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION

3.2.2.1 Experiment to compare the performance of split and pipelined pro-
cessors to that of the blocking processors

The experiment involves simulating the execution of a synthetically generated trace
on the trace simulator configured for blocking, split and pipelined processors. The sim-
ulations are performed for varying SoC infrastructure configurations. From this experi-
ment, we aim to understand and compare the execution behaviour of the blocking, split,
pipelined IPs while executing the same application code for varying SoC infrastructure
service latency values. Furthermore, to study how the ability to issue multiple outstand-
ing requests affects the performance of pipelined IPs, we simulate the given trace on
three different pipelined processors, each differing in its ability to issue the maximum
number of outstanding requests (Nmax).

The results of the experiment are as follows:

1. Blocking processor

The total execution time and the spread in perceived latency of a blocking processor
for varying values of average actual latency are presented in Table 3.2. Similar to
the results observed in the Simit-ARM experiment, the total execution time of the
blocking processor increases linearly with the increasing service latency of the SoC
infrastructure. At the same time, the average perceived latency of the blocking
processor also increases linearly with the SoC infrastructure’s service latency. In
fact, the average perceived latency is equal to the average actual latency, as can be
derived from Equation (2.8). The trend of the processor’s average perceived latency
(PLavg) along with the changing SoC infrastructure service latency is plotted in
Figure 3.2.

Table 3.2: Blocking processor results
Actual Latency Total Execution Time Average perceived latency
(clock cycles) (clock cycles) (clock cycles)

5 750048 5
10 1000048 10
15 1250048 15
20 1500048 20
25 1750048 25
30 2000048 30
35 2250048 35
40 2500048 40
45 2750048 45
50 3000048 50

2. Split processor

The total execution time and the perceived latency of a split processor for varying
values of average actual latency are presented in Table 3.3. Figure 3.3 presents
the plot of the total execution time of split processors against the average actual



3.2. EXPERIMENTS BASED ON THE TRACE SIMULATOR 35

Figure 3.2: Performance of blocking processor

latency of the SoC infrastructure. The plot illustrates that the total execution
time of the split processor is almost equal to its base time as long as the average
actual latency of the SoC infrastructure is less than the processor’s average no-
stall interval. It implies that the average perceived latency of the split processor is
equal to zero clock cycles (i.e the split processor experiences no stalling) while the
average actual latency is less than the processor’s average no-stall interval.

PLavg ≈ 0(whenALavg ≤ NIavg) (3.1)

After the average actual latency of the SoC infrastructure exceeds the average
no-stall interval of the processor, the total execution time as well as the average
perceived latency experienced by the processor increases linearly with the average
actual latency. The experiment therefore illustrates that as long as the average
actual latency of the SoC infrastructure is less than the average no-stall interval
of a functional module (having negligible no-stall interval spread), the functional
module experiences negligible stalling, thereby having no negative influence on its
performance. Also, after the average actual latency of the SoC infrastructure ex-
ceeds the average no-stall interval of the functional module, the average perceived



36 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION

latency experienced by the functional module increases linearly with the average
actual latency.

Table 3.3: Split processor results
Actual Latency Total Execution Time Average perceived latency
(clock cycles) (clock cycles) (clock cycles)

5 500048 0
10 553619 1.07
15 800000 5.99
20 1050000 10.99
25 1300000 15.99
30 1550000 20.99
35 1800000 25.99
40 2050000 30.99
45 2300000 35.99
50 2550000 40.99

Figure 3.3: Performance of split processor



3.2. EXPERIMENTS BASED ON THE TRACE SIMULATOR 37

3. Pipelined processor

In this experiment, we investigate three different pipelined processors having the
hardware capabilities of issuing a maximum of 2, 4 and 8 outstanding requests, re-
spectively. The no-stall interval of a functional module depends on the application
code and the hardware capabilities of the IP, specifically its ability to issue Nmax

outstanding requests (Equation (2.6)). Thus, although the same external mem-
ory request trace is used for the simulation of all three pipelined processors, their
hardware capabilities differ and hence, they are characterized by different no-stall
interval values. The average no-stall interval of the external memory request trace
executing on the pipelined processors with Nmax of 2, 4 and 8 requests is 11, 24
and 32 clock cycles respectively.

Table 3.4: Pipelined processor results
Nmax=2 Nmax=4 Nmax=8

ALavg Ex PLavg Ex. PLavg Ex. PLavg

Time Time Time

5 511351 0.22 511304 0.22 511224 0.22
10 572127 1.44 550883 1.01 550803 1.01
15 724928 4.49 610923 2.21 610834 2.21
20 890501 7.82 688707 3.77 688603 3.77
25 1064839 11.41 776505 5.53 776386 5.53
30 1239505 15.01 870724 7.41 870590 7.41
35 1414185 18.62 968197 9.39 968044 9.39
40 1588865 22.22 1067614 11.47 1067016 11.44
45 1763545 25.83 1168715 13.64 1166654 13.52
50 1938225 29.43 1270218 15.83 1266430 15.61

The difference in the total execution times of the trace on the three pipelined pro-
cessors, with the changing SoC infrastructure configuration is shown in Figure 3.4.
It is evident from the plot that the performance of pipelined processors is similar
to that of the split processors. It is similar to the split processors because as long
as the average actual latency of the SoC infrastructure is less than the average
no-stall interval of the pipelined processor and there is negligible spread in the no-
stall interval values, the average perceived latency experienced by the processor is
negligible. When the average actual latency of the SoC infrastructure exceeds the
processor’s average no-stall interval, the perceived latency increases linearly with
the actual latency.

Table 3.4 presents the performance results of the three pipelined processors. It
is evident from the presented results that the total execution time of the external
memory request trace decreases with the increasing ability of the pipelined processors
to issue multiple outstanding requests, it being the lowest for Nmax=8 and highest
for Nmax=2. This is intuitively correct since a pipelined processor which has the
ability to issue more outstanding requests stalls for fewer clock cycles than the one
which issues fewer outstanding requests.



38 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION

Figure 3.4: Comparison of the performance of pipelined processors

It is important to note that the external memory request trace under consider-
ation has inherent request and code dependencies up to 4 requests. Hence, the
improvement in the total execution time of the external memory request trace on
pipelined processors with a pipeline depth larger than 4 requests is limited by the
dependencies inherent within the application code. Thus, while the pipelined pro-
cessors with Nmax of 2, 4 and 8 outstanding requests exhibit a trend of improving
performance, the performance gains reduce significantly once the inherent code
dependencies start affecting the processor’s requesting behaviour.

Comparison of the performance of all processors

As it can be clearly seen from Figure 3.5, blocking processors require the largest
execution time for any given value of average actual latency. Since the no-stall interval
of all requests issued by the blocking processor is zero, the total execution time and the
perceived latency of blocking processors increases linearly with the increasing memory
subsystem latency. As compared to blocking processors, split processors exhibit lower
execution times for all values of the SoC infrastructure’s service latency. This is at-
tributed to the ability of split processors to hide a part of the actual latency with the



3.2. EXPERIMENTS BASED ON THE TRACE SIMULATOR 39

inter-request interval of their requests. However, split processors also exhibit a linear
increase in the total execution time after the SoC infrastructure’s service latency exceeds
their average no-stall interval. The pipelined processors exhibit the best performance
among all processors mainly due to their ability to hide most of the actual latency as-
sociated with a request with that of multiple overlapping requests. As proposed in the
model, a pipelined processor with the ability to issue a higher number of outstanding re-
quests performs better than the one with an ability to issue lesser number of outstanding
requests.

Figure 3.5: Comparison between performance of all processors

Conclusions

The simulation results illustrate that the execution behaviour and the performance
of different IPs follow the assumptions made in the model. Also, it shows that the
performance of a given application is limited earlier by the hardware restrictions (e.g.
blocking processor) and later by the software restrictions (e.g. code dependencies af-
fecting pipelined IPs with Nmax > 4). The experiments illustrate that the proposed
performance estimation technique can not only be used to estimate the performance
of functional modules across a range of SoC infrastructure configurations, but can also



40 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION

be used to configure the pipeline depth of IPs that best matches the application under
consideration.

3.2.2.2 Experiment to analyze the effect of the spread in no-stall interval
on the performance of split/pipelined IPs

This experiment aims to illustrate the effect of spread or deviation in the no-stall in-
terval of individual requests, on the performance of functional modules employing split/
pipelined IPs. The spread in no-stall interval values indicates the deviation of no-stall
interval of individual requests in comparison to the average no-stall interval value of the
entire memory request trace. If the SoC infrastructure is designed such that it provides
a consistent service, indicated by a negligible spread in the actual latency of memory
requests, the spread in no-stall interval of individual memory requests starts affecting
the performance of the functional module. This is because, if the average actual latency
of the SoC infrastructure is guaranteed to be lower than the average no-stall interval of
the given functional module by a fixed number of clock cycles, the SoC designer would
expect the average perceived latency, i.e the average number of stall cycles encountered
per request, to be zero. However, a high spread in the no-stall interval values would
imply that out of all the memory requests, some requests have a significantly higher
no-stall interval while others have a significantly lower no-stall interval value. While
requests having a significantly high no-stall interval do not affect the performance of
the functional module, the requests having a significantly low no-stall interval stall the
functional module, thereby degrading its performance.

To understand the phenomenon, we simulate three synthetically generated external
memory request traces on split/pipelined IPs. The average no-stall interval of the three
traces is 20 clock cycles. The spread in no-stall interval for the three traces is 0, 5 and 10
clock cycles respectively. The average actual latency of the SoC infrastructure is varied
from 0 to 50 clock cycles

Results

Figure 3.6 presents a plot of the total execution time of the three traces executing on
a split IP against the average actual latency of the SoC infrastructure. From the plot, we
observe that the total execution time of the trace increases with the increasing spread in
no-stall interval values, but only when the average actual latency is close to the average
no-stall interval value. At other values of average actual latency, the total execution
time of the trace is the same, irrespective of the spread in no-stall interval values. The
increase in the total execution time indicates a degradation in the performance of the
split IP due to the increasing spread in the no-stall interval value.

Conclusions

This experiment analyzes the effect of the spread in no-stall interval on the perfor-
mance of functional modules employing split/ pipelined IPs. It is clear that the spread
in the no-stall interval values degrades the performance of split/pipelined IPs only when
the average actual latency of the SoC infrastructure is reasonably close to the average no-
stall interval of the functional module. At the same time, the spread in no-stall interval



3.2. EXPERIMENTS BASED ON THE TRACE SIMULATOR 41

Figure 3.6: Effect of the spread in no-stall interval on the performance of split/pipelined
IPs

values does not have any bearing on the performance of the functional module when the
average service latency of the SoC infrastructure is either much smaller or much larger
than the average no-stall interval of the functional module.

3.2.2.3 Experiment to analyze the effect of the spread in actual latency on
the performance of split/pipelined IPs.

This experiment aims to illustrate the effect of the spread in actual latency of the SoC
infrastructure on the performance of functional modules employing split/pipelined IPs.
The spread in the actual latency of the SoC infrastructure indicates the deviation ob-
served in the actual latency of individual requests, as compared to the average actual
latency of the SoC infrastructure. It is indicative of the consistency of service provided
by the SoC infrastructure. The spread in actual latency affects the performance of a
functional module, since requests which are served with an actual latency lower than
their no-stall interval do not lead to performance gains, but requests which are served
with an actual latency greater than their no-stall interval lead to the stalling of the
functional module.



42 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION

To understand this phenomenon, we simulate a synthetically generated external mem-
ory request trace with an average no-stall interval of 20 clock cycles on blocking, split
and pipelined IPs. The simulations are carried out while keeping the average actual
latency of the SoC infrastructure constant at 20 clock cycles, while varying the spread
in actual latency from 0 to 20 clock cycles. The average actual latency of the SoC in-
frastructure is intentionally set to the average no-stall interval of the functional module.
This is because, similar to the spread in no-stall interval, the spread in actual latency
affects the performance of the functional module only when it is reasonably close to the
average no-stall interval value.

Results
Figure 3.7 shows a plot of the total execution time of the trace executing on blocking,

split and pipelined IPs against the spread in actual latency of the SoC infrastructure.
From the plot, we observe that the total execution time of the trace increases for all
three IPs- blocking, split and pipelined. The total execution time of the trace executing
on the pipelined IP increases by approximately 20% when the spread in actual latency
is increased from zero to its maximum value. At the same time, the total execution
time for the trace executing on the split IP increases by approximately 37% when the
spread is similarly increased to from zero to its maximum value. The increase in the total
execution time indicates a degradation in performance of the blocking, split and pipelined
IPs due to the increasing deviation in the service provided by the SoC infrastructure.

Conclusions
As expected, the performance of the blocking IP is least affected by the increasing

spread in actual latency of the SoC infrastructure. However, it is interesting to note that
the pipelined IPs are more resilient to the increasing actual latency spread as compared
to the split IPs. While there is a linear degradation in the performance of the split IPs,
the percentage loss in the performance of pipelined IPs is much lesser. This is because
pipelined IPs overlap multiple external memory requests and are thus able to compensate
better for the deviation in the SoC infrastructure’s service. However, split IPs only hide
a part of the actual latency using the inter-request interval. This does not allow the
split IPs to sufficiently compensate for the fluctuations in the service latency of the SoC
infrastructure. Thus, the split IPs are affected to a greater extent by the spread in actual
latency. From this experiment, we thus conclude that the pipelined IPs are more tolerant
to the spread in the actual latency of the SoC infrastructure than the split IPs.

3.3 Conclusion

In this chapter, we studied the trace-based performance estimation technique. The
chapter presented several experiments conducted using the trace simulator which offer
a deeper insight into the execution behaviour of different types of IPs and how their
performance is affected by the high-level model parameters. In Chapter 4, we study the
simplified equation-based performance estimation technique.



3.3. CONCLUSION 43

Figure 3.7: Effect of the spread in actual latency on the performance of blocking, split
and pipelined IPs



44 CHAPTER 3. TRACE-BASED PERFORMANCE ESTIMATION



Simplified equation-based
Performance estimation 4
In Chapter 2, we introduced two techniques for performance estimation, namely the
trace-based performance estimation and the simplified equation-based performance esti-
mation. Both these performance estimation techniques are based on the same high-level
performance models explained in Chapter 2.

While the trace-based estimation technique involves executing the entire external
memory request trace, the simplified equation-based estimation technique involves ap-
proximating the execution of the trace by using simple equations and simple performance
metrics. Since the simplified equations approximate the execution of the external mem-
ory request trace, the performance results are not always precise. However, the simplified
equations allow the SoC designer to make rough performance estimates of the functional
modules and the SoC infrastructure, as against using the traditional ball-park figure
based approach to pessimistically dimension the functional modules/ SoC infrastructure.
The simplified equation-based performance estimation is mainly used for rapid average/
worst-case performance estimation of functional modules and the SoC infrastructure.
The simplified equation-based performance estimation is explained in the Section 4.1.

4.1 Performance estimation using simplified equations

In Chapter 3, we studied the trace-based performance estimation technique. In this tech-
nique, the functional module is characterized by the entire external memory request trace
and the performance is estimated by executing the entire trace on a request by request
basis using a trace simulator. The performance estimation technique can be simplified
by characterizing the functional modules using simple values and by approximating the
execution of the external memory request trace.

In the simplified equation-based performance estimation, we characterize the func-
tional modules by their no-stall interval (NIavg, NIspread). Similarly, the SoC infrastruc-
ture is characterized by its actual latency (ALavg, ALspread). The average performance
values (NIavg, ALavg) can be derived either by taking the mean of individual values
(NIi, ALi) or by considering the worst-case performance values (say, NImin, ALmax) or
by simply making a calculated guess based on past experience. Similarly, the spread
in the performance values (NIspread, ALspread) is determined by considering the request
issuing behaviour of the functional modules, the request serving behaviour of the SoC
infrastructure, hardware capabilities of the IP (e.g. Nmax), etc.

The proposed performance estimation technique is based on deriving the average
perceived latency (PLavg) using a set of simple equations that approximate the execution
of the trace. The average perceived latency ultimately enables the SoC designer to
determine the estimated performance of the given functional module in association with
the SoC infrastructure. The basic equation used for performance estimation is given by

45



46 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

Equation (4.1).

PLavg = max(0,ALavg −NIavg) (4.1)

Equation (4.1) is the simplest and the most fundamental equation used for perfor-
mance estimation in this technique. It does not consider the effect of the spread in
no-stall interval and actual latency values (NIspread, ALspread).

4.2 Experiments

To verify the equation-based performance estimation technique and gain some deeper
insights, we perform experiments similar to those illustrated in Chapter 3. We first study
the simplified equation-based technique for the blocking IPs and later deal with the split
and pipelined IPs.

4.2.1 Blocking IP

This experiment involves estimating the performance of a blocking IP using the equation-
based technique. We use the same audio decoder application trace that was used in the
Simit-ARM experiment (refer Chapter 3). Since the experiment involves blocking IPs,
the average no-stall interval (NIavg) of the functional module is zero. Hence, Equa-
tion (4.1) is reduced to Equation (4.2)

PLavg = ALavg (4.2)

Table 4.1 presents the performance metrics (in terms of average perceived latency)
of the blocking IP derived using the trace-based technique and the equation-based tech-
nique, for varying values of average actual latency of the SoC infrastructure.

Table 4.1: Comparison between the results of the trace-based and the equation-based
performance estimation techniques for blocking IPs

Trace-based Equation-based
technique technique

ALavg PLavg PLavg Error
(clock cycles) (clock cycles) (clock cycles) (clock cycles)

5 4.76 5 0.23
10 9.76 10 0.23
15 14.76 15 0.23
20 19.76 20 0.23
30 30.76 30 0.23
40 39.76 40 0.23
50 49.76 50 0.23

It is clear that the results of the equation-based estimation technique are similar to
those produced by the trace-based estimation technique. The main reason for the high
accuracy of the results is the simple execution behaviour of blocking IPs.



4.2. EXPERIMENTS 47

4.2.2 Split IPs

The performance of a split IP is mainly determined by its average no-stall interval and
the average actual latency of the SoC infrastructure (NIavg, ALavg). However, the per-
formance of the split IPs is also influenced by the spread in no-stall interval and actual
latency values (NIspread, ALspread). The experiments for the split IP are thus performed
with the goal of analyzing the effect of the spread (NIspread, ALspread) on the accuracy
of the simplified equation-based technique as compared to the trace-based technique.
The experiment involves estimating the performance of a split IP for the following three
configurations:

• with ALspread = 0 and NIspread = 0

• with ALspread 6= 0 and NIspread = 0

• with ALspread = 0 and NIspread 6= 0

ALspread = 0 and NIspread = 0

For this experiment, we utilize a trace with an average no-stall interval (NIavg) of
9.1 clock cycles. The experiment involves estimating the performance of the functional
module using the trace-based technique and the simplified equation-based technique
(Equation (4.1)) for varying values of average actual latency, from 0 to 50 clock cycles.
The experiment results are presented in Table 4.2.

Table 4.2: Comparison between the performance results when there is no spread in the
actual latency and the no-stall interval values

Trace-based Equation-based
performance estimation performance estimation

AL PLavg PLavg Error
(clock cycles) (clock cycles) (clock cycles) (clock cycles)

5 0 0 0
10 1.07 0.91 0.16
15 5.99 5.99 0
20 10.99 10.99 0
25 15.99 15.99 0
30 20.99 20.99 0
35 25.99 25.99 0
40 30.99 30.99 0
45 35.99 35.99 0
50 40.99 40.99 0

From Table 4.2, we observe that when the spread in actual latency and the no-stall
interval are zero, the results obtained using the simplified equation (Equation (4.1)) are
similar to those obtained using the trace-based technique.



48 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

ALspread 6= 0 and NIspread = 0

For this experiment, we utilize a trace with an average no-stall interval (NIavg) of 40
clock cycles. The spread in actual latency is varied from 0 to 30 clock cycles at suitable
intervals and a set of simulations is performed for each value of the actual latency spread
(ALspread). Each set of simulation involves estimating the performance of the functional
module for varying values of average actual latency, from 0 to 70 clock cycles. The
experiment results are best presented through an error plot (Figure 4.1) which illustrates
the error observed in the results of the simplified equation-based technique compared to
that of the trace-based technique for all sets of simulations. The error (ε) is calculated
using Equation (4.3). In Equation (4.3), the term PLavg

′ denotes the average perceived
latency derived using the trace-based technique while the term PLavg denotes the average
perceived latency derived using the equation-based technique (Equation (4.1)).

ε = PL′avg − PLavg (4.3)

Figure 4.1: Error plot for the simulation and simplified equation-based technique

From Figure 4.1, it is observed that with the introduction of spread in the actual
latency values, the results obtained using Equation (4.1) deviate from those obtained
via the trace-based estimation technique. In this case, the average perceived latency
(PLavg

′) estimated by the trace-based technique is greater than that estimated by the
simplified equation-based technique (PLavg). As seen in Chapter 3, the spread in actual
latency affects the performance results only when the average actual latency (ALavg) of



4.2. EXPERIMENTS 49

the SoC infrastructure is reasonably close to the average no-stall interval (NIavg) of the
functional module.

Error analysis

As seen from Figure 4.1, the results of the trace-based performance estimation tech-
nique deviate from those of the simplified equation-based technique. This is because
Equation (4.1) assumes that all requests are served with an actual latency of ALavg.
However, due to the non-zero spread in the actual latency values, some requests are
served with an actual latency larger than ALavg, whereas others are served with an ac-
tual latency smaller than ALavg. The requests that are served with an actual latency
smaller than their no-stall interval do not cause any stalling of the functional module,
but the requests that are served with an actual latency greater than their no-stall interval
do cause the functional module to stall. Therefore, Equation (4.1) underestimates the
total amount of stalling experienced by the functional module.

To mitigate the error introduced in the results of the simplified equation-based tech-
nique due to the spread in the actual latency, we propose Equation (4.4) over Equa-
tion (4.1). In Equation (4.4), the term ALeqv denotes the equivalent actual latency of
the SoC infrastructure.

The sole reason for introducing Equation (4.4) is to ensure that the average per-
ceived latency (PLavg

′′) computed using the equivalent actual latency is the same as the
average perceived latency (PLavg

′) derived using the trace-based technique (considered as
the accurate value of perceived latency).

PL′′avg = max(0,ALeqv −NIavg) = PL′avg (4.4)

Equivalent actual latency (ALeqv)

The concept of equivalent actual latency is introduced to minimize the error in the
performance estimation of functional modules caused by the spread in actual latency.
In the absence of any spread in the actual latency values, the equivalent actual latency
is equal to the average actual latency (ALeqv = ALavg). To minimize the effect of the
spread in the actual latency values, the equivalent actual latency must be approximated
to a value greater than the average actual latency (ALeqv > ALavg).

The equivalent actual latency can be derived by multiplying the average actual latency
by a suitable correction factor. The correction factor can be mathematically derived from
Equation (4.4). The equation for correction factor (C.F.) is given by Equation (4.5).

PL′′avg = PL′avg = max(0,ALeqv −NIavg) (4.5a)

=⇒ PL′avg = max(0,ALeqv −NIavg) (4.5b)

=⇒ PL′avg = ALeqv −NIavg [if ALeqv > NIavg] (4.5c)



50 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

=⇒ ALeqv = PL′avg + NIavg (4.5d)

=⇒ ALavg · C.F. = PL′avg + NIavg (4.5e)

=⇒ C.F. =
PL′avg + NIavg

ALavg
(4.5f)

Figure 4.2 shows a graph of the correction factor (determined using Equation (4.5))
plotted against the average actual latency for various values of actual latency spread.
The derivation of the correction factor (and the equivalent actual latency) for a few
sample points in the correction factor plot (Figure 4.2) is presented in the following
section.

Figure 4.2: Correction factor plot for computing the equivalent actual latency

Deriving the equivalent actual latency for sample data points

From experimental data, the average perceived latency of the functional module
(when ALspread= 30 clock cycles) at ALavg=10 clock cycles is 2.5 clock cycles using the
trace-based estimation technique and 0 clock cycles using the simplified equation-based



4.2. EXPERIMENTS 51

technique. With reference to Equation (4.3), PLavg
′ is 2.5 clock cycles, whereas PLavg is

0 clock cycles. Therefore, the error in the performance estimates of the two techniques
is 2.5 clock cycles (observed in Figure 4.2). Now, we need to ensure that the average
perceived latency of the trace derived using equation (4.4), i.e PLavg

′′ , is equal to PLavg
′

(2.5 clock cycles) which is the accurate average perceived latency derived using the trace-
based technique. For PLavg

′′ to be equal to 2.5 clock cycles, the equivalent actual latency
(ALeqv) must be equal to 42.5 clock cycles since the average no-stall interval (NIavg) of the
given trace is 40 clock cycles (Equation (4.4)). We compute the equivalent actual latency
(ALeqv) by multiplying the average actual latency (ALavg) with an appropriate correction
factor (C.F.). Since the average actual latency (ALavg) is equal to 10 clock cycles, the
correction factor (C.F.) for the given data point must be 4.25 so that the equivalent
actual latency is calculated as 42.5 clock cycles and thus, the average perceived latency
is correctly computed as 2.5 clock cycles.

Similarly, the average perceived latency of the functional module (when ALspread=
30 clock cycles) at ALavg=60 clock cycles is 24.42 clock cycles using the trace-based
estimation technique and 20 clock cycles using the simplified equation-based technique.
In short, PLavg

′ is 24.42 clock cycles and PLavg is 20 clock cycles. This gives an error of
4.42 clock cycles (observed in Figure 4.2) in the performance estimates of the two tech-
niques. We need to ensure that the average perceived latency of the trace derived using
equation (4.4), i.e PLavg

′′ , is equal to PLavg
′ (24.42 clock cycles) which is the accurate

average perceived latency derived using the trace-based technique (Equation (4.4)). For
PLavg

′′ to be equal to 24.42 clock cycles, the equivalent actual latency (ALeqv) must be
equal to 64.42 clock cycles since the average no-stall interval (NIavg) of the given trace
is 40 clock cycles. Since the average actual latency (ALavg) is equal to 60 clock cycles,
the correction factor (C.F.) for the given data point must be 64.42

60 = 1.07.

Approximation of the correction factor
The correction factor plot (Figure 4.2) is essentially derived from the knowledge of

the accurate average perceived latency. The next step is to approximate the correction
factor (C.F.). From Figure 4.2, we observe that the correction factor (C.F.) can be
approximated to a decaying exponential curve. We approximate the correction factor
(C.F.) with Equation (4.6).

C.F. = max(1,NIavg · e−λ·ALavg) (4.6)

Here, the term λ denotes the decay constant which is indicative of the rate at which
the correction factor decays. The λ varies with the functional modules’s NIavg and hence,
difficult to precisely formulate. It is determined empirically. Using Equation (4.6), the
equivalent actual latency (ALeqv) can be mathematically expressed as Equation (4.7).

ALeqv =

{
ALavg ALspread = 0
ALavg ·max(1,NIavg · e−λ·ALavg) ALspread 6= 0

(4.7)

ALspread = 0 and NIspread 6= 0
Similar to the previous experiment, the results obtained via the simplified equation-

based technique deviate from those obtained via the trace-based technique if there exists



52 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

a non-zero spread in the no-stall interval. In this experiment, we utilize ten different
traces each having an average no-stall interval (NIavg) of 40 clock cycles, but with varying
amounts of no-stall interval spread (from 0 clock cycles to 20 clock cycles). For each
different value of the no-stall interval spread, the performance of the SoC is estimated
using the trace-based technique and the equation-based technique, for varying values of
average actual latency (from 0 to 40 clock cycles).

The experiment results are best presented using an error plot as shown in Figure 4.3.
The plot presents the error observed in the results of the simplified equation-based tech-
nique as compared to that of the simulation based technique for varying values of spread
in the no-stall interval. Similar to the previous experiment, the error (ε) is calculated
using Equation (4.3). Also, the spread in no-stall interval affects the performance of the
functional module only when the average actual latency (ALavg) and the average no-stall
interval (NIavg) are reasonably close to each other.

Figure 4.3: Error plot for the simulation and simplified equation-based technique

Error Analysis:
As seen from Figure 4.3, the results of the trace-based performance estimation tech-

nique deviate from those of the simplified equation-based technique. Equation (4.1)
assumes that all requests have a no-stall interval of NIavg. However, due to the non-zero
spread in the no-stall interval values, some requests have a no-stall interval larger than
NIavg, whereas others have a no-stall interval smaller than NIavg. For a SoC infrastruc-
ture which serves all requests with an average actual latency of ALavg, the requests that



4.2. EXPERIMENTS 53

have a no-stall interval larger than the ALavg do not provide any performance gain, but
requests with a no-stall interval smaller than ALavg lead to the stalling of the functional
module. Since Equation (4.1) does not take this into account, it underestimates the
amount of stalling experienced by the functional modules.

We know that an external memory request trace with an average no-stall interval of
NIavg and a non-zero spread (NIspread 6= 0) has the same performance as that of a trace
with average no-stall interval NIavg

′ and a zero no-stall interval spread (NIspread = 0),
such that NIavg

′ < NIavg. To mitigate the error introduced in the results of the simplified
equation-based technique due to the spread in the no-stall interval, we propose Equa-
tion (4.8) over Equation (4.1). In Equation (4.8), the term NIeqv denotes the equivalent
no-stall interval of the functional module.

Similar to the previous experiment, the main reason for introducing Equation (4.8)
is to ensure that the average perceived latency (PLavg

′′) computed using the equivalent
no-stall interval is the same as the average perceived latency (PLavg

′) derived from the
trace-based technique (considered as the accurate value of perceived latency).

PLavg = max(0,ALavg −NIeqv) (4.8)

Equivalent no-stall interval (NIeqv)

The concept of equivalent no-stall interval is introduced to minimize the error intro-
duced in the performance estimation of functional modules due to the spread in no-stall
interval. In the absence of any spread in the no-stall interval values, the equivalent no-
stall interval is equal to the average no-stall interval (NIeqv = NIavg). To minimize the
effect of the spread in the no-stall interval values, the equivalent no-stall interval must be
approximated to a value smaller than the average no-stall interval (NIeqv < NIavg). The
equivalent no-stall interval can be derived by multiplying the average no-stall interval by
a suitable correction factor.

The correction factor can be mathematically derived from Equation (4.8). The equa-
tion for correction factor is given by Equation (4.9).

PL′′avg = PL′avg = max(0,ALavg −NIeqv) (4.9a)

=⇒ PL′avg = max(0,ALavg −NIeqv) (4.9b)

=⇒ PL′avg = ALavg −NIeqv [if ALavg > NIeqv] (4.9c)

=⇒ NIeqv = ALavg − PL′avg (4.9d)

=⇒ NIavg · C.F. = ALavg − PL′avg (4.9e)



54 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

=⇒ C.F. =
ALavg − PL′avg

NIavg
(4.9f)

Figure 4.4 shows a graph of the correction factor (determined using Equation (4.9))
plotted against the average actual latency for various values of the no-stall interval
spread. The derivation of the correction factor (and the equivalent no-stall interval) for
a few sample points in the correction factor plot (Figure 4.2) is presented in the following
section.

Figure 4.4: Correction factor plot for computing the equivalent no-stall interval

Deriving the equivalent no-stall interval for sample data points

From experimental data, the average perceived latency of the functional module
(when NIspread= 20 clock cycles) at ALavg=10 clock cycles is 0.41 clock cycles using the
trace-based estimation technique and 0 clock cycles using the simplified equation-based
technique. With reference to Equation (4.3), PLavg

′ is 0.4 clock cycles and PLavg is 0
clock cycles. Thus, the error in the performance results of the two technique is 0.4 clock
cycles (observed in Figure 4.4). We need to ensure that the average perceived latency of
the trace derived using equation (4.8), i.e PLavg

′′ , is equal to PLavg
′ (0.4 clock cycles)

which is the accurate average perceived latency derived using the trace-based technique.



4.2. EXPERIMENTS 55

For PLavg
′′ to be equal to 0.4 clock cycles, the equivalent no-stall interval (NIeqv) must be

equal to 9.6 clock cycles since the average actual latency (ALavg) at the given data point
is 10 clock cycles. We compute the equivalent no-stall interval (NIeqv) by multiplying
the average no-stall interval (NIavg) with an appropriate correction factor (C.F.). Since
the average no-stall interval (NIavg) is equal to 40 clock cycles, the correction factor
(C.F.) for the given data point must be 9.6

40 = 0.24 so that the equivalent no-stall interval
is calculated as 9.6 clock cycles and thus, the average perceived latency is correctly
computed as 0.4 clock cycles.

Similarly, the average perceived latency of the functional module (when NIspread=
20 clock cycles) at ALavg=60 clock cycles is 21.47 clock cycles using the trace-based
estimation technique and 20 clock cycles using the simplified equation-based technique.
In short, PLavg

′ is 21.47 clock cycles and PLavg is 20 clock cycles. This gives an error of
1.47 clock cycles (observed in Figure 4.4). We need to ensure that the average perceived
latency of the trace derived using equation (4.8), i.e PLavg

′′ , is equal to PLavg
′ (21.47

clock cycles) which is the accurate average perceived latency derived using the trace-
based technique. For PLavg

′′ to be equal to 21.47 clock cycles, the equivalent no-stall
interval (ALeqv) must be equal to 38.53 clock cycles since the average actual latency
(ALavg) at the given data point is 60 clock cycles. Since the average no-stall interval
(NIavg) is equal to 40 clock cycles, the correction factor (C.F) for the given data point
must be 38.53

40 = 0.96.

Approximation of the correction factor
The correction factor plot (Figure 4.4) is derived by using the accurate average per-

ceived latency values. The next step is therefore, to approximate the correction factor
(C.F.). From Figure 4.4, we observe that the correction factor (C.F.) can be approxi-
mated to a linear curve given by Equation (4.10).

C.F. = min(1,
ALavg

(NIavg + NIspread)
) (4.10)

Using Equation (4.10), the equivalent no-stall interval (NIeqv) can be mathematically
expressed as Equation (4.11).

NIeqv =

{
NIavg NIspread = 0

NIavg ·min(1,
ALavg

(NIavg+NIspread)
) NIspread 6= 0

(4.11)

Conclusion
From the above experiments, we conclude that the simplified equation-based perfor-

mance estimation technique can be effectively used for split IPs, either when there is no
spread in the no-stall interval or the actual latency values or when the average no-stall
interval (NIavg) is either much larger or much smaller than the average actual latency
(ALavg). In scenarios where the average no-stall interval and the average actual latency
are comparable to each other and there exists a non-zero spread in either of the two
parameters, the SoC designer should be aware of the possible errors resulting from the
spread in actual latency or no-stall interval. The error in the results of the simplified
equation-based technique can be minimized by using the following equations.



56 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

PLavg = max(0,ALavg −NIavg) [ALspread = 0 and NIspread = 0]
PLavg = max(0,ALeqv −NIavg) [ALspread 6= 0 and NIspread = 0]
PLavg = max(0,ALavg −NIeqv) [ALspread = 0 and NIspread 6= 0]
PLavg = max(0,ALeqv −NIeqv) [ALspread 6= 0 and NIspread 6= 0]

4.2.3 Pipelined IPs

As compared to the blocking and split IPs, the execution behaviour of the pipelined
IPs is much more complex and hence, more challenging to evaluate using the simplified
equation-based technique. The key issue in employing the simplified equation-based
approach for estimating the performance of pipelined IPs is that Equation (4.1) does
not account for the derived benefit experienced by the individual requests of a pipelined
IP. This is because derived benefit, as the name suggests, is a derived property. To
determine the average derived benefit (DBavg) per request, the SoC designer needs to
simulate the execution of the entire trace on a per request basis.

This experiment ignores the average derived benefit (DBavg) and evaluates the ac-
curacy of the equation-based technique against that of the simulation-based technique.
The experiment involves simulating a synthetic trace on a pipelined IP with Nmax =
4 requests. The average no-stall interval (NIavg) of the external memory request trace
is 24 clock cycles with a no-stall interval spread (NIspread) of 12 clock cycles. The per-
formance of the functional module and the SoC infrastructure is estimated using both
the trace-based technique and the simplified equation-based technique (Equation (4.8)).
The experiment involves simulating the above mentioned trace for varying values of av-
erage actual latency (ALavg), from 0 to 50 clock cycles, with zero actual latency spread
(ALspread). The results of the experiment are presented in Table 4.3.

Table 4.3: Comparison between the results of the trace-based technique and the equation-
based estimation technique for pipelined IPs

Trace-based Equation-based
technique technique

AL PLavg PLavg Error
(clock cycles) (clock cycles) (clock cycles) (clock cycles)

5 0.22 1.66 -1.44
10 1.01 3.33 -2.32
15 2.21 5.00 -2.79
20 3.77 6.66 -2.89
25 5.53 6.94 -1.61
30 7.41 10.00 -2.59
35 9.39 11.66 -2.27
40 11.47 16.39 -4.92
45 13.64 21.39 -7.75
50 15.83 26.39 -10.56



4.3. APPLICATION OF THE PERFORMANCE ESTIMATION TECHNIQUES 57

The experimental results illustrate that the equation-based performance estimation
technique over-estimates the average perceived latency of the pipelined IP. The over-
estimation of the perceived latency is attributed to the fact that the equation-based
technique cannot estimate the average derived benefit received by individual requests,
thereby arriving at a much higher perceived latency than that observed in reality. The
error introduced in the estimation of the perceived latency is as high as 100%, due to
which the equation-based technique is not well suited for pipelined IPs.

Conclusion
To summarize, the simplified equation-based performance estimation technique over-

estimates the stalling experienced by the pipelined IPs. This is mainly attributed to the
inability of the estimation technique to capture the derived benefit of memory requests.
We therefore recommend the SoC designers to use the trace-based estimation technique
for pipelined IPs.

4.3 Application of the performance estimation techniques

In this section, we study the application of the proposed performance estimation tech-
niques to aid SoC designers in the customization, verification and integration of the
four example functional modules presented in Chapter 1. Out of the four examples pre-
sented in Chapter 1, two examples (basic CPU and advanced pre-fetching CPU) belong
to the class of latency non-critical functional modules, whereas the other two examples
(DSP and video engine) belong to the latency critical class of functional modules. Al-
though both the trace-based and the simplified equation-based techniques can be used
to estimate the performance of all four functional modules, we study the application of
trace-based technique for integrating the DSP and the video engine. Similarly, we apply
the simplified equation-based technique for integrating the basic CPU and the advanced
pre-fetching CPU.

4.3.1 Performance estimation using trace simulator

The trace-based technique is best utilized for the performance estimation of functional
modules employing pipelined IPs such as the DSP and the video engine.

DSP example (Chapter 2)
In this example, the functional module (DSP executing an audio application) is both

latency sensitive and latency critical. Typically the DSP issues multiple external memory
requests (via the pre-fetch unit) for fetching a given audio frame. The requirement is
that the given audio sample should be completely available before a fixed deadline so
that the DSP can process the data fast enough to prevent any loss in audio quality. The
execution of application code on the DSP generates a memory request trace as shown
in Figure 2.6, where memory requests typically have an average no-stall interval (NIavg)
of 15-20 clock cycles. However, the external memory request trace generated by the
pre-fetch unit of the DSP resembles the trace shown in Figure 2.7, where all requests
typically get an average no-stall interval (NIavg) of 60-80 clock cycles with a little spread



58 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

(15-20 clock cycles) in the no-stall interval values. This is because the pre-fetch unit of
the DSP can typically issue multiple outstanding requests (Nmax =4 requests). While
it is not critical that each external memory request issued by the IP is served within
its individual deadline, it is essential that a collective set of requests (say, for one audio
sample) are all served before a fixed deadline. The SoC designer expects the perceived
latency for each request issued by the pre-fetch unit to be less than a threshold value,
which is determined by taking into account the base time of the trace and the deadlines
set for the collective set of requests. The average actual latency (ALavg) of the SoC
infrastructure is typically around 100 clock cycles. The performance estimation results
of the trace-based technique for a DSP executing a synthetic audio decoder application
trace with the above mentioned specifications (NIavg = 60 clock cycles, NIspread= 25
clock cycles) is presented in Table 4.4.

Table 4.4: Performance estimation results of a DSP (Nmax = 4) executing a typical audio
decoder application trace.

Actual Latency Total Execution Time Average
perceived latency

(clock cycles) (clock cycles) (clock cycles)

20 1330596 1.61
40 1557508 6.15
60 1885195 12.70
80 2258434 20.19
100 2649149 28.27
120 3051390 36.96
140 3454292 45.70

Suppose the threshold for the average perceived latency (PLavg) is set to 30 clock
cycles, we can conclude (from Table 4.4) that a SoC infrastructure which serves memory
requests with an average actual latency (ALavg) less than 100 clock cycles is suitable for
the given functional module.

Video engine example (Chapter 2)
In this example, the video IP is latency tolerant, but is latency critical. The requests

issued by the pre-fetch unit of the video IP typically have an average no-stall interval
(NIavg) of a 200-400 clock cycles. The average actual latency (ALavg) of the SoC infras-
tructure is typically around 100-150 clock cycles with a considerable amount of spread
(ALspread = 50 clock cycles) in the actual latency values. By performing simulation of
the worst case external memory request trace for a range of SoC infrastructure configura-
tions, we can perform rapid estimation of the average number of stall cycles experienced
by the video IP for every external memory request. Similar to a DSP executing an audio
application, the video IP requires a set of requests to be collectively served before a fixed
deadline. In this example, we assume that the video IP is designed such that average
perceived latency of all requests should be at most a couple of clock cycles. Thus, the
SoC designer is mainly interested in ensuring that the average perceived latency of the
external memory request is below two-three clock cycles.



4.3. APPLICATION OF THE PERFORMANCE ESTIMATION TECHNIQUES 59

The average actual latency (ALavg) is varied from 20 clock cycles to 150 clock cycles,
with a spread (ALspread) of 50 clock cycles. The results of the simulator executing a
synthetic trace (NIavg = 200 clock cycles, NIspread = 25 clock cycles) with the above
mentioned specifications on a pipelined video IP with varying SoC infrastructure config-
urations is given in Table 4.5.

Table 4.5: Performance estimation results of a video IP (Nmax = 4) executing a typical
video application trace.

Actual Latency Total Execution Time Average
perceived latency

(clock cycles) (clock cycles) (clock cycles)

20 3256809 0
40 3256809 0
60 3256809 0
80 3256809 0
100 3272655 0.46
120 3305108 1.10
150 3427107 3.55

From Table 4.5, we conclude that the video IP does not experience any stalling and
hence, does not miss any deadline until the average actual latency (ALavg) is less than
100 clock cycles. The SoC infrastructure satisfies the performance requirements of the
video IP until its average actual latency is less than 120 clock cycles, in spite of the large
spread in actual latency values.

4.3.2 Performance estimation using simplified equation

The simplified equation-based performance estimation technique can be utilized for
performing rapid worst case performance estimation of the functional modules and the
SoC infrastructure, especially for the blocking and split types of IPs. The technique is
useful in real-life SoC design, especially in dealing with split type processors executing
latency non-critical applications.

Simple CPU example (Chapter 2)

In the simple CPU example of Chapter 2, the functional module (simple processor)
is latency sensitive, but latency non-critical. The processors are typically split in nature,
having an average no-stall interval (NIavg) of a couple of clock cycles with very little
or no spread in the no-stall interval values. The average actual latency (ALavg) of the
SoC infrastructure is typically around 100-120 clock cycles. Thus, using the simplified
equations, we can make a rough estimate that every external memory request would
stall the processor for an average of 100-120 clock cycles. Depending on the criticality
of the application being executed, we can decide whether the performance offered by the
processor and/or the SoC infrastructure is acceptable or not.



60 CHAPTER 4. SIMPLIFIED EQUATION-BASED PERFORMANCE
ESTIMATION

Pre-fetching CPU example (Chapter 2)
In the advanced pre-fetching CPU example of Chapter 2, the functional module

(processor with pre-fetching cache) is latency tolerant and latency non-critical. The
processors typically having an average no-stall interval (NIavg) of 20-30 clock cycles with
considerable amount of spread in the no-stall interval values. The spread in no-stall
interval is mainly because the pre-fetching cache does not equally benefit all memory
accesses. Thus, while most requests benefit from the pre-fetching capability of the CPU,
some requests do not benefit from it and therefore, have a small no-stall interval. These
requests introduce a considerable amount of spread in the no-stall interval values. The
average actual latency (ALavg) of the SoC infrastructure is typically around 100-120
clock cycles. Using Equation (4.1), we can estimate that a every external memory
request would stall the processor for an average of 90-100 clock cycles. Depending on
the criticality of application being executed, the SoC designer can easily estimate whether
the performance offered by the processor and the SoC infrastructure is acceptable or not.

4.4 Conclusion

In this chapter, we studied the simplified equation-based performance estimation tech-
nique in detail. We analyzed the effect of the spread in no-stall interval and actual latency
on the accuracy of the equation-based technique and proposed solutions to minimize the
error induced by the spreads. We also studied the application of the performance esti-
mation techniques for commonly found functional modules in today’s SoC designs.



Related work 5
In this thesis, we proposed two performance estimation techniques that address the chal-
lenges encountered in the integration of IPs into complex SoC designs. The performance
estimation techniques allow rapid performance estimation of IPs and the SoC infrastruc-
ture, thereby allowing the SoC designers to appropriately configure and integrate them.
These estimation techniques are based on high-level performance models that capture
the latency tolerance of IPs and their dependence on the service provided by the SoC
infrastructure. Often in real-life SoC designs, the main concern of the SoC designers is
to ensure that the performance of the processors and other IPs match their expectations
after they are integrated into custom SoCs. In such scenarios, it is crucial to study and
understand the latency tolerance aspect of the processors.

Latency tolerance and latency criticality of IPs with respect to the service latency
of the SoC infrastructure (memory subsystem, on-chip network, etc.) are widely known
concepts and have received attention in [4, 11, 13, 15]. [15] introduces a metric termed as
the likelihood of criticality, which denotes the criticality of the load/store instructions and
communication latencies with respect to the overall performance of a clustered system.
It further uses this metric to implement a criticality-based scheduler which prioritizes
instructions based on their criticality, thereby improving the overall performance of the
system. Similar to [15], [4] deals with the stall-time criticality of applications and pro-
poses several prioritization policies to improve the throughput (and thus, performance)
of on-chip networks while still preserving fairness in the network. Although the paper
introduces several techniques to determine the stall-time criticality of applications, it
fails to provide a strong mathematical framework for quantifying the latency criticality
of applications. These papers utilize the latency tolerance and latency criticality of IPs
to either improve the performance of the IPs [8, 15] or to perform better arbitration of
the shared resource (e.g. the on-chip network) [4]. The concepts of latency tolerance and
latency criticality have not been explored for estimating the performance of IPs, which
is central to our work.

Researchers have proposed numerous performance estimation techniques for IPs and
SoC infrastructure such as those found in [5, 7, 12, 18, 20, 22]. [5] propose a perfor-
mance estimation technique for bus based communication architectures using Stochastic
Automata Network (SAN). The proposed performance estimation technique aims at pro-
viding early estimates of performance metrics (such bandwidth, queue length and the
waiting time for processing elements (IPs)) that help SoC designers to select the ap-
propriate communication architecture for their SoCs. The paper specifically deals with
utilizing the SAN model for single shared bus and hierarchical bus bridge architectures.
The model assumes that all processing elements connected to the bus are served accord-
ing to a priority based arbitration policy. The proposed analytical technique is derived
from this assumption, which restricts the use of this estimation technique in SoCs using

61



62 CHAPTER 5. RELATED WORK

on-chip networks and buses that employ other arbitration schemes.

Performance estimation of SoCs using SANs is also proposed in [12]. This paper
presents an analytical technique for system-level power and performance analysis that
helps SoC designers to select the right IPs for a given set of target applications. The
paper uses the Stochastic Automata Networks (SANs) as a formalism for the average-case
analysis of a set of application-architecture combinations so as to aid the SoC designer in
identifying the best combination early in the design cycle. The paper fails to relate the
performance of the memory subsystem to the performance of the application-architecture
combination. Thus, this technique is suited only for determining the optimal application-
architecture combination for a given SoC infrastructure, irrespective of whether the SoC
infrastructure can support its performance requirements.

Similarly, Platune [7] is another performance estimation framework that aids the SoC
designer in choosing the appropriate architectural parameters for a given application
mapped onto a parameterized SoC platform with the goal of satisfying its performance
and power requirements. It is mainly focused on simplifying the design space explo-
ration problem encountered in selecting the right set of parameters in a parameterized
SoC platform to deliver optimal power and performance. The processors, caches, mem-
ory subsystem and other on-chip peripherals are modeled and analyzed independently
without capturing the performance dependence among them. Furthermore the perfor-
mance estimation for each of the configurations is not accurate in the absolute sense, but
is aimed to be relative to that of the other configurations, thereby making it unsuitable
for SoCs providing (hard/soft) real time functionality.

[22] introduces a novel SoC performance evaluation methodology that is based on
modeling memory accesses. It first finds the performance bottleneck in a given SoC de-
sign and then proposes an appropriate SoC architecture in the early SoC design stages,
thereby saving a lot of time and effort involved in the design iteration cycles. It exploits
the AHB bus characteristics to estimate the performance of the SoC. However, since the
modeling of the memory access behaviour of the AHB bus is central to this performance
estimation technique, it cannot be used for SoCs which employ other types of intercon-
nects. Although the paper relates the performance of the SoC to that of the memory
subsystem and the interconnect, the possibility of IPs issuing multiple memory requests
is ignored. It, therefore, does not discuss the concept of memory level parallelism or the
latency tolerance/ criticality of IPs which have become important issues in SoC design
today.

A high-level model characterizing the latency tolerance of processors, called the pro-
cessor queuing model is proposed in [20]. This paper is the closest to our work. The paper
aims at modeling multiprocessor systems running memory intensive, commercial online
transaction processing (OLTP) workloads in order to improve the accuracy of their per-
formance estimates, thereby aiding the design of such systems. Similar to our approach,
the paper proposes modeling of the multiprocessor system by analyzing the external
memory request trace. It also deals with re-iterating the simulations for evaluating the
performance of the processors for various memory subsystem configurations. Although
the paper deals with the performance dependence of processors on the memory subsys-
tem, it fails to consider the application code dependencies that affect the performance
of the processors. The load-load dependencies (similar to the request dependencies) is



63

claimed to have negligible impact on the processor’s performance for the OLTP work-
loads they execute. This restricts the use of their model for a specific type of workload
(i.e OLTP workloads). Furthermore, the paper does not deal with the code dependencies
(i.e. a non-memory movement instruction dependent on a memory request) since they
are assumed to be non-existent in the applications they consider. Although the paper
deals with the stalling of processors and the concept of overlapping memory requests,
they do not provide a mathematical framework for quantifying the latency tolerance of
processors. We believe that our model is better than the one proposed in [20] mainly
because we present an elaborate mathematical framework that allows us to quantify the
latency tolerance of IPs and co-relate it with the performance of the SoC infrastructure,
thereby enabling us to accurately estimate their performance.



64 CHAPTER 5. RELATED WORK



Conclusion and Future work 6
This chapter is presented as follows. Firstly, we summarize the thesis and present the
broad conclusions derived from this work. Later, we propose recommendations for using
the performance estimation techniques in the context of real-life SoC designs. Finally,
we propose possible future work that can be undertaken as an extension of this thesis.

6.1 Summary

In this thesis, we have proposed two novel performance estimation techniques, namely
the trace-based performance estimation technique and the simplified equation-based per-
formance estimation technique. The performance estimation techniques are based on
high-level performance models of IPs and the SoC infrastructure that capture some of
their key performance characteristics (e.g. latency tolerance of IPs). The high-level
performance models accurately capture the execution behaviour of three types of IPs -
blocking, split and pipelined. The high-level performance models are useful in character-
izing a functional module once and re-using it in subsequent SoC designs. This enhances
the re-usability of functional modules.

The trace-based performance estimation utilizes the entire (worst-case) application
traces for characterizing the functional modules. The external memory request traces are
analyzed to determine the no-stall interval of individual memory requests. The effort and
time invested in extracting and analyzing the application trace, as opposed to executing
application code on an instruction set simulators is justified since trace extraction and
analysis is fairly simple and quick.

The simplified equation-based performance estimation technique characterizes the
functional modules and the SoC infrastructure using average performance values, which
can either be derived from a worst-case application trace or simply determined by past
experience. The simplified equation-based technique is useful for providing rapid per-
formance estimates of functional modules and the SoC infrastructure in the early design
stages, although with a possible reduction in the accuracy for the split and pipelined
functional modules.

Both these performance estimation techniques are particularly useful in rapidly re-
assessing the performance of all functional modules, every time a new functional module
is added to a given SoC design. The high-level performance models allow the SoC
designer to iteratively estimate the performance of a given SoC over a range of IP and SoC
infrastructure configuration. This allows the SoC designer to perform rapid design space
exploration. The performance estimates provided by these techniques in the early SoC
design stages saves a significant portion of the design time. The performance estimation
techniques therefore simplify the process of integrating new IPs/ IP subsystems into
existing SoC designs.

65



66 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Conclusion

From the experimental results, we present the following conclusions with respect to the
performance of functional modules and their dependence on the service provided by the
SoC infrastructure. To begin with, the total execution time of an application/ trace
reduces with the increasing hardware capability of the IPs, from blocking to pipelined
IPs. For the pipelined IPs, the total execution time of the external memory request trace
(and hence, the application) decreases with the increasing ability of the pipelined IPs to
issue multiple outstanding requests.

As far as the stalling of functional modules is concerned, the average perceived latency
experienced by the blocking IPs increases linearly with the average actual latency of the
SoC infrastructure. The split and pipelined IPs experience negligible stalling as long as
the average actual latency of the SoC infrastructure is less than their average no-stall
interval. When the average actual latency of the SoC infrastructure exceeds the average
no-stall interval of the split and pipelined IPs, the average perceived latency experienced
by these IPs increases linearly with the average actual latency. These conclusions are
appropriate as long as the spread in no-stall interval and actual latency is negligible.

With the introduction of spread in no-stall interval and actual latency, the perfor-
mance of split/pipelined IPs degrades whenever the average actual latency of the SoC
infrastructure is reasonably close to the average no-stall interval of the functional mod-
ule. This is because, an external memory request trace with an average no-stall interval
of NIavg and a non-zero spread (NIspread 6= 0) produces the same performance as that
of a trace with an average no-stall interval NIavg

′ and a zero no-stall interval spread
(NIspread = 0), such that NIavg

′ < NIavg. The spread in no-stall interval and actual
latency values does not have any bearing on the performance of the functional module
when the average service latency of the SoC infrastructure is either significantly smaller
or significantly larger than the average no-stall interval of the functional module. Also,
pipelined IPs are more tolerant to the spread in the actual latency of the SoC infrastruc-
ture than the split IPs.

6.3 Recommendations

From the various experiments and our understanding of the performance estimation
techniques, we provide the following recommendations on using them in real-life SoC
designs. Both the performance estimation techniques can be used for estimating the
performance of blocking, split and pipelined IPs. However, we recommend the following:

1. While estimating the performance of pipelined IPs, we recommend the use of trace-
based performance estimation technique over the simplified equation-based tech-
nique since it offers higher accuracy and thus, a more realistic performance esti-
mation.

2. For the same reason, the trace-based performance estimation should also be pre-
ferred whenever there is a large spread in the values of no-stall interval or the
actual latency. An exception to this recommendation would be the case when the
average no-stall interval of the functional module is either very large or very small



6.4. FUTURE WORK 67

as compared to the average actual latency of the SoC infrastructure. In such cases,
both the estimation techniques are equally effective.

6.4 Future work

The future work can be classified in the following directions:

1. The simplified model can be further extended to improve the accuracy of perfor-
mance estimation for pipelined IPs, thereby enabling SoC designers to utilize the
simplified equation-based technique for all types of IPs.

2. The proposed performance estimation technique, especially the simplified equation-
based estimation technique, can be implemented in hardware to perform real-time
analysis of the performance of functional modules and SoC infrastructure. This
real-time analysis can be performed at the entrance of the on-chip network (say
a port connecting multiple latency critical functional modules to the on-chip net-
work). The average no-stall intervals of the functional modules can be programmed
into the port. The average actual latency provided by the SoC infrastructure to
every individual functional module can be tracked and updated in real time. With
the knowledge of the average no-stall interval of the functional modules and the
average actual latency with which each of the functional modules is being served,
the port could assign priority stamps to the requests issued by the functional mod-
ules based on their urgency. These priority stamps can be used within the on-chip
network (to prioritize between the different packets) or at the memory controller
(to prioritize memory requests).

3. In this thesis, we characterize the functional modules and the SoC infrastructure
independently, with no inter-dependence between them. However, in reality, the
SoC infrastructure characterization should be closely linked to the execution be-
haviour of all functional modules it serves. This is because, parameters like the
actual latency (AL) significantly depend on the request issuing behaviour of the
functional modules. Future work may therefore involve analyzing the dependence
between the functional modules and SoC infrastructure and ultimately, capturing
this dependence in their performance models.



68 CHAPTER 6. CONCLUSION AND FUTURE WORK



Bibliography

[1] The simit-arm simulator, http://simit-arm.sourceforge.net/, 2007.
[2] D. Araki, A. Nakamura, and M. Miyama, Model-based soc design using esl envi-

ronment, SoC Design Conference (ISOCC), 2010 International, nov. 2010, pp. 83
–86.

[3] P.J. Bricaud, Ip reuse creation for system-on-a-chip design, Custom Integrated Cir-
cuits, 1999. Proceedings of the IEEE 1999, 1999, pp. 395 –401.

[4] R. Das, O. Mutlu, T. Moscibroda, and C.R. Das, Application-aware prioritization
mechanisms for on-chip networks, Microarchitecture, 2009. MICRO-42. 42nd An-
nual IEEE/ACM International Symposium on, dec. 2009, pp. 280 –291.

[5] U. Deshmukh and V. Sahula, Stochastic automata network for performance eval-
uation of heterogeneous soc communication, NORCHIP, 2008., nov. 2008, pp. 208
–211.

[6] A. Gerstlauer, J. Peng, D. Shin, D. Gajski, A. Nakamura, D. Araki, and Y. Nishi-
hara, Specify-explore-refine (ser): From specification to implementation, Design Au-
tomation Conference, 2008. DAC 2008. 45th ACM/IEEE, june 2008, pp. 586 –591.

[7] T. Givargis and F. Vahid, Platune: a tuning framework for system-on-a-chip plat-
forms, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on 21 (2002), no. 11, 1317 – 1327.

[8] P. Grun, N. Dutt, and A. Nicolau, Mist: an algorithm for memory miss traffic man-
agement, Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM International
Conference on, 2000, pp. 431 –437.

[9] A.B. Kahng, Design technology productivity in the dsm era, Design Automation
Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, 2001,
pp. 443 –448.

[10] Jie Liu, M. Lajolo, and A. Sangiovanni-Vincentelli, Software timing analysis using
hw/sw cosimulation and instruction set simulator, Hardware/Software Codesign,
1998. (CODES/CASHE ’98) Proceedings of the Sixth International Workshop on,
mar 1998, pp. 65 –69.

[11] O. Mutlu and T. Moscibroda, Stall-time fair memory access scheduling for chip
multiprocessors, Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM
International Symposium on, dec. 2007, pp. 146 –160.

[12] A. Nandi and R. Marcuelescu, System-level power/performance analysis for em-
bedded systems design, Design Automation Conference, 2001. Proceedings, 2001,
pp. 599 – 604.

[13] M.K. Qureshi, D.N. Lynch, O. Mutlu, and Y.N. Patt, A case for mlp-aware cache re-
placement, Computer Architecture, 2006. ISCA ’06. 33rd International Symposium
on, 0-0 2006, pp. 167 –178.

[14] J.A. Rowson and A. Sangiovanni-Vincentelli, Interface-based design, Design Au-
tomation Conference, 1997. Proceedings of the 34th, jun 1997, pp. 178 –183.

[15] P. Salverda and C. Zilles, A criticality analysis of clustering in superscalar proces-
sors, Microarchitecture, 2005. MICRO-38. Proceedings. 38th Annual IEEE/ACM
International Symposium on, nov. 2005, pp. 12 pp. –66.

69

http://simit-arm.sourceforge.net/


70 BIBLIOGRAPHY

[16] S. Sarkar, S. Chanclar G, and S. Shinde, Effective ip reuse for high quality soc design,
SOC Conference, 2005. Proceedings. IEEE International, sept. 2005, pp. 217 – 224.

[17] P. Schindler, K. Weidenbacher, and T. Zimmermann, Ip repository, a web based ip
reuse infrastructure, Custom Integrated Circuits, 1999. Proceedings of the IEEE
1999, 1999, pp. 415 –418.

[18] S. Sudharsanan, Performance evaluation of a dvd processor using transaction level
models, Consumer Electronics, 2004 IEEE International Symposium on, 1-3, 2004,
pp. 375 – 380.

[19] G. Surendra, S.K. Nandy, and P. Sathya, Redeem rtl: a software tool for customizing
soft cells for embedded applications, VLSI Design, 2001. Fourteenth International
Conference on, 2001, pp. 85 –90.

[20] Thin-Fong Tsuei and W. Yamamoto, Queuing simulation model for multiprocessor
systems, Computer 36 (2003), no. 2, 58 – 64.

[21] Xavier Warzee and P. Kajfasz, Semantics based co-specifications to design dsp sys-
tems, VHDL International Users’ Forum, 1997. Proceedings, oct 1997, pp. 105 –108.

[22] Li Zhou, Tao Sun, Sufen Wei, and Qi Guo, A multimedia soc performance evaluation
method based on memory access model, Image and Signal Processing (CISP), 2010
3rd International Congress on, vol. 1, oct. 2010, pp. 463 –467.



Algorithm for computing the
derived benefit of external
memory requests A
The Matlab code for the algorithm to compute the derived benefit of individual requests
is given below. At the start of the algorithm, the derived benefit of all requests is
initialized to zero clock cycles. The algorithm progresses through the entire external
memory request trace, analyzing at each request Ri, whether any of the outstanding
requests stalls the functional module before request Ri is served. In case a request leads
to the stalling of the functional module, the derived benefit for all outstanding requests
at that instant are updated. There are two cases when requests get the derived benefit
(due to the stalling caused by another outstanding request).

1. If one of the previous outstanding requests Rj stalls the functional module, all out-
standing requests (including request Ri, but excluding request Rj) get the derived
benefit.

2. If request Ri itself stalls the functional module, all previous outstanding requests
(excluding request Ri) get the derived benefit.

As explained in Chapter 2, a given request gets the derived benefit from both the forward
and backward direction. The algorithm ensures that the derived benefit is propagated
in forward direction through Case 1. The derived benefit is propagated in the backward
direction through Case 2.

1 %Initialize derived benefit of all requests to zero
2 derived benefit = zeros(trace size, 1)';
3

4 %Initialize current time to zero
5 current time = 0;
6

7 % Analyze the entire memory request trace
8 for i = 1 : trace size
9 issue time(i) = current time;

10

11 %If no request is issued in the no−stall interval of Request i
12 if (no−stall interval(i) < inter request(i))
13 %Check if a previous outstanding request stalls the functional module
14 for j = i − (Nmax−1) : i−1
15 if (Request j s currently outstanding and will get served ...

before Request i)
16 if (Request j stalls the functional module)
17 %Then all requests from Request j+1 to Request i get derived ...

benefit
18 for k = j+1 : i
19 Update derived benefit(k)
20 end

71



72APPENDIX A. ALGORITHM FOR COMPUTING THE DERIVED BENEFIT OF
EXTERNAL MEMORY REQUESTS

21 end
22 end
23 end
24

25 %Check if Request i stalls the functional module
26 if (Request i does not stall the functional module)
27 %Update to the current time
28 current time = issue time(i) + derived benefit(i) + inter request(i);
29 else
30 %Update derived benefit to all previous outstanding requests
31 for j = i − (Nmax−1) : i−1
32 Update derived benefit(j)
33 end
34 %Update current time;s
35 end
36

37 %If a Request j is issued in the no−stall interval of Request i
38 else
39 %Check previous Nmax − 1 requests
40 for j = i − (Nmax−1) : i−1
41 if (Request j is served before Request i+1 gets issued)
42 %Check if Request j stalls the functional module
43 if (Request j stalls the functional module)
44 %All requests from Request j+1 to Request i get derived benefit
45 for k = j+1 : i
46 %Update derived benefit(k);
47 end
48 end
49 end
50 end
51

52 %Update current time
53 end


	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	System-on-Chip
	SoC Design
	IP re-use
	Problem Statement
	IP customization and integration
	Performance verification

	Aim
	Proposed Solution

	General High level Performance Modeling
	Functional modules
	Generic architecture of IPs:
	Classification of functional modules

	Model for functional modules
	External memory request trace
	Execution behaviour of functional modules
	Performance impact of the SoC infrastructure
	Performance impact of the IPs
	Total execution time (E):
	No-stall interval
	Perceived latency
	Derived Benefit

	Performance modeling of functional modules
	Performance modeling of the SoC infrastructure
	The complete SoC model
	Basics of Performance Estimation
	Characterization of functional modules and the SoC infrastructure
	Execution of the external memory request trace

	Conclusion

	Trace-based Performance Estimation
	Trace simulator
	Experiments based on the trace simulator
	Simple Blocking Processor
	Experiments for split and pipelined IPs

	Conclusion

	Simplified equation-based Performance estimation
	Performance estimation using simplified equations
	Experiments
	Blocking IP
	Split IPs
	Pipelined IPs

	Application of the performance estimation techniques
	Performance estimation using trace simulator
	Performance estimation using simplified equation

	Conclusion

	Related work
	Conclusion and Future work
	Summary
	Conclusion
	Recommendations
	Future work

	Bibliography
	Algorithm for computing the derived benefit of external memory requests

