

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Algorithms for Mapping and Scheduling Real-Time
Streaming Applications on Heterogeneous Multi-core

Platforms

Bc. Jakub Kopřiva

Supervisor: Dr. Benny Akesson, MSc.

Study Programme: Open Informatics

Field of Study: Software Engineering

May 10, 2015

iv

v

Aknowledgements

I would like to thank both my consultant, Ing. Přemysl Šůcha, Ph.D and my super-
visor, MSc. Benny Akesson. They were inspiring me and leading me through the
master thesis. Also, I can not forget to thank all OF my family for supporting me
during the studies.

vi

vii

Declaration

I declare that I worked out the presented thesis independently and I quoted all used
sources of information in accord with Methodical instructions about ethical principles
for writing academic thesis.

In Prague on May 11, 2015 .

viii

Abstract

This thesis addresses the problem of mapping and scheduling of real-time data driven
applications on heterogenous multi core platforms. We are proposing an ILP for-
mulation to solve this problem and introduce multiple performance upgrades for the
formulation in usage of lazy constraints and a symmetry breaking algorithm. Also,
we describe the pros and cons of two options and how to use lazy constraints. We
provide an implementation tutorial for lazy constraints with use of CPLEX Java API.
We are providing experiments for lazy constraints and the symmetry breaking algo-
rithm as well as for baseline ILP for comparison. We experimentally show that the
performance upgrade is up to factor 7, but based on results of real applications, we
are still proposing to work on the performance issues in the future.

Keywords: mapping, scheduling, real-time application, heterogenous multi core
platform, lazy constraints, symmetry breaking, ILP, CPLEX Java API

Abstrakt

Tato diplomová práce se zabývá problematikou mapování a rozvrhování aplikací pro-
váděných v reálném čase na heterogení multiprocesorové platformy. Pro vyřešení
problému je v práci navržena formulace celočíselného programování. Součástí práce
je také několik vylepšení daného algoritmu za účelem zvýšení jeho výkonu. Tyto
přístupy jsou porovnány na základě experimentů z hlediska výkonnu jednotlivých al-
goritmů. Práce poskytuje stručný návod jak používat lazy constraints pomocí CPLEX
Java API a experimentálně ukazuje, že je možné až sedmkrát zrychlit navržený al-
goritmus. Na základě experimentů s reálnými aplikacemi navrhuji dále pracovat na
problémech spojených s výkonnem.

Klíčová slova: mapování, rozvrhování, aplikace prováděné v reálném čase, hetero-
gení multiprocesorové platformy, lazy constraints, odstraňování symetrií, celočíselné
programování, CPLEX Java API

ix

x

Contents

1 Introduction 1

2 Background 3
2.1 Synchronous Dataflow Model . 3
2.2 Homogeneous SDF Model . 5
2.3 System Architecture . 6
2.4 Mapping and Scheduling relation . 6

3 Problem Formulation 9

4 Baseline ILP 11
4.1 ILP Formulation . 11
4.2 Baseline ILP improvement . 15
4.3 Linearization of the baseline ILP . 15

5 Lazy constraints 17
5.1 Introduction to lazy constraints . 17

5.1.1 Lazy constraints function . 17
5.1.2 Lazy constraints callback . 19

5.2 ILP with lazy constraints . 20
5.3 Symmetry breaking . 22

5.3.1 Algorithm to find symmetries 23
5.3.2 Symmetry breaking using lazy constraints callback 25

5.4 CPLEX parameters affecting performance 29

6 Experimental Setup 31
6.1 Benchmark instances . 31
6.2 Hardware . 34
6.3 Baseline experiments using IBM OPL Studio 34
6.4 Baseline ILP Java experiments . 34
6.5 Baseline ILP with lazy constraints . 35
6.6 Symmetry breaking experiments . 36

7 Related works 41

8 Conclusion and Future work 43

xi

xii CONTENTS

Bibliography 45

A Graphs used for benchmarking 47

B Nomenclature 65

C Content of attached CD 67

List of Figures

2.1 Simple graph . 3
2.2 Example of instance which has finite memory buffer between actors . 4
2.3 Graph containing self edge at actors a1 and a2 4
2.4 Graph shows how is possible model finite buffer from figure 2.2 5
2.5 Schedule showing transient and periodic phase 6
2.6 Multiprocessor system . 7

4.1 SDF graph with indexes introduced in equation (4.2) 12
4.2 Schedule showing variables used by equation (4.3) 13

5.1 Symetrical schedules . 23
5.2 Matrix of WCET with symmetries 23
5.3 Symmetrical mapping . 23
5.4 Symmetries for matrix introduced on figure 5.2 25
5.5 Initial mapping and symmetries for the instance 26

6.1 H263 Decoder with buffer . 32
6.2 Modem with buffer . 33
6.3 Input of partially heterogenous instance instance of MP3 decoder . . 35
6.4 Input of fully heterogenous instance instance of MP3 decoder 36
6.5 Solving time of first instance set in real time 37
6.6 Solving time of second instance set in real time 38
6.7 Solving time of second instance set in CPU time 38

A.1 Satellite receiver with buffer . 48
A.2 Sample-rate converter with buffer . 49
A.3 MP3 decoder with buffer . 50
A.4 Modem with buffer . 51
A.5 H.263 decoder with buffer . 52
A.6 Artifical instance 1 . 53
A.7 Artifical instance 2 . 54
A.8 Artifical instance 3 . 55
A.9 Artifical instance 4 . 56
A.10 Artifical instance 5 . 57
A.11 Artifical instance 6 . 58
A.12 Artifical instance 7 . 59
A.13 Artifical instance 8 . 60

xiii

xiv LIST OF FIGURES

A.14 Artifical instance 9 . 61
A.15 Artifical instance 10 . 62
A.16 Artifical instance 11 . 63
A.17 Artifical instance 12 . 64

C.1 Content of attached CD . 67

List of Tables

4.1 Input variables . 12
4.2 Decision variables . 13

6.1 Size of the real application instances used for benchmarking 32
6.2 Specification of hardware used for experiments 34
6.3 Results of experiments using Kepler server for calculation 35
6.4 Results of the experiments using lazy constraints on MacBook Pro . . 39

xv

xvi LIST OF TABLES

Chapter 1

Introduction

With an increasing number of real-time streaming applications, we must also keep in
mind the importance of satisfying real-time constrains. Besides non-real-time applica-
tions, which do not have any requirements, there are two types of real-time constraints.
First, there are soft real-time constraints with requirements to avoid missing deadline,
but some misses are tolerable. The second type is hard real-time constraints which
do not tolerate misses of any deadline. Missing deadlines on hard real-time constraint
applications would have catastrophic consequences. Normally, applications have re-
quirements for execution time, but streaming applications care about throughput,
which stands for the amount of data produced by the application per unit of time.
For example, a video decoder would usually have a minimal throughput constraint
of 30 or 60 frames per second (FPS). To satisfy throughput, we need to consider the
hard real-time constraints.

Under best case violation of these constrains, it will get you a lower frame rate
on your TV but real-time applications started to affect our life even more than ever
before. These applications are used in the automotive industry for keeping a car
between driving lines and other safety features. While the car still has breaks, aircrafts
do not while in the air, a violation of the real-time constraints could have catastrophic
consequences. We also need to consider the military usage of real-time streaming
applications e.g. in unmanned aerial vehicle (UAV) drones, where camera feeds are
transported across huge distances through satellite connections. This means there
is a limited bandwidth and a necessity to use a video encoder and decoder. These
constraints are largely related to the application

The problem in this thesis is to synthesize an optimal mapping of application
tasks to processor cores and derive a static execution schedule. We are considering
real-time streaming applications on a heterogeneous multiprocessor system-on-chip
(MPSoC) platform while making sure that we satisfy the real time constraints. For
this purpose, we are using an integer linear programming (ILP) formulation. In
terms of finding an optimal schedule, we also need to take into account the mapping
decisions for the processors and communication channels because it has a big impact
on the schedule. Heterogeneous platforms have become very popular for their high
computational performance at low power in the past few years. To evaluate our
approach, we used real application benchmarks provided by the SDF3 tool [13] and

1

2 CHAPTER 1. INTRODUCTION

also propose several artificial benchmark instances. Mapping and scheduling should
not take too long as to avoid impacting the design time of application.

Our goal was to synthesize an optimal mapping and schedule for the application
model in the form of synchronous dataflow (SDF) graph with the goal of maximizing
throughput. It hold a set of tasks, precedence constraints and a worst-case execution
time for each processor where the actor is able to execute.

This thesis consists of multiple parts. Chapter 2 provides the background in-
formation required to understand the contributions of the thesis. In Chapter 3, we
formulate the problem for this thesis. We present an ILP formulation which will serve
as the baseline formulation for comparison in Chapter 4.

Use of this ILP formulation has proven to be ineffective in terms of performance
(solving time) on real application models. Hence, we are proposing improvement for
this ILP in Chapter 4 while also using lazy constraints. A description and usage of
lazy constraints with a symmetry breaking algorithm can be found in Chapter 5.

In Chapter 6, we introduce an experimental setup with benchmarks which came
from the proposed algorithms. This chapter contains tables and charts that can easily
be compared to the baseline ILP. We are introducing related works which has been
done in the field of mapping and scheduling for real-time streaming applications in
Chapter 7. The conclusion is described in Chapter 8 where we summarize what has
been achieved in the thesis as well as future work suggestions.

Chapter 2

Background

In this section we discuss the application model used as an input to our algorithms,
system architecture and the close relation between mapping and scheduling.

The application must satisfy real-time requirements, and between those require-
ments, they must satisfy the throughput. Throughput is basically a rate in which
real-time streaming applications can produce data for the output. Throughput needs
to be satisfied e.g. in order to produce a sufficient frame rate for a video streaming
application.

2.1 Synchronous Dataflow Model

Synchronous dataflow models are used to describe real-time applications. A SDF
model can be easily represented by a graph. SDF graphs consists of nodes called
actors (a

i

) and directed edges called channels which represent the connections between
actors where the data is transported from one actor to another. The data is usually
represented as tokens (a batch of data with an exact size). Tokens are transported
through the channel in FIFO order.

Figure 2.1: Simple graph

Each node is denoted by a worst-case execution time (WCET) which is usually
placed inside the node. WCET represents the execution time in the worst case scenario
i.e. actors cannot execute slower than WCET. The channel is the connection between
two actors. A channel starts in source actor a

s

and is directed to target actor a
t

. A
channel is denoted as production P

a

s

,a

t

and consumption rate C
a

s

,a

t

next to the source

3

4 CHAPTER 2. BACKGROUND

and target actors respectively. We should also introduce terms of firing, which means
firstly the actor atomically consumes a number of tokens from each incoming channel
(the number of tokens consumed is equal to the consumption rate on the particular
incoming channel). After, the actor executes for its WCET and atomically produces
a number of tokens which are equal to the production rate of each outgoing channel.

For example, in order to fire actor a2 from figure 2.1, we need to fire the actor
a1 at least twice. This would ensure we have enough tokens for actor a2 for it to be
ready to fire.

Figure 2.2: Example of instance which has finite memory buffer between actors

A self edge, with one initial token from actor a2 to a2 ensures the actor will only
fire once in a given moment, can be seen in figure 2.3. The initial token is the amount
of data present on the channel even before the application starts executing. Initial
token is shown as dot on the edge in a graph.

Figure 2.3: Graph containing self edge at actors a1 and a2

The self edge works in a way where the actor a1 takes 1 token (the initial token)
to start firing. While it is executing, it cannot start executing again because there
are not enough tokens at each input channel. Once the execution stops, the actor
produces another token on the self edge and is ready to fire again. The actor a1 also
produces one token through channel a1 �! a2. To fire a2, actor a1 needs to fire at
least twice as seen from figure 2.3

Initial tokens can also be combined with a back edge to model a finite buffer
between actors. Figure 2.4 displays how it is possible to model a finite FIFO buffer
introduced in figure 2.2. The application starts with initial tokens on the back edge
a2 �! a1. Right before a1 starts firing, it will consume one token from the back edge
which means it is reserving space in the FIFO memory (this ensures there is space

2.2. HOMOGENEOUS SDF MODEL 5

for the output to be placed in the buffer). Once actor a2 starts firing, it will consume
tokens on the channel a1 �! a2. After the firing has finished, it produces the same
amount of tokens it consumed for the firing on the back edge a2 �! a1 which means
it frees the buffer memory for the amount of data used for firing.

Figure 2.4: Graph shows how is possible model finite buffer from figure 2.2

Schedule of application from the graph in figure 2.4 can be viewed in figure 2.5.
Every schedule for real-time application consists of a transient phase and a periodic
phase. The schedule for a transient phase can vary from the schedule of periodic
phase because during the transient phase, the application is preparing enough input
data (tokens) on the channels for periodic execution. Each time the periodic phase
executes, it generates an output for the entire application.

In this thesis, we use the term of repetition vector. It consist of the number of
firings needed in the periodic phase for each actor. The repetition vector for our
example application in figure 2.4 would be n = {2, 1}.

2.2 Homogeneous SDF Model

A homogeneous synchronous dataflow (HSDF) model is a special type of SDF model
where every actor is executed only once during a period. This means a repetition
vector of HSDF model holds only items equal to 1. The repetition vector is discussed
further in section 2.4

HSDF and SDF models of the same application is mutually convertible by an
algorithm, although the complexity of those algorithms can be very high. Depending
on the algorithm used and the graph complexity, we can see the exponential increase
of graph size in terms of the number of nodes and edges, it is described more in
[1]. The article is also provides an algorithm which lowers the graph complexity of
the SDF - HSDF conversion. This algorithm is part of the SDF3 tool [13]. Several
algorithms implemented in the SDF3 tool were also used to prepare the data for our
experiments.

6 CHAPTER 2. BACKGROUND

Figure 2.5: Schedule showing transient and periodic phase

2.3 System Architecture

The architecture of the system has been considered in several ways. Firstly, we
need to point out that all the considered architectures were multiprocessor multicore
systems. Communication between the cores and processors have not been considered
due to their calculation complexities.

We assume m cores of k different types. If m = k, we consider it as a fully
heterogenous system. This means that all actors have a different WCET for each
processor/core. If m > k, then the system architecture is only partially heterogeneous
which means all actors have the same WCET for the same type of processor e.g.
graphics processing unit (GPU) .

2.4 Mapping and Scheduling relation

Mapping refers to assigning actors to processors. This means each actor will have
a dedicated processor during the application runtime while the static schedule will
ensure the processor will be available for concrete actor execution at a particular time.

Scheduling means building a static schedule for every single actor in the applica-
tion. During this, we optimize particular criteria. For example, the overall length of
schedule or just part of the schedule e.g. periodic phase.

2.4. MAPPING AND SCHEDULING RELATION 7

Figure 2.6: Multiprocessor system

Mapping and scheduling are strongly connected one to another. There can be a
big difference in schedule if an actor is mapped to a different processor due to the
possible difference in WCET or by overwhelming the processor by actors while other
processors are free.

A schedule consists of a transient and a periodic phase as displayed in figure 2.5.
While the transient phase is executed only once after the application has started,
the periodic phase is periodically executed to generate the output. Inversion of the
length of periodic phase

�
1

Period

�
is called throughput and it represents the frequency

the output generates by the application. To generate an output, an application usually
needs to run through multiple states. Each application state is also represented in
the graph, where channels contain different numbers of tokens in each state.

A period is the amount of time in which the application runs and data is generated
on output of the application. After the beginning of the periodic phase, the application
returns to the initial state of the period in terms that channels are holding the exact
same amount of tokens and actors are in the same phase of execution (period can
start during firing of actor).

Repetition vector has been briefly introduced in section 2.1. A vector consists
of the number of executions needed for each actor during one period. A repetition
vector expresses how many times an actor needs to fire to ensure the application will
generate data for the applications output.

8 CHAPTER 2. BACKGROUND

Chapter 3

Problem Formulation

We have been given a SDF model to work with. The model was briefly described in
section 2.1. We also assume that analysis in terms of calculating the correct repetition
vector was performed. The repetition vector is also briefly described in section 2.1 and
2.4. With the SDF model given, the matrix d consists of WCET for actors per possible
mapping decision d

i,j

= WCET
i,j

. Matrix d relates to considered architectures. If
d
i,j�1 6= d

i,j

8i 2 I 8j 2 J\{1}, I = {1, 2, . . . , n} and J = {1, 2, . . . ,m} where n
stands for total number of actors and m stands for number of resources (processors /
cores), we are considering fully or partially heterogenous architecture.

Our goal is to construct an optimal schedule as to minimize the length of the peri-
odic phase introduced in section 2.1. To do so, we also need to determine mapping for
the actors to processors. The relation between mapping and scheduling was described
in section 2.4.

Output for our algorithm will be a static schedule with the optimal criterion for
the length of the period. In this schedule the actors will be statically mapped to
particular processors. In this thesis, the variable A

i,j

= 1 means actor a
i

is mapped
to processor proc

j

. The schedule is divided into multiple time units. Because we are
using multiple types of processors, we are proposing to use units which are universal
in respect to the world clock e.g. nanoseconds.

We need to keep in mind that actors firing is nonpreemptive and channels with
production rate P

k

and consumption rate C
k

constraints in our model are in terms
of precedences. As mentioned in section 2.1, minimizing the length of the peri-
odic phase is the same as maximizing the throughput because of inverse equation
Throughput =

1
Period

is true.
Because the mapping determines the length of the schedule we are facing a com-

binatorial explosion. For each mapping the schedule can be different and unique. We
are looking for an optimal mapping. If we were to use brute force method on this
problem, we would get a total of J I possible mapping decisions. For example if we
have 5 actors and 4 processors, we would get total of 45 = 1024 possible mappings
with possibility for 1024 different schedules with 1024 different period lengths.

Unfortunately, mapping decisions are not the only problem. Building the schedule
is also difficult because of the constraints which are determined by consumption and
production rates and the cyclic nature of the schedule and graph states.

9

10 CHAPTER 3. PROBLEM FORMULATION

Chapter 4

Baseline ILP

ILP formulation described in section 4.1 was introduced in [4]. The formulation was
not complete and it needed to be fixed. Originally, the ILP did not contain any
quantifiers. This ILP formulation does solve the given problem, but based on the
experiments, it suffers from poor scalability. The results of this ILP can be found in
Chapter 6. This ILP experiments will serve as a baseline for comparison with proposed
improvements. To help the ILP with performance problems, we have extended this
formulation for equations introduced in section 4.2 which slightly improves the ILP
in terms of performance and more accurate schedule. This is because the ILP was
originally targeting only the periodic phase, but as mentioned in sections 2.1 and 2.4,
the transient phase is also important.

We are introducing table 4.1 which contains a description of the input variables
and table 4.2 containing all decision variables used in the ILP formulation.

4.1 ILP Formulation

Formulation is trying to minimize the periodic phase in order to maximize the through-
put. Throughput = 1

Period

where Period refers to overall length of the period in time
units. In order to determine the length of the period, we need to build a schedule
for particular mapping. Mapping and scheduling is strongly related to each other,
therefore we need to determine the mapping and schedule together.

Implementation of the formulation was not given and we had to implement it into
the IBM CPLEX framework. Equations described in this section are nonlinear. In
order to use those constraints in the ILP framework, equations with multiplications
of A

i,j

and start(t) needed to be linearized. Linearization of the ILP is described in
section 4.3.

In order to use this formulation we considered in section 2.3, we need to ensure
the actor i is mapped only on one processor j. This is what equation (4.1) ensures.

X

j2J

A
i,j

= 1 8i 2 I (4.1)

11

12 CHAPTER 4. BASELINE ILP

Table 4.1: Input variables

Variable
name

Variable meaning

I Set of actors
J Set of processors
K Set of channels between actors which set the precedence con-

straints containing:

P
k

- Number of produced tokens by the source actor on channel
k 2 K

C
k

- Number of consumed tokens by the destination actor on
channel k 2 K

O
k

- Number of the initials tokens on channel k 2 K

d
i,j

Worst case execution time for actor i 2 I on Processor j 2 J
T
max

Time estimation of the transient phase and the length of one pe-
riod in the schedule.

n
i

Repetition vector for actor i 2 I
PeriodUB Period upper bound
PeriodLB Period lower bound

Based on the SDF3 model we are using introduced in section 2.1, we need to ensure
that the target actor i

t

can not be executed until it has all the data provided by the
predecessor i

s

. The indices in example SDF graph can be viewed in figure 4.1. In
other words, equation (4.2) ensure that tokens produced by channel source actor a

i

s

until time t plus initial tokens of channel k must be greater than all tokens consumed
by the target actor a

i

t

until time t.

C
k

· S
i

t

(t) P
k

· E
i

s

+O
k

8t 2
⌦
0, T

max

↵
, k 2 K (4.2)

Figure 4.1: SDF graph with indexes introduced in equation (4.2)

While we need to count the number of started executions (S
i

) of actor i and the
number of ended executions (E

i

), we are introducing equation (4.3) which anticipates
that the firing of actors is not preemptive. Actor i has to start firing in time when

4.1. ILP FORMULATION 13

Table 4.2: Decision variables

Variable
name

Variable meaning

S
i

(t) Number of started firings of actor i 2 I up to time t 2 0...Tmax
E

i

(t) Number of ended firings of actor i 2 I up to time t 2 0...Tmax
A

i,j

A
i,j

= 1 Actor i 2 I is mapped to processor j 2 J

A
i,j

= 0 Otherwise

start(t)

start(t) = 1 Start of periodic phase is in time t+1, t 2 0...Tmax

start(t) = 0 Otherwise

W
i

(t) How much time is actor i 2 I executing up to time t 2 0...Tmax

it has ended firing decreased of its WCET i.e. t
s

= t
e

�WCET
i,j

. Figure 4.2 shows
how the variables S

i

and E
i

change based on time t in the schedule example.

S
i

(t) =
X

j2J

A
i,j

· E
i

(t+ d
i,j

) 8i 2 I, t 2
⌦
0, T

max

↵
(4.3)

Figure 4.2: Schedule showing variables used by equation (4.3)

Equation (4.4) ensures that actor i is executed only once at a time. This equation
is related to equation (4.1). Since actor i can be mapped only on one particular
processor it can not be executing more then once in the same moment. This would
mean one processor would be handling two tasks at the same, time which is not
permitted in general.

14 CHAPTER 4. BASELINE ILP

X

i2I

A
i,j

· (S
i

(t)� E
i

(t)) 1 8j 2 J, t 2
⌦
0, T

max

↵
(4.4)

Equation (4.5) makes sure that the amount of work done by actor i during the
periodic phase is equal to the actors repetition vector n

i

multiplied by its WCET
(n

i

· d
i,j

). Mapping decision A
i,j

makes sure we are counting WCET only for decided
mapping. Counting the work done by actor i during the periodic phase is done by
calculating the difference of total work done before the period starts W

t

(t) · start(t)
and total work done during the whole schedule W

i

(T
max

).

W
i

(T
max

)�
T

maxX

t=0

W
i

(t) · start(t) = n
i

·
X

j2J

A
i,j

· d
i,j

8i 2 I (4.5)

We are able to count work done (time while the actor i was executing) W
i

(t) by
actor i in every time unit t by counting the difference between number of started S

i

(t)
and finished E

i

(t) executions of actor i in time t. Difference between S
i

(t) and E
i

(t)
can be in interval h0, 1i, if and only if the difference is equal to 1 the task is actually
executing in the time t. Equation (4.6) counts these differences and fills the vector
W

i

(t).

W
i

(t) =
tX

t2=0

(S
i

(t2)� E
i

(t2)) 8i 2 I, t 2
⌦
0, T

max

↵
(4.6)

Since the periodic phase can be repeated infinitely, we are interested in the schedule
of the transient phase and the schedule for one period, therefore we can introduce
equation (4.7) which makes sure there is only one start of periodic phase start(t) in
the whole schedule.

T

maxX

t=0

start(t) = 1 (4.7)

Objective function (4.8) is minimizing the period. A period starts at time t + 1,
if and only if start(t) = 1. Minimizing the period has the same effect as maximizing
the throughput due to inverse function

�
Throughput = 1

Period

�
.

minimize
�

Period = T
max

�
T

maxX

t=0

start(t)

(4.8)

4.2. BASELINE ILP IMPROVEMENT 15

4.2 Baseline ILP improvement

Part of this thesis is also an extension of the baseline ILP by equations introduced in
this section. The objective function has been bounded by two equations, (4.9) and
(4.11). Those equations dramatically decrease searching space of the solver which
result in a greater solver performance. We are able to calculate the period lower
bound PeriodLB and period upper bound PeriodUB before the solver begins because
we use only input variables for the calculation i.e. equations (4.10) and (4.12) are not
part of the ILP model and ther results can be considered as input variables.

PeriodUB is determined with the assumption that we have only one processor
hence every actor needs to run sequentially and we assume the worst WCET for
those actors (the worst mapping decision). PeriodLB is determined as length of the
schedule if every actor runs in parallel and executes on the fastest resource available.
Since every actor is mapped only to one processor and no actor can run simultaneously.

Period PeriodUB (4.9)

PeriodUB

=

X

i2I

max

j2J
{d

i,j

· n
i

} (4.10)

Period � PeriodLB (4.11)

PeriodLB = max

i2I

⇢
min

j2J
{d

i,j

· n
i

}
�

(4.12)

Because ILP formulation targets the period schedule it does not care about the
transient phase. Therefore a schedule could start with S

i

> 0 which would mean
that some tasks would have started executing before time t = 0 which is obviously
impossible. That is why we introduce equation (4.13).

S
i

(0) + E
i

(0) = 0 8i 2 I (4.13)

4.3 Linearization of the baseline ILP

In this section, we show how non-linear equations can be converted for usage in ILP
frameworks. All non-linear equations (4.3 - 4.5) contain a multiplication of integer
decision variables and binary decision variables. Hence, we can use linearization
proposed in this section since the binary variable can contain only values 2 {0, 1}. To
use the linearization we need to define auxiliary variables X, Y , Z with usual indices
where i, j stands for actor and processor respectively and t stands for time, we will
use the variable M which is a sufficiently big enough integer.

Equation (4.3) can be linearized by equations (4.14 - 4.17). Those formulations
can be expressed by condition: If actor i is mapped on processor j e.g. A

i,j

= 1 then

16 CHAPTER 4. BASELINE ILP

auxiliary variable X
i,j

(t) = E
i

(t+d
i,j

). This means that the sum introduced in (4.17)
is the same as the sum as in the original equation (4.3).

X
i,j

(t) A
i,j

·M 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.14)

X
i,j

(t) � �M · (1� A
i,j

) + E
i

(t+ d
i,j

) 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.15)

X
i,j

(t) M · (1� A
i,j

) + E
i

(t+ d
i,j

) 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.16)

S
i

(t) =
X

j2J

X
i,j

(t) 8i 2 I, t 2
⌦
0, T

max

↵
(4.17)

Another equation which needs to be linearized is equation (4.4). This is accom-
plished by constraints (4.18 - 4.21). The sum introduced in (4.21) counts the difference
between S

i

and E
i

, if and only if the binary variable A
i,j

is equal to 1 i.e. if A
i,j

= 1

then Y
i

(t) = S
i

(t)� E
i

(t). The original equation is again the same as (4.21).

Y
i,j

(t) A
i,j

8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.18)

Y
i,j

(t) (S
i

(t)� E
i

(t)) 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.19)

Y
i,j

(t) � A
i,j

+ (S
i

(t)� E
i

(t))� 1 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.20)

X

i2I

Y
i,j

(t) 1 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.21)

Last but not least, the equation which needed to be linearized is the constraint
(4.5). Linearization of this equation is performed in the same way as in the examples
before. We are using the auxiliary variable Z which is filled by condition: if start(t) =
1 then Z

i

(t) = W
i

(t) which can be seen in equations (4.22 - 4.25) where (4.22)
represents the original equation.

W
i

(Tmax)�
X

t2T

(Z
i

(t)) =

= n
i

·
X

j2J

(A
i,j

· d
i,j

) 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.22)

Z
i

(t) start(t) ·M 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.23)

Z
i

(t) � �M · (1� start(t)) +W
i

(t) 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.24)

Z
i

(t) M · (1� start(t)) +W
i

(t) 8i 2 I, j 2 J, t 2
⌦
0, T

max

↵
(4.25)

Chapter 5

Lazy constraints

Lazy constraints are constraints which can be added to ILP models during its solving
process. It is useful when the model consists of a large number of constraints and it is
not plausible for those constraints to be violated. The main motivation for using lazy
constraints is to increase the performance in terms of solving time. But do not get
mistaken because you can increase the performance by using only one lazy constraint.
Also the solver can be slowed down if you use one badly chosen constraint. This is
because the overhead for checking violations of these constraints and the process of
adding the constraints to the model during the runtime can be much higher than
having the constraints in the model from the very beginning.

Lazy constraints can be implemented in two ways by using IBM CPLEX Java
application interface (API). Both choices offers their pros and cons which we discuss
further in this chapter in sections 5.1 - 5.4.

5.1 Introduction to lazy constraints

In this section, we introduce lazy constraints usage in CPLEX Java API. We decided
to use Java API because of its multi-platform usage. We will take a look into the lazy
constraints function in subsection 5.1.1 and lazy callback class in subsection 5.1.2.

We consider both approaches because we would like to compare the difference
between having full control over lazy constraints compared to leaving the responsibility
up to the framework itself. Also the symmetry breaking algorithm introduced in
section 5.3 cannot be achieved by the method proposed in subsection 5.1.1.

5.1.1 Lazy constraints function

Firstly, we would like to show how CPLEX can handle the lifecycle of those con-
straints. We only denote which constraints can be handled as lazy constraints and
let CPLEX decide whether or not to add those constraints in the active model. Con-
straints denoted as lazy are placed in a pool of lazy constraints and are pulled out
only if they are violated in a specific (last found) integer solution. The way CPLEX
decides if the constraints are violated or not is simple. After CPLEX finds an integer

17

18 CHAPTER 5. LAZY CONSTRAINTS

solution, it also checks if the lazy constraints placed in the pool have been violated
or not by instating variables used in the constraint. This can be done because the
CPLEX has the values of all of the variables (decision and input) by the time it finds
an integer solution. After the lazy constraint is pulled from the pool, it is placed in
the active model and the model continues to calculate. Of course the integer solution
where the constraints have been violated is infeasible. The solver can also add the
lazy constraints to the active model and place it back into the lazy constraints pool
if the constraints have not been used for bounding the objective function for a while.

Switching from a common ILP model to a model which uses the lazy constraint
callback functions is easier than using the callback described in section 5.1.2. Because
the CPLEX cares about the lifecycle of the lazy constraints, we are freed from im-
plementing whether or not the constraints need to be added into the model. CPLEX
manages those decisions for us. Constraints can be added into ILP model using func-
tion ‘addLe‘, ‘addGe‘ and ‘addEq‘ for operations , � and = respectively.

Code showing how equation (5.1) can be inserted into a model is shown in Code 5.1.
This can easily be converted and the CPLEX can use a lazy constraint for the same
equation as it is shown in Code 5.2.

left_expr right_expr (5.1)

1 cplex.addLe(
2 left_expr ,
3 right_expr ,
4 "equation_1"
5);

Code 5.1: Add constraint to CPLEX model

1 cplex.addLazyConstraint(
2 (IloRange) cplex.le(
3 left_expr ,
4 right_expr ,
5 "equation_1"
6)
7);

Code 5.2: Add lazy constraint to CPLEX lazy constraints pool

Methods whose only function is adding lazy constraints has many pros. The most
important part is that the CPLEX can handle the lifecycle of the constraints by itself.
It usually is more effective than we would be doing it manually. Mainly because the
CPLEX can take the lazy constraints from the active model and put it back into the
lazy constraints pool. On the other hand, it cannot decide whether it should add
the constraints during certain circumstances, e.g. based on the value of particular
decision variables or a heuristic algorithm which uses the values of decision variables.

5.1. INTRODUCTION TO LAZY CONSTRAINTS 19

5.1.2 Lazy constraints callback

In order to use a more complex algorithm which will determine whether to add lazy
constraints in the active model or not, we need to use lazy constraints callback. A
callback is an abstract class in CPLEX Java API that can be extended. Its main
function can be overridden by our custom implementation. This main function will
run every time the integer solution is found.

Because we have access to all parameters, input and decision variables, we are able
to decide whether or not to add the lazy constraints to the active model based on the
values of the partial solution. Adding constraints to the active model can effect the
solution and its feasibility. That means we need to be very careful when adding the
constraints and our decision needs to be thoroughly justified.

Implementation of the lazy constraints callback is done by telling the CPLEX
solver what class the CPLEX should consider when executing. The CPLEX decides
what particular class should be used as the lazy constraints callback by its classtype.
The best practice for lazy constraints callback is to have the implementing class of
the lazy constraints callback as an inner class in Java. Because you have access to
the decision variables from the callback, you do not have to pass these input variables
nor decision variables to the callback class.

Code 5.3 shows how you can use the lazy constraints callback using the CPLEX
Java API. The code in this example is the same as the code introduced in Code 5.2.
But as you can see, we have more control in terms of adding the lazy constraints.
The condition (line 16 in Code 5.3) which determines whether or not to add the lazy
constraints in the active model (line 17 in Code 5.3) does not need to be in close
relation to the constraint itself.

20 CHAPTER 5. LAZY CONSTRAINTS

1 public class ClassUsingLazyConstraintsCallback {
2

3 void run() {
4 cplex.use(new CustomLazyConstraintCallback ());
5 if (cplex.solve()) {
6 printFeasibleSolution ();
7 } else {
8 printInfeasibleSolution ();
9 }

10 }
11

12 private class CustomLazyConstraintCallback extends
IloCplex.LazyConstraintCallback {

13

14 @Override
15 protected void main() throws IloException {
16 if (equation_left_side >= equation_right_side) {
17 this.add((IloRange) cplex.le(
18 left_expr ,
19 right_expr ,
20 "equation_1"
21));
22 }
23 }
24 }
25 }

Code 5.3: Using lazy constraint callback in CPLEX Java API

5.2 ILP with lazy constraints

Experiments described in chapter 6 were initially performed over the baseline ILP
model introduced in chapter 4. Based on the results of these experiments, we decided
to improve the performance in terms of solving time because it was not possible to run
realistic examples in a reasonable time. Since the model contains a large number of
equations and variables, we decided to go with lazy constraints. This is also because
we expected some of the constraints to be rarely violated or not essential to the model
from the beginning while the solver starts.

By using lazy constraints, we expect the solving time will be lowered since fewer
constraints will need to be verified and considered during the solving process and
before the first integer solution is found. Even if the integer solution is found, it does
not mean the lazy constraints were violated. We only add them if it is violated to
keep the active model as small as possible.

We have chosen candidate equations (5.2 - 5.5) for the lazy constraints based on
the assumption that equations which are not linear and contain a multiplication of
decision variables. Decision variables used like this gluts solver, the solving time as

5.2. ILP WITH LAZY CONSTRAINTS 21

it increase with the number of equations. Also, we assume that equations which are
related to the time (equations containing variable t) are overwhelming the solver.
This is because t 2 h0, T

max

i and T
max

can be a large number. It grows with each
applications repetition vector and actors WCET. This would exponentially increase
the number of equations in the entire model.

Equation (5.2) was selected as the lazy constraint because it fills vector S on the
basis of values contained in vector E i.e. it copies values from E to S only at proper
time index (t� d

i,j

). Equation (5.3) was chosen because we do not expect for it to be
violated very often. The equation forbids multiple executions of actor i in time t. For
example, where all the actors have self edge k with consumption rate equal or lower
to production rate and initial tokens greater than those rates C

k

 P
k

and C
k

 O
k

.
We need to mention that equations (5.2 - 5.5) were selected because they need

to be linearized. This means we need to have 4 constraints in the model for each of
these three constraints according the linearization proposed in section 4.3.

S
i

(t) =
X

j2J

A
i,j

· E
i

(t+ d
i,j

) 8i 2 I, t 2
⌦
0, T

max

↵
(5.2)

X

i2I

A
i,j

· (S
i

(t)� E
i

(t)) 1 8j 2 J, t 2
⌦
0, T

max

↵
(5.3)

The results of using (5.2) and (5.3) were not significant so we have moved our focus
onto the second candidates. Equations (5.4) and (5.5) were considered again because
they contain variable t. This variable has a huge effect on prolonging the equation.
We are assuming this equation wont be violated before the schedule is nearly complete
because it strongly relates to the period which is at the end of the schedule.

W
i

(T
max

)�
T

maxX

t=0

W
i

(t) · start(t) = n
i

·
X

j2J

A
i,j

· d
i,j

8i 2 I (5.4)

W
i

(t) =

tX

t2=0

(S
i

(t2)� E
i

(t2)) 8i 2 I, t 2
⌦
0, T

max

↵
(5.5)

Experiments were performed multiple times with those equations. Firstly, we tried
adding only one equation as the lazy constraint. There were performance improve-
ments, but nothing that proved significant.

When we combined two lazy constraints equations, it resulted in a slightly im-
proved performance. Based on the empirical results, our theory behind that is that
when we add one constraints e.g. (5.4) the other constraint (5.5) that uses variable
W

i

(t) is still present in the model. This shows that the ILP needs both bounded
equations to be present in the model.

22 CHAPTER 5. LAZY CONSTRAINTS

By combining three or more equations, with different variables, we recorded a
lower performance. We decided to add one more equation which will be strongly
related to the objective function. In expectation that the performance will increase.
Equation (5.6) is related to the objective function because it limits only one periodic
phase start in hopes this relation can improve the performance.

We thought that the performance would not increase by adding constraints that
would be violated in most cases. Such as in equation (4.1) which ensures every actor
will be mapped on one processor and equation (4.2) which ensures a correct firing of
the actors regarding to the precedence constraints of the application model. This was
experimentally proven.

T

maxX

t=0

start(t) = 1 (5.6)

The speedup of adding equation (5.6) as a lazy constraint with previously present
lazy constraints (5.4) and (5.5) was significant. An important thing to point out is
that while CPLEX uses lazy constraints callback, CPLEX computes only on one core
by default. We can force CPLEX to run on multiple cores by switching one CPLEX
parameter. This is introduced in section 5.4 but we did not have a good experience
with it in terms of performance results. These and further results can be found in
Chapter 6. We have experimented with both approaches. Lazy constraints callback
was faster in smaller instances (instances with shorter solving times). On the other
hand, lazy constraints function was better in terms of performance in bigger (slower
solving times) instances. Our theory is that the solver overhead caused by maintaining
the lazy constraints pool is more complex than the instance itself.

5.3 Symmetry breaking

Instances which are not meant for fully heterogenous systems can contain a lot of
mapping symmetries. This means that entirely different mappings can result in the
same schedule because WCET of actors are the same for different processors. It can
be caused by processors which are the same type. Figure 5.1 shows how symmetrical
schedules can look like. Because the actors a1 and a2 have the same WCET on
processors p1 and p2 the schedule does not change while we change the mapping of
A1,1, A2,2 to A1,2, A2,1. This means if we change the mapping of all of the actors from
processor p1 to processor p2 and processors are the same type (all actors have same
WCET on both processors) the length of the schedule must remain the same.

Symmetries can be seen in figure 5.2. Values which equal 0 i.e. d
i,j

= 0 means the
actor i cannot be mapped to processor j. In other words, actor i can be mapped only
to processor j while d

i,j

� 1. For example, two mappings which can be symmetrical
are shown in figure 5.3. The difference is that we have flipped the mapping of actors
with different processors of the same type with exactly the same WCET as before. In
terms of scheduling, there is practically no difference.

5.3. SYMMETRY BREAKING 23

Figure 5.1: Symetrical schedules

d =

0

BB@

1 1 0 0

1 1 0 0

0 0 2 2

0 0 2 2

1

CCA

Figure 5.2: Matrix of WCET with symmetries

The schedule for A1 will most likely be the same as the schedule for A2. The solver
can determine the execution of actors sequences with little difference and not violate
the constraints while the length of the period remains the same. This is because the
model does not distinguish the processors in any other way than by execution times
for particular actors. This is also because communication between processors is not
considered in this particular model. Otherwise, a mapping could result in a longer
communication overhead while the other would not.

Since the symmetries are based on the WCET of actors assigned to specific pro-
cessors, all of the symmetries can be determined from the input variables. To do this,
we propose an algorithm which finds all the symmetries in section 5.3.1. Later, in
subsection 5.3.2 we discuss how to use this information to remove symmetries from
the solution.

5.3.1 Algorithm to find symmetries

Algorithm 1 takes input d
i,j

which consists of the WCET of all of the actors assigned
to a single processor. In every step, it compares two rows to find the symmetries

A1
=

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCA A2
=

0

BB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1

CCA

Figure 5.3: Symmetrical mapping

24 CHAPTER 5. LAZY CONSTRAINTS

by freezing one row (row1
) of d matrix and compares the values with the other row

(row2
). It is comparing two columns of these rows (col1 and col2). If all those values in

the selected rows and columns match, the information that processors have the same
WCET for those actors is recorded to symmetry matrix Sym at index Sym

row

1
,row

2

and also diagonally symmetrical Sym
row

2
,row

1 . While we read the symmetrical matrix
and Sym

i1,i2 6= ; to mean there are symmetries between actors i1 and i2 on the
processors listed in values recorded to the matrix Sym at index i1, i2.
[1] Input: d

i,j

[2] Output: Set of Symmetries S
[3] i1 = 0;

[4] for i1 < d.length do
[5] row1

= d[i1];
[6] i2 = i1 + 1;

[7] for i2 < d.length do
[8] row2

= d[i2];
[9] j1 = 0;

[10] for j1 < row1.length do
[11] col1 = {row1

[j1], row
2
[j1]}

[12] if col1[0] == 0 OR col1[1] == 0 then
[13] continue;

end
[14] j2 = j1 + 1;
[15] for j2 < row1.length do
[16] col2 = {row1

[j2], row
2
[j2]}

[17] if col1[0] == 0 OR col1[1] == 0 then
[18] continue;

end
[19] if col1[0] == col2[0] == col1[1] == col2[1] then
[20] Sym[i1][i2].add({j1, j2});
[21] Sym[i2][i1].add({j1, j2});

end
[22] j2++;

end
[23] j1++;

end
[24] i2++;

end
[25] i1++;

end
return Symmetries

Algorithm 1: Finding symmetries

We propose an algorithm which is able to find all symmetries based on the input
containing WCET of each actor on each processor. As mentioned before the input

5.3. SYMMETRY BREAKING 25

can contain values equal to 0 i.e. d
i,j

= 0.
Algorithm 1 shows the basic implementation in pseudocode on how it is possible to

find symmetries. Becouse the size and complexity of the problem is based on building
the schedule, the algorithm which finds the symmetries in matrix d can be simple
in terms of complexity. Because we do not expect instances with a huge number
of nodes or processors, this algorithm will run only once before CPLEX begins its
solving phase.

Our algorithm can find symmetries only when the WCET of actors involving
symmetry mapping is exactly the same. This is because we cannot be sure that the
symmetrical mapping with different WCET will not affect the schedule.

Symmetry matrix for WCET matrix d introduced in figure 5.2 can result after
using our algorithm 1 into a matrix which look likes the matrix (Sym) in figure 5.4.
As you can see, regarding algorithm 1, the Sym matrix containing indices of actors
Sym

i1,i2 vector - pair, which means what processors are symmetrical to the actor
respectively. For example, Sym2,3 = {2, 3} is holding information that actors 3 and
4 are symmetrical on processors 2 and 3 index starting at 0.

d
i,j

=

0

BB@

1 1 0 0

1 1 0 0

0 0 2 2

0 0 2 2

1

CCA Sym =

0

BB@

; {0, 1} ; ;
{0, 1} ; ; ;
; ; ; {2, 3}
; ; {2, 3} ;

1

CCA

Figure 5.4: Symmetries for matrix introduced on figure 5.2

5.3.2 Symmetry breaking using lazy constraints callback

Since we are adding lazy constraints to active models based on their values from the
first integer solution, we are not able to add those constraints into the lazy constraints
pool before the solver starts. Therefore we need to use lazy constraints callback as we
discussed in section 5.1.2. The main idea for this approach is to remove all branches
of the ILP tree which contains symmetrical solutions from the one which had been
found.

Lets say the integer solution will find a mapping which can be seen in figure 5.5.
We are able to express this mapping by a number of equations (5.7). Using this
mapping, we are able to build an equation which forbids symmetrical mapping.

Constraints which break symmetries is mathematically described in equations (5.8
- 5.11). These equations forbid symmetrical mapping. While the solution consists of
mapping decisions introduced in figure 5.5, we are forbidding any other symmetrical
mapping. Symmetrical mapping would, for example A1,2 = 1; A2,1 = 1; A3,3 =

1; A4,4 = 1, violate the lazy constraints (5.8) and (5.9). Also, please note that it is
forbidden to map two actors on the same processor e.g. A1,1 = 1; A2,1 = 1; A3,3 =

1; A4,4 = 1 because the objective function can not be any better in terms of length of

26 CHAPTER 5. LAZY CONSTRAINTS

A =

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCA A1,1 = 1; A2,2 = 1; A3,3 = 1; A4,4 = 1 (5.7)

Figure 5.5: Initial mapping and symmetries for the instance

the period. The best case would be the actor with a changed mapping would fill the
empty spaces in the schedule. This would result in the same length of the schedule
and periodic phase would remain the same length. This is an example for the input
matrix d

i,j

containing WCET of actors and symmetry matrix Sym, both shown in
figure 5.4.

A1,1+A1,2 + A2,1 + A3,3 + A4,4 3 (5.8)
A1,2 + A2,1 + A2,2 + A3,3 + A4,4 3 (5.9)

A3,3+A3,4 + A4,3 + A1,1 + A2,2 3 (5.10)
A3,4 + A4,3 + A4,4 + A1,1 + A2,2 3 (5.11)

We introduce three functions in Code 5.4. The function removeSymmetries ac-
cept decision variable matrix A, which represents mapping, and matrix of symmetries
Sym as input. The algorithm does not provide any output because the main purpose
of the algorithm is for it to add the lazy constraints to the active model based on the
input variables.

If the algorithm finds that the mapping is determined in index i, j (A
i,j

= 1) at
line 4, it starts searching if there are any symmetries for actor i present in the model.
If there is a symmetry (line 6) between actors i and js, the algorithm checks whether
or not actor js is mapped to the symmetrical processor j2 (line 10). While the actors
i and js are not mapped to the same processor, it adds the equations which forbids
this symmetrical mapping by creating the lazy constraints found on line 15. If those
actors are mapped to the same processor, it forbids the mapping of both actors to
the other processor by adding the constraints referred to on line 17.

The function addTerm(c, var) will add term (c · var) to the expression while
function addEqutionLe(Expression[] left, Expression right) will add the equation
left right to the model.

The algorithm select one mapped actor as ”active”. The equation for symmetry
breaking was created as a copy of the current mapping without the ”active” actor
and its symmetries. For example, we selected A1,1 as ”active”. Its symmetrical actor
mapping is A2,2 so the equation will be A3,3+A4,4. Then, we need to add a symmetrical
mapping to our A1,1 and A2,2 with one of those actors. Hence, the final equation will
be A1,2 + A2,1 + A2,2 + A3,3 + A4,4 or A1,2 + A2,1 + A1,1 + A3,3 + A4,4. This created
equation must be lower or equal to the number of mapped actors decreased by 1.

5.3. SYMMETRY BREAKING 27

1 void removeSymmetries(A, Sym) {
2 int [][] X = new int[A.length][A[0]. length];
3 for (int i = 0; i < A.length; i++) {
4 for (int j = 0; j < A[i]. length; j++) {
5 if (A[i][j] == 1) {
6 for (int js = i+1; js < Sym[i]. length; js++) {
7 if (Sym[i][js] != null) {
8 sMap = -1;
9 for (int j2 = 0; j2 < A[js]. length; j2++) {

10 if (A[js][j2] == 1) {
11 sMap = j2;
12 }
13 }
14 if (sMap != j) {
15 breakCrossSymmetries(A, i, j, js, sMap);
16 } else {
17 breakColumnSymmetries(A, i, j, js, sMap);
18 }
19 }
20 }
21 }
22 }
23 }
24 }
25

26 void breakCrossSymmetries(A, i, j, js, sMap) {
27 Expression currentMappingEx = new Expression ();
28 int c = 0;
29 int [][] T = A;
30 T[i][Sym[i][js][0]] = 0;
31 T[i][Sym[i][js][1]] = 0;
32 T[js][Sym[i][js][0]] = 0;
33 T[js][Sym[i][js][0]] = 0;
34

35 for (int a = 0; T.length; a++) {
36 for (int b = 0; T[a]. length; b++) {
37 if (T[a][b] == 1) {
38 currentMappingEx.addTerm(1, A[a+1][b+1]);
39 }
40 }
41 }
42

43 Expression breakSymm = new Expression ();
44 breakSymm.addTerm(1, A[i+1][Sym[i][js][0]+1]);
45 breakSymm.addTerm(1, A[i+1][Sym[i][js][1]+1]);
46 breakSymm.addTerm(1, A[js+1][Sym[i][js][0]+1]);
47 breakSymm.addTerm(1, A[js+1][Sym[i][js][1]+1]);
48

28 CHAPTER 5. LAZY CONSTRAINTS

49 breakSymm.addTerm(-1, A[i+1][j+1]);
50

51 model.addEqutionLe ({
52 currentMappingEx ,
53 breakSymm ,
54 },
55 A.length - 1
56);
57

58 Expression breakSymm2 = new Expression ();
59 breakSymm2.addTerm(1, A[i+1][Sym[i][js][0]+1]);
60 breakSymm2.addTerm(1, A[i+1][Sym[i][js][1]+1]);
61 breakSymm2.addTerm(1, A[js+1][Sym[i][js][0]+1]);
62 breakSymm2.addTerm(1, A[js+1][Sym[i][js][1]+1]);
63

64 breakSymm.addTerm(-1, A[js+1][sMap+1]);
65

66 model.addEqutionLe ({
67 currentMappingEx ,
68 breakSymm ,
69 },
70 A.length - 1
71);
72

73

74

75 }
76

77 void breakColumnSymmetries(A, i, j, js) {
78 Expression currentMappingEx = new Expression ();
79 int c = 0;
80 int [][] T = A;
81 T[i+1][Sym[i][js][0]+1] = 0;
82 T[i+1][Sym[i][js][1]+1] = 0;
83 T[js+1][Sym[i][js][0]+1] = 0;
84 T[js+1][Sym[i][js][0]+1] = 0;
85

86 for (int a = 0; T.length; a++) {
87 for (int b = 0; T[a]. length; b++) {
88 if (T[a][b] == 1) {
89 currentMappingEx.addTerm(1, A[a+1][b+1]);
90 }
91 }
92 }
93

94 Expression breakSymm = new Expression ();
95 if (symmetryMapping != Sym[i][js][0]) {
96 breakSymm.addTerm(1, A[i+1][Sym[i][js][1]+1]);

5.4. CPLEX PARAMETERS AFFECTING PERFORMANCE 29

97 breakSymm.addTerm(1, A[js+1][Sym[i][js][1]+1]);
98 } else {
99 breakSymm.addTerm(1, A[i+1][Sym[i][js][0]+1]);

100 breakSymm.addTerm(1, A[js+1][Sym[i][js][0]+1]);
101 }
102 model.addEqutionLe ({
103 currentMappingEx ,
104 breakSymm ,
105 },
106 A.length - 1
107);
108 }

Code 5.4: Functions used in callback of CPLEX Java API to break symmetries

5.4 CPLEX parameters affecting performance

Disabling cuts Since we are focusing on the performance upgrade of the proposed
baseline ILP, we should also target the CPLEX itself. We have found that several
parameters can affect the CPLEX solver performance and solving time. W believe
that parameters can affect different ILP formulations in different ways. To determine
this, we are proposing to use experimental testing for any particular formulation.
Cuts commented in Code 5.5 were not helpful and did not improve speed up time.

All the parameters are disabling cuts in CPLEX. More about CPLEX parameters
can be found in ILOG CPLEX 11.0 Parameters Reference Manual [12] or in ILOG
CPLEX 11.0 User’s Manual [11]. The value of those parameters are set at 0 by
the default. This means the CPLEX will decide if cuts should be generated or not.
There is no explanation in the documentation about how these decisions are made.
Documentation says, we quote: ”Setting the value to 0 (zero), the default, indicates
that the attempt to generate cuts should continue only if it seems to be helping.”

1 cplex.setParam(IloCplex.IntParam.DisjCuts , -1);
2 cplex.setParam(IloCplex.IntParam.FracCuts , -1);
3 cplex.setParam(IloCplex.IntParam.LiftProjCuts , -1);
4 // cplex.setParam(IloCplex.IntParam.MCFCuts , -1);
5 cplex.setParam(IloCplex.IntParam.MIRCuts , -1);
6 cplex.setParam(IloCplex.IntParam.ZeroHalfCuts , -1);

Code 5.5: CPLEX cut parameters

Lazy constraints callback multithreading Since the default implementation of
CPLEX uses only one thread for computation, the usage of lazy constraints callback
can be slowed down because it does not use the full potential of the machine. This
can be affected by setting the number of threads which CPLEX should use, as you
can see in Code 5.6. This parameter is also useful when you need to use only a part

30 CHAPTER 5. LAZY CONSTRAINTS

of the capacity of the machine. We have also experimented using lazy constraints
callback with all of the CPU threads available.

1 cplex.setParam(IloCplex.IntParam.Threads , 4);

Code 5.6: CPLEX cut parameters

Chapter 6

Experimental Setup

In this chapter, we introduce instances which have been used for experimental testing.
Experiments were performed in several setups. Baseline ILP was benchmarked in IBM
OPL Studio as well as in Java implementation with the goal to compare these two
implementations. Then, we introduce benchmark results for lazy constraints and
lazy constraints callback as well as the symmetry breaking algorithm used in lazy
constraints callback.

We define what instances were used for our experiments in section 6.1, where you
will find several example graphs. All graphs can be found in Appendix A. We also
introduce a table comparing real application sizes. You can find the specification
of the hardware used in the experiments in section 6.2. In sections 6.3 and 6.4 we
compare the differences between an implementation of the baseline ILP introduced in
section 4.1. We have implemented the baseline ILP in IBM OPL Studio and Java with
use of CPLEX Java API. Experiments in sections 6.5 and 6.6 introduce the results of
the two different approaches using the lazy constraints and the symmetry breaking
algorithm.

6.1 Benchmark instances

Benchmark instances used for comparison of implementation in Java were selected
from the SDF3 tool. Our goal was to experiment with commonly known instances
and also with real application models. That way we can compare our approach with
others in terms of performance.

We have found that the size of the SDF graph expressed by the number of nodes
(actors) and edges (channels) do not have a significant effect on the problem’s (in-
stance) complexity in terms of performance. In many cases, it seems like the rates
are more important because it determines the length of the schedule (value of T

max

)
which has a larger impact on solving time. Rates corresponding to the size of the
HSDF are listed in table 6.1. With more actors present in the HSDF, the periodic
phase of the schedule consists of more actors firing. This results in a longer period
and longer constraints present in the model.

31

32 CHAPTER 6. EXPERIMENTAL SETUP

For example, instance of the H263 decoder which look small at first (shown in
figure 6.1) is more complicated to solve using the ILP formulation than instance of
the modem in figure 6.2.

a1 (1)
 1

a2

2376
(2376)

2376

 1

(1)
 1

a3

1
(1)

 1

(1)
 1

a42376

1
(2376)

 2376

(1)
 1

n [1,2376,2376,1]

Figure 6.1: H263 Decoder with buffer

Table 6.1: Size of the real application instances used for benchmarking

Number of actors Number of channels
Instance name SDF HSDF SDF HSDF

Satellite receiver 22 4515 74 18723
Sample-rate converter 6 612 16 2654
MP3 decoder 13 13 37 37
Modem 16 48 54 170
H.263 decoder 4 4754 10 19010
MP3 decoder (fully heterogenous) 4 4754 10 19010

Graphs used in this thesis for benchmarking have been attached in Appendix A.
We have faced performance problems with the SDF3 benchmark instances due to the
particular problems complexity. At the beginning, we had to set a reasonable solving
time which the experiment should finish. This deadline for completion was set after
the first experiments at 2 days (48 hours). This breakpoint was satisfied in most
instances, but instance of the H263 decoder were not solved by the proposed ILP in
the given time.

We are introducing several results in this chapter. If any tables containing results
have the X sign instead of a proper time, it means the solver did not finished within
the 48 hour limit. We also propose a CPU time in some cases. The CPU time is the
sum of times of every thread used by the solver and the solving time refers to the real
time which humans can perceive. This metric would become very relevant in the case
the implementation of CPLEX would handle parallel processing a better way in using
lazy constraints. Current implementation stop the other threads while the callback is
executing and needs to wait until the lazy constraints callback finishes.

6.1. BENCHMARK INSTANCES 33

a15 - fork1 (1)

a11 - biq

a8 - bi

a9 - deci

(1)

(1)

a1 - add

(1)

(1)

(1)

(1)

(1)

a3 - ac

(1)

(1)

a2 - fork2

2
(2)

2

(1)

a7 - conj
2

a16 - mul1

2

(2)

2 (1)

a14 - mul2 2

2

(2)
2

(1)

a12 - eq

(2)

2

2

2

2

a6 - in (1)

a5 - filt

(1)

(1)

a10 - hil

8
(8)

8

(1)

4

2

2

2

(4)

2

4

(1)

2

2
(2)

2

2

(2)

2

2
(1)

(2)

2

2

(1)

(2)

2

2

2

2

(1)

a4 - deco

2

2

(2)
2

2

(1)

a13 - out

(1)

(1)

n [1,2,1,1,16,16,1,1,1,2,1,1,1,1,1,1]

Figure 6.2: Modem with buffer

34 CHAPTER 6. EXPERIMENTAL SETUP

6.2 Hardware

Several experiments used server Kepler based in the CTU in Prague, Faculty of Elec-
tical Engineering and a Mac Book Pro laptop. Specifications for both devices can be
found in table 6.2

Table 6.2: Specification of hardware used for experiments

Kepler server
CPU: Intel Xeon E5-2620 v2 @ 2.1GHz / Turbo Boost up to 2.6GHz / 6 cores
RAM: 64 GB

Laptop (Mac Book Pro)
CPU: Intel Core i5 @ 2.4GHz / Turbo Boost up to 3,1 GHz / 4 cores
RAM: 8 GB

Experiments introduced in sections 6.3, 6.4 and 6.5 were performed on the ”Kepler”
server. After series of experiments, the Kepler server had been allocated to different
research and we tested the symmetries on a Mac Book Pro laptop. Instances that
used the Kepler server were unsolvable for the laptop in a reasonable time and we had
to use another set of instances. This was not an issue because the instances used on
Kepler server did not contain any symmetries. For the symmetry breaking algorithm,
a new set of instances were generated by the SDF3 and adapted to contain a different
number of symmetries.

6.3 Baseline experiments using IBM OPL Studio

OPL Studio was used for its relatively fast implementation. It served as our baseline
benchmark which we used later on to compare our experiments. Table 6.3 shows the
results of experiments executed on the Kepler server while table 6.1 offers an overview
of the complexity of the problem. It seems like the size of the HSDF does matter in
terms of problem complexity. Size of the HSDF is related to the production and
consumption rates of the channels.

The considered platform for instances listed in table 6.1 was partially heterogenous,
which means actors were able to fire on multiple processors (not all of the processors
were considered due to their performance issues). The input matrix d, for MP3
decoder instance can be seen in figure 6.3 with a different WCET. All experiments
using instances from table 6.1 were executed on the Kepler server specified in section
6.2.

6.4 Baseline ILP Java experiments

To understand what the effect is of rewriting the same algorithm from the IBM
OPL Studio to Java using CPLEX Java API, we prepared the exactly same set of
benchmarks for a Java implementation. The results can be seen in table 6.3.

6.5. BASELINE ILP WITH LAZY CONSTRAINTS 35

d =

0

BBBBBBBBBBBBBBBBBBBB@

0 19 0 0 0 32 0 0 37 0 21 0 0

20 0 19 0 0 37 0 0 32 0 0 21 0

0 83 0 0 0 0 85 0 48 0 0 0 0

132 0 0 0 132 0 0 145 0 0 0 0 0

0 0 0 0 89 0 0 0 0 80 83 0 0

132 0 0 132 0 0 0 0 0 80 83 80 87

0 0 68 0 68 0 0 0 69 0 0 0 0

0 0 68 0 0 0 0 69 0 0 0 0 0

6 0 0 0 0 1 1 0 1 0 1 0 2

0 0 34 0 42 0 0 0 0 0 0 47 0

0 9 0 0 7 0 0 12 0 5 0 0 0

0 0 36 0 0 0 0 42 0 0 0 0 5

4 1 0 1 0 0 1 1 0 0 2 0 0

1

CCCCCCCCCCCCCCCCCCCCA

Figure 6.3: Input of partially heterogenous instance instance of MP3 decoder

Table 6.3: Results of experiments using Kepler server for calculation

IBM OPL Studio Java CPLEX API Lazy constraints
Instance name Solving time [s] Solving time [s] Solving time [s]

Satellite receiver 2247.14 X X
Sample-rate converter 212.66 X X
MP3 decoder 53.62 54.78 25.26
Modem 0.38 0.58 0.54
H.263 decoder X X X
MP3 decoder
(Fully heterogenous) X 2408 322

Also, to further prove our point that the lazy constraints can speed up the solving
process, we have created a new, fully heterogenous instance of a MP3 decoder with
an input showen in figure 6.4. This instance is used in experiments using Java API
and in experiments using the lazy constraints for comparison. Also, it is essential to
mention that the instance is man made. This is because the benchmark instance did
not provide us with realistic input for particular architecture.

We are not certain what caused a huge difference in some instances and no change
in others. We assume the solver core implementation in Java and IBM OPL Studio
can vary and the solver would choose a different branching approach with result of
different solving time.

6.5 Baseline ILP with lazy constraints

Our goal was to make the ILP faster, which was achieved by adding the lazy con-
straints introduced in sections 5.1.1 and 5.1.2. We have introduced two results, table

36 CHAPTER 6. EXPERIMENTAL SETUP

d =

0

BBBBBBBBBBBBBBBBBBBB@

19 19 32 21 37 32 21 37 37 32 21 32 41

20 18 19 36 37 37 18 20 32 37 36 21 43

84 83 83 85 28 66 85 92 48 57 94 45 136

132 148 132 196 132 145 139 145 165 178 212 113 245

87 67 56 98 89 134 156 192 174 80 83 123 89

132 92 78 132 98 76 89 217 134 80 83 80 87

96 97 68 45 68 39 74 96 69 38 94 88 114

78 77 68 68 69 37 78 69 49 57 98 45 78

6 10 2 5 12 1 1 4 1 5 1 9 2

9 12 34 7 42 45 87 67 56 12 19 47 21

12 9 36 9 7 76 35 12 46 5 89 6 9

51 46 36 92 122 89 90 42 48 9 85 27 5

4 1 9 1 18 19 1 1 21 1 2 67 89

1

CCCCCCCCCCCCCCCCCCCCA

Figure 6.4: Input of fully heterogenous instance instance of MP3 decoder

6.3 contains the same instances from sections 6.3 and 6.4 which have been calculated
on the Kepler server.

It is important to point out that the smaller difference between the PeriodLB and
the actual objective function was the better performance upgrade lazy constraints
provided. This is caused by the fact that if we bind the objective function, which
minimizes the period and solution with the lowest possible period is found, the solver
can stop its execution.

The results of the first three experiments described in sections 6.3, 6.4 and 6.5
are graphically displayed in figure 6.5 The chart is made from the real time (world)
clock, and is clearly shown that the lazy constraints increase the performance of the
CPLEX solver with a factor at least 2. This resulted in a significant speedup.

Our conclusion for these experiments is that rewriting this particular formulation
into CPLEX Java API did not increased the performance. Generally the CPLEX
Java API seems to slow things down. But by using lazy constraints in Java, which
had significant performance upgrades in all instances, which was able to be solved
in Java without usage of lazy constraints. We assume the Java API can approach
the branching and cutting strategies differently, therefore the performance can vary
in different instances.

6.6 Symmetry breaking experiments

In this section, we introduce a new set of experiments which are tested in several
ways. The main purpose was to have baseline results which we can use and compare
to our results for the symmetry breaking algorithm. All the instances were generated
by the SDF3 tool.

6.6. SYMMETRY BREAKING EXPERIMENTS 37

Figure 6.5: Solving time of first instance set in real time

Table 6.4 contains the results from our various experiments. In the prepared set
of instances, we found that the lazy constraints method approach can increase the
solver performance, but only in terms of CPU time. Also, the experiments show that
instances ”Modem”, ”Artificial instance 4” and ”Artificial instance 10”, which does
not contain any symmetries, are slowed down by the symmetry breaking algorithm
because the algorithm does not reduce the searching space. The algorithm executes
every time the solver finds an integer solution. On the other hand, instances ”Artificial
instance 2” and ”Artificial instance 8” recorded CPU time performance improvements.

The disadvantage of using the lazy constraints is that the CPLEX solver can only
use one thread while running. Or to be more specific, more threads can be forced
by parameter, but we did not have any good results doing so. It is probably caused
by the callback itself, because every other branching needed to be stopped before the
callback had finished executing.

Figures 6.6 and 6.7 displays the values of solving times in real (world) clock time
and CPU time respectively. From those figures, it is clear that in most cases lazy
constraints save CPU time, but in world clock time, are still outperformed due to a
lack of multithreading computation.

38 CHAPTER 6. EXPERIMENTAL SETUP

Figure 6.6: Solving time of second instance set in real time

Figure 6.7: Solving time of second instance set in CPU time

6.6. SYMMETRY BREAKING EXPERIMENTS 39

Ta
bl

e
6.

4:
R

es
ul

ts
of

th
e

ex
pe

rim
en

ts
us

in
g

la
zy

co
ns

tr
ai

nt
s

on
M

ac
B

oo
k

P
ro

In
st

an
ce

na
m

e
B

as
el

in
e

IL
P

tim
e

[s]

B
as

el
in

e
IL

P

C
P

U
tim

e
[s]

IL
P

w
ith

La
zy

co
ns

tr
ai

nt
s

tim
e

[s]

IL
P

w
ith

La
zy

co
ns

tr
ai

nt
s

(m
ul

tit
hr

ea
di

ng
)

tim
e

[s]

IL
P

w
ith

La
zy

co
ns

tr
ai

nt
s

C
P

U
tim

e
[s]

IL
P

w
ith

Sy
m

m
et

ry
br

ea
ki

ng
tim

e
[s]

IL
P

w
ith

Sy
m

m
et

ry
br

ea
ki

ng
C

P
U

tim
e

[s]
A

rt
ifi

ca
l

in
st

an
ce

2
22

.8
02

64
.4

2
44

.0
74

29
.4

57
47

.5
7

37
.1

66
42

.5
A

rt
ifi

ca
l

in
st

an
ce

4
4.

32
2

4.
39

9
5.

57
6

7.
90

3
5.

76
3

15
.4

16
15

.7
5

A
rt

ifi
ca

l
in

st
an

ce
5

0.
31

2
0.

35
0

0.
20

0
1.

51
4

0.
23

1
0.

47
9

0.
49

1
A

rt
ifi

ca
l

in
st

an
ce

7
36

.0
74

87
.6

90
58

.1
14

42
.9

35
61

.2
70

78
.0

48
81

.0
48

A
rt

ifi
ca

l
in

st
an

ce
8

35
.3

49
81

.6
30

41
.1

29
46

.3
8

47
.4

29
49

.4
12

50
.4

93
A

rt
ifi

ca
l

in
st

an
ce

10
6.

86
6

11
.3

50
24

.2
93

9.
24

9
24

.4
58

20
.0

35
20

.9
97

M
od

em
2.

97
0

5.
75

0.
85

9
2.

19
2

0.
90

8
9.

07
9

9.
24

6

40 CHAPTER 6. EXPERIMENTAL SETUP

Chapter 7

Related works

In this chapter, we present several works which have been done in field of application
mapping and scheduling. We mainly focus on real-time applications. Each work listed
approaches our problem, a similar problem, or approaches it from a different angle.
We are providing a quick overview of these approaches.

[10] describes how we can represent real-time data driven applications using SDF
graphs. Also, how computation of the throughput is done. Unfortunately it does not
cover the problem of mapping and scheduling. [7] does not deal with the mapping
or scheduling, but it shows what needs to be considered if we modeled a real system
with communication between processors and shared memories. [9] is a great survey
that includes both what has been done in the past and what the modern trends are
with a brief introduction to the selected problems. The survey also considers a lot of
works for non-real-time systems which are not completely relevant to our problem.

Different models for streaming applications are proposed in [5]. They assume the
application is a directed acyclic graph (DAG) . This is similar to HSDF which are not
allowed to have cycles. HSDF is a special case of SDF graph where every actor fires
only once per graph iteration / period. This is a restriction compared to what we
consider. For the computation, they considered the mapping and scheduling part with
communication over FlexRay bus between multiple applications. For computation,
they decided to use an ILP. The disadvantages of their approach compared to this
thesis is that they firstly decide the mapping and then maked the schedule for the
feasible mapping. This does not guarantee optimality at first place. Moreover, they
only assume homogenous platforms.

A constraint programming (CP) approach is explained in [8]. They also propose
an algorithm for conversion from SDF graph to "Rate Homogeneous SDF" where
every actor fires once, but not every rate is equal to one. In practical use, this is the
same as using a HSDF. They also consider the communication by adding two actors
that send and receive messages between processing units. On the other hand, they
do not describe the whole CP model, but just the necessary usage of variables. In
addition, they only use small instances of problems, but are able to map and schedule
multiple applications running simultaneously to satisfy the real-time constraints on
each of them.

41

42 CHAPTER 7. RELATED WORKS

A way to find energy efficient mapping and schedule is proposed in [14]. How-
ever, they use heuristics for both mapping and scheduling. They also only consider
homogeneous systems. This is the same system architecture that we consider, but we
are more general with the architecture. They consider two different power states for
chips and memories. They try to find a minimal energy consuming schedule while
satisfying the throughput requirement. It was done by slowing down the processors
or by changing the size of the memories. These calculations are done with usage of
a ILP model. The downside to their approach was that they were not able to ensure
optimality of the schedule or the mapping because they used heuristics.

[6] deals with scheduling and mapping in a different manner. They use time
division multiple access (TDMA) to schedule the actors and build a static schedule
from it. They use CP for the scheduling. Every time a partial schedule is found, the
maximum cycle mean (MCM) algorithm runs to check if this solution is still feasible.
Their objective function is to maximize processors utilization subject to minimum
average throughput constraints. This means they are targeting at different goal while
using a different optimization criterion.

A description of how the mapping and scheduling can be done using only an ILP
formulation is presented in [4]. This formulation is introduced in section 4.1. Since the
formulation seems reasonable, we decided to use it as our baseline ILP. Unfortunately,
they still omit a few things in their formulation. They do not propose any quantifiers
and their formulation is non-linear. It is easy to linearize these equations and we show
how it can be done in 4.3 for usage in an ILP framework. An interesting part about
this paper is that they try to minimize the linear combination of several real-time
constraints, such as the length of the periodic phase, latency and cost. They propose
using pareto fronts as to find all suitable solutions. Each solution has another impact
on the throughput, processor cost function and latency. That paper has an extension
[3] published later on where the ILP formulation is extended with communication
aware mapping. This means that we have a reference for our experiments, which we
can compare with. The baseline ILP served as starting point for our research.

Articles which explain the basic usage of lazy constraints for area harvesting prob-
lem is introduced in [2]. Lazy constraints are meant to reduce the computation time
of the solver, which is related to our work. We used this article as a starting point
for the lazy constraints. It briefly describes how the lazy constraints can be used and
how they work. Unfortunately, it does not describe how to implement lazy constraints
and what the possible options are. This was described in this thesis.

Chapter 8

Conclusion and Future work

Our main goal was to find an algorithm that can map actors to processors and build a
static schedule in a reasonable time. A successful mapping and scheduling algorithm
was introduced in the form of an ILP formulation which had been implemented in
IBM OPL Studio as well as in Java using CPLEX Java API as a point of comparison.

The baseline ILP had several issues which needed to be solved in order for it to
be implemented into a CPLEX framework. Linearization of non-linear equations was
briefly described in section 4.3.

The complexity of this problem is due to the mapping and scheduling which has
to be done simultaneously because every mapping decision can have an effect on the
schedule. We have described the needs for this in section 2.4 Also, the complexity is
given by size of the instances. While the instances do not seem complex at first, the
SDF graph is complex because presence of the precedence constraints in the form of
consumption and production rates.

The drawbacks of the ILP formulation are clear. It has serious performance is-
sues. To solve it, we have implemented lazy constraints into the model and proposed
a symmetry breaking algorithm. While the lazy constraints have good results in most
cases, the symmetry breaking algorithm increases the performance only when a large
number of symmetries are present in the input. We assume this is because the over-
head of the lazy constraints callback and lack of multithreading. Because the CPLEX
needs to pause solving and wait until lazy constraints callback is finished every time
the callback is invoked.

We had proven that fully heterogenous instance of MP3 decoder can be solved
more effectively with the usage of lazy constraints. We have accomplished a speedup
with a factor of more than 7. On the other hand, the symmetry breaking algorithm
did not have a significant speedup. We assume this was caused by the overhead of the
lazy constraints callback together with the inability to use multiple threads effectively.

We have partially solved the problem in some cases, but it still remains open for a
large number of instances since we have not found solution for performance issues in
general. We have proven the problem is not trivial for real applications and it is not
largely scalable for now. Also, the provided solution does not cover real architecture
because it is missing essential components e.g. interprocessor communication and
finite memories. Hence, we would suggest to continuing with further performance

43

44 CHAPTER 8. CONCLUSION AND FUTURE WORK

upgrades. We think, it would be worth trying a heuristic brute force algorithm for
mapping. Once we have the mapping decided, the ILP formulation can be simplified
for equations which needs to be linearized.

It is important to find a way to determine the mapping and static schedule for
applications with communication such as in network on chip (NoC). Real systems
have to communicate between processors, which need to be scheduled. This was done
in [3], but since it is an extension of the ILP proposed in this thesis, it would most
probably suffer from the same performance issues as the baseline ILP. As we have
proven, not all the real application models provided by the SDF3 would execute in a
reasonable time using the baseline ILP formulation e.g. H.264 decoder with a buffer
is too large for modern computers and the calculation take up a lot of memory and
time.

Also, the mapping of data to memories used in the architecture is an important
extension of this ILP. Real systems have different types of memories with different sizes
and access types. Exploring this can enable applications to execute more efficiently.
Decisions about this are not trivial and does not necessary means ”if it fits in local
memory use it as data storage”. The problem is that there is a lot of data sitting in
a local memory wasting space before it is actually needed.

Things that are worth mentioning is that finding mapping and schedule in such
a way that we minimize the energy consumption on the model with multiple power
modes of processors and find out how those units need to be configured to ensure the
real-time constraints and minimize energy consumption. This would have a greater
use in any industry by prolonging the battery life and also during an energetic crisis,
which the world is currently in. Power efficiency is becoming an important design
phase a is why heterogenous architectures are becoming so popular.

Bibliography

[1] M. Geilen. Reduction techniques for synchronous dataflow graphs. In Design
Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 911–916, July
2009.

[2] N. Könnyű and S. F. Tóth. A cutting plane method for solving harvest schedul-
ing models with area restrictions. European Journal of Operational Research,
228(1):236–248, 2013.

[3] J. Lin, A. Gerstlauer, and B. L. Evans. Communication-aware heterogeneous
multiprocessor mapping for real-time streaming systems. Journal of Signal Pro-
cessing Systems, 69(3):279–291, 2012.

[4] J. Lin, A. Srivatsa, A. Gerstlauer, and B. L. Evans. Heterogeneous multipro-
cessor mapping for real-time streaming systems. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages 1605–1608.
IEEE, 2011.

[5] M. Lukasiewycz and S. Chakraborty. Concurrent architecture and schedule op-
timization of time-triggered automotive systems. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, pages 383–392. ACM, 2012.

[6] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple independent hard-
real-time jobs on a heterogeneous multiprocessor. In Proceedings of the 7th ACM
& IEEE international conference on Embedded software, pages 57–66. ACM,
2007.

[7] A. Nelson, K. Goossens, and B. Akesson. Dataflow formalisation of real-time
streaming applications on a composable and predictable multi-processor soc.
Journal of Systems Architecture, 2015.

[8] K. Rosvall and I. Sander. A constraint-based design space exploration framework
for real-time applications on mpsocs. In Proceedings of the conference on Design,
Automation & Test in Europe, page 326. European Design and Automation As-
sociation, 2014.

[9] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on multi/many-
core systems: survey of current and emerging trends. In Proceedings of the 50th
Annual Design Automation Conference, page 1. ACM, 2013.

45

46 BIBLIOGRAPHY

[10] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Multiprocessor resource allo-
cation for throughput-constrained synchronous dataflow graphs. In Proceedings
of the 44th annual Design Automation Conference, pages 777–782. ACM, 2007.

[11] Ilog cplex 11.0 user’s manual | cuts description.
http://www-eio.upc.es/lceio/manuals/cplex-11/html/usrcplex/solveMIP14.html,
state to 20. 4. 2015.

[12] Ilog cplex 11.0 parameters reference manual.
http://www-eio.upc.es/lceio/manuals/cplex-11/pdf/refparameterscplex.pdf,
state to 20. 4. 2015.

[13] Sdf3 tool | homepage, 2015.
http://www.es.ele.tue.nl/sdf3/, [Online; accessed 20. April 2015].

[14] J. Zhu, I. Sander, and A. Jantsch. Energy efficient streaming applications with
guaranteed throughput on mpsocs. In Proceedings of the 8th ACM international
conference on Embedded software, pages 119–128. ACM, 2008.

Appendix A

Graphs used for benchmarking

In this appendix we are providing a set of inputs. A subset of them were used in our
thesis for experiments. Nodes in the graph represents different actors. Their names
are written in each of the nodes. Production and consumption rates are present on the
edge beside each actor. In the middle of the edge can be present initial token in the
parenthesis. Also, we must mention that if no number of production or consumption
rate is present, the rate is equal to 1. The repetition vector is always listed in the
rectangle beside each graph.

47

48 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a1
(1

)

a2

4
(4

)
4

(1
)

a3

11
(1

1)
11

(1
)

a7

a1
5

10

a4
(1

)

a5 4
(4

)4
(1

)

a6 11
(1

1)11
(1

)

a1
1

10

(1
)

(1
)a8

(1
)

(1
)

a9
11

11
(1

1)
11

11
(1

)

a1
0

10
(1

0)
10

(1
)

a1
9

(1
)

(1
)

a1
2

(1
)

(1
)

a1
3 11

11
(1

1)

11

11

(1
)

a1
4

10
(1

0)

10

(1
)

a1
8

(1
0)

10

(1
0)

10

(1
)

(1
)

(1
)

a1
6

24
0

a1
7

24
0

(2
40

)

24
0

(1
)

a2
2

24
0

(2
40

)
24

0

(1
)

24
0

(1
)

(1
)

a2
0

(1
)

(1
)

(1
)

(1
)

(1
)

a2
1 24

0
(2

40
)

24
0

(1
)

24
0

(2
40

)

24
0

(2
40

)

24
0 (2
40

)
24

0

(1
)

n
[1

05
6,

26
4,

24
,1

05
6,

26
4,

24
,2

4,
24

,2
4,

24
0,

24
,2

4,
24

,2
40

,2
40

,1
,1

,2
40

,2
40

,2
40

,1
,2

40
]

Figure A.1: Satellite receiver with buffer

49

a1 (1)

a2

(1)

(1)

a3
3

2
(4)
2

3

(1)

a4
7

2
(8)
2

7

(1)

a5
7

8
(14)
8

7

(1)

a6

5
(5)
5

(1)

n [147,147,98,28,32,160]

Figure A.2: Sample-rate converter with buffer

50 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a2 - req0 (1)

a5 - reorder0

(1)

(1)

a10 - stereo

a1 - req1 (1)

a3 - reorder1

(1)

(1)

(1)

(1)

(1)

a12 - antialias0 a11 - antialias1

(1)

(1)

a6 - hybridsynth0

(1)

(1)

a9 - freqinv0

(1)

(1)

a7 - subbinv0

(1)

(1)

(1)

(1)

a4 - hybridsynth1

(1)

(1)

a13 - freqinv1

(1)

(1)

a8 - subbinv1

(1)

(1)

n [1,1,1,1,1,1,1,1,1,1,1,1,1]

Figure A.3: MP3 decoder with buffer

51

a1
5

- f
or

k1
(1

)

a1
1

- b
iq

a8
 -

 b
i

a9
 -

 d
ec

i

(1
)

(1
)

a1
 -

 a
dd

(1
)

(1
)

(1
)

(1
)

(1
)

a3
 -

 a
c

(1
)

(1
)

a2
 -

 fo
rk

2

2
(2

)

2

(1
)

a7
 -

 c
on

j
2

a1
6

- m
ul

1

2

(2
)

2
(1

)

a1
4

- m
ul

2
2

2(2
)

2

(1
)

a1
2

- e
q

(2
)

2

2

2

2

a6
 -

 in
(1

)

a5
 -

 fi
lt

(1
)

(1
)

a1
0

- h
il

8
(8

)8

(1
)

4

2

2

2

(4
)

2

4

(1
)

2

2
(2

)

2

2

(2
)

22
(1

)

(2
)

2 2

(1
)

(2
)

2

2 22

(1
)

a4
 -

 d
ec

o

2

2

(2
)

2

2

(1
)

a1
3

- o
ut(1

)

(1
)

n
[1

,2
,1

,1
,1

6,
16

,1
,1

,1
,2

,1
,1

,1
,1

,1
,1

]

Figure A.4: Modem with buffer

52 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a1 (1)
 1

a2

2376
(2376)

2376

 1

(1)
 1

a3

1
(1)

 1

(1)
 1

a42376

1
(2376)

 2376

(1)
 1

n [1,2376,2376,1]

Figure A.5: H.263 decoder with buffer

53

a1

a2

3

2
(4)
2

3

a3

a4

5

(1)

5

2

(5)
5

(10)
2

5

n [1, 2, 3, 4]

Figure A.6: Artifical instance 1

54 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a5 (1)

a2

2

a3

(5)
7

a1

4

a4

(4)
2

(8)

7

4

(8)

7

4
(7)

(8)
7

4

4

n [1, 2, 3, 4]

Figure A.7: Artifical instance 2

55

a4

a2

7
5

a1

7 5 5
a3

5
4 4

5

n [1, 5, 4, 7]

Figure A.8: Artifical instance 3

56 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a5

a2

a1

(1)

a3

(1)

a4

(26)

14

(2)

14

n [1, 1, 1, 14, 1]

Figure A.9: Artifical instance 4

57

a2

a1

(2)
2 2

n [2, 1]

Figure A.10: Artifical instance 5

58 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a5

a1

2

a3

(1)

a2
2

a4

(7)
13

(6)
13

(6)
13

n [1, 1, 1, 13, 2]

Figure A.11: Artifical instance 6

59

a5

a2

(2)

2

a4

(18)
2

13

a1

2

a3

(4)
13

(4)
13

n [1, 1, 1, 13, 2]

Figure A.12: Artifical instance 7

60 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a5

a1

a2

(1)

a3

a4

(10)
14

(4)
14

(4)

14

(4)
14

n [1, 1, 1, 14, 1]

Figure A.13: Artifical instance 8

61

a0

a1

a2

(1)

a3

a4

(10)
14

(4)
14

(4)

14

(4)
14

n [1, 10, 2, 4, 1]

Figure A.14: Artifical instance 9

62 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a5

a1

4

a2

2

3

(12)
3

2

a33

(4)

2

a4

(8)

2

5

(6)

5 n [4, 6, 2, 5, 1]

Figure A.15: Artifical instance 10

63

a8

a6

(5)

12

(5)
12

a1

a5

(3)
4

a2

2

a7

2

7

a3

2

a4

(1)
4

(7)

12
(4)

3

(14)

7

2

(7)

7

n [1, 2, 1, 1, 4, 12, 7, 1]

Figure A.16: Artifical instance 11

64 APPENDIX A. GRAPHS USED FOR BENCHMARKING

a8

a1

(1) (1)

a4

(1)

a5

(10)

10

a7

(17)

17

(17)
17

a2

(1)

a3

(1) (10)

10

a6

2 2

(10)
10

1010

10
105

2

2

17

17 17
17

n [1, 1, 1, 1, 10, 2, 17, 1]

Figure A.17: Artifical instance 12

Appendix B

Nomenclature

API Application interface

CP Constraint programming

DAG Directed acyclic graph

FPS Frames per second

GPU Graphics processing unit

HSDF Homogeneous synchronous dataflow model

ILP Integer linear programming

MCM Maximum cycle mean

MPSoC Multiprocessor system-on-chip

NoC Network on chip

SDF Synchronous dataflow

TDMA Time division multiple access

UAV Unmanned aerial vehicle

WCET Worst-case execution time

65

66 APPENDIX B. NOMENCLATURE

Appendix C

Content of attached CD

Figure C.1: Content of attached CD

67

68 APPENDIX C. CONTENT OF ATTACHED CD

	Introduction
	Background
	Synchronous Dataflow Model
	Homogeneous SDF Model
	System Architecture
	Mapping and Scheduling relation

	Problem Formulation
	Baseline ILP
	ILP Formulation
	Baseline ILP improvement
	Linearization of the baseline ILP

	Lazy constraints
	Introduction to lazy constraints
	Lazy constraints function
	Lazy constraints callback

	ILP with lazy constraints
	Symmetry breaking
	Algorithm to find symmetries
	Symmetry breaking using lazy constraints callback

	CPLEX parameters affecting performance

	Experimental Setup
	Benchmark instances
	Hardware
	Baseline experiments using IBM OPL Studio
	Baseline ILP Java experiments
	Baseline ILP with lazy constraints
	Symmetry breaking experiments

	Related works
	Conclusion and Future work
	Bibliography
	Graphs used for benchmarking
	Nomenclature
	Content of attached CD

