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ABSTRACT

Tasks in a Real-Time system have different Real-Time requirements. Hard Real-Time tasks have
to finish worst-case response time in a given interval, while soft Real-Time tasks care about
average response time. Execution times of tasks are dependent on latencies of their memory
accesses. Memory is often a shared resource that has highly variable access latencies and is a
scarce resource that must be efficiently utilized. Combining both hard and soft tasks creates a
mixed time-criticality system that must guarantee tight bounds on the worst-case execution time
for the hard Real-Time tasks and have a low average response time for the soft Real-Time tasks.
Mixed time-criticality is difficult since guaranteeing tight bounds on worst-case execution time for
hard Real-Time tasks and a low average response time for soft Real-Time tasks are contradictory
requirements for SDRAM. A predictable SDRAM controller has been created in prior work with
tight bounds on bandwidth and latency fitting well for hard Real-Time tasks. However, it cannot
exploit data locality, not fitting well for soft Real-Time tasks.

This thesis looks into different memory maps and page-policies for SDRAM to see which
memory maps and page-policies have a good average-case performance while paying no penalty in
worst-case performance.
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1. INTRODUCTION

Embedded systems are designed to execute dedicated applications, which consist of a set of tasks,
often with strict constraints on power consumption and execution time. Power consumption for
embedded systems will be paramount in the near future [15] and applications in embedded systems
often run in a Real-Time (RT) environment. Tasks of a RT system (RTS) are divided in two
categories, hard tasks (HRT) and soft tasks (SRT). RT systems have the objective to guarantee
the individual response time constraints of hard task, while minimizing the average response time
of soft tasks [10], with response time meaning the execution time plus interference time of other
tasks.

HRT have to finish execution in a given interval without deadline misses of individual applic-
ation requests, meaning that the task must finish after the start of the interval and before the
end of the interval. Failing to do so may significantly degrade the quality of the application, or
even violate the functional correctness of the system. An airbag control is a good example of a
hard task, since it is useless if the response of the task is too late. Soft tasks preferably complete
the total execution within a given interval, trying to minimize the execution time of the whole
application instead of individual application requests. Failing to do so will have consequences, but
not as critical as deadline misses for hard tasks. A video decoder can be taken as an example of
a soft task. Missing a deadline results in a frame drop which decreases quality. However, if this
only happens occasionally then this is not noticeable [2, 19].

A Real-Time Operation System (RTOS) that runs on a RTS relies on accurate timing analysis
from its tasks to make a feasible schedule [13]. The execution times of tasks, measured in milli- or
microseconds, are highly dependent on latencies of memory accesses, measured in nanoseconds, due
to the stores and loads to or from memory. To compute the worst-case execution time (WCET) of
a task, the WCET of the memory accesses must be known. Thus, predictable hardware is required
for hard RT tasks to predict a useful bound on WCET of individual requests. Soft RT applications,
on the other hand, are focused on average response times, derived by statistics [24] instead of
WCET. This makes sense, because missing a deadline is not catastrophic for a soft task and with
a large amount of accesses, memory latencies tend to converge to an average.

If a RTS has more than one task, then these tasks must often share resources to reduce cost.
One shared resource that is difficult to use in a RTS is SDRAM. A memory controller needs
to be added that arbitrates the requests of tasks to the SDRAM, because SDRAM has highly
variable access latency and it is a scarce resource that must be efficiently utilized, since off-chip
pins consume a lot of area and power. An SDRAM consists of banks and in turn each banks
consists of rows and columns. To access data in an SDRAM, a row needs to be made active before
a read or write is allowed to be issued to that row. Before accessing another row, the current
active row first needs to be precharged, since only one row per bank is allowed to be active at
the same time. Activating and precharging rows is subject to timing constraints of the SDRAM
memory, resulting in variable delays between accesses, which explains why access latency is highly
variable, since access latency depends on the state of the SDRAM. Combining both HRT and SRT
creates a mixed time-criticality system that must guarantee tight bounds on WCET for HRT and
have a low average response time for SRT. Guaranteeing tight bounds for HRT is done by closing
an active row after every request (close-page policy) of a task to minimize interference between
requests, while low average response time is achieved by leaving an active row open as long as
possible (open-page policy) to exploit locality. Hence, mixed time-criticality is difficult since low
latency for HRT and high bandwidth for SRT are contradictory requirements for SDRAM [5].
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1.1 Problem statement

A memory controller is either HRT, non Real-Time (NRT), or something in between. The entire
spectrum from HRT to NRT for memory controllers is shown in Figure 1.1.

62,55 62,55

50

15,8

0

80

98,1 98,1 98,1 98,1

0

20

40

60

80

100

120

1 2 3 4 5

M
e

m
o

ry
e

ff
ic

ie
n

c
y 

(%
)

HRT only HRT + SRT NRT only

Close-page policy Open-page policy

Fig. 1.1: Spectrum of possible memory controllers

The bottom line shows the minimum guaranteed memory efficiency for different memory con-
trollers and the top line shows the maximum memory efficiency that can be utilized among the
different memory controllers. From left to right, five options are shown with HRT as the first
option and NRT as the fifth option. A predictable SDRAM controller called Predator [4] has
been proposed. This controller uses a memory map that provides tight bounds on bandwidth
and latency. A memory map translates a logical memory address into a physical address on the
SDRAM, further explained in Section 3.3. However, the proposed controller does not exploit loc-
ality, resulting in poor average-case performance in terms of bandwidth and latency, and it does
not keep power consumption in mind. Thus, the performance of the predictable memory controller
fits well with a hard RTS, but not necessarily with a soft RTS or a mixed time-criticality system.
This is also shown in Figure 1.1 as option one, where a HRT memory controller can only use 80%
of the memory capacity in the best case.

For a mixed time-criticality system, both worst-case and average-case performance are of im-
portance, which is why this thesis looks into different memory maps and page-policies for SDRAM
to see if other memory maps and page-policies have a good average-case performance paying no
penalty in worst-case performance. Therefore, a memory controller must be created that is suit-
able for both HRT and SRT. Aspects that are cosidered for worst-case are bandwidth, latency,
and energy. For average-case, bandwidth, energy, and execution time are considered.

The thesis is organized as follows. Chapter 2 presents related work on memory controllers.
Chapter 3 explains the background information about the architecture and timing constraints of
SDRAM, memory maps, and the Predator controller. Chapter 4 describes the proposed memory
controller that fits well with both HRT and SRT. Chapter 5 evaluates the worst-case performance
for the proposed memory controller. Chapter 6 first verifies worst-case performance during run-
time after which average-case performance is evaluated. Chapter 7 draws conclusions for the
proposed memory controller and evaluates if the new controller fits well with both HRT and SRT.
Chapter 8 summarizes the work done during this master project. Lastly, Chapter 9 summarizes
open research topics that can be done as future work.



2. RELATED WORK

This chapter presents related work on memory controllers. Different solutions are discussed based
on how the controllers schedule SDRAM commands. First in Section 2.1 statically scheduled
controllers are described. Section 2.2 then describes dynamically scheduled controllers. Lastly,
Section 2.3 describes hybrid controllers.

2.1 Statically scheduled controllers

Memory controllers that have static schedules of SDRAM commands, computed at design time
are called statically scheduled controllers. Each static schedule consists of a sequence of SDRAM
commands. Traffic has to be known up front to compute a schedule. Computing the schedule is
a computationally intensive task that is done at design time [9]. The downside is however, that
static memory controllers are inflexible to environment changes. When the input of an applic-
ation changes, or when applications are added, then the static schedules must also be changed.
Bandwidth usage, latency timings, and power usage are derived from the generated SDRAM
schedule, which fits well with a hard RTS task with regular behavior. Furthermore, if the gen-
erated SDRAM schedule is known an optimal choice with respect to page-policy can be made
per scheduled SDRAM command. However, statically scheduled controllers cannot handle dy-
namic environment applications, which is often the case with soft RTS tasks and are therefore not
appropriate for mixed time-critically systems.

2.2 Dynamically scheduled controllers

The key aspect of a dynamically scheduled memory controller is to schedule requests as efficiently
as possible, because SDRAM resources are scarce and expensive. This is done at run-time by ag-
gressively exploiting bank parallelism by reordering the buffered pending requests inside the con-
troller. Prior work has been done on reordering without prioritization of memory requests [26], and
on reordering with quality-aware prioritization that minimizes latency for high-priority memory
requests [14, 20, 22]. To increase efficiency, requests are preempted, reads and write are grouped,
and requests to open rows are given a higher priority than requests that access a closed row. As
for page-policy, prediction algorithms [21, 27] are used to make an estimation of which rows to
close when. But still estimations can be incorrect, thus making the wrong prediction, which neg-
atively impacts performance. Predictability for dynamically scheduled controllers is lost, due to
both the reordering of memory requests at run-time and estimation of row closing, making them
inappropriate for hard Real-Time tasks and thus also for mixed time-criticality systems.

2.3 Hybrid controllers

Hybrid controllers combine benefits and drawbacks from both the statically scheduled controllers
and the dynamic scheduled controllers. It uses predictability of the static schedules and flexibility
of the dynamic schedules by dynamically scheduling statically computed sequences of memory
commands [4, 25]. The set of patterns consist of read-, write-, read-to-write-, write-to-read-, and
refresh patterns. Bounds on latency and bandwidth are derived from the worst-case combination
of patterns in the set, which is determined at design time. Predictability is achieved by scheduling
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patterns from this precomputed set, while flexibility is accomplished by deciding which patterns
to issue at run-time.

Whilst comparing the different controllers the following can be concluded. Statically scheduled
controllers have RT properties, but are inflexible to environmental changes, resulting in over al-
location for critical requestors. Dynamically scheduled controllers cope better with environmental
changes and try to optimize average bandwidth and latency by reordering buffered requests. No
latency bounds or very pessimistic bounds at best can be derived, making dynamically scheduled
controllers limited to soft RT tasks. Hybrid controllers are flexible to environmental changes, while
still guaranteeing a bound on bandwidth and latency, making this type an appropriate choice for
mixed time-criticality systems. However, current hybrid controllers [4, 25], use a memory map
that maximizes worst-case efficiency by interleaving over all banks with a close-page policy which
is good for hard RT tasks, but not for soft RT tasks and power. This work aims to quantify
and compare different memory maps, to determine, which memory map is suitable for soft RT
tasks without losing predictability for hard RT tasks, making it a good candidate for mixed time-
criticality systems.



3. BACKGROUND

This chapter gives a short introduction of the SDRAM architecture, SDRAM timing constraints,
and an overview of different memory maps. In Section 3.1 the abstract of the SDRAM is given.
In Section 3.2 the timing constraints of SDRAM are stated that are applicable for this thesis. In
Section 3.3 memory maps are explained. Lastly in Section 3.4, the current predictable SDRAM
controller is explained.

3.1 SDRAM architecture

A SDRAM consists of multiple banks that operate in parallel. Each bank consists of a set of rows
with columns in each row, called cells, as depicted in Figure 3.1. Communication with the SDRAM
goes via a data bus, address bus and a command bus. The command bus is used to issue commands
to the SDRAM and the data bus is a bi-directional bus used to transfer data to/from the memories
row buffer. A shared clock enable (CKE) signal is used to enable the SDRAM memory. Note that
only one command bus, one address bus, one data bus, and one CKE signal is shared by all banks.
Therefore, only one bank can receive a command and only one bank can send/receive data per
clock cycle, reducing the bank parallelism inside the SDRAM. To access a cell, the row of that cell
needs to be placed inside the row buffer by an activate (ACT) command, issued on the command
bus. A read (RD) or write (WR) command is issued to activated rows, placing data on the data
bus. The number of words transferred on the data bus per RD or WR command depends on the
burst length (BL) of the request, which is programmed when the memory is initialized. The size
of the word depends on the data bus interface width (IW ). When the controller is finished with
the row inside the row buffer, the row needs to be put back at its original place in the memory
array by a precharge (PRE) command, issued on the command bus. Precharging rows can be done
either by an explicit precharge command on the command bus or by an auto-precharge (APRE)
using a flag while issuing a read or write command. Note that using auto-precharge decreases the
risk of having command collisions on the shared command bus. A SDRAM has leakage, meaning
that it has to regularly issue a refresh (REF) command to retain its data. A No OPeration (NOP)
command is sent to the SDRAM when no command has to be issued.

Bank 0

Activate

Precharge

Row buffer

Bank 1
Bank 2
Bank n

Fig. 3.1: The SDRAM architecture

Double-Data-Rate (DDR) SDRAM is a special type of SDRAM that transfers a word on both
the rising and falling edge of the clock on the data bus. A DDR2 memory can have a BL of 4 or 8
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words per burst [16] and has 4 or 8 banks per memory. A DDR3 memory, on the other hand, has
a fixed BL of 8 words [17] and always has 8 banks per memory. The BL of the DDR3 memory
can be chopped to 4 words, but still 8 words are fetched internally. Both the DDR2 and DDR3
memories can have a data bus IW of 4, 8, or 16 bits. Sending data over the command bus takes
BL
2 clock cycles due to the double data-rate of the data bus.

Micron’s MT41J64M16 specification [23] is used as the example memory throughout this
thesis. The MT41J64M16 specification is compliant to the DDR3-800 specification by JEDEC [17].
Table 3.1 states the architectural properties of the MT41J64M16 memory.

Tab. 3.1: Micron’s MT41J64M16 architectural properties

Property Value
BL 8
IW 16
Number of columns 1024
Number of rows 8192
Number of banks 8

As can be seen in Table 3.1, the example memory transfers 16 bits (2 bytes) per word. Because
of the Double-Data-Rate, 16×2

8 = 4 bytes are transferred on the data bus per clock cycle. A single
RD command issued on the command bus with a BL of 8 results in a transfer of 16 bytes on the
data bus.

3.2 SDRAM timing constraints

Besides the bus constraints described in Section 3.1 also timing constraints must be fulfilled,
which are typically minimum delays between successive commands. To maximize performance
memories typically try to hide these delays as much as possible by pipelining, resulting in irregular
access timings depending on the state of the banks and the type of requests as shown below.
Table 3.2 states the applicable timings [16, 17] that need to be taken into account for comparing
different memory maps in Section 3.3. Note that the timings of these constraints differ per memory
specification and are shown in Appendix B. To give some insight, Figure 3.2 illustrates a couple
of constraints for the example memory when reading one burst from one bank and writing one
burst to a different banks with a BL of 8 words. As shown, there are a lot of NOP commands
caused by stalling due to timing constraints. For instance, the activation of bank 1 is not allowed
in the second cycle since the tRRD constraint prevents this with a minimum waiting time of four
cycles before another bank activation of a bank is allowed. After a bank is activated by an ACT-
command, then a minimum of tRCD cycles are required between the ACT and a RD or a WR
command. A WR command is allowed to be issued tRTW cycles after a RD command, which is
the read-to-write timing constraint. tRL and tWL indicate the exact number of cycles between a
RD and WR command and the first word of data on the data bus from that command. Note
that because of the read-to-write constraint, three cycles with no data exists between the read
and write data.

ACT0

Data

Command RD 0

tRCD

tRRD

tRL

tRTW tWL

BL/2

BL/2

Cycle 1 2 3 4 5 6 7 8 9

NOP NOP NOP ACT1 NOP NOP NOP

10

NOP

11

NOP

12

WR 1

0 0 0 0 0 0 0 0

13 14 15 16 17 18 19 20 21

1 1 1 1 1 1 11

Fig. 3.2: Timing constraints when accessing two banks with BL=8
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Tab. 3.2: DDR3-800 timing constraints

Notation Restriction description Cycles
tRC Activate to Activate same bank 20
tRRD Activate to Activate diff bank 4
tRAS Activate to Precharge same bank 15
tRCD Activate to Read/Write 5
tWR Datawrite to Precharge 6
tWTR Datawrite to Read 4
tFAW Minimum time for four activates 20
tRP Precharge to Activate/Refresh 5
tRL Read to Dataread 5
tRTP Read to Precharge 4
tCCD Read to Read / Write to Write 4
tRTW Read to Write 6
tRFC Refresh to Activate 44
tREFI Refresh to Refresh 3120
tWL Write to Datawrite 5

3.3 Memory maps

Banks can work in parallel as long as there are no conflicts on the shared command bus and data
bus, as explained in Section 3.1. But one bank can transfer data on the data bus while another
bank is activating or precharging and this pipelining is essential for high SDRAM performance.
Translating a logical memory address of a requestor to a physical address on the SDRAM is done
by a memory map. Depending on the memory map, a logical address maps to different banks,
rows, and columns in the SDRAM. Hence, the memory map impacts different aspects of SDRAM
memory, such as latency, bandwidth, and data locality for best-case and case-case scenarios. This
section explains memory maps using a simplified DDR memory model with only four banks, four
rows per bank, and four columns per row.

First, the parameters that define the type of memory maps are explained. Then, the decoding
of logical addresses is discussed.

3.3.1 Burst count and bank interleaving

As explained in Section 3.1, SDRAM memory consists of multiple banks, each containing multiple
rows comprising multiple columns. Three parameters define a memory map; burst length (BL),
burst count (BC), and the number of interleaving banks (BI). BC defines how many columns are
clustered before continuing to the next bank and likewise BI defines how many banks are clustered
before continuing to the next clustered set of columns. BL and BC give the number of clustered
words on one bank, before interleaving to the next bank inside the cluster of banks. When the
end of a row is reached, a choice can be made whether to continue on the next row of the same
set of banks (row-wise) or to continue on the same row on the next set of banks (bank-wise).
Four examples of a memory map are given in Figure 3.3. Figure 3.3a and Figure 3.3b show the
bank-wise memory maps that belong to BI1 -BC1 and BI1 -BC2 respectively. Figure 3.3c and
Figure 3.3d show the row-wise memory maps that belong to BI2 -BC1 and BI2 -BC2 respectively.
BL and IW are set to one to simplify the example.
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(a) Bank-wise memory map with BI1 -BC1
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(b) Row-wise memory map with BI2 -BC1
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(d) Row-wise memory map with BI2 -BC2

Fig. 3.3: Four types of memory maps with BL=1

3.3.2 Logical to physical translation

Mapping logical addresses to physical addresses on the SDRAM memory is done by an address de-
coder. The address decoder does a logical and-operation on the binary representation of the logical
address using a bit mask. This bit mask defines to what banks (B), rows (R), and columns (C) a
logical address maps to. By changing the bit mask, the logical address maps to different banks,
rows, and columns. Constructing such a bit mask is done with the formula in Figure 3.4a for a
row-wise memory map and with the formula in Figure 3.4b for a bank-wise memory map. Note
that the bank-wise bit mask is constructed by swapping the bank1 and row field of the row-wise
bit mask shown in Figure 3.4.
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(a) Bit mask for row-wise memory map
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(b) Bit mask for bank-wise memory map

Fig. 3.4: Bit masking for memory maps

As can be seen in Figure 3.4, the BL, BI, BC, and IW define what bits of the binary represent-
ation of a logical address map to what banks, rows, and columns. Determining which bank to pick,
given a logical address is done by concatenating the Bank1 and Bank0 bits. Likewise, determining
which column to pick is done by concatenating the Column1 and Column0 bits. As examples, the
bit masks of BI1 -BC1 bank-wise and BI2 -BC2 row-wise memory maps in Figure 3.3 are shown
in Table 3.3. As a reminder, the memories in Figure 3.3 are a simplified version with a BL of one
word and a IW of one bit. Note that as a result of the logical to physical translation, BC and BI
can only be a power of 2 because of the binary logarithms in the bit mask.



3. Background 9

Tab. 3.3: Constructed bit masks of the memory maps in Figure 3.3

Memory map Bit mask
Bank 001100

BI1 -BC1 bank-wise Row 110000
Column 000011
Bank 100010

BI2 -BC2 row-wise Row 011000
Column 000101

As an example, logical address 30 has 011110 as a binary representation. For the BI1 -BC1
bank-wise memory this address maps to bank 11, row 01 and column 10. Likewise, for the BI2 -BC2
row-wise memory map this address maps to bank 01, row 11, and column 10.

3.4 Predator SDRAM controller

The predictable SDRAM controller named Predator [4] interleaves over all banks and precharges
at the end of a burst. Always precharging at the end of a burst with an auto-precharge is called
a Close-Page auto-precharge policy (CPA), while keeping rows activated is called an Open-Page
policy (OP) [26]. As explained in Section 3.2, there are many timing constraints that make SDRAM
scheduling difficult. Analysis of any valid sequence of commands that can be issued is difficult and
pessimistic. Using predictable memory patterns, which are precomputed sequences of SDRAM
commands, bounds the highly variable access time of the SDRAM and decreases analysis difficulty.
Analysis difficulty is decreased by making sure that the memory is returned to a known neutral
state which in turn reduces pessimism in analysis. Note that this is efficient, assuming requests
fir with the access granularity of the memory map. But because of the CPA in its patterns, the
Predator SDRAM controller eliminates any possibility to exploit data locality between requests.
This makes Predator fit well for hard RT tasks but not for soft RT tasks or power, as mentioned
in Section 2.3.

First, an architecture overview of the Predator controller is given in Section 3.4.1. Second,
non-preemptive bursts that bound performance are explained in Section 3.4.2. The notion of
different pattern types is explained in Section 3.4.3, after which the scheduling rules of these
patterns are stated in Section 3.4.4. This is followed by a description of the different patterns
in Sections 3.4.5 to 3.4.7. Lastly in Section 3.4.8, computing worst-case bandwidth and latency
based on memory pattern is explained.

3.4.1 Architecture Overview

Predator consists of a front-end and a back-end, as shown in Figure 3.5. The front-end consists
of atomizers, delay blocks, a bus, and an arbiter. Each requestor has its own atomizer and
delay block. The back-end consists of an address decoder, a command generator, and a pattern
collection. Requestors communicate with the front-end and the memory communicates with the
back-end of the controller. The front-end is the same for all memory types, including SDRAM.
The back-end however, is the same for SDRAMs but different for other memory types.
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Fig. 3.5: Predator memory controller

Requests per requestor are handled by the atomizer. An atomizer converts requests from
requestors to the same size of requests handled by the memory to fit with the access granularity
of the memory map. A smaller request is enlarged to one bigger request and a bigger request
is chopped into multiple smaller requests. When requests are of a fixed size, bounds on time
per request are simplified and are made tighter. Read requests with data from the memory are
merged into its original request size by the atomizer before being sent back to the requestor. The
fixed-sized requests from the atomizer are sent to the delay block. The delay block calculates the
worst-case finishing time per request and delays a response if the response finished in shorter time
than the worst-case finishing time. Thus the delay block absorbs interference created by other
requestors, making every request predictable and composable to the exact cycle of finishing time.
The bus and arbiter decide which request is allowed to be served and transfer the request to the
back-end.

The back-end splits up a request into a logical address, data, and type of request. The type of
a request can be a read or a write request. The logical address is decoded into a physical address
by the address decoder, mapping the logical address of the request to the appropriate cell of the
memory. The command generator consists of a finite state machine that issues memory commands
on the command bus to the memory. Which memory commands are sent depends on the request
type and the memory patterns inside the pattern collection.

3.4.2 Bounding worst-case performance with non-preemptive bursts

The worst-case performance of a memory controller is based on the minimum access size (access
granularity) allowed by the memory. For a SDRAM controller that allows all possible sequences
of memory commands, this scenario consists of activating a row, issuing one write command, and
precharging the same row, as shown in Figure 3.6. Note that this unbounded worst-case scenario
is independent of which memory map the memory controller is using. Out of the 24 cycles only 4
cycles transfer data, resulting in 16% utilization of the data bus in the worst-case scenario. Note
that this is equivalent to the fourth option of Figure 1.1 in Section 1.1.

ACT0

Data

Command WR 0

tRCD tWL tWRBL/2 tRP

Cycle 1 2 3 4 5 6 7 8 9

NOP NOP NOP NOP NOP NOP NOP

10

NOP

11 12

0 0 0 0 0 0 0 0

13 14 15 16 17 18 19 20 21

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP

22 23 24

Fig. 3.6: Unbounded worst-case scenario

By only allowing a subset of sequences of memory commands in a non-preemptive manner,
worst-case performance of a memory controller restricts the usage of memory to be more efficient,
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assuming large requests. Because of the non-preemptive accesses, the access granularity is determ-
ined by which memory map the memory controller is using. The access granularity is defined as
BI ·BC ·BL · IW , which is the exact size of a single access given a memory map. Note that the
BI1 -BC1 memory map is the same as the unbounded worst-case scenario shown in Figure 3.6.
In Figure 3.7a and Figure 3.7b a single write access of the memory maps BI1 -BC4 and BI4 -BC1
are shown respectively.
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Data

Command WR 0

tRCD tWL tWR

BL/2

tRP

Cycle 1 2 3 4 5 6 7 8 9
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25 26
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(a) Write sequence with BI1 -BC4

ACT0

Data

Command WR 0

tRCD tWL tWR tRP

Cycle 1 2 3 4 5 6 7 8 9

NOP NOP NOP NOP NOP

10 11 12

0 0 0 0 0 0 0 0

13 14 15 16 17 18 19 20 21

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP

22 23 24

WR 1 WR 2 WR 3

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 33 3 3 3

BL/2

ACT1 ACT2 ACT3

Constraints Bank 3

Constraints Bank 2

Constraints Bank 1
tRCD tWL tWR tRPBL/2tRP

Constraints Bank 0

tRCD tWL tWRBL/2
tRCD tWL BL/2

tWR tRP
tWR tRPBL/2

(b) Write sequence with BI4 -BC1

Fig. 3.7: Write access sequences with 64 bytes access granularity

Both have an access granularity of 64 bytes, thus transfer the same amount of data, but BI4 -
BC1 has a higher data bus utilization compared to BI1 -BC4, 66% and 44%, respectively. When
only interleaving over one bank, it is not possible to hide stalling because of timing constraints
that are inter-bank related. Interleaving over two or more banks creates the possibility to hide
stalling that is inter-bank related, thus exploiting bank parallelism as seen in Figure 3.7b. Note
that the atomizer discussed in Section 3.4.1 is configured to resize requests of requestors to the
access granularity of the memory map used by the memory controller.

3.4.3 Pattern types

The full pattern collection is divided into two major pattern sets, access patterns and auxiliary
patterns. Read and write patterns access data from the memory, thus belonging to the set of
access patterns. In the set of auxiliary patterns are the read-to-write, write-to-read, and refresh
patterns, which do not access the memory contents. A read-to-write switch is issued when the
previous access pattern was a read pattern and the next access pattern is a write. Vice versa a
write-to-read switch is issued when the previous access pattern was a write and the next is a read.
Figure 3.8 shows a sequence of patterns that is explained in the next sections.

Requests

Memory patterns

Banks

Read Write

Read Refresh Write WtR Read

Read Read

Read Write

Write

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

RtW

Fig. 3.8: A sequence of patterns and the corresponding bursts

3.4.4 Scheduling rules

In [3], the scheduling rules for the close-page memory patterns are given, which are as follows:

1. Memory patterns are scheduled in a non-preemptive manner.

2. A read or a write pattern can be scheduled immediately after itself or when the memory is
idle.
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3. A write pattern following a read pattern must be preceded by a read/write switching pattern
and vice versa.

4. A read or a write pattern can be scheduled immediately after a refresh pattern.

5. A refresh pattern can only be scheduled after a read pattern, a write pattern, another refresh
pattern or if the memory is idle.

Read

Refresh

RtW Write WtR

Fig. 3.9: State machine of scheduling rules

Rule one states that a memory pattern cannot be interrupted, simplifying scheduling and
analysis by restricting scheduling to the granularity of patterns. The second rule states that
consecutive read or write patterns are independent of each other, which is an important property
when it comes to simplifying analysis even more. Rule three combined with the first two rules,
bounds the interference between two access patterns. Rule four is based on the fact that all banks
are in an idle state after a refresh. The last rule is a logical decision based on the fourth rule;
issuing a switch before doing a refresh is useless because all banks are idle after the refresh. A
graphical representation of the scheduling rules is shown in Figure 3.9.

3.4.5 Access patterns

A read pattern issues a read with non-preemptive bursts in an interleaved fashion over all banks
with a CPA policy. On every bank a BC of one, two, four, or eight bursts is issued. Figure 3.10
shows a read pattern with a BC of two and a BL of eight over the first three banks and the
activation of bank 3. The number of words transferred per access is equal to BL · BC · BI.
A write pattern is analogue to a read pattern. Data of one access pattern may overlap with
commands of a following access pattern, meaning that the data from the last bank of the previous
pattern is transmitted on the data bus when commands to the first bank for the next pattern are
issued.

ACT0

Data

Command RD 0

Cycle 1 2 3 4 5 6 7 8 9

NOP NOP NOP NOP NOP

10 11 12

0 0 0 0 0 0 0 0

13 14 15 16 17 18 19 20 21

NOP NOP NOP NOP NOP NOP NOP NOP NOP

22 23 24

RD 1 RD 2

1 1 1 1 1 1 1 1

ACT1 ACT2 ACT3NOP RD 0

0 0 0 0 0 0 0 0

NOP RD 1 RD 2

25 26

1 1 1 1 1 1 1 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Fig. 3.10: Read over all banks with BI=8, BC=2 and BL=8 over the first three banks

3.4.6 Switching patterns

Auxiliary patterns consist of switching patterns and refresh patterns that are independent of each
other. A switch on the data bus can be made from read-to-write (RtW) and from write-to-
read (WtR). A read-to-write may have a different latency compared to the write-to-read latency.
Switching patterns can have a length of zero cycles if the number of cycles between the read and
write commands is already sufficient. Switching patterns only consist of NOPs. Note that the
timings from Table 3.2 for tRTW start when the read command is issued and that tWTR starts
after the last data is written.
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3.4.7 Refresh pattern

Every tREFI cycles a refresh should be issued to prevent data loss by leakage in the capacitors in
the SDRAM cells. Before a refresh can be issued all banks must be in a precharged state. The
refresh pattern issues NOPs until all banks are precharged by the CPA policy before issuing the
refresh command. The total length of the refresh pattern includes the actual refresh latency, tRFC,
and also consists of NOPs.

3.4.8 Computing worst-case bandwidth and latency

The memory patterns in Sections 3.4.5 to 3.4.7 are generated during design time. In [8] the pattern
generation tool that generates these patterns is explained. When the pattern set is known, the
worst-case bandwidth and latency can also be computed [7].

For bandwidth calculation, the dominance class of a pattern set is determined, which derives
the worst-case combination of patterns. A pattern set can be read-dominant, write-dominant,
mix-read-dominant, or mix-write-dominant. A pattern set is read-dominant if the read pattern
is bigger than a RtW switch combined with a write pattern and WtR switch. A pattern set is
mix-read-dominant if a WtR switch and a read pattern are bigger than a RtW switch and a write
pattern. Write-dominant is analogue to read-dominant and mix-write-dominant is analogue to
mix-read-dominant. Second, the efficiencies of the data bus, switches, and refresh are derived
in order to calculate worst-case bandwidth. Taking the product of these efficiencies gives the
total memory efficiency. The theoretical maximum bandwidth a memory can reach is called peak
bandwidth and is calculated by multiplying the frequency, the data rate, and the interface-width
of the memory as shown in Equation 3.1.

peak bandwidth = fmem · data rate · IW (3.1)

By multiplying the peak bandwidth of the memory with the total memory efficiency the worst-
case bandwidth is calculated. Note that the calculated bandwidth value does not take request
size into account. Bandwidth without taking into account request size is called gross bandwidth
and is calculated by multiplying the memory efficiency with the peak bandwidth as shown in
Equation 3.2.

gross bandwidth = memory efficiency · peak bandwidth (3.2)

Bandwidth with taking into account request size is called net bandwidth and can be equal or less to
the gross bandwidth. If the access granularity of the memory controller is bigger than the request
size, a part of the access pattern is left unused, since a pattern is executed in a non-preemptive
manner and is called data efficiency. Data efficiency is expressed as Equation 3.3.

data efficiency =
request size

access granularity
(3.3)

In other words, the memory controller is utilized during the full pattern, but only a fraction of
the utilization time will actually be used by the request. Thus, net bandwidth is expressed as
Equation 3.4.

net bandwidth = data efficiency · gross bandwidth (3.4)

Also for latency calculation first, the dominance class of a pattern set is determined. Second, the
maximum latency of reads, writes and switches for x + 1 blocking requests is calculated, with
x the number of interfering requests. Because a request can arrive one cycle after the schedule
interval of the predictable arbiter, one extra blocking request is taken into account for worst-case
calculation due to non-preemptive requests. Third, the number of refreshes that can occur in the
maximum latency of blocking requests is counted with a minimum of one. The number of refreshes
is multiplied with the length of the refresh pattern to calculate the refresh blocking latency. Lastly,
the worst-case latency is calculated by adding up the maximum blocking latency of x+ 1 requests
and the refresh blocking latency.



4. PROPOSED PREDICTABLE SDRAM CONTROLLER

Predator in Section 3.4 interleaves over all SDRAM banks and uses a CPA to maximize worst-case
guaranteed bandwidth. This fits well with hard RT tasks, but not for soft RT tasks, since possible
data locality between requests is left unused as previously described in Section 1.1 and Section 2.3.

To make the proposed predictable SDRAM controller suitable for soft RT tasks, OP policy has
to be supported. Thus, creating the possibility to exploit possible data locality between requests.
Since a true OP policy affects the guaranteed worst-case performance of the controller by only
guaranteeing 16% bandwidth as seen in Figure 1.1, a conservative open-page policy is needed. With
Predator, requestors with a small request size are negatively affected by the large minimum access
granularity that is caused by maximizing bank parallelism. The proposed predictable memory
controller supports memory maps that interleave over one, two, four, and eight banks to enable
smaller access granularity for requestors with small requests.

First, the architecture overview of the proposed back-end is shown in Section 4.1. Second, the
extension of the different pattern types is explained in Section 4.2. The scheduling rules of these
extensions are stated in Section 4.3, followed by a description of the extensions per pattern in
Sections 4.4 to 4.6. Lastly, the conservative open-page policy is explained in Section 4.7.

4.1 Architecture overview

Components of the back-end of the predictable controller have to be altered to support OP policy
and smaller access granularities. Two components are changed, the command generator and the
pattern collection. One extra component is added, the next scheduled request. The proposed
back-end is shown in Figure 4.1. The functionality of the SDRAM controller front-end stays the
same, since the front-end is memory-type independent [4].

To enable OP policy the command generator needs to know if the currently served request
and the next scheduled request map to the same row of the clustered banks. The address decoder
must share the decoded address of both the currently serving request and the next scheduled
request with the command generator. If the current and next request map to the same bank(s)
and row, then this results in a row hit. When a row hit occurs, it is not needed to issue a precharge
command by the command generator, leaving the row open for the next scheduled request. Vice
versa, if the current and next request do not map to the same row of the clustered banks, then this
results in a row-miss. With a row-miss, a precharge command must be issued by the command
generator to close the current open row, so that the next scheduled request gets affected as little
as possible by the current serving request. Because of the introduction of row hits also the pattern
collection has to be altered to support OP policy.
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Fig. 4.1: Proposed back-end of predictable memory controller

4.2 Pattern extension

The existing pattern collection of the Predator controller only has patterns that rely on a CPA
policy, resulting in access patterns and auxiliary patterns that rely on access patterns that always
start with an ACT command and finish with an auto-precharge. These patterns need to be
extended with patterns that allow transitions between hits and misses. Table 4.1 shows all possible
transitions between hits and misses so that average-case performance improves by exploiting data
locality which is good for SRT.

Tab. 4.1: Possible transitions between hits and misses

Pattern mode Current request Next request
ACTPRE Miss Miss
ACTNoPRE Miss Hit
NoACTPRE Hit Miss
NoACTNoPRE Hit Hit

If the previous request is a row-miss, the previous request closed the row that it was accessing,
meaning that the current request needs to issue an ACT command to open the appropriate row
it wants to access. If the current request is a row hit, there is no need to issue an ACT command
since the previous request did not close the row it was accessing. Whether or not to precharge
the active row is analogue to issuing an ACT command. If the next request is a row-miss an
precharge must be issued by an explicit precharge or by an auto-precharge. If the next request is
a row hit, there is no need to issue a precharge, resulting in an open row. Thus, to support OP
policy, access patterns and auxiliary patterns for all possible transitions must be included in the
pattern collection. To distinguish access patterns and auxiliary patterns in the pattern collection,
a mode per pattern is added. Looking at the pattern mode in Table 4.1, ACT is present when the
current request is a row-miss and NoACT is present in the pattern mode if the current request is
a row hit. Likewise, PRE is present when the next request is a row-miss and NoPRE is present
in the pattern mode if the next request is a row hit. So, per memory map a read pattern, write
pattern, read-to-write pattern, write-to-read pattern, and a refresh pattern needs to be created for
all four modes (ACTPRE, ACTNoPRE, NoACTPRE, and NoACTNoPRE). The patterns for the
ACTPRE mode are already created by the existing tooling since these are the patterns used by the
CPA policy. Thus, the existing tooling is modified to also create access and auxiliary patterns for
the ACTNoPRE, NoACTPRE, and NoACTNoPRE pattern modes and is explained in Section 4.4
to Section 4.6 and therefore are a contribution of this project.
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4.3 Scheduling rules

The scheduling rules for CPA described previously in Section 3.4.4 need to be changed to support
OP policy, making the scheduling rules more complex. All five rules given in Section 3.4.4 are
still applicable, with the addition that pattern modes can now change between patterns. For
instance, when a row gets closed by the previous request, a row must be opened by the current
request. Thus, only modes ACTPRE and ACTNoPRE are allowed after closing a row, since an
ACT command must be present in the access pattern. Figure 4.2 shows the allowed transitions
between modes, which is a direct result of Table 4.1. A full state machine based on the proposed
scheduling rules can be found in Appendix C. Note that Predator always activates and precharges
within its read and write pattern and therefore consists of only the ACTPRE mode.

ACT
NOPRE

NOACT
PRE

NOACT
NOPRE

ACT
PRE

Fig. 4.2: Possible mode transitions

Rule one can be left unchanged, since non-preemption does not affect pattern modes. The
second rule needs to be changed, since this rule states that a read and write pattern can be issued
immediately after each other. A read and write pattern in the ACTPRE and NoACTNoPRE
modes still can be issued immediately after each other, because they do not change the begin and
end state of rows they access. On the other hand, a read and write pattern in the ACTNoPRE
and NoACTPRE modes cannot be issued after each other, since these patterns must be followed
up with a NoACTPRE or NoACTNoPRE and ACTPRE or ACTNoPRE read and write patterns,
respectively. The third rule still applies but needs to distinguish hit and miss switches, further
explained in Section 4.5. The fourth rule needs to be changed, since only a read and write of
modes ACTPRE and ACTNoPRE are allowed after a refresh. The fifth rule still applies, but
needs to issue the refresh pattern that is generated by the tooling for that mode.
The scheduling rules for open-page memory patterns are as follows:

1. Memory patterns are scheduled in a non-preemptive manner.

2. A read or a write pattern of mode ACTPRE can be scheduled immediately after itself or
when the memory is idle.

3. A read or a write pattern of mode NoACTNoPRE can be scheduled immediately after itself.

4. A read or a write pattern of modes NoACTPRE and ACTNoPRE can not be scheduled
immediately after itself or when the memory is idle.

5. A write pattern following a read pattern must be preceded by a read/write switching pattern
of the same mode and vice versa.

6. A read or a write pattern of modes ACTPRE and ACTNoPRE can be scheduled immediately
after a refresh pattern.

7. A refresh pattern of the same mode can only be scheduled after a read pattern, a write
pattern, another refresh pattern or if the memory is idle.
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4.4 Access patterns

Read and write patterns cannot be issued independently after each other anymore, as shown in
Section 4.3. Also, ACT commands and auto-precharge flags are or are not included in the read or
write pattern, depending on the pattern mode. Thus, the pattern generation tool described in [8]
needs to be changed. The current pattern generation tool tries to place the ACT command as
close as possible to its corresponding RD or WR command and schedules one bank at the time.
RD and WR commands are placed every BL

2 cycles apart to avoid data bus collision. Afterwards,
the ACT commands are scheduled tRCD earlier than the first RD or WR command of that bank.
If a RD or WR commands is less than tRCD from the ACT command then these RD or WR
commands get shifted to the right, delaying the RD or WR command. As an example Figure 4.3a
to Figure 4.3d show a BI2 -BC2 read pattern for all different modes. Note that only the blocking
timing constraints are shown instead of all timing constraints and that constraints are already
checked within a mode, but not between modes. Thus, after scheduling all SDRAM commands
in the read and write pattern, additional NOPs are added if one or more timing constraints are
violated due to dependencies between modes.
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Cycle 1 2 3 4 5 6 7 8 9

NOP NOP NOP NOP NOP

10 11 12

0 0 0 0 0 0 0 0

13 14 15 16 17 18 19 20

NOP NOP NOP NOP NOP NOPRD 1

1 1 1 1 1 1 1 1

ACT1NOP RD 0

0 0 0 0 0 0 0 0

NOP RD 1

1 1 1 11 1 1 1

NOP
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(a) BI2 -BC2 in ACTPRE mode
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(b) BI2 -BC2 in ACTNoPRE mode

Data

Command RD 0

Cycle 1 2 3 4 5 6 7 8 9

NOP NOP

10 11 12

0 0 0 0 0 0 0 0

13

NOP NOP NOP NOP RD 1

1 1 1 1 1 1

RD 0

0 0 0 0 0 0 0 0

NOP RD 1

1 1 1 1

NOPNOP

(c) BI2 -BC2 in NoACTPRE mode
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(d) BI2 -BC2 in NoACTNoPRE mode

Fig. 4.3: BI2 -BC2 read pattern for all modes

If the next request is a row hit then no precharge is needed and the next request begins directly
with a RD or WR command. Thus, an extra check is needed to verify if no data bus collision
can occur between an ACTNoPRE and a NoACTPRE or a NoACTNoPRE. This is done by
ensuring that tCCD-1 NOPs are added after the last RD or WR command in the access pattern,
which results in BL

2 cycles between RD or WR commands in patterns of different modes when not
precharging.

If the next request is a row-miss then one of the constraints that needs to be checked is the
ACT to ACT of the same bank (tRC) timing constraint. For an ACTPRE access pattern this is
already done, but for the NoACTPRE access pattern this is more complicated, since the cycle
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of the ACT command lies in the ACTNoPRE access pattern. Thus, the NoACTPRE patterns
can only be generated after the ACTNoPRE patterns. Note that it is possible that between an
ACTNoPRE and a NoACTPRE pattern multiple NoACTNoPRE patterns are issued, fulfilling
the tRC constraint. Since this is not a guarantee the NoACTPRE access pattern cannot assume
this.

4.5 Switch patterns

With Predator that uses CPA, the length of the switching patterns is dependent on the first and
last RD or WR command in its access pattern. With OP policy, the length of switching patterns is
dependent on the cycle of the last RD or WR command of its own access patterns and the cycle of
the first RD or WR command of access patterns of the modes these access patterns can transition
to. The cycle of the last RD or WR command of own access patterns is obtained after the access
patterns are generated. The first RD or WR command cycle is either 1 or tRCD + 1 depending on
a row hit or row-miss occurs, respectively according to the bank scheduling algorithm explained
in [8]. Figure 4.2 shows that every mode has two outgoing arrows, thus two possibly different
switch patterns might be needed. However, both transitions per mode always go to either a row
hit or row-miss, and the switching patterns for both transitions are always the same. Thus, only
one read-to-write switch pattern and only one write-to-read pattern per mode has to be generated.

4.6 Refresh pattern

The refresh pattern of Predator in Section 3.4.7 waits until all banks are precharged by adding NOP
commands for that amount of cycles. Afterwards, it issues the REF command and adds tRFC cycles
of NOP commands to satisfy this timing constraint. For the ACTPRE and NoACTPRE modes,
the same method for construction of the refresh pattern can be used. This is because rows get
closed after issuing the access patterns with these modes. For ACTNoPRE and NoACTNoPRE,
rows must first be precharged before the REF command can be issued. Precharging in the refresh
pattern cannot be done by the auto-precharge flag, since the flag must be sent by a RD or WR
command, leaving the possibility of issuing an explicit PRE command per bank or issuing an
explicit precharge-all command. A precharge-all command has the same timing constraints as a
precharge command. Thus, this is done by embedding a precharge-all command into the refresh
pattern, saving BI-1 cycles compared to issuing a PRE command per bank.

The Predator controller only has one refresh pattern that is used both for the read and write
pattern and is the maximum length of the read refresh pattern and the write refresh pattern. This
was done to narrow down the number of different pattern to simplify the scheduling rules. For
the proposed memory controller still only one refresh pattern per mode is stored, even though the
scheduling rules are far more complex.

4.7 Predictable open-page policy

The longer a row is kept open, the more chance the next request is known. True OP policy keeps
an activated row open as long as possible and precharges when the current request is a row-miss.
The decision moment whether or not to precharge of true OP policy is too late since precharing
and activating a row is done in the next request and hence it cannot exploit bank parallelism.
Therefore, resulting in possible loss of performance while guaranteeing maximum data locality. A
memory controller with true OP can be mapped to the fourth point in Figure 1.1 guaranteeing only
16% worst-case bandwidth. Since performance of hard RT tasks, thus, worst-case performance
must not be affected, true OP policy is not the way to go. Thus, the decision point whether or not
to precharge must be as late as possible without losing worst-case performance, mapping two the
second point in Figure 1.1. With Predator in Section 3.4, an auto-precharge is issued at every last
access on each bank, since a precharge must be issued per bank. Precharging a bank can be done
with an explicit PRE command or with an implicit auto-precharge flag when issuing a RD or WR
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command. Because an explicit precharge causes command bus collisions with other commands
in an access pattern, worst-case performance is affected. Thus, only auto-precharge is taken into
account, limiting precharging to RD or WR commands. The latest decision point whether or not
to keep the current row active without affecting worst-case performance at the last read or write
access of the first bank interleaved over. If the next request is not known at the latest decision
point, the row must be closed to preserve worst-case performance. Thus, there is a possibility that
the next request arrives one cycle later than the latest decision point, resulting in a miss instead of
a hit. The cycle to decide is dependent on the BC of a memory map and the mode of the current
issued access pattern. Figure 4.4a to Figure4.4c shows the decision point at three different cycles.
Note that read patterns are analogue to write patterns, which are shown in these figures.
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(a) Decision point BI1 -BC4 in ACTPRE mode
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(b) Decision point for BI1 -BC4 in NoACTPRE mode
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Fig. 4.4: Variable decision points

Figure 4.4a and Figure 4.4b show the difference in pattern mode. The ACTPRE mode pattern
starts with an ACT command, delaying the moment that the first WR command can be issued
on the command bus. The delay due to timing constraints takes tRCD cycles, which is exactly 5
cycles, as shown in Table 3.2. Because the NoACTPRE mode pattern directly starts with a WR
command, no delay of ACT to RD or WR command is included. That is also why the difference
in decision length is 5 cycles less when comparing Figure 4.4a and Figure 4.4b. Figure 4.4a and
Figure 4.4c show the difference in BC. The decision cycle of Figure 4.4c is only 5 cycles, since
there is only one WR command per bank. Thus as shown, the smaller the BC, the earlier the
decision must be made whether or not to close the active row. Note that the decision point of
ACTNoPRE patterns are the same as the ACTPRE patterns and NoACTPRE are the same as the
NoACTNoPRE patterns, since precharging only affects the end of an access pattern. The decision
cycle can be calculated depending on the pattern mode and the BC. For pattern modes ACTPRE
and ACTNoPRE the decision cycle is equal to Equation 4.1 for pattern modes NoACTPRE and
NoACTNoPRE the decision cycle is equal to Equation 4.2.

Decision cycle ACT = tRCD + (BC − 1) · BL
2

(4.1)

Decision cycle NoACT = (BC − 1) · BL
2

(4.2)



5. WORST-CASE EVALUATION

As stated in Chapter 1, a useful bound on WCET is required for hard RT tasks, since they rely on
guaranteed performance. This chapter looks into the impact on worst-case performance by different
memory maps for SDRAM, thus evaluating suitability for hard RT tasks. Performance aspects
that are looked at are bandwidth, latency, and energy. The worst-case scenario is when every
access results in a row-miss. Worst-case performance can be determined at design time after the
patterns have been generated and is automatically done by the existing tooling [7] during pattern
generation. Interleaving over a variable number of banks was already supported by the existing
pattern generation tooling, but was not used before and therefore interleaving over a variable
number of bank is a contribution of this project. Because the worst-case scenario always assumes
a row-miss, interleaving both row-wise and bank-wise have the same worst-case performance.

First in Section 5.1, the critical timing constraints per memory map are analyzed to get a better
view on constraints that are the bottleneck while generating patterns. In Section 5.2, different
memory maps are compared while keeping the memory specification constant to DDR3-800. Lastly
in Section 5.3, different memory specifications are compared with the DDR3-800 specification.

5.1 Interfering timing constraints

To thoroughly get an understanding on the memory efficiencies [7] gained from the generated
patterns, analysis of the access patterns is needed. As described in Section 4.4, the pattern
generation tool [8] first schedules the RD or WR commands. In the second step the ACT commands
are placed as close as possible to the first RD or WR command of that bank, possibly delaying RD
or WR commands of other banks. As the last step when all RD, WR, and ACT commands are
scheduled, NOPs are added at the end of an access pattern to satisfy certain timing constraints
of the SDRAM. Timing constraints that are checked in the last step are: read to read and write
to write (tCCD), activate to activate of the same bank (tRC), read to precharge (tRP), write to
precharge (tWL + tCCD + tWR), and four ACT command window (tFAW). Counting the number
of NOPs added per timing constraint gives insight into which constraint is increasing the length
of read and write patterns and thus critical for those patterns.

ACT to ACT
(tRC)

RD or WR
to Precharge

FAW
RD to RD or
WR to WR

(tCCD)

Fig. 5.1: Timings constraints hierarchy

The read to read and write to write timing constraint is data bus related, whilst the activate to
activate of the same bank, read to precharge, write to precharge, and four ACT command window
constraints are bank related. Figure 5.1 shows the order of occurrence of blocking constraints.
Note that the arrow of tCCD is dotted since this relation does not really exist in the memory
specification [16, 17], but is a result of how the generation tool checks the timing constraints
in the final step. tRC defines the minimum access pattern size, since in the worst-case scenario
always a row-miss is issued. When patterns get bigger than the minimum size, the RD or WR to
precharge constraint can still interfere. For DDR2 and DDR3 specifications, tRC is always bigger
or equal to tFAW and therefore the tFAW constraint can only occur within patterns that interleave
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over eight banks. When interleaving over eight banks, all other timing constraints are already met
due to the length of the pattern since all banks are precharged.

When always having row-misses, thus issuing only ACTPRE patterns, interference of the read
to read and write to write (tCCD) timing constraint can never happen if tRCD is longer or equal
to tCCD. This is proven by the straightforward fact that the first RD or WR command of the
next request is always delayed with tRCD cycle because of activating the row. Table 5.1 shows
the critical timing constraints of the DDR3-800 memory specification for every combination of BI
1,2,4,8 and BC 1,2,4,8,16,32, and 64 for read and write patterns. The table is vertically split up
into four sub tables that interleave over one to eight banks. For each BI the BC from 1 to 64 is
shown with the according access granularity of that memory map. Critical constraints are shown
for both the read and the write pattern per memory map.

Tab. 5.1: Critical timing constraints in cycles for DDR3-800

BI 1 1 1 1 1 1 1
BC 1 2 4 8 16 32 64
Granularity (bytes) 16 32 64 128 256 512 1024

Read constraints ACT to ACT 14 10 2
Precharge 6 8 8 8 8

Write constraints ACT to ACT 14 10 2
Precharge 5 9 17 19 19 19 19

BI 2 2 2 2 2 2 2
BC 1 2 4 8 16 32 64
Granularity (bytes) 32 64 128 256 512 1024 2048

Read constraints ACT to ACT 10 2
Precharge

Write constraints ACT to ACT 10 2
Precharge 5 9 3

BI 4 4 4 4 4 4 4
BC 1 2 4 8 16 32 64
Granularity (bytes) 64 128 256 512 1024 2048 4096

Read constraints ACT to ACT 2
Precharge

Write constraints ACT to ACT 2
Precharge 2

BI 8 8 8 8 8 8 8
BC 1 2 4 8 16 32 64
Granularity (bytes) 128 256 512 1024 2048 4096 8192

Read constraints FAW 2
Write constraints FAW 2

BI equal to one always has interference of critical timing constraints. For small burst counts
the ACT to ACT constraint is the bottleneck constraint. When BC increases the patterns become
longer and hide the tRC constraint. Then, the next constraint kicks in, which is the read or write
to precharge. Notice that the precharge after the WR command is more severe compared to the
precharge after the RD command, which is logical since the WR to precharge (15 cycles) is a
much longer timing constraint than the RD to precharge (4 cycles). BI equal to one has no ability
to hide precharge cycles because precharging constraints are related to the particular bank and
the pattern interleaves over only one bank and hence preventing reactivation of the bank until
precharging is completed.

Interleaving over two banks with a burst count of one has less tRC interference (10 cycles)
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compared to interleaving over one bank with a burst count of one (14 cycles). This can be
explained by the fact that two RD or WR commands are issued instead of only one. Thus, more
commands are issued, making the pattern longer, thus giving more cycles to hide the ACT to ACT
constraint. For a fair comparison of critical constraints, the access granularity needs to be taken
into account. Comparing tRC interference of the same access granularity shows a constant number
of NOPs added per access granularity. Since interleaving over two or more banks enables hiding
precharges, not all burst counts of banks interleaving equal to two and up suffer from interfering
constraints.

Keeping access granularity constant while looking at different values for bank interleaving
shows that the more banks interleaved over, the better precharge constraints are hidden. This is
explained by comparing the write patterns of BI2 -BC2 and BI4 -BC1. The write pattern of BI2 -
BC2 issues two read bursts per bank, while BI4 -BC1 issues only one burst per bank. Only issuing
one burst per bank has the advantage of precharging tCCD cycles earlier compared to issuing two
bursts per bank, therefore more precharge cycles can be hidden in the BI4 -BC1 write pattern.

The four ACT command window (FAW) is only interfering when interleaving over eight banks,
since tFAW is always equal or less than tRC for DDR2 and DDR3 memories. Thus, if interleav-
ing over four or less banks, tRC already blocked the possibility of issuing more than four ACT
commands within the tFAW window. Only a BC of one suffers from the tFAW timing constraint.

Summarizing results and conclusions for critical timing constraints:

• Interleaving over two or more banks enables precharge hiding

• Small access granularities has the ACT to ACT bottleneck

• The bigger the access granularity the less interference of critical constraints

• BI1 always has cricital constraints

• Only BI8 -BC1 has the FAW bottleneck

Results are the same when comparing different memory specifications. The trend is that the
slower the memory (DDR2-400), the smaller the access granularity without timing constraint
interference and the lower the number of cycles of interference. Likewise, the faster the memories
(DDR3-1600), the larger the access granularity must be before no timing constraints interfere
and the higher the number of cycles of interference. Interfering timing constraint values for the
DDR2-400, DDR2-800, and DDR3-1600 memory specifications are found in Appendix D.

5.2 Comparison of memory maps

This section shows the impact of memory maps on worst-case performance for the DDR3-800
memory specification. The worst-case performance analysis is split up in three categories. First,
Section 5.2.1 analyzes the impact on bandwidth. Second, Section 5.2.2 analyzes the impact on
latency and shows the relation between bandwidth and latency. Lastly, Section 5.2.3 shows the
impact on energy.

5.2.1 Bandwidth

DDR3-800 memory has a peak bandwidth of 1600 MB/sec. The guaranteed net bandwidth can-
not reach the peak bandwidth because of interference from activates, precharges, switches, and
refreshes. The goal, however, for worst-case bandwidth, is to guarantee as much net bandwidth as
possible. The first step of analysis consists of looking at the bandwidth values per memory map
without data efficiency taken into account, thus gross bandwidth, for patterns with combinations
of BI 1 to 8 and BC 1 to 64. The second step of analysis consists of determining the best data
efficiency in percentage of request size and access granularity, therefore taking net bandwidth into
account. The third and last step consists of determining the best memory map per request size.
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Table 5.2 shows the gross bandwidth in MB/sec for the combinations of BI 1 to 8 and BC 1 to
64.

Tab. 5.2: Gross bandwidth (MB/sec) for DDR3-800

BC 1 BC 2 BC 4 BC 8 BC 16 BC 32 BC 64
BI 1 granularity (B) 16 32 64 128 256 512 1024

bandwidth (MB/sec) 252.3 435.1 682.1 952.4 1187.7 1355.1 1457.8

BI 2 granularity (B) 32 64 128 256 512 1024 2048
bandwidth (MB/sec) 504.1 868.0 1339.0 1443.6 1503.1 1534.7 1551.0

BI 4 granularity (B) 64 128 256 512 1024 2048 4096
bandwidth (MB/sec) 1005.6 1337.7 1443.6 1503.1 1534.7 1551.0 1559.3

BI 8 granularity (B) 128 256 512 1024 2048 4096 8192
bandwidth (MB/sec) 1181.1 1443.6 1503.1 1534.7 1551.0 1559.3 1563.4

It is shown that increasing both the BI and BC increases gross bandwidth that eventually
converges to 1600 MB/sec. The longer the non-preemptive read or write burst is, the longer
no interference of switches and refreshes can occur, increasing the guaranteed worst-case gross
bandwidth. This also holds when comparing access granularities, since they are related to BI
and BC. Comparing banks interleaving with the same access granularity, the same conclusions as
the timing constraint conclusions in Section 5.1 can be drawn. In fact, Table 5.1 and Table 5.2
show a direct relation. The more interference of timing constraints at the end of the access
patterns the lower the gross bandwidth. BI equal to one always has a lower gross bandwidth
guarantee and interference of the tFAW for BI8 -BC1 can also be seen in Table 5.2 for BI2 -BC4
and BI8 -BC1 which results in a lower gross bandwidth. Memory maps with the same access
granularity that have no timing constraint interference have the same gross bandwidth. Thus,
making worst-case gross bandwidth for the same granularities independent of bank parallelism
when all interfering timing constraints are satisfied. Note that Table 5.2 shows an important
property that maximizing bank parallelism is not always good for worst-case performance; both
BI2-BC4 and BI4-BC2 perform better than BI8-BC1. This shows that the proposed controller can
guarantee more bandwidth than the Predator controller for requests smaller than 256 bytes. There
is one more anomaly that needs explanation. BI2 -BC4 (write pattern 37 cycles) performs slightly
better in terms of gross bandwidth than BI4 -BC2 (write pattern 34 cycles) while BI2 -BC4 has 3
cycles of precharge interference for the write pattern. But because the write pattern of BI2 -BC4
is 3 cycles longer, the write-to-read switch pattern and the refresh pattern both become 3 cycles
shorter, thus resulting in a slightly higher bandwidth.

As the second analysis step, the best data efficiency in percentage of request size and access
granularity is determined by looking at net bandwidth. When taking net bandwidth into account,
also the atomizer of the SDRAM memory controller’s front-end explained in Section 3.4.1 must be
considered. The atomizer assures that the request size of requests is scaled to the same length as
the access granularity of the configured memory map. Requests bigger than the access granularity
get split up into smaller request that have the same size as the access granularity, resulting in a
100% data efficiency. However, requests that are smaller than the access granularity are enlarged
into one bigger request that has the same size as the access granularity, result in a data efficiency
below 100%. Since net bandwidth is related to request size and access granularity, it is sufficient to
show a subset of memory maps that all interleave over two banks. Conclusions drawn in this step
can be used for the memory maps with any number of banks interleaving. Table 5.3 shows the net
bandwidth in MB/sec for request sizes 16 to 1024 bytes when interleaving over two banks. Cells
of Table 5.3 are highlighted in green when access granularity of the memory map and request size
of a requestor are exactly the same size. Cells are highlighted in yellow when access granularity is
smaller than the request size of a requestor.
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Tab. 5.3: Net bandwidth (MB/sec) for DDR3-800 with BI2

Request size (B)
16 32 64 128 256 512 1024

BC 1 Data efficiency (%) 50% 100% 100% 100% 100% 100% 100%
Net BW (MB/sec) 252.0 504.1 504.1 504.1 504.1 504.1 504.1

BC 2 Data efficiency (%) 25% 50% 100% 100% 100% 100% 100%
Net BW (MB/sec) 217.0 434.0 868.0 868.0 868.0 868.0 868.0

BC 4 Data efficiency (%) 12.5% 25% 50% 100% 100% 100% 100%
Net BW (MB/sec) 167.3 334.7 669.5 1339.0 1339.0 1339.0 1339.0

BC 8 Data efficiency (%) 6.25% 12.5% 25% 50% 100% 100% 100%
Net BW (MB/sec) 90.2 180.4 360.9 721.8 1443.6 1443.6 1443.6

BC 16 Data efficiency (%) 3.13% 6.25% 12.5% 25% 50% 100% 100%
Net BW (MB/sec) 46.9 93.9 187.8 375.7 751.5 1503.1 1503.1

BC 32 Data efficiency (%) 1.56% 3.13% 6.25% 12.5% 25% 50% 100%
Net BW (MB/sec) 23.9 47.9 95.9 191.8 383.6 767.3 1534.7

BC 64 Data efficiency (%) 0.78% 1.56% 3.13% 6.25% 12.5% 25% 50%
Net BW (MB/sec) 12.1 24.2 48.4 96.9 193.8 387.7 775.5

Interleaving over two banks has a minimum access granularity of 32 bytes (BC 1) and a
maximum access granularity of 2048 bytes (BC 64). The minimum access granularity of 32 bytes
has a negative effect on requests of 16 bytes since half of the data, thus half of the gross bandwidth
is left unused. Since data efficiency never exceeds 100% it is not recommended to choose a memory
map that has a smaller access granularity then the request size. By keeping BC constant it is
shown in Table 5.3 that a data efficiency of 100% always has the same value of net bandwidth. To
be exact, this value is the gross bandwidth of that memory map shown in Table 5.2. When gross
bandwidth does not double when doubling access granularity it is not worthwhile to go below
100% data efficiency. In Table 5.2 gross bandwidth never doubles while keeping banks interleaving
constant. Hence, the memory map with the exact same granularity as the request size assures the
highest net bandwidth.

As the last step, the best memory map per request size is determined. Table 5.4 shows the
net bandwidth in MB/sec for the memory maps with BI 1 to 8 and BC1 to 64 and is the result
of redoing step two for one, four, and eight banks interleaving. Table 5.5 shows the BC for the
particular memory maps used in Table 5.4. Cells that are highlighted in green guarantee the most
bandwidth for a given request size.

Tab. 5.4: Net bandwidth (MB/sec) for DDR3-800 with best BC

Request size (B)
16 32 64 128 256 512 1024

BI 1 252.38 435.1 682.1 952.4 1187.7 1355.1 1457.8
BI 2 252.0 504.1 868.0 1339.0 1443.6 1503.1 1534.7
BI 4 251.4 502.8 1005.6 1337.7 1443.6 1503.1 1534.7
BI 8 147.6 295.2 590.5 1181.1 1443.6 1503.1 1534.7
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Tab. 5.5: Burst counts for the memory maps used in Table 5.4

Request size (B)
16 32 64 128 256 512 1024

BI 1 BC1 BC2 BC4 BC8 BC1 6 BC3 2 BC6 4
BI 2 BC1 BC1 BC2 BC4 BC8 BC1 6 BC3 2
BI 4 BC1 BC1 BC1 BC2 BC4 BC8 BC1 6
BI 8 BC1 BC1 BC1 BC1 BC2 BC4 BC8

In step two, gross bandwidth never doubles when doubling burst count while keeping banks
interleaving constant, which also does not happen when interleaving over a different number of
banks. Therefore, it is never worthwhile to go below a data efficiency of 100%. As concluded
in the first step, worst-case gross bandwidth for granularities is independent of number of banks
interleaving when all interfering timing constraints are satisfied. This also shows in Table 5.4,
as request sizes of 256 and up for banks interleaving two and up all have the same worst-case
guaranteed net bandwidth.

Summarizing results and conclusions for DDR3-800 worst-case bandwidth:

• It is best to choose a memory map with an access granularity that is identical to the request
size

• Conclusions of critical timing constraints of Section 5.1 are also seen for worst-case bandwidth
for DDR3-800

• BI1 memory maps’ inability of precharge hiding is seen for request sizes of 32 bytes and up

• FAW bottleneck is seen for BI8 -BC1

• If no bottleneck constraints are interfering for memory maps with the same access granularity
then these memory maps guarantee the same bandwidth

5.2.2 Latency

Worst-case latency for a request is calculated as the maximum latency that occurs through inter-
ference of reads, writes, switches and precharges for x + 1 interfering requests [7] and is briefly
explained in Section 3.4.8. Since a response must be returned as quickly as possible, the goal
is to minimize worst-case latency. First, latency for one and four interfering requests are ana-
lyzed without taking into account request sizes. Second, the relation between request size and
access granularity is evaluated for the whole set of memory maps. Table 5.6 shows the maximum
interfering latency in cycles when one and four requests are interfering.
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Tab. 5.6: Maximum latency in cycles with interference of x requests for DDR3-800

BC 1 BC 2 BC 4 BC 8 BC 16 BC 32 BC 64
BI 1 granularity (B) 16 32 64 128 256 512 1024

x = 1 (cycles) 94 102 118 150 214 342 598
x = 4 (cycles) 169 189 229 309 469 789 1429

BI 2 granularity (B) 32 64 128 256 512 1024 2048
x = 1 (cycles) 98 110 135 202 330 586 1098
x = 4 (cycles) 173 197 248 414 734 1374 2717

BI 4 granularity (B) 64 128 256 512 1024 2048 4096
x = 1 (cycles) 106 138 202 330 586 1098 2185
x = 4 (cycles) 181 254 414 734 1374 2717 5340

BI 8 granularity (B) 128 256 512 1024 2048 4096 8192
x = 1 (cycles) 146 202 330 586 1098 2185 4422
x = 4 (cycles) 276 414 734 1374 2717 5340 10964

First, the relation between different memory maps and the worst-case latency is looked into.
Likewise as the first step for gross bandwidth in Section 5.2.1, increasing BI and BC results
in a higher latency for both one and four interfering requests. This is explained by the fact
that increasing BI and BC generates longer access patterns, resulting in longer finishing times
per interfering request. Comparing memory maps with the same access granularity, it is shown
that one bank interleaving always has a higher latency compared to two, four and eight banks
interleaving which is caused by the inability to hide precharge timing constraints. Furthermore,
for access granularities of 256 bytes and up, latency is the same per granularity since no timing
constraints are interfering anymore. This holds for both one and four interfering requests. Thus,
comparing memory maps with the same access granularity show the same characteristics as the
net bandwidth in Table 5.2 in relation to Table 5.1.

As the second step, worst-case latency is analyzed with respect to request size. Because patterns
are non-preemptive, latency does not go down when data efficiency goes below 100%. Waiting
requests still have to wait until the interfering requests are served. When access granularity
is smaller than the request size, a request gets split up into smaller requests by the atomizer.
Although latency per split up request gets smaller, total completion latency of the whole request
can increase by possible switching between the requests, interference of requests with a higher
priority and smaller access granularities can suffer more of timing constraints. Thus, from a
requestor point of view it is best to choose a memory map with a granularity that has the exact
same size as the request size. Table 5.7 shows the maximum latency for one and four interfering
requests in cycles. Highlighted cells show the lowest worst-case latency for every request size.
Burst counts for the according memory maps for worst-case latency are the same as for worst-case
bandwidth and are shown in Table 5.5.
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Tab. 5.7: Maximum latency for DDR3-800 for x interfering requests in cycles

Request size (B)
16 32 64 128 256 512 1024

x = 1 BI 1 94 102 118 150 214 342 598
BI 2 98 98 110 135 202 330 586
BI 4 106 106 106 138 202 330 586
BI 8 146 146 146 146 202 330 586

x = 4 BI 1 169 189 229 309 469 789 1429
BI 2 173 173 197 248 414 734 1374
BI 4 181 181 181 254 414 734 1374
BI 8 276 276 276 276 414 734 1374

Because two banks interleaving memory maps have a minimum granularity of 32 bytes, request
sizes 16 and 32 bytes have the same latency values because of non-preemptive patterns. This is also
seen for four and eight banks interleaving memory maps up to a request size of 64 and 128 bytes,
respectively. As shown, the memory maps that are the best choice for one interfering request are
still the best choice when four requests are interfering. Thus, choosing a memory map in terms
of latency for DDR3-800 is independent of how many requests are interfering. The maximum
latency results in Table 5.7 show a lot of similarity with the net bandwidth results in Table 5.4.
The similarity is explained by the fact the both bandwidth and latency are highly related to the
pattern length and therefore also the interfering timing constraints, creating a correlation between
worst-case bandwidth and worst-case latency. Hence, we conclude that choosing a memory map
that is best for a request size, is also best for latency.

Summarizing results and conclusions for DDR3-800 worst-case latency:

• It is best for total completion latency to choose a memory map with an access granularity
that is identical to the request size

• Conclusions of critical timing constraints of Section 5.1 are also seen for worst-case latency
for DDR3-800

• Best memory maps given a request size are the same for bandwidth and total completion
latency

5.2.3 Energy

A DDR memory has different power values per cycle depending on the state of the banks and
the commands on the command bus. If all banks are precharged then the memory consumes
precharged-background power, while if one or more of the banks is active the memory consumes
active-background power. On top of background power, the memory also consumes active power
when activating, precharging, reading, and writing. By bounding the active power for the corres-
ponding commands, power per cycle for patterns can be calculated [11]. When power per cycle
and the clock period are known, energy per pattern can be calculated. The pattern generation
tool in [8] is extended, so that during design time also energy per pattern is calculated. Extending
the pattern generation tool is done during the project and is therefore a contribution. Table 5.8
shows energy in picojoules of memory maps for Micron’s MT41J64M16 specification.
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Tab. 5.8: Energy per read and write pattern for Micron’s MT41J64M16

Banks interleaving 1 1 1 1 1 1 1
Burst count 1 2 4 8 16 32 64
Granularity (bytes) 16 32 64 128 256 512 1024

Read energy (pJ ) 9450 12150 18675 32475 60075 115275 225675
Write energy (pJ) 10537.5 14137.5 21337.5 35737.5 64537.5 122137.5 237337

Banks interleaving 2 2 2 2 2 2 2
Burst count 1 2 4 8 16 32 64
Granularity (bytes) 32 64 128 256 512 1024 2048

Read energy (pJ ) 15150 20550 33975 61575 116775 227175 447975
Write energy (pJ) 16387.5 22837.5 35737.5 63975 121575 236775 467175

Banks interleaving 4 4 4 4 4 4 4
Burst count 1 2 4 8 16 32 64
Granularity (bytes) 64 128 256 512 1024 2048 4096

Read energy (pJ ) 26550 39975 67575 122775 233175 453975 895575
Write energy (pJ) 28087.5 41175 69975 127575 242775 473175 933975

Banks interleaving 8 8 8 8 8 8 8
Burst count 1 2 4 8 16 32 64
Granularity (bytes) 128 256 512 1024 2048 4096 8192

Read energy (pJ ) 53100 79575 134775 245175 465975 907575 1790775
Write energy (pJ) 54300 81975 139575 254775 485175 945975 1867575

As shown in Table 5.8 and in [11], the higher the BI and BC the more energy the read and
write patterns consume. Thus, choosing an access granularity bigger than the request size results
in more energy consumption. By keeping BI constant while decreasing BC it is shown that energy
of read and write patterns never decrease with a factor two or more. Therefore, choosing an access
granularity that is smaller than the request size results in a higher energy consumption, since the
request is split up into multiple smaller requests that in total consume more energy. So, it is
best to choose an access granularity that is the same size as the request size. When looking at
different number of banks interleaving while keeping access granularity constant it is shown that
interleaving over more banks always consumes more energy for read patterns. For writes this does
not always holds as shown for BI1 -BC1 6 and BI2 -BC8, which is explained by the severity of
the write-to-precharge critical constraint shown in Section 5.1 for one bank interleaving memory
maps. By adding up the read and write pattern energy it holds that while keeping access granularity
constant it is shown that interleaving over more banks always consume more energy. This is shown
Figure 5.2 and explained by the fact that activating and precharging rows consumes the majority
of energy in a pattern.
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Fig. 5.2: Energy consumption of read patterns for DDR3-800 in picojoules

When timing constraints are interfering, interleaving over more banks reduces pattern length,
but adds active power from ACT commands and auto-precharges. The reduction in length reduces
active-background power. However, the active-background power saving is less compared to the
extra consumption from the added ACT commands and auto-precharges. Note that the number
of RD and WR commands stay the same, since access granularity is unchanged. If no timing con-
straints are interfering, interleaving over more banks does not reduce pattern length, but does add
active power from ACT commands and auto-precharges, which results in more energy consump-
tion. Hence, increasing bank parallelism by interleaving over more banks is not worthwhile when
the worst-case performance of bandwidth and latency does not increase, since this only increases
power.

Summarizing results and conclusions for DDR3-800 worst-case energy:

• Decreasing BI results in a lower energy consumption when access granularity stays constant

• Staying access granularity constant, it is not worthwhile to increase BI when bandwidth and
latency do not improve

• A trade-off can be made between energy and bandwidth with latency

Worst-case bandwidth and latency have a correlation, as shown in Section 5.2.2. Energy
however, does not share this relation, since the lower BI the lower the energy consumption,
resulting in that bank interleaving always consumes the least energy. Thus, a trade-off between
energy consumption and bandwidth together with latency can be made. When optimizing for
energy consumption, it is best to pick the memory map that interleaves over one bank with the
same access granularity as the request size. Whilst optimizing for bandwidth and latency, it is
best to pick the memory map with the best performance for a given request size. If no timing
constraints are interfering, the memory map with the lowest BI that still guarantees the best worst-
case performance is the best choice. Note that decreasing BI while keeping the same granularity
increases BC which in turn is good for the conservative open-page policy, because it delays the
decision point whether to close the current row or leave it open, as explained in Section 4.7. While
this is not applicable to worst-case performance, it still is something to keep in mind when choosing
a memory map when using an OP policy.

5.3 Comparison of memory specifications

The impact of memory maps on worst-case bandwidth, latency and energy for the DDR3-800
specification is analyzed in Section 5.2 and shows that bandwidth and latency both are highly
related to the interfering timing constraints in Section 5.1. Energy, however, is related to BI and
BC. This section compares the impact of memory maps on worst-case performance for DDR2-400,
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DDR2-800, and DDR3-1600 to the results of DDR3-800 in Section 5.2 to to verify if they still hold
for other DDR memories. For a fair comparison, all memories have the same BL, IW, number of
columns, number of rows, and number of banks as the DDR3-800, described in Table 3.1. The
DDR2-400 and DDR2-800 are based on Micron’s MT47H64M16 datasheet with different speed
bins while DDR3-1600 is based on Micron’s MT41J64M16 datasheet, which is the same datasheet
that is used for DDR3-800 memory, but uses a different speed bin.

Section 5.3.1 first checks if the conclusions in Section 5.2.1 still hold for worst-case bandwidth
when differing DDR memories after which trends for bandwidth are shown. Section 5.2.2 and
Section 5.3.3 do the same but for worst-case latency and energy, respectively.

5.3.1 Bandwidth

First, the guaranteed net bandwidth of the DDR2-400, DDR2-800, and DDR3-1600 are compared
to the net bandwidth of memory DDR3-800. This is done to verify that the conclusions made in
Section 5.2.1 are also applicable to other DDR memories. Second, the impact of request size on
net bandwidth among memories is evaluated to see if there is a trend. Table 5.9 to Table 5.12
show net bandwidth in MB/sec for the DDR2-400 to DDR3-1600 memories and table cells are
colored per request size to highlight the best option.

Tab. 5.9: Net bandwidth (MB/sec) for DDR2-400

Request size (B)
16 32 64 128 256 512 1024

BI 1 209.7 331.2 466.1 585.4 671.2 724.4 754.2
BI 2 209.2 418.4 659.0 714.0 746.0 763.1 771.9
BI 4 164.4 328.8 657.7 714.0 746.0 763.1 771.9
BI 8 89.2 178.5 357.0 714.0 746.0 763.1 771.9

Tab. 5.10: Net bandwidth (MB/sec) for DDR2-800

Request size (B)
16 32 64 128 256 512 1024

BI 1 262.3 449.6 699.4 968.5 1199.1 1361.1 1459.7
BI 2 261.9 523.9 896.9 1372.6 1461.8 1511.4 1537.5
BI 4 261.2 522.5 1045.1 1371.7 1461.8 1511.4 1537.5
BI 8 162.5 325.1 650.2 1300.4 1461.8 1511.4 1537.5

Tab. 5.11: Copy of net bandwidth (MB/sec) for DDR3-800

Request size (B)
16 32 64 128 256 512 1024

BI 1 252.38 435.1 682.1 952.4 1187.7 1355.1 1457.8
BI 2 252.0 504.1 868.0 1339.0 1443.6 1503.1 1534.7
BI 4 251.4 502.8 1005.6 1337.7 1443.6 1503.1 1534.7
BI 8 147.6 295.2 590.5 1181.1 1443.6 1503.1 1534.7
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Tab. 5.12: Net bandwidth (MB/sec) for DDR3-1600

Request size (B)
16 32 64 128 256 512 1024

BI 1 286.8 525.8 901.3 1402.1 1941.4 2403.7 2728.5
BI 2 286.5 573.1 1050.2 1798.0 2696.1 2900.0 3014.3
BI 4 286.0 572.1 1144.2 2095.0 2695.6 2900.0 3014.3
BI 8 193.2 386.5 773.0 1546.0 2695.6 2900.0 3014.3

When no timing constraints are interfering, net bandwidth is the same for a given request
size. Thus, net bandwidth for the same access granularity is independent of the number of banks
interleaving when all interfering timing constraints are satisfied. One bank interleaving memory
maps still have a lesser worst-case net bandwidth, with the exception of 16 bytes because of data
efficiency. The anomaly of a slightly higher bandwidth of two banks interleaving compared to four
banks interleaving when write patterns only have precharge interference, explained in Section 5.2.1,
is also seen in the other memories. This is applicable for a request size 64 bytes for DDR2-400,
128 bytes for DDR2-800, and 256 bytes for DDR3-1600, respectively. Therefore, comparing net
bandwidth results with the net bandwidth results of DDR3-800, taking into account the interfering
timing constraints in Appendix D, it is shown that the relations of the DDR3-800 memory still
hold. Note that the important remark in Section 5.2.1 of maximizing bank parallelism holds for
all DDR memories. Net bandwidth of memory maps that interleave over eight banks have lesser
or equal net bandwidth than memory maps that interleave over one, two, or four banks.

As mentioned in Section 5.1, the faster the memory the bigger the access granularity has to
be before no timing constraints interfere and the higher the number of cycles of interference. This
is also seen in the net bandwidth of the different memories. For instance, DDR2-400 already
saturates with a request size of 128 bytes, while DDR2-800 and DDR3-800 saturate with a request
size of 256 bytes and DDR3-1600 saturates with a request size of 512 bytes. The smaller the
requests, the smaller the difference in guaranteed net bandwidth among the different memories.
Likewise, the bigger the requests get, the bigger the spread in guaranteed bandwidth. So, an
important guideline can be concluded from these trends, which is that when serving small sized
requests it is not worthwhile to choose a fast memory, since fast memories do not perform well with
small bursts. Likewise, when serving large requests, it is not a good choice to select a slow memory,
since their guaranteed net bandwidth is low for large bursts. This is also seen in Figure 5.3 where
a box plot is shown per request size for DDR2-400, DDR2-800, DDR3-800, and DDR3-1600. The
upper and lower whiskers of the box plot show the maximum and minimum value. The upper and
lower boxes represents the third and first quartile respectively. The border between the upper and
lower box represents the median.
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Fig. 5.3: Box plot of net bandwidth among memories

Summarizing results and conclusions for multiple memories worst-case bandwidth:

• DDR3-800 bandwidth conclusions in Section 5.2.1 hold for all memories

• The faster the memory, the larger the request size must be before no critical timing constraint
interfere as the bottleneck

• Small requests show a small difference in net bandwidth between memories

• Large requests show a large difference in net bandwidth between memories

5.3.2 Latency

For latency, first the maximum latency in Section 5.2.2 for DDR3-800 is compared with the
maximum latency for DDR2-400, DDR2-800, and DDR3-1600 to see if conclusions still hold for
different DDR memories. Second, maximum latency for different request sizes among memories
are compared in cycles to find trends. Lastly, because memories run at different speeds, maximum
latency is also compared in nanoseconds. Table 5.13 to Table 5.16 show the maximum latency for
one and four interfering requests for DDR2-400, DDR2-800, and DDR3-1600 respectively.

Tab. 5.13: Maximum latency for DDR2-400 for x interfering requests in cycles

Request size (B)
16 32 64 128 256 512 1024

x = 1 BI 1 56 64 80 112 176 304 560
BI 2 60 60 72 107 171 299 555
BI 4 75 75 75 107 171 299 555
BI 8 107 107 107 107 171 299 555

x = 4 BI 1 101 121 161 241 401 721 1378
BI 2 105 105 131 213 373 693 1370
BI 4 133 133 133 213 373 693 1370
BI 8 213 213 213 213 373 693 1370
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Tab. 5.14: Maximum latency for DDR2-800 for x interfering requests in cycles

Request size (B)
16 32 64 128 256 512 1024

x = 1 BI 1 99 107 123 155 219 347 603
BI 2 103 103 115 140 206 334 590
BI 4 111 111 111 142 206 334 590
BI 8 146 146 146 146 206 334 590

x = 4 BI 1 171 191 231 311 471 791 1431
BI 2 175 175 199 250 414 734 1374
BI 4 183 183 183 254 414 734 1374
BI 8 264 264 264 264 414 734 1374

Tab. 5.15: Copy of maximum latency for DDR3-800 for x interfering requests in cycles

Request size (B)
16 32 64 128 256 512 1024

x = 1 BI 1 94 102 118 150 214 342 598
BI 2 98 98 110 135 202 330 586
BI 4 106 106 106 138 202 330 586
BI 8 146 146 146 146 202 330 586

x = 4 BI 1 169 189 229 309 469 789 1429
BI 2 173 173 197 248 414 734 1374
BI 4 181 181 181 254 414 734 1374
BI 8 276 276 276 276 414 734 1374

Tab. 5.16: Maximum latency for DDR3-1600 for x interfering requests in cycles

Request size (B)
16 32 64 128 256 512 1024

x = 1 BI 1 176 184 200 232 296 424 680
BI 2 181 181 192 216 269 398 654
BI 4 192 192 192 208 270 398 654
BI 8 246 246 246 246 270 398 654

x = 4 BI 1 308 328 368 448 608 928 1568
BI 2 313 313 336 384 495 817 1457
BI 4 324 324 324 352 497 817 1457
BI 8 442 442 442 442 497 817 1457

Table 5.7 in Section 5.2.2 shows that the best memory map per request size for DDR3-800 is
independent on the number of interfering requests, which is still the case for DDR2-400, DDR2-800,
and DDR3-1600. Furthermore, DDR2-400, DDR2-800, DDR3-800, and DDR3-1600 all have the
same memory map as best choice for net bandwidth and maximum latency. Hence, this confirms
that net bandwidth and maximum latency are related to each other and their interfering timing
constraints for all DDR memories.

As noted in Section 5.1, the faster the memory, the higher the penalty in number of cycles
from timing constraints, therefore the larger the access granularity must be to fully satisfy all
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interfering timing constraints. This is also seen in Table 5.13 to Table 5.16. For both one and four
interfering requests, the impact of interfering timing constraints in cycles gets smaller when request
size increases. This trend is shown in Figure 5.4a and Figure 5.4b for one and four interfering
requests, respectively.
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Fig. 5.4: Latency in cycles for one and four interfering requests

DDR2-400 runs at 200 MHz, both DDR2-800 and DDR3-800 run at 400 MHz, and DDR3-1600
runs at a speed of 800 MHz, thus having different clock periods. Therefore, it is important to
compare maximum latency in time instead of cycles. Since latency in cycles never doubles for both
one and four requests when going to a faster memory while cycle periods halves, faster memories
always have a better worst-case latency. In Figure 5.4a and Figure 5.4b, it is shown that the
impact of interfering timing constraints in cycles get smaller when request size increases. Thus,
the difference in latency between memories in time gets bigger when request size increases. This
trend is shown in Figure 5.5a and Figure 5.5b for one and four interfering requests, respectively.
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Fig. 5.5: Latency in nanoseconds for one and four interfering requests

The guideline for choosing a memory for bandwidth at the end of Section 5.3.1 which states
that it is not worthwhile to choose a fast memory when serving small sized requestors, is also
applicable for worst-case latency. Likewise, for larger request sizes it is worthwhile to select a
faster memory.

Summarizing results and conclusions for multiple memories worst-case latency:

• DDR3-800 latency conclusions in Section 5.2.2 hold for all memories

• The faster the memory, the larger the request size must be before no critical timing con-
straints are behaving as the bottleneck

• Faster memories result in higher latency in cycles per request size

• Faster memories result in lower latency in nanoseconds per request size

• Difference in latency in cycles between memories increases when request size increases
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5.3.3 Energy

Like bandwidth and latency, also for energy, conclusions made for DDR3-800 in Section 5.2.3 are
checked to see if they are still applicable among DDR memories. Energy values of read patterns of
different memories are compared, since every memory has different currents for active-background,
precharged-background, activating, precharging, reading, and writing, which results in different
energy consumption per memory. Furthermore, DDR2 operates at 1.8 Volt while DDR3 operates
at 1.5 Volt, resulting in an even greater difference in energy consumption per memory.

Figure 5.6a to Figure 5.6d show energy consumption in picojoules of read patterns for different
access granularities for DDR2-400, DDR2-800, and DDR3-1600 respectively. Only energy of read
patterns are evaluated, since adding up read and write patterns are analogue to read patterns.
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Fig. 5.6: Energy consumption of read patterns in picojoules

For DDR3-800, it is shown in Section 5.2.3 that activating and precharging rows consumes the
majority of energy in a read and write pattern. This still holds, as shown in the energy consumption
of read patterns for DDR2-400, DDR2-800, and DDR3-1600. Thus, energy consumption is related
to BI, not making it worthwhile to interleave over more banks when worst-case performance does
not increase for all memories.

Since all memories have different background and active currents and operate at different
voltages, it is needed to compare energy consumption among memories. The energy consump-
tion of memory maps that are optimized for performance are shown in Figure 5.7a and energy
consumption of memory maps that are optimized for energy are shown in Figure 5.7b. Savings
from optimizing for energy are shown in picojoules and percentages in Figure 5.7c and Figure 5.7d
respectively. Optimizing for worst-case performance it is shown that DDR2 memories always con-
sume more energy compared to DDR3 memories, due to a higher operation voltage. This is also
shown in Figure 5.7a, where DDR2-400 and DDR2-800 consume more energy than DDR3-800 and
DDR3-1600 for all request sizes.
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Fig. 5.7: Energy consumption when optimizing for worst-case performance and its saving when optimizing
for energy both in picojoules

Comparing DDR2 memories, it is seen that DDR2-400 always consumes less energy than
DDR2-800. However, comparing DDR3 memories, it is seen that energy consumption is dependent
on the request size. DDR3-1600 consumes more energy for the request sizes of 16, 32, 64, and 128
bytes while DDR3-800 consumes more for the request sizes of 256, 512, and 1024 bytes. This is
explained by the fact that faster memories have a higher penalty in timing constraints for small
request sizes. Therefore, the difference in energy is small for a small request size, but increases
with request size. This trend is also seen in bandwidth and latency, as shown in Figure 5.3
and Figure 5.5 respectively. DDR2-800 consumes the most energy overall. With the knowledge
that DDR2-800 and DDR3-800 have almost the same worst-case performance, it is best to choose
DDR3-800 memory, since energy consumption for the same request size of DDR2-800 is always
more than twice as high as for consumption of DDR3-800.

The choice whether to optimize for performance (bandwidth and latency) or for energy con-
sumption is the same for all memories. When optimizing for energy, pick the memory map that
interleaves over one bank with a BC that matches the request size. While optimizing for perform-
ance, choose the memory map with the best performance in bandwidth and latency. If multiple
memory maps have the same performance, choose the memory map that interleaves over the least
number of banks, to reduce energy consumption.

Figure 5.7c shows the amount of energy in picojoules that is saved for each memory per request
size when optimizing for energy instead of bandwidth and latency. No energy is saved with requests
of 16 bytes because worst-case performance and lowest energy both map to the same memory map
(BI1 -BC1 ). Because DDR2-800 consumes the most energy, it also saves the most in picojoules
when optimizing for energy. DDR2-800, DDR3-800 and DDR3-1600 all interleave over four banks
for the best performance for 64 byte requests. Knowing that interleaving is responsible for the
largest amount of energy consumption, it is logical that most energy is saved for request of 64 bytes
when optimizing for energy instead of performance which is also seen in percentage in Figure 5.7d.
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DDR3-1600 also interleaves over four banks for best performance, compared to interleaving over
two banks by the other memories for a request size of 128 bytes, which is the reason for the peak
for DDR3-1600 with requests of 128 bytes. Requests of 256, 512, and 1024 bytes all have the same
amount of energy that can be saved for each memory in picojoules. This amount is exactly the
number of joule that one activate and a precharge consume since all memories interleave over two
banks when optimized for performance while interleaving over one bank when optimized for energy.
Therefore, the amount of energy that can be saved in picojoules is related to the difference in bank
interleaving when optimizing for energy or performance. Looking at the savings percentages for
requests of 256, 512, and 1204 bytes it is seen that percentages are decreasing when request size
increases which can be explained by the fact that savings in picojoules stays constant but energy
per pattern increases, resulting in a decrease in percentage.

Summarizing results and conclusions for multiple memories worst-case energy:

• DDR3-800 energy conclusions in Section 5.2.3 hold for all memories

• DDR2 memories always consume more energy than DDR3 memories

• DDR2-400 always consumes less energy than DDR2-800 per request-size

• Difference in energy between memories increases when request size increases

• Energy saving by optimizing for energy is related to the reduction of BI



6. AVERAGE-CASE EVALUATION

As mentioned in Chapter 1, mixed Time-Criticality Systems must guarantee tight bounds on worst-
case performance for hard Real-Time tasks, while minimizing the average response time for soft
Real-Time tasks. The evaluation of the impact of memory maps on worst-case performance is done
in Chapter 5, while this chapter evaluates the impact on average-case performance. Since average-
case is dependent on the applications running on the RTS and the input of these applications,
average-case evaluation cannot be done at design time, but must be done at run-time. Unlike the
worst-case evaluation in Chapter 5, where row-wise and bank-wise memory maps have the same
performance, average-case performance for row-wise and bank-wise memory maps might differ,
but only for an open-page policy.

Section 6.1 explains the experimental setup that is used for simulations and Section 6.2 eval-
uates the average-case results.

6.1 Experimental setup

The entire proposed architecture is shown in Figure 6.1. As seen, this is the combination in
the front-end of Figure 3.5 and the back-end in Figure 4.1. This architecture is implemented in
a SystemC [1] model for simulation. SystemC is becoming the de-facto standard [12] for high
level modeling of embedded systems and is a system-level modeling language that has semantic
similarities to VHDL and Verilog. Processes of SystemC can communicate in a simulated real-
time environment. Therefore, it is the appropriate simulation environment for the average-case
evaluation.
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Fig. 6.1: Proposed architecture

The front-end consists of atomizers, delay blocks, a bus, and a predictable arbiter. The func-
tionality of these components is explained in Section 3.4.1. The back-end consists of an address
decoder, a command generator, and a pattern collection. The address decoder in the back-end
has knowledge of which request is scheduled next. The functionality of the back-end components
is explained in Section 4.1. The predictable memory controller always runs at the same clock
frequency as the memory it is attached to. If the controller would run at a lower frequency, it
would not be able to cope with the command bus and data bus demands of the memory and if
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the controller would run at a higher frequency, unnecessary clock domain crossings are required
between the controller and the memory. Requestors, however, can run at a higher or lower fre-
quency than the predictable controller. Therefore, a clock domain crossing is instantiated between
a requestor and the atomizer belonging to that requestor by the simulation tooling.

A requestor generates traffic to the controller using a traffic generator and receives data from
the controller in case of a read. This traffic can be either synthetic or trace based. Synthetic
traffic is generated on the fly during simulation. Per requestor, the read and write bandwidth can
be specified for synthetic traffic. Time between requests is calculated with a normal distribution
based on the specified bandwidth. Read and write requests have their own distribution settings,
since bandwidth usage of reads and writes can differ per requestor.

Trace-based traffic generates requests based on a trace that is created beforehand and is an
implementation of a model described in [18]. This model includes inter-request interval, request
dependence, and code dependence as parameters per trace request. The inter-request interval
defines the number of cycles between consecutive requests assuming zero memory latency. Request
dependence defines which future request is blocking the current request, while the code dependence
defines the number of cycles the current request can continue before blocking itself. Because this
model only models traffic load, more information per request has to be known to run a trace
during simulation. Therefore the parameters access type, address, size, and peripheral are added
to the model in [18]. Access type defines whether the current request is a read or a write request.
The address parameter of the trace request defines the logical address that the request is accessing
and is needed by the address decoder for OP policy. Size defines the request size in bytes and
the peripheral parameter defines if the request is a cache-hit or a cache-miss. By including the
peripheral parameter, requestors with and without caches can be played using the same trace.
Per trace driven traffic generator, the number of outstanding requests and cache skipping can be
specified. The number of outstanding requests defines how many requests can be outstanding
by the generator before it blocks and therefore architectures with different pipeline depths can
be modeled. Cache skipping specifies whether or not the architecture has a cache. This high
level processor simulator that plays traces, is implemented during this project and therefore a
contribution.

6.1.1 Architecture settings

Because the impact of memory maps on average-case performance is evaluated, there must be
no interference or as little as possible between the requestor and the back-end of the predict-
able controller. Requestors are therefore directly connected to the memory controller without
a network-on-chip, and run a trace to produce the same traffic for the different memory maps.
Components in the predictable controller that can cause interference are the delay block and the
arbiter. The delay block is still instantiated, but are switched off so that requests are not delayed
until their worst-case responsetime. The round-robin arbiter is used during simulation to give
every requestor an equal share in bandwidth.

6.1.2 Applications

Two types of traces are used for average-case analysis, one is synthetic created with a Matlab
model and one is created with a cycle-accurate ARM simulator, running actual applications. The
set of synthetic traces consists of a sequential, a random, a thrashing, and a worst-case trace. The
sequential trace consists of a mix of reads and writes that access addresses sequentially and is a
trace best used for evaluating the maximum benefits of open-page and close-page policy and the
difference between row-wise and bank-wise memory maps, since all requests have data locality.
The random trace issues requests to random addresses, and the thrashing trace issues requests
to different rows resulting in a row-miss per request. The worst-case trace also issues requests to
different rows, resulting in a row-miss per request, but with the difference that the worst-case trace
always switches between a read and a write and every request is independent to maximize load.
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The worst-case trace can be used to verify the worst-case analysis in Chapter 5, while the thrashing
and random traces have the purpose to create interference for other running applications.

The cycle-accurate ARM simulator SimpleScalar [6] is used to produce traces of actual ARM
programs. By modifying SimpleScalar, support for trace creation is added that enables request
and code dependencies to be extracted. For average-case analysis, a trace of a H263 decoder that
decodes one frame is created to also include a real application. Because the minimum size of
ARM instructions is 32 bytes, traces with a request size of 16 bytes are not possible. To narrow
down the number of simulations to be done, trace files with a request size up to 256 bytes are
created. Creating bigger requests is done by adding more associativity to the cache, while keeping
the block-size of the cache constant. Enlarging the associativity influences the number of cache-
misses, since the higher the associativity, the higher the chance to have a cache-hit instead of a
cache-miss, as seen in Table 6.1.

Tab. 6.1: Size of the H263 decoder trace for different request sizes

Request size (Bytes) Number of requests
32 6679
64 2510
128 1353
256 782

6.2 Evaluation

Memory maps have an impact on average-case performance in terms of bandwidth, total energy,
and total execution time. Total energy is calculated with the logged memory commands that are
issued during the simulation and are the input of the same SDRAM energy model [11] that is
used in Section 5.2.3 and Section 5.3.3. Total execution time is measured in cycles. Bandwidth is
calculated by counting the amount of data that is transferred by the memory during the simulation
and dividing that number with the total execution time.

First in Section 6.2.1, the worst-case evaluation of Chapter 5 is verified to see if the simulation
environment and the worst-case model are conformable. Second in Section 6.2.2, the interfering
behavior of delay blocks is explained. In Section 6.2.3 performance of different memory maps with
CPA are looked at per application running stand-alone. In Section 6.2.4 performance of different
memory maps with OP are looked at per stand-alone application to see what impact data locality
has on average-case performance. Lastly, Section 6.2.5 evaluates average-case performance when
multiple applications are running concurrently to see how much data locality is thrashed by running
multiple concurrent applications.

6.2.1 Verifying worst-case analysis

By simulating the worst-case trace, the worst-case evaluation of Chapter 5 can be verified. Since
the worst-case scenario always consists of a row-miss, also the Matlab generated worst-case trace
consists of row misses. The memory controller is configured to use a CPA policy, since worst-case
cannot exploit data locality. The worst-case trace with only writes is used for memory maps
that are write-dominant and the worst-case trace that constantly switching between reads and
writes is used for mixed-dominant memory maps. To guarantee the maximum load, the number
of outstanding requests is set to 255, which will result in a fully backlogged request queue. First
bandwidth is compared, after which latency and energy are compared.

Section 5.2.1 states that it is best to choose a memory map with an access granularity that is
the same size as the request size and therefore this also must be verified in simulation. Table 6.2
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shows the bandwidth in MB/sec for simulations of the worst-case trace for different memory maps
that interleave over two banks and for different request sizes. Table 6.2 also shows the difference
in bandwidth compared to Table 5.3 per memory map. If difference is positive then the simulated
bandwidth at run-time performs better than the evaluated bandwidth at design time. Cells of the
table are highlighted green when access granularity and request size are equally sized. Cells are
highlighted yellow when access granularity is smaller than the request size.

Tab. 6.2: Bandwidth (MB/sec) for DDR3-800 with BI2 simulating worst-case trace

Request size (B)
32 64 128 256

BC 1 Data efficiency (%) 100% 100% 100% 100%
Bandwidth (MB/sec) 501.8 501.8 504.1 504.0
Difference (MB/sec) -2.2 -2.2 0.0 0.0

BC 2 Data efficiency (%) 50% 100% 100% 100%
Bandwidth (MB/sec) 433.8 867.6 867.6 867.5
Difference (MB/sec) -0.1 -0.3 -0.3 -0.4

BC 4 Data efficiency (%) 25% 50% 100% 100%
Bandwidth (MB/sec) 333.7 667.3 1334.7 1375.4
Difference (MB/sec) -1.0 -2.1 -4.2 36.4

BC 8 Data efficiency (%) 12.5% 25% 50% 100%
Bandwidth (MB/sec) 180.3 360.7 721.5 1443.0
Difference (MB/sec) -0.0 -0.1 -0.2 -0.5

As shown in Table 6.2, the cells that are highlighted in green have the highest worst-case
bandwidth per request size. Hence, a memory map with the same access granularity as the
request size actually has the best worst-case bandwidth. The BI2 -BC1 and BI2 -BC2 memory
maps are write-dominant, meaning that a write pattern takes longer than a write-to-read switch
combined with both a read and a read-to-write switch. As seen in the interfering timing constraints
in Table 5.1, the write-dominance is a result of not having the ability to hide a precharge of a
write pattern. BI2 -BC4 and BI2 -BC8 are both mix-read dominant, meaning that a write-to-
read switch combined with a read pattern is longer than a read-to-write switch combined with a
write pattern, which exactly matches the worst-case trace. As seen in Table 6.2, request size up
to 100% data efficiency have little difference for mix-read dominant memory maps and therefore
proving that worst-case bandwidth calculation at design time is tight since the slight difference are
explained by startup effects. However, bandwidth performance for mixed-dominant memory maps
with request sizes above 100% is not tight since performance is better than worst-case, as seen for
BI2 -BC4 with a request size of 256 bytes. This can be explained by the fact that the atomizer
splits the read and write requests into two read and two write requests respectively. No switch
has to be issued between the two consecutive reads or writes, resulting in a higher bandwidth
benefiting from consecutive reads and writes. Since BI2 -BC1 and BI2 -BC2 are write-dominant
the trace only consists of writes and therefore this effect is not seen for BI2 -BC1 and BI2 -BC2.

Table 6.3 shows the bandwidth in MB/sec, simulating different memory maps with the worst-
case trace and the difference in bandwidth compared to worst-case bandwidth in Table 5.4.
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Tab. 6.3: Bandwidth (MB/sec) simulating worst-case trace for DDR3-800

Request size (B)
32 64 128 256

BI 1 bandwidth (MB/sec) 433.8 682.1 948.0 1183.5
difference (MB/sec) -1.3 0.0 -4.3 -4.1

BI 2 bandwidth (MB/sec) 501.8 867.6 1334.7 1443.0
difference (MB/sec) -2.2 -0.3 -4.2 -0.5

BI 4 bandwidth (MB/sec) 501.8 1003.7 1334.5 1443.0
difference (MB/sec) -0.9 -1.8 -3.1 -0.5

BI 8 bandwidth (MB/sec) 288.1 576.3 1152.6 1443.0
difference (MB/sec) -7.1 -14.2 -28.4 -0.5

Concentrating on the difference in MB/sec, all memory maps that interleave over one bank are
write-dominant. The same holds for BI2 -BC1, BI2 -BC2, and BI4 -BC1, where BI2 -BC1 maps to
the 32 bytes request of BI2 and BI2 -BC2 maps to the 64 bytes request of BI2. BI4 -BC1 maps
to both the 32 and 64 bytes requests of BI4, since the minimum access granularity of four bank
interleaving memory maps is 64 bytes. BI8 -BC1 maps to the 32, 64, and 128 byte request and is
the only memory map that suffer from the FAW constraint and is also the memory map with the
most difference in bandwidth compared to worst-case bandwidth calculations at design time. The
exact reason for this difference could not be clarified and only happens for DDR3-800.

Comparing Table 5.4 and Table 6.3 to determine which memory map is best for what request
size, it is shown that both have the same memory maps for best worst-case performance. This
also holds for DDR2-400, DDR2-800, and DDR3-1600. So, for bandwidth it is demonstrated by
simulation that the worst-case evaluation during design time is tight and therefore can be used to
see which memory map fits best for which request size when using a CPA policy with the exception
of BI8-BC1 for DDR3-800.

During simulation, both for read and write requests measuring latency is started at the time
that the traffic generator sends the request to the atomizer. Measurement of a read request ends
when the requested data is arrived at the traffic generator, while for a write request measurement
ends when the data is written in the memory, since a write request does not generate response
data. Comparing latency in depth is a difficult task, since the worst-case trace simulation is fully
back-logged, resulting in really high latencies per request. As a result, the average and maximum
latencies are more dependent on how many requests fit in the buffers of the memory controller
rather than the relation between memory map and request size. Therefore, the comparison of
worst-case latency is skipped.

As for energy, during simulation, energy of the entire trace (total energy) is measured, while
during the worst-case evaluation, energy per read and write pattern is measured. While simulating,
all memory commands are logged and after simulation the total energy of the whole trace is
calculated with the same SDRAM energy model [11] that is used in Section 5.2.3 and Section 5.3.3.
Figure 6.2a shows energy consumption of different memory maps for the worst-case trace with 64
byte requests for DDR3-800.
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Fig. 6.2: Energy in µJ for the worst-case trace with 64 byte sized requests for DDR3-800

Because the total energy is calculated as the total energy of a trace, energy for simulation is
first related to bandwidth. If difference in bandwidth are minimal, then difference in total energy
is also seen by the effect of the number of activates and precharges that reside in the read and
write patterns. Hence, memory maps with a higher guaranteed bandwidth that possibly interleave
over more banks can consume less energy during simulation compared to the memory maps that
consume the less energy per read and write pattern. This is also seen in Figure 6.2a. For instance,
energy consumption during run-time for BI2 -BC2 is less energy than for BI1 -BC2.

Comparing memory maps between access granularities, it is seen that trends between access
granularities for worst-case energy per pattern at design time shown in Figure 5.2 are different
than the total energy trends between access granularities in Figure 6.2b. However, the trends
within access granularities are the same for worst-case energy per pattern at design time and
total energy for worst-case verification. This is also seen when bandwidth saturates, resulting
in the same guaranteed bandwidth for two, four, and eight bank interleaving. When bandwidth
saturates, it is not beneficial to interleave over more banks than necessary, since more energy is
consumed by the activates and precharges while bandwidth stays the same. This can be seen in
Figure 6.2b for an access granularity of 256 bytes for the memory maps that interleave over two,
four, and eight banks.
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Fig. 6.3: Energy comparison between memories in µJ

The energy consumption trend between memories in Section 5.3.3 is also seen in Figure 6.3.
DDR2 memories still consume more energy compared to DDR3 memories and DDR2-800 consumes
the most energy per request size. The conclusions of Section 5.3.3 about energy savings are not
applicable anymore, thus no trade-off can be made anymore between saving energy and bandwidth
for average-case.

Summarizing results and conclusions for worst-case verification:
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• Worst-case calculations at design time is tight

• Memory maps that are best for a request size at design time are also best for worst-case
verification

• Worst-case latency cannot be verified since system is fully backlogged

• Worst-case energy per pattern cannot be verified since only total trace energy is measured

• Total trace energy is first related to bandwidth and when bandwidth differences are small
then the trends seen in Section 5.3.3 are applicable again

6.2.2 Delay block interference

Before continuing with the average-case performance for stand-alone running applications with a
CPA policy, interference of the delay block has to be explained. Although the delay block is turned
off, it still is instantiated and used, but it does not delay requests until their worst-case response
time, as mentioned in Section 6.1.1. As seen in Figure 6.1, the delay block resides between an
atomizer and the bus with the arbiter. The delay block has the property that a request must be
fully buffered before it can be sent to the bus. IW · 2 bits of data are sent per clock cycle from
the atomizer to the delay block, which is the same speed the memory data bus is operating on.
As shown in Section 5.3.1 and Section 6.2.1, it is always best to choose a memory map that has
an access granularity with the same size as the requests. However, this only holds if the memory
controller is fully backlogged. Note that a fully backlogged system is only possible when both
the number of outstanding requests and the trace dependencies allow this. If the architecture
supports a large number of outstanding requests then a trace that does not allow more than
two outstanding request will prevent the memory controller from being fully backlogged and vice
versa. If the memory controller is not fully backlogged, it can be that a memory map with an access
granularity smaller than the request size has a higher average-case performance compared to the
memory map that is equal in size to the request size.

64 130

Memory

Delay block

Cycles

(a) BI4 -BC4 memory map (access granularity 256
bytes)

10064

Memory

Delay block
Cycles32

(b) BI4 -BC2 memory map (access granularity 128
bytes)

Fig. 6.4: Delay block interference scenario in cycles for a write request of 256 bytes

Assume a DDR3-800 memory controller using the BI4 -BC4 memory map is idling after which
it receives a write request of 256 bytes. The atomizer will issue one request since the access
granularity is equal to the request size. Transferring 256 bytes of data from the atomizer to the
delay block takes 64 cycles and the write pattern is 66 cycles long. Thus the entire request will
take 64 + 66 = 130 cycles, as shown in Figure 6.4a. If the memory controller uses the BI4 -BC2
memory map instead of the BI4 -BC4 memory map then the atomizer will issue two requests of
128 bytes since is access granularity is half the request size. Transferring 128 bytes of data from
the atomizer to the delay block takes 32 cycles. After these 32 cycles the first write request of 34
cycles can already be issued. The second request is transferred at the same time the first write
request is issued to the memory. When the first request is served on the 66th cycle, the second
request is already buffered in the delay block and ready to be issued. The entire write request of
256 bytes will take 32 + (34 · 2) = 100 cycles as shown in Figure 6.4b. Therefore, which memory
map is best for average-case can be affected by the turned off delay block. Note that only the first
request that is issued when the memory is idling pays this penalty. Hence, traffic with low load is
more likely to see this interference than traffic with high load.
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Although interference is seen in the delay block, the actual component causing the problem
is the memory itself since the memory does not allow bubbles on the data bus. At least one
component of the memory controller must first fully buffer a request before the request can be
issued to the memory. All components between the delay block and the memory guarantee the
necessary throughput of data and therefore do not need to buffer requests.

When difference in access granularity and the length of the access patterns are known, the
turnaround point in n consecutive backlogged requests of the delay block interference can be
calculated with Equation 6.1.

n =
transfer cycles large granularity − transfer cycles smaller granularity

length pattern smaller granularity − length pattern large granularity
(6.1)

For the example between BI4 -BC4 and BI4 -BC2, an average load of at least 64−32
68−66 = 16 consec-

utive backlogged requests are needed to not notice the delay block interference.

6.2.3 Applications stand-alone close-page policy

Memory maps have an impact on average-case performance. To get useful insights without losing
overview, first average-case performance with a CPA policy is evaluated in this section, after
which average-case performance with an OP policy is evaluated and compared to the CPA policy
in Section 6.2.4. Bandwidth, total energy, and total execution time of the trace are taken into
account for average-case performance. Bandwidth is calculated by dividing the amount of data
by the time it is needed to serve the request. The faster a request is served, the lower the total
execution time. Therefore, bandwidth and total execution time are related, since the amount of
data in a trace is fixed. There is a high probability that also total energy of a trace is related to
the bandwidth, since the higher the bandwidth, the faster the trace is finished and therefore the
less energy the whole trace consumes, which is also shown in Section 6.2.1.

First, bandwidth is evaluated for a combination of different memory maps and request sizes
for the synthetic sequential, random, and thrashing traces. The conclusions drawn from the
synthetic traces are compared with the evaluation of the H263 trace to see if they still hold
for a real application trace. The difference between row-wise and bank-wise is not taken into
account because of the CPA policy. Second, the average-case performance of different memories
is compared.

Figure 6.5a shows the bandwidth of the sequential, random and thrashing traces for average-
case for a request size of 32 bytes and Figure 6.5b for a request size of 256 bytes, both for DDR3-800.
The first bar shows bandwidth in MB/sec for the sequential trace with an access granularity of
32 bytes for the one bank interleaving memory map, which is BI1 -BC2. The second bar shows
the bandwidth for the two bank interleaving map (BI2 -BC1 )also for the sequential trace. Note
that four and eight bank interleaving memory maps have a minimum access granularity of 64 and
128 bytes, respectively, which is why no values for an access granularity of 32 bytes is presented
for these memory maps. By choosing the smallest and largest request size, a proper view of the
impact of access granularity on request size is shown for the DDR3-800 memory.
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(b) Bandwidth in MB/sec for the sequential, random, and thrashing traces for 256 byte requests

Fig. 6.5: Bandwidth in MB/sec for the sequential, random, and thrashing traces

Comparing performance of traces, it is seen that all three traces have the same performance
per access granularity, which holds for both the 32 byte and 256 byte requests. This is explained
by the fact the three traces have the same traffic load and the CPA does not exploit data locality,
which results in the same average-case bandwidth. In Figure 6.5a where requests of 32 bytes
are issued by the traffic generator, it is seen that the bigger the access granularity the lower the
average-case bandwidth performance, which is logical since only an access granularity of 32 bytes
has a data efficiency of 100%. Therefore, data is left unused for the access patterns with bigger
access granularity than 32 bytes, resulting in bandwidth loss. However, for requests of 256 bytes
no data is thrown away, which is seen in Figure 6.5b, where bandwidth goes up when increasing
in access granularity. One exception is the access granularity of 256 bytes, where average-case
bandwidth is lower than the access granularity of 128 bytes even though data efficiency is still
100%, but this can be explained by the interference of the delay block, as shown in Section 6.2.2.
In fact, Figure 6.4a and Figure 6.4b show the delay block interference for DDR3-800 between the
four bank interleaving memory map with an access granularity of 256 and 128 bytes where the
128 bytes access granularity (BI4 -BC2 ) is faster. Comparing worst-case bandwidth of DDR3-800,
shown in Table 5.4, with the average-case bandwidth, it is seen that the same trends in worst-
case bandwidth are also shown in Figure 6.5a and Figure 6.5b. To be more precise, the memory
maps that are best for worst-case bandwidth for a given request size (which is equal to the access
granularity) are also best for average-case bandwidth with the same access granularity. The one
bank interleaving memory maps always provide less bandwidth compared to the two, four and
eight bank interleaving memory maps, since precharging one bank cannot be hidden. Also the
saturation of the DDR3-800 memory is seen for an access granularity of 256 bytes. These relations
also hold for DDR2-400, DDR2-800, and DDR3-1600, and trends between memories are the same
as for worst-case bandwidth.

As stated in the beginning of this section, total execution time and bandwidth are related.
This also shows in Figure 6.6a and Figure 6.6b where the total execution in cycles of the three
traces is shown for a request size of 32 and 256 bytes, respectively, for DDR3-800.
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(a) Total execution time in cycles for 32 byte requests for DDR3-800
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(b) Total execution time in cycles for 256 byte requests for DDR3-800

Fig. 6.6: Total execution time for the sequential, random, and thrashing trace in cycles

Comparing Figure 6.5a to Figure 6.6a, it is seen that the higher the bandwidth, the lower
the total execution time in cycles and vice versa. Likewise, this is also seen when comparing
Figure 6.5b to Figure 6.6b. Because bandwidth is calculated by dividing the amount of data by
the time it is needed to serve the request, bandwidth and total execution time within DDR3-800
memory is always related and holds for all memories.

Figure 6.7a and Figure 6.7b show the total energy of the three traces for DDR3-800 with 32
byte and 256 byte requests, respectively. For both 32 byte and 256 bytes requests, it is seen
that per access granularity, interleaving over more banks always consumes more energy. This
is explained with the conclusion drawn in Section 5.2.3, which states that for a given access
granularity, interleaving over more banks always consumes more energy since transferred data
stays the same, while the number of activates and precharges increases.
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(a) Total energy in µJ for 32 byte requests for DDR3-800
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(b) Total energy in µJ for 256 byte requests for DDR3-800

Fig. 6.7: Total energy for the sequential, random, and thrashing trace in µJ

For requests of 32 bytes, it is seen that the bigger the access granularity, the more energy is
consumed, which is logical since the bigger the access granularity the more unnecessary data is
transferred. However, for 256 byte requests, it is the other way around. Memory maps with a
small access granularity always perform badly for large request sizes in terms of bandwidth and
energy. For bandwidth, because timing constraints are interfering for small access granularities,
and for energy, because requests from the traffic generator are split up into multiple requests
that result in extra activates and precharges due to CPA policy. Hence, the bigger the access
granularity the lower the total energy consumption when requests are large. Energy conclusions
for average-case with a CPA policy for DDR3-800 are the same as for worst-case verification for
DDR3-800 in Section 6.2.1.

Synthetic traces give a nice insight of the impact of different memory maps on average-case
performance. However, only real applications will be issuing requests in real-life. Therefore,
also traces of real applications must be taken into account. Figure 6.8 shows the average-case
performance in bandwidth, energy, and execution time for the H263 video decoder for requests of
32 bytes and 256 bytes for DDR3-800. As shown in Table 6.1, the number of requests issued within
a trace decreases when request size increases, since fewer cache-misses occur when enlarging the
associativity of a cache and this difference is noticeable for total energy, and total execution time
but not for bandwidth for the H263 trace for different request sizes.
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(a) Bandwidth in MB/sec for 32 byte request
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(b) Bandwidth in MB/sec for 256 byte request
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(c) Total execution time in cycles for 32 byte requests
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(e) Energy in µJ for 32 byte requests
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(f) Energy in µJ for 256 byte requests

Fig. 6.8: Bandwidth, execution time, and energy of the H263 decoder trace

Average-case bandwidth in Figure 6.8a and Figure 6.8b for the H263 decoder trace is similar
to the average-case bandwidth in Figure 6.5a and Figure 6.5b in trend for both 32 and 256 byte
requests. The exact values in MB/sec are slightly less, which is caused by a different load and
request dependencies of the H263 trace compared to the sequential, random and thrashing traces.
Bandwidth and total execution time are still, related as seen in Figure 6.8a and Figure 6.8c,
for 32 byte requests and for 256 byte requests as seen in Figure 6.8b and Figure 6.8d. Trends
in average-case total energy in Figure 6.7a and Figure 6.7b are also seen in Figure 6.8e and
Figure 6.8b. Hence, there is no difference in trends between the synthetic and real traces for
average-case performance with a CPA policy and therefore drawn conclusions are applicable for
both synthetic and real application traces.

Summarizing results and conclusions for DDR3-800 average-case CPA performance:

• CPA policy trashes all possible data locality

• Bandwidth loss due to data efficiency is seen for small requests combined with large access
granularities

• Bandwidth loss due to timing constraints is seen for large requests combined with small
access granularities

• Interference of the delay block is shown for both a request size and an access granularity of
256 bytes
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• Trends of DDR3-800 worst-case bandwidth are also applicable for DDR3-800 average-case
bandwidth with a CPA policy

• Bandwidth and execution time are related

• Interleaving over more banks results in a higher total energy consumption

• Total energy increases when data efficiency decreases due to unneeded accesses

• Total energy increases when access granularity is smaller than request size due to increased
critical timing constraints and unneeded activates and precharges

• The H263 decoder trace shows the same trends as the sequential, random, and thrashing
traces

Figure 6.9 shows the bandwidth of the sequential, random and thrashing traces for the average-
case for request sizes from 32 to 256 bytes. The first till the fourth bar show the sequential trace
with 32 byte requests for DDR2-400, DDR2-800, DDR3-800, and DDR3-1600 respectively. The
middle bars show the random trace with 32 byte requests for the above memories in the same
order. Each bar shows the best average-case per memory, depending on the request size. Note
that these memory maps are not necessarily the same memory maps that perform best during
worst-case because of the delay block interference explained in Section 6.2.2.

Sequential Random ThrashingSequential Random ThrashingSequential Random ThrashingSequential Random Thrashing

0

500

1000

1500

2000

2500

32 64 128 256

B
an

d
w

id
th

(M
B

 /
se

c)

Request size (Bytes)

DDR2-400 DDR2-800 DDR3-800 DDR3-1600

Fig. 6.9: Bandwidth in MB/sec for synthetic traces with CPA

As seen, average-case bandwidth of the three synthetic traces performs the same when memory
and request size are equal. This can be explained by the fact that all three traces have an equal load
and possible data locality within traces is ignored by the CPA policy. The trends of the worst-case
analysis in Section 5.3.1 also hold for average-case: slower memories saturate at smaller request
sizes compared to the faster memories, and the smaller the request sizes the smaller the difference
in bandwidth among different memories.

Memories run at different speeds and therefore execution time must not only be compared in
clock cycles, but also in nanoseconds for a fair comparison. Figure 6.10a shows the total execution
time in cycles of the three synthetic traces and Figure 6.10b shows the total execution time in
nanoseconds for the memories DDR2-400, DDR2-800, DDR3-800, and DDR3-1600. For a fair
bandwidth comparison, the memory maps that have the best average-case are also selected for
showing the values of total execution time per memory, depending on the request size.
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Fig. 6.10: Total execution time for the sequential, random, and thrashing trace

It is shown that per request size, the faster the memory the more cycles it takes to finish the
trace. The difference in cycles per memory decreases when request size increases, which is caused
by the timing constraints that interfere longer in cycles for faster memories. When request size
increases, the total execution time in cycles also increases, which is explained by the fact that the
amount of data per trace doubles when doubling the request size, since the number of requests is
constant for synthetic traces. Note that the total execution time is not doubling as the amount
of data doubles for two reasons. One, a larger request size, thus a larger access granularity, has
a higher bandwidth performance and therefore the trace is finished faster. Two, the majority
of energy in a pattern consists of activate and precharge energy, and by increasing only BC the
number of activates and precharges stays the same while doubling the amount of data transferred
within one access. When comparing memories in nanoseconds instead of cycles, as shown in
Figure 6.10b, the reverse trend of Figure 6.10a is shown. Although faster memories suffer more in
cycles, total execution time never doubles when doubling frequency. Therefore, faster memories
transfer the data in shorter time, which is also seen in Figure 6.9 where bandwidth increases when
total execution time in nanoseconds decreases. Thus, the relation between bandwidth and total
execution time holds for all memories.

Figure 6.11 shows the total energy consumption for the three traces per request size. Figure 6.3
shows a lot of similarities with Figure 6.11. Like the total execution time, also for total energy, the
memory maps that have the best average-case performance in terms of bandwidth are selected for
showing the values of total energy per memory, depending on the request size for a fair comparison.
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Fig. 6.11: Total energy for the sequential, random, and thrashing traces

Both figures show the difference in energy between DDR2 and DDR3 memories and that
DDR2-400 consumes less energy than DDR2-800 for all request sizes. Furthermore, the energy
consumption of DDR3-800 and DDR3-1600 are almost similar for small request sizes, while DDR3-
1600 consumes less compared to DDR3-800 when request size increases. It is now shown that the
average-case bandwidth and total execution time for a CPA policy of synthetic traces is similar
in trend to worst-case performance, shown in Chapter 5 and Section 6.2.1 for all memories. For
energy, however, this is not the case, since total energy is first dependent on bandwidth and then
when difference in bandwidth is negligible, it is dependent on the number of banks interleaving.
This is also shown for total energy in Section 6.2.1, where worst-case performance is evaluated in
simulation.

Figure 6.12 shows the average-case performance in bandwidth, energy, and execution time for
the H263 video decoder trace.
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Fig. 6.12: Bandwidth, execution time, and energy of the H263 decoder trace

As seen in Figure 6.12a and Figure 6.12d, bandwidth in MB/sec and total execution time in
nanoseconds are still inversely related, and are similar in trend to Figure 6.9 and Figure 6.10a.
Total energy in Figure 6.12b shows the same trends as Figure 6.11 for synthetic traces. Hence,
trends of the synthetic traces for bandwidth, total execution time and total energy between memor-
ies also hold for a real application trace.
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Summarizing results and conclusions for multiple memories average-case CPA performance:

• CPA policy trashes all possible data locality for all memories

• Trends between memories for worst-case bandwidth are also applicable between memories
for average-case bandwidth with a CPA policy

• Bandwidth and execution time are related for all memories

• Trends between memories for average-case energy with a CPA policy are the same as the
energy trends for worst-case verification in Section 6.2.1

• The H263 decoder trace shows the same trends as the sequential, random, and thrashing
traces for all memories

As shown in this section, average-case performance with a CPA policy cannot exploit data
locality, since the sequential, random, and thrashing traces have the same average-case perform-
ance. The H263 decoder trace shows the same trends in average-case performance as the synthetic
traces, but not with the exact same values, since the H263 trace has a different traffic load and
trace length compared to the synthetic traces. Therefore, only trends and not values between
different traces can be compared. Bandwidth is directly related to the amount of data and the
total execution time of a trace. The total execution time and the total energy are dependent on
the length of the trace, since the longer the trace the longer the execution time and the higher the
total energy. The same conclusions and guidelines as for worst-case performance for bandwidth
can be used to select the best memory map for average-case performance with CPA for all memor-
ies. Choosing a memory for speed, it is best to choose the fastest memory. Since total energy for
average-case is also related to bandwidth, also choosing a memory for energy it is best to choose
the fastest memory.

6.2.4 Applications stand-alone open-page policy

As stated in Section 1.1, both worst-case and average-case performance is of importance for a
mixed-time criticality system. The goal is to optimize average-case performance, while still guar-
anteeing the highest possible worst-case performance since worst-case performance must not be
affected. Average-case performance can be optimized by using an OP policy to exploit data local-
ity between two consecutive requests. Section 4.7 explains the conservative open-page policy that
enables row hits without losing worst-case performance.

Firstly, bank-wise and row-wise memory maps are compared. Secondly, the impact of memory
maps on the percentage of row hits is evaluated. Thirdly, average-case performance in terms
of bandwidth and total energy for different memory maps is evaluated. Total execution time
is skipped for the average-case performance evaluation, since it has a relation with bandwidth.
Hence, conclusions made for bandwidth are analogue to the average-case total execution time.
Lastly, average-case performance in terms of bandwidth and total energy for different memories
is evaluated.

With an OP policy, rows are left open when a row hit occurs. As explained in Section 3.3.1,
a memory map can be either row-wise or bank-wise. The row-wise and bank-wise memory maps,
map a logical address to a different bank, row, and cell of the memory, which can have an impact
on average-case performance with an OP policy. For a true OP policy memory controller, this may
have impact on bandwidth for worst-case. However, since a conservative OP policy is used, this has
no effect on wrost-case performance. Conservative OP policy closes a row when the next request is
not known, or if the next request is not going to access the currently opened row. For the row-wise
memory map, this results in a row-miss, because another row on the same bank has to be opened
for access and for the bank-wise memory map, this also results in a row-miss, because another
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row of a different bank will be accessed. Hence, for both a CPA and an OP policy row-wise and
bank-wise memory maps have the same worst-case and average-case performance when running
applications stand-alone, because of conservative OP instead of true OP. Simulations for different
memory maps with the synthetic traces and the H263 trace are run to verify this conclusion and
indeed bandwidth, total execution time, and total energy are identical for row-wise and bank-wise
memory maps.

As concluded in Section 4.7, the time window to choose whether to precharge or not for a
conservative OP policy is dependent on the pattern mode and the burst count, since the decision
needs to be made at the last RD or WR command of the first bank interleaved over. As a result,
memory maps with a higher BC are more likely to detect row hits when there is data locality
between requests. Figure 6.13a and Figure 6.13b show the percentage of row hits of the total
number of requests within a trace for DDR3-800 with a traffic generator that is configured to
allow at maximum two outstanding requests if the requests in the trace allow it for requests of 32
and 256 bytes, respectively.
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Fig. 6.13: Row hits in percentage for two outstanding requests for 32 and 256 byte requests for DDR3-800

For both request sizes for the sequential and H263 traces, it holds that interleaving over one
bank and thus increasing BC, has the highest chance of a row hit. The thrashing trace itself has no
data locality between requests, because requests of the thrashing trace always map to a different
row in the same bank. However, for a request size of 256 bytes, for BI1 -BC2 memory map, 85%
of the requests result in a row hit. For the thrashing trace with 256 byte requests, BI4 -BC2
performed best in terms of bandwidth. BI4 -BC2 has an access granularity of 128 bytes, which
means that a 256 byte request gets split by the atomizer into two 16 byte requests. The split up 256
byte sized request have a guaranteed data locality between the first 128 byte request (ACTNoPRE)
and the second 128 byte request (NoACTPRE) and a row hit between the first and second request
will always occur, since the trace is running stand-alone. Therefore, even if the trace itself has
no data locality the split up requests can have data locality. The ACTNoPRE pattern followed
by the NoACTPRE pattern of the first request and second request, respectively, result in the
ACTPRE pattern of BI8 -BC2. However, since the first and second request can be pipelined from
the atomizer to the delay block, this is beneficial, as explained in Section 6.2.2. The maximum
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percentage of row hits for traces with no data locality can be calculated by
access granularity

request size .

Note that for a request size of 256 bytes, the thrashing trace has exactly 50% row hits for an access
granularity of 128 bytes (BI4 -BC1 ).

The random trace shows the opposite of the sequential and H263 traces for a request size of
32 bytes, since increasing BI and thus decreasing BC increases the chance of a row hit instead of
decreasing it. By increasing BI the row-range of the memory map increases. With increasing the
row-range, the number of columns per row in the clustered banks of a memory map increases. So,
by increasing BI the range of columns that still will have a row hit increases. Only for traces with
low data locality, this phenomenon is seen, since increasing BC has a greater impact on hits than
BI and is best seen for requests of 256 bytes of the random trace with an access granularity of 256
bytes. For an access granularity of 32 bytes, it is seen in Figure 6.13b that increasing BC for the
random trace has more impact than increasing BI. For an access granularity of 64 bytes, it is seen
that the two bank interleaving memory map (BI2 -BC2 ) has slightly more hits than the one bank
interleaving memory map (BI1 -BC4 ), while the four bank interleaving memory map (BI4 -BC1 )
has much lesser hits than both the one and two bank interleaving memory map for the thrashing
trace. The big difference between hits of (BI4 -BC1 ) can be explained by the fact that with a BC1,
the decision of closing the row has to be made on cycle tRCD if the previous request is a miss, and
on cycle zero if the previous request is hit, as shown in the equations in Section 4.7. Hence, with
BC1, it is impossible to have two consecutive hits, while this is still possible for BC > 1, since for
a BC2, BC4, BC8, and BC16 the decision has to be made, at cycle 4, 8, 32, and 64, respectively.
The slight difference between BI1 -BC4 and BI2 -BC2 is explained by the fact that the row-range
of the memory map is increased by interleaving over more banks and that the 4 cycle window
of BC2 is enough for consecutive hits due to a high traffic load. Therefore, conclusions made in
Section 4.7 about the relation between BC and the determination point whether or not to leave the
row open still hold for traces with low load. However, for traces with high load, increasing BI can
also increase the chance of a hit, since then BC2 is enough for consecutive hits and increasing BI
increases the row-range of a memory map.

Choosing a memory map with the maximum data locality does not guarantee the most band-
width. Therefore, it is not always best to choose the memory map that exploits the most data
locality. This can be seen for the trashing trace with a request size of 256 bytes and an access
granularity of 128 bytes, where BI4 -BC2 is selected as best memory map instead of BI4 -BC1.
When request size increases, the difference between one bank interleaving memory map and two,
four and eight bank interleaving memory maps gets smaller. This is a result that relates to the
minimum access granularity of a memory map and is best shown for the thrashing trace. For a
request size of 32 bytes, only the one bank interleaving memory maps can split up a request in the
atomizer, since the two, four, and eight bank interleaving maps have a minimum access granularity
of 32, 64 and 128 bytes, respectively. When request size increases, also the other memory maps
can exploit data locality of split up requests, which is also best as seen with the thrashing trace.

Exploiting data locality with an OP policy is good for average-case bandwidth. However, the
amount of data locality is trace dependent. Figure 6.14a and Figure 6.14b show the average-case
bandwidth in MB/sec with OP policy for the synthetic traces with request sizes of 32 and 256
bytes, respectively.
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(a) Bandwidth in MB/sec for the sequential, random, and thrashing traces for 32 byte requests
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Fig. 6.14: Bandwidth in MB/sec for the sequential, random, and thrashing traces

Since the sequential trace exploits data locality the most, it always performs better than
the random and thrashing traces in term of average-case bandwidth for both 32 and 256 byte
requests. If requests are small then less memory maps can exploit data locality from split up
requests and large granularities suffer from poor data efficiency. However, if requests are large
then average-case bandwidth of small and large granularities are closer to together. For CPA with
256 byte requests, shown in Figure 6.5b, the average-case bandwidth for an access granularity of
32 bytes suffers from timing constraints. The same granularity with a request size of 256 bytes
with OP does not suffer from these timing constraints, since rows are kept open between every
first and eighth request, as requests are split up into eight smaller requests of 32 bytes. Where
comparing the access granularity of 32 bytes for 32 and 256 byte requests, it is seen that the
two bank interleaving memory map (BI2 -BC1 ) performs better for 32 byte requests than the one
bank interleaving memory map (BI1 -BC2 ), while for requests of 256 bytes, it is the other way
around. For a request size of 32 bytes, it is shown that it is not always worthwhile to choose
a memory map that exploits data locality of split up requests and can be seen in Figure 6.14a
for the random and thrashing trace with an access granularity of 32 bytes. If a request is split
up enough, it is worthwhile to choose a smaller access granularity than the request size. Note
that this trade-off is dependent on the amount of exploited data locality of both the trace and
the split up requests. Comparing average-case bandwidth of CPA and OP policy, it is seen that
the difference in average-case bandwidth between memory maps gets smaller when data locality
increases for an OP policy.

Figure 6.15a and Figure 6.15b show the total energy of the synthetic traces with a request size
of 32 and 256 bytes, respectively. The total energy of the 32 byte request trace shows the same
trend as Figure 6.7a of CPA, which is logical since increasing access granularity does not improve
average-case bandwidth, but does increase the amount of unnecessary data transferred and the
number of activates and precharges.
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(a) Total energy in µJ for 32 byte requests for DDR3-800
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Fig. 6.15: Total energy for the sequential, random, and thrashing trace in µJ

As for total energy of 256 byte requests, it is seen that total energy of a synthetic trace more or
less stays the same for a given number of banks interleaving independent of access granularity and
that one bank interleaving memory maps consume the least total energy. This is explained by the
guaranteed data locality between split up requests that results in an ACTNoPRE pattern with
possible NoACTNoPRE patterns in between, and finally closing the request with a NoACTPRE
pattern, which is the same as an ACTPRE pattern of a granularity that is the exact same size as
the request size. For the 256 byte request traces, differences in total energy for memory maps with
different access granularities are not so big. Therefore, total energy consumption is dependent on
the number of banks interleaving and the amount of data locality instead of bandwidth, like in
Figure 6.8b for CPA. For the 256 byte requests where no critical timing constraints are interfering,
it is seen that the memory maps with a burst count of one always have a higher total energy
consumption compared to the memory maps with a burst count of two, which is explained by the
fact that with a burst count of one it is impossible to issue two consecutive row hits which result
in more activates and precharges. This is not seen for the 32 byte requests, since for small access
granularities, critical timing constraints are still interfering, and since always a burst count of one
is selected for banks interleaving two, four, and eight. These trends in average-case bandwidth
and total energy are also applicable to the H263 trace and hold for all memories. For small
request sizes, it is best to choose a small access granularity, as close to the request size as possible,
average-case performance of both bandwidth and energy are maximized. For large request sizes, it
is best to choose a memory map that interleaves over one bank, since bandwidth is almost the same
compared to two, four, and eight bank interleaving memory maps and total energy consumption is
less when interleaving over fewer banks.

Summarizing results and conclusions for DDR3-800 average-case OP performance:

• Row-wise and bank-wise memory maps have the same performance because of the predictable
but conservative open-page policy

• Dependent on the traffic load there is a trade-off between BC and BI for the maximum
percentage of row hits
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• Data-locality within requests of the trace and data locality between split up requests are
exploited by OP policy

• The larger the request size and the smaller the access granularity, the more data locality of
split up requests can be exploited

• Memory maps with BC1 cannot have consecutive hits

• Memory maps with the highest percentage of row hits do not necessarily have the highest
bandwidth

• Bandwidth loss due to data efficiency is seen for small requests combined with large access
granularities

• No bandwidth loss of large requests for small access granularities is seen due to exploiting
data locality of split up requests

• Total energy increases when data efficiency decreases because of unneeded accesses

• Total energy does not increase when access granularity is smaller than request size due to
row hits of split up requests

The impact on average-case performance for an OP policy has been evaluated for DDR3-
800 only. It is also important to see the trends among different memories. Figure 6.16a shows
bandwidth in MB/sec for the sequential, random and thrashing traces for different memories.
Figure 6.16b and Figure 6.16c show the gain of OP policy in bandwidth performance compared
to CPA policy in MB/sec and percentage respectively. Note that for a given request size, different
memories do not necessarily have the same memory map for best average-case performance with
CPA, due to possibly better performance by data locality.
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Fig. 6.16: Bandwidth and difference with CPA in MB/sec for the sequential, random, and thrashing trace

Comparing bandwidth of the same traces in Figure 6.16a with a CPA, previously shown in
Figure 6.9, it is seen that the trends in average-case bandwidth of CPA are also applicable for
conservative OP. However, average-case bandwidth for OP is better than average-case bandwidth
for CPA, as shown in Figure 6.16b and Figure 6.16c. Comparing traces, it is seen that the
bandwidth of the sequential trace increases the most, which is explained by the fact that the
sequential trace consists of only requests with data locality, whereas the random trace has very
little data locality and the thrashing trace has no data locality. Therefore, the random and
thrashing traces can only exploit data locality within requests by splitting them up in the atomizer.
Comparing memories, it is seen that the impact on bandwidth is bigger for faster memories for
both absolute and percentage, which in turn can be explained by the timing constraints that cause
a bigger penalty when precharging and activating for fast memories.

Figure 6.17a shows the total energy for the three traces with an OP policy. Figure 6.17b and
Figure 6.17c show the savings of OP policy in total energy compared to CPA policy in µJ and
percentage respectively.
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Fig. 6.17: Energy and energy saving with CPA for the sequential, random, and thrashing trace

For total energy, the OP policy reduces total energy for three reasons. One, traces are finished
earlier, since average-case bandwidth increases due to data locality. Two, rows are not closed after
each request, resulting in less activates and precharges. Three, for average-case with OP, it is
often beneficial to increase the chance of a row hit, resulting in even less activates and precharges.
Like bandwidth, total energy shows similar trends as the total energy with a CPA policy in
Figure 6.11, because of the triple impact. Therefore, the conclusions of average-case total energy
with a CPA policy also hold for OP. Figure 6.17b and Figure 6.17c shows the energy savings in
µJ and percentage between the CPA and OP policy for the sequential, random and thrashing
traces. Comparing traces, it is seen that also for the total energy, the sequential trace can save
more energy, because the trace has data locality between each request. Comparing request size,
it is seen that when request size increases also the difference in total energy in µJ between CPA
and OP increases, which is a result of both the first and third explanation of the triple impact. As
an important remark, note that while Section 5.3.1 concluded that selecting a memory map with
a smaller access granularity than the request size is not good for worst-case bandwidth and total
energy performance with a CPA policy, it can be good for average-case performance with an OP
policy.

Figure 6.18 shows the average-case bandwidth and energy for the H263 video decoder trace.
Also the difference for both bandwidth and energy between the average-case CPA and average-case
OP are included. Comparing bandwidth and energy trends of Figure 6.18a and Figure 6.18b with
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Figure 6.12a and Figure 6.12b, respectively, it is seen that trends are similar for both bandwidth
and energy between CPA and OP. Hence, trends of the synthetic traces for bandwidth, total exe-
cution time and total energy for both the CPA and OP policy also hold for a real application trace
with OP policy.
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Fig. 6.18: Bandwidth and energy of the H263 decoder trace

As mentioned in Section 6.2.3, the difference in bandwidth and execution time between DDR3-
800 and DDR3-1600 gets smaller when traffic load decreases for a CPA policy. For an OP policy,
however, the impact of timing constraint penalties are reduced on average, since every request do
not have to activate and precharge. Because the timing constraint penalty is the highest for the
fastest memory and small access granularities, the impact of OP policy is also the highest for the
fastest memory and small granularities. This is seen in Figure 6.18d, where DDR2 and DDR3
need to be looked at separately for energy, because of the different operating voltages.

Summarizing results and conclusions for multiple memories average-case OP performance:

• Trends in average-case with a CPA policy are also applicable for average-case with an OP
policy

• Exploiting data locality increases bandwidth and decreases total energy consumption
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• The more data locality exploited the more bandwidth gained and the more total energy
saved

As shown in this section, average-case performance with an OP policy can exploit data locality
even if a trace does not have locality between its requests, improving average-case performance
in terms of bandwidth, total execution time, and total energy. However, since a smaller access
granularity must be chosen to exploit data locality of split up requests, worst-case performance
is affected, since worst-case performance is best when choosing a memory map with an access
granularity equal to the request size. When a guaranteed bandwidth lower than the worst-case
bandwidth is enough, it is beneficial to choose a memory map with a smaller access granularity to
enable data locality between split up requests. If the maximum guaranteed bandwidth is needed,
it is still best to choose the conservative OP policy, since it exploits possible data locality between
requests itself. All average-case trends of the CPA policy are also applicable for the OP policy.

6.2.5 Multiple applications

Section 6.2.4 shows that applications running stand-alone with an OP policy benefit from data
locality of both locality in the trace and locality between split up requests. When only one
application is running, no interference in either type of data locality is seen. DDR memory is
often a shared resource on a NOC to reduce cost and chip area, as explained in Chapter 1, and
therefore also average-case performance with OP policy when running multiple applications must
be evaluated to see the impact on data locality. Note that it does not make sense to evaluate
multiple applications with CPA, since a CPA policy cannot exploit data locality. The sequential
trace and the H263 decoder trace are both evaluated and run together with the thrashing trace,
where the thrashing trace serves the role to interfere as much as possible by thrashing the possible
data locality of the sequential and H263 traces. For a fair comparison, two applications running
together always request the same sized requests.

First, the number of hits and misses for DDR3-800 for different memory maps are discussed
after which the average-case performance in terms of bandwidth and total energy for DDR3-800
is considered. Lastly, the impact on average-case performance among memories is adressed.

Evaluating the number of row hits and row-misses gives insight of the impact on average-case
performance when running multiple applications. Note that this comparison for the H263 trace is
not entirely fair, since the H263 decoder trace consists of fewer requests than the thrashing trace,
which results in data locality of split up requests in the thrashing trace when the H263 decoder is
finished. Figure 6.19a to Figure 6.19d show row hits in percentages for the sequential and H263
decoder traces, each running together with the thrashing trace for request sizes of 32 and 256
bytes, respectively.
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(a) Sequential trace with 32 byte requests running
concurrently with trashing trace
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(b) Sequential trace with 256 byte requests running
concurrently with trashing trace
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(c) H263 trace with 32 byte requests running concur-
rently with trashing trace
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(d) H263 trace with 256 byte requests running con-
currently with trashing trace

Fig. 6.19: Row hits in percentage for 32 and 256 byte requests for DDR3-800 when running concurrently
with trashing trace

Comparing the 32 byte request trace of the sequential trace in Figure 6.19a and the H263
trace in Figure 6.19c, it is seen that both show the same trend, which is that increasing bank
interleaving increases the change of a row hit. This happens for the same reason as for the random
trace in Figure 6.13a and Figure 6.13b, where data locality is low. Since data locality is trashed
as much as possible by the thrashing trace, also data locality is low for the sequential and H263
traces. When running multiple traces, requests of the separate traces have no code or request
dependencies and have their own atomizer and delay block. Hence, the atomizer and delay block
of different requestors work in parallel and one requestor can be served while the other requestor
is transferring a request from the atomizer to the delay block. Therefore as a side effect, this also
resolves the delay block interference that is seen with stand-alone traces. The sequential trace
of 32 byte requests has more row hits than the H263 trace, which is explained by the fact that
the sequential trace itself has a higher data locality. Comparing the 256 byte sequential trace in
Figure 6.19b and the H263 trace in Figure 6.19d, it is shown that the H263 decoder trace has more
row hits than the sequential trace. This is explained by the fact that the H263 trace is finished
earlier than the thrashing trace it is running with, which results in the thrashing trace running
stand-alone for a part of the simulation. In that time, the thrashing trace has no interference of
other traces and thus can exploit data locality of split up requests. That is also why the access
granularity of 256 bytes in Figure 6.19d cannot exploit data locality. The sequential trace on the
other hand shows the same trend as for the 32 byte request size traces.

Figure 6.20a to Figure 6.20d show average-case bandwidth in MB/sec for the sequential and
H263 traces for the request sizes of 32 and 256 bytes and shows bandwidth of both running
programs, thus including the thrashing trace.
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(a) Sequential trace with 32 byte requests running
concurrently with trashing trace
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(b) Sequential trace with 256 byte requests running
concurrently with trashing trace
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(c) H263 trace with 32 byte requests running concur-
rently with trashing trace
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(d) H263 trace with 256 byte requests running con-
currently with trashing trace

Fig. 6.20: Bandwidth in MB/sec for 32 and 256 byte requests for DDR3-800 when running concurrently
with trashing trace

Comparing the 32 byte request traces, it is seen in Figure 6.20a that the sequential and thrash-
ing traces both have the same average-case bandwidth performance, while the H263 decoder and
the thrashing trace in Figure 6.20c show a major difference in average-case bandwidth perform-
ance. This is explained by the fact that the length of both traces should be the same for a fair
comparison. Keep in mind that not only the length of both traces should be the same, also the load
should be the same for a fair comparison. Say, one trace has a load that is two time higher than
the load of the other running trace, then the trace with a two times higher load has a two times
higher chance to exploit data locality of split up requests. For a request size of 256 bytes, also
the sequential and the trashing trace have the same bandwidth performance, while the H263 trace
has a much lower bandwidth than the thrashing trace, as seen in Figure 6.20b and Figure 6.20d,
respectively. For Figure 6.20a to Figure 6.20d, it holds for every memory map that the more row
hits in Figure 6.19a to Figure 6.19d the more average-case bandwidth. Since the sequential and
the thrashing trace are equal in length and traffic load, the best memory maps for average-case
bandwidth are the same as the memory maps that are best for worst-case, because data locality is
thrashed as much as possible. If the trace lengths are unequal or when load is unbalanced, one of
the two traces is starting to benefit from data locality with the result that the best choice memory
maps in terms of average-case bandwidth is not necessarily the same as the worst-case best choice.
When one trace is benefitting from the data locality while the other trace is not, a trade-off can be
made to optimize average-case bandwidth for a specific trace. Figure 6.20d shows this difference,
where for an access granularity of 64 bytes, it is best to choose BI4 -BC1 (134.94 MB/sec) for
H263instead of BI2 -BC2 (130.19 MB/sec), while for the thrashing trace in the same simulation
it is best to choose BI2 -BC2 (1313.93 MB/sec) instead of BI4 -BC1 (1277.36 MB/sec). Although
the difference is small, still a trade-off can be made. Besides optimizing for a certain trace, also
the choice can be made to optimize for total execution time. Since multiple traces are running at
the same time, total execution time no longer is directly related to the average-case bandwidth of
one trace, but is dominated by the longest trace. Therefore, optimizing the trace that takes the
longest, results in a shorter total execution time. Comparing the average-case bandwidth of Fig-
ure 6.20a to Figure 6.20d with the average-case bandwidth of stand-alone applications with CPA
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and OP policy, it is seen that the average-case bandwidth performance lies somewhere in between
the CPA and the OP policy, which is explained by the fact that it can exploit data locality, but
not as much as the stand-alone application OP, since possible data locality is thrashed as much
as possible while still some locality remains.

Figure 6.21a to Figure 6.21d shows the total energy for the request size of 32 and 256 bytes
for the DDR3-800 memory.
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(a) Sequential trace with 32 byte requests running
concurrently with trashing trace
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(b) Sequential trace with 256 byte requests running
concurrently with trashing trace
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(c) H263 trace with 32 byte requests running concur-
rently with trashing trace
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(d) H263 trace with 256 byte requests running con-
currently with trashing trace

Fig. 6.21: Total energy in µJ for 32 and 256 byte requests for DDR3-800 when running concurrently with
trashing trace

For both request sizes of 32 and 256 bytes, it holds that increasing bank interleaving for memory
maps results in a higher total energy consumption. This corresponds to the trends of OP policy in
Figure 6.15a and Figure 6.15b, because data locality is present. Since memory maps that are best
for bandwidth are not always best for total energy, a trade-off can be made between bandwidth
and total energy. Guidelines for this trade-off are the same as stated for OP policy in Section 6.2.4.
For small request sizes, it is best to choose a small access granularity as close to the request size as
possible, since it maximizes the average-case performance of both bandwidth and energy. For large
request sizes, it is best to choose a memory map that interleaves over one bank, since bandwidth
is almost the same compared to two, four, and eight bank interleaving memory maps and total
energy consumption is reduced when interleaving over fewer banks. The sequential trace together
with the thrashing trace consumes more energy than the H263 trace together with the trashing
trace, for two reasons. One, the sequential trace issues more requests and therefore also transfers
more data. Two, the thrashing trace can exploit more data locality of split up requests when the
H263 decoder trace is finished.

Summarizing results and conclusions for DDR3-800 average-case multiple applications perform-
ance:

• When running concurrent traces, data locality of split up requests is not guaranteed anymore

• If trace length or traffic load is different, then one of the two concurrent running traces still
can exploit data locality of split up requests
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• If one trace is benefiting from data locality a trade-off can be made whether to optimize for
the first or the second trace

• Trends of OP policy for DDR3-800 are also applicable for running multiple applications for
DDR3-800 since some data locality is exploited

Figure 6.22a and Figure 6.22b show the average-case bandwidth for different memories of
the sequential and H263 trace, respectively, that is run concurrently with the thrashing trace.
The average-case bandwidth per memory belongs to the average-case bandwidth with the best
bandwidth performance for a given request size for that memory. Trends that are shown in
Figure 6.20a to Figure 6.20d are also seen in Figure 6.22a and Figure 6.22b for the sequential,
H263, and both thrashing traces per memory and therefore conclusions made for the DDR3-800
are also applicable for the other memories.
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Fig. 6.22: Bandwidth in MB/sec for the sequential and H263 trace run with the thrashing trace concur-
rently

For small request sizes, the difference in average-case bandwidth between memories is small
and this difference increases with request size. This is also seen in the stand-alone traces with
both CPA and OP policies in Figure 6.12a and Figure 6.18a, respectively. The sequential and the
thrashing traces have the same average-case performance independent of memory and request size,
due to the same length and load of both traces, which was already shown earlier in Figure 6.20a
and Figure 6.20b for DDR3-800. Likewise, the H263 and the thrashing traces do not have the
same average-case performance independently of memory and request size, because the H263 trace
has a different length and load than the thrashing trace, as already shown in Figure 6.20c and
Figure 6.20d. Trends between memories are the same for the sequential, thrashing, and H263 trace,
and are similar to the trends of average-case OP policy, shown in Figure 6.16a and Figure 6.18a.
The slower the memory, the lower the average-case bandwidth and the smaller the request size for
which the memory saturates. Because of data locality, the impact of small requests on average-case
bandwidth compared to large requests is minimized, as stated in Section 6.2.4.

Figure 6.23a and Figure 6.23b show the total energy consumption for different memories of the
sequential and H263 trace, respectively, that are run concurrently with the thrashing trace and
show total energy values of the memory maps chosen in Figure 6.22a and Figure 6.22b. Like for
bandwidth, total energy trends seen in Figure 6.21a to Figure 6.21d are also shown in Figure 6.23a
and Figure 6.23b for the sequential, H263, and both thrashing traces per memory, and therefore
conclusions made for the DDR3-800 are also applicable for the other memories.
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Fig. 6.23: Energy in µJ for the sequential and H263 trace run with the thrashing trace concurrently

Comparing total energy trends with the total energy trend of CPA in Figure 6.11 and Fig-
ure 6.12b and with the total energy trend of OP in Figure 6.17a and Figure 6.18b, it is seen that
the total energy trends in Figure 6.23 are similar to the trends in CPA rather than OP policy.
Although OP policy is used, most of the potential data locality is thrashed and thus gains in
performance is small compared to CPA.

Summarizing results and conclusions for multiple memories average-case multiple applications
performance:

• Trends of OP policy are also applicable for running multiple applications since some data
locality is exploited

Running multiple applications with an OP policy results in an average-case performance that
lies between the worst-case performance and the stand-alone average-case OP performance. If
all possible data locality is thrashed the average-case performance will be the same as the worst-
case CPA performance and if data locality is exploited at its maximum then the average-case
performance will be the same as the stand-alone average-case OP performance. The exploited
data locality is highly variable and depends on the length of all concurrently running traces, their
load, data locality within the trace itself, and data locality between traces. Hence, no proper
guideline of which memory map to choose can be given because this is entirely dependent on the
highly variable exploited data locality. Therefore, it is best to simulate the concurrent running
applications and choose the memory map that performance best.
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For a mixed Time-Criticality system both HRT and SRT are of importance. As explained in Sec-
tion 1.1, the initial goal is to optimize average-case performance for SRT in terms of bandwidth,
total energy, and total execution time, while still guaranteeing the same worst-case performance
for HRT in terms of bandwidth, latency and energy per access pattern. This is done by introdu-
cing a conservative open-page policy that guarantees to auto-precharge in-time so that worst-case
performance is not affected.

First, bandwidth for worst-case and average-case is discussed in Section 7.1. Second, worst-
case latency is discussed in Section 7.2. Third, average-case total execution time is looked at in
Section 7.3. Fourth, energy for both worst-case and average-case is analyzed in Section 7.4. Lastly,
suitability for mixed time-criticality systems is evaluated.

7.1 Bandwidth

For worst-case performance in terms of gross bandwidth, it holds that the larger the access granu-
larity, the more gross bandwidth is guaranteed, eventually converging to the maximum bandwidth
possible for a given memory. For gross bandwidth, memory maps that interleave over one bank
are only good for a request size of 16 bytes, since these memory maps have the inability to hide
precharge penalties which is directly related to the critical timing constraints. Also the impact on
gross bandwidth of the four ACT window critical timing constraint is seen for BI1 -BC1. When
no critical timing constraints are interfering with the access patterns, gross bandwidth is the same
for two, four, and eight banks interleaving memory maps. Taking request size into account, thus
looking at net bandwidth, it is best to choose a memory map with an access granularity that is
equal to the request size. Comparing multiple memories, the difference in bandwidth between
memories is small when the request size is small and the difference increases when the request
size increases, which is explained by the fact that slow memories saturate at smaller request sizes
compared to faster memories. Overall for all request sizes, the fastest memory (DDR3-1600) has
the best worst-case performance in terms of bandwidth. The optimal memory map in terms of
worst-case bandwidth given a request size is shown in Table 5.12. Improvements per request size
per memory of the proposed controller compared to Predator [4] in terms of worst-case bandwidth
is shown in Table 7.1. Most improvement is seen for the smallest request size (16 bytes) and can
take up to 135% increase of guaranteed worst-case bandwidth.

Tab. 7.1: Performance improvement in percentage for worst-case bandwidth

Request size (B)
16 32 64 128 256 512 1024

DDR2-400 135.0 % 134.4 % 84.5 % 0 % 0 % 0 % 0 %
DDR2-800 61.3 % 61.1 % 60.7 % 5.5 % 0 % 0 % 0 %
DDR3-800 70.9 % 70.7 % 70.2 % 13.3 % 0 % 0 % 0 %
DDR3-1600 48.4 % 48.2 % 48.0 % 35.5 % 0 % 0 % 0 %

As for average-case performance, stand-alone applications are simulated with a CPA and an
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OP policy, and multiple applications are simulated concurrently with only OP policy. Since
CPA cannot exploit data locality, applications with the same load, but possible differences in
data locality have the same bandwidth, since all possible data locality is thrashed. Because of
interference from the delay block, traces that not fully backlogged with a request size of 256 bytes
and an access granularity of 256 bytes suffer from bandwidth loss. Therefore, memory maps with
an access granularity of 128 bytes perform better than memory maps with an access granularity
of 256 bytes. As a result, the best memory map per memory for average-case stand-alone CPA is
not necessarily the same memory map as worst-case. However, trends between memories are the
same as worst-case and therefore it is best to choose the fastest memory.

Applications that run stand-alone with an OP policy perform the same or better than CPA in
terms of bandwidth. When absolutely no data locality can be exploited, OP performs the same as
CPA. Data-locality that can be exploited is data locality within a trace between requests of the
traffic generator and data locality of split up requests when access granularity is smaller than the
request size. Running stand-alone has the advantage that no other applications can interfere with
data locality and therefore the maximum possible data locality is exploited. As a side-effect of the
conservative OP policy, memory maps with a burst count of one cannot have two consecutive row
hits after each other, since the decision whether or not to precharge must then be taken at cycle
zero. Increasing BC increases the chance of a row hit by delaying the decision moment of the
conservative OP policy, while increasing BI also increases the chance of a row hit by increasing
the row-range of the memory map. Depending on the traffic load, a trade-off between BI and
BC can be made. If traffic load is low, it is best to increase BC to delay the decision moment,
while if traffic load is high then BC2 is enough to have consecutive row hits. Since small access
granularities for large request sizes have a guaranteed data locality of split up requests when
running stand-alone applications, difference in bandwidth between small access granularities and
bigger granularities are smaller. Still, memory maps with an access granularity that is bigger than
the request size suffer from poordata efficiency. By exploiting data locality, overall performance for
all request sizes improves in terms of average-case bandwidth. Comparing memories, it holds that
faster memories improve the most in terms of average-case bandwidth. Table 7.2 shows the gain
in average-case bandwidth by exploiting data-locality of the H263 decoder using the OP policy
instead of the CPA policy. The highest gain in average-case bandwidth is shown for the fastest
memory (DDR3-1600) for the smallest request size (32 bytes) with an average-case bandwidth
increase of 40% by exploiting data-locality.

Tab. 7.2: Performance improvement in percentage of OP average-case bandwidth compared to CPA for
the H263 trace

Request size (B)
32 64 128 256

DDR2-400 12.7 % 1.5 % 0.9 % 0.4 %
DDR2-800 30.4 % 17.4 % 15.8 % 1.5 %
DDR3-800 37.7 % 19.9 % 15.7 % 1.4 %
DDR3-1600 40.8 % 28.5 % 3.5 % 2.7 %

When running multiple applications concurrently, data locality of split up requests is not
guaranteed anymore. Running concurrent applications have a side-effect that the delay block
interference is resolved, since every traffic generator has his own atomizer and delay block and
while one delay block is buffering, the request in the other delay block can be served. To maximize
thrashing of data locality, both concurrently running traces must access different addresses, have
the same load, and the same trace length. If either the load or the length of the trace differs,
the one of the two traces can exploit data locality of split up requests. Possibility to exploit data
locality for concurrently running traces is variable and therefore no proper guideline for choosing
the proper memory map can be given. So, it is best to simulate the concurrently running traces
and then choose the best memory map for the given set of applications.
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Concluding on bandwidth, it holds that only for running applications stand-alone with OP
policy, it is best to choose a memory map with a smaller access granularity than the request size
to exploit both possible data locality of the trace and guaranteed data locality of split up requests.
However, when data locality of split up requests is not guaranteed, it is best to choose the memory
map that is optimal for a given request size for that memory. Since the fastest memory always
performs best in term of bandwidth, the fastest memory should be chosen. As a recommendation,
the OP policy should always be chosen, since performance is equal or better than the CPA policy.

7.2 Latency

For worst-case latency, it holds that the smaller the access granularity, the shorter the latency
per request, which is a result of non-preemptive patterns. With a data efficiency below 100%,
worst-case latency stays the same. When access granularity is smaller than the request size then
the number of interfering requests increase for the last request, since requests issued by the traffic
generator gets split up into multiple requests. Thus choosing a memory map per memory for
latency, like bandwidth, it is also best to choose a memory map that has an access granularity
that is identical to the request size. This holds independently of the number of interfering re-
quests. Comparing multiple memories, the faster the memory the higher the latency in cycles.
However,since doubling the memory speed never doubles latency in cycles, faster memories are
always faster in nanoseconds. Like bandwidth, it also holds that for small requests, the latency in
nanoseconds has little difference for different memories. When request size increases, the difference
in latency in nanoseconds between memories increases. So, for worst-case performance in terms of
latency, it is best to choose the fastest memory (DDR3-1600) with a memory map that is optimal
for a specific request size, as shown in Table 5.16. Improvements per request size per memory
of the proposed controller compared to Predator [4] in terms of worst-case latency is shown in
Table 7.3. Most improvement is seen for the smallest request size (16 bytes) for DDR2-400 with
a decrease in guaranteed completion latency of 47% and 52% for one and four interfering requests
respectively.

Tab. 7.3: Performance improvement in percentage for worst-case completion latency

Request size (B)
16 32 64 128 256 512 1024

x = 1 DDR2-400 47.6 % 43.9 % 32.7 % 0 % 0 % 0 % 0 %
DDR2-800 32.1 % 29.4 % 23.9 % 4.1 % 0 % 0 % 0 %
DDR3-800 35.6 % 32.8 % 27.3 % 7.5 % 0 % 0 % 0 %

DDR3-1600 28.4 % 26.4 % 21.9 % 15.4 % 0.3 % 0 % 0 %

x = 4 DDR2-400 52.5 % 50.7 % 38.4 % 0 % 0 % 0 % 0 %
DDR2-800 35.2 % 33.7 % 30.6 % 5.3 % 0 % 0 % 0 %
DDR3-800 38.7 % 37.3 % 34.4 % 10.1 % 0 % 0 % 0 %

DDR3-1600 30.3 % 29.1 % 26.6 % 13.1 % 0.4 % 0 % 0 %

Latency is only analyzed for worst-case performance, since for average-case this is a difficult
task to do and can be ambiguous. Latency for average-case is highly dependent on the traffic load
and the amount of buffering in memory controller instead of the relation between a memory map
and the request size.

7.3 Total execution time

Total execution time is related to the bandwidth of an entire simulation and the amount of data
transferred during this simulation. For stand-alone trace simulations, the total execution time of
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a trace is related to the bandwidth of that trace, since only one application is running at the same
time. Table 7.4 shows the reduction in average-case execution time by exploiting data-locality
of the H263 decoder using the OP policy instead of the CPA policy. Note that the reduction
in percentage of Table 7.4 are not the same as the gain in average-case bandwidth of Table 7.2
because of idle time between requests. Therefore, the highest reduction in average-case total
execution time is not shown for the fastest memory (DDR3-1600) for the smallest request size (32
bytes), but for DDR3-800 with the smallest request size (32 bytes) with an average-case execution
time decrease of 28% by exploiting data-locality.

Tab. 7.4: Performance improvement in percentage of OP average-case total execution time compared to
CPA for the H263 trace

Request size (B)
32 64 128 256

DDR2-400 11.3 % 0 % 0 % 0 %
DDR2-800 23.1 % 15.7 % 15.7 % 0 %
DDR3-800 28.0 % 15.7 % 15.7 % 0 %
DDR3-1600 27.2 % 21.8 % 2.1 % 0 %

However, when running multiple traces concurrently, total execution time is only related to
the total bandwidth of the memory. To reduce total execution time, thus improve average-case
performance of the entire simulation, it is best to optimize for the application that takes the
longest, since that trace is dominant for the total execution time of the simulation. To do so, it is
best to run that application stand-alone with a CPA policy and optimize for execution time.

7.4 Energy

Worst-case energy is dependent on the access granularity. The bigger the access granularity of
a memory map, the more energy its access patterns consume. Since activations and precharges
consume the majority of the access pattern energy, it is best to select an access granularity that is
equal to the request size that interleaves over only one bank. Since worst-case performance in terms
of bandwidth and latency requires interleaving over more banks to hide precharge constraints a
trade-off can be made between bandwidth with latency and energy per pattern. When optimizing
energy, always select the memory map with an access granularity equal to the request size. When
optimizing for bandwidth and latency, select the memory map that is best for bandwidth and
latency with the least banks interleaving.

Like for bandwidth also for average-case performance in terms of total energy, stand-alone
applications are simulated with a CPA and an OP policy and multiple applications are simulated
concurrently with only OP policy. The average-case total energy for CPA within one trace is
dependent on bandwidth and banks interleaving with bandwidth having the most impact on total
energy. When differences in bandwidth are negligible, then the memory map that interleaves over
the least banks is best for total energy. Comparing total energy between traces, it holds that the
total energy is dependent the load and the trace length. Average-case total energy for stand-alone
OP saves energy by exploiting data locality, since not every request issues an activate and precharge
because of the OP policy. For small request sizes, it is best to select a small access granularity as
close to the request size as possible, since average-case performance of both bandwidth and energy
are maximized for small granularities. For large request sizes it is best to choose a memory map
that interleaves over one bank, since bandwidth is almost the same compared to two, four, and
eight bank interleaving memory maps and total energy consumption is reduced when interleaving
over fewer banks. Therefore, total energy is dependent on data locality and BI. Table 7.5 shows
the reduction in average-case total energy by exploiting data-locality of the H263 decoder using
the OP policy instead of the CPA policy.
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The highest reduction in average-case total energy is shown for the fastest memory (DDR3-
1600) for a request size of 64 bytes with an average-case total energy decrease of 61% by exploiting
data-locality and selecting a different memory map that issues fewer activates and precharges for
the H263 trace compared to the memory map selected with a CPA policy.

Tab. 7.5: Performance improvement in percentage of OP average-case total energy compared to CPA for
the H263 trace

Request size (B)
32 64 128 256

DDR2-400 18.0 % 12.6 % 11.8 % 18.7 %
DDR2-800 20.2 % 20.9 % 6.0 % 41.9 %
DDR3-800 21.9 % 18.3 % 4.3 % 30.4 %
DDR3-1600 3.1 % 61.2 % 27.4 % 17.8 %

Since not much, but still some, data locality is present for average-case total energy with OP
policy running concurrent traces, the conclusions for stand-alone OP hold for multiple applications
OP.

Worst-case performance in terms of energy is related to energy per pattern, and for average-
case energy, is evaluated, as the total energy per simulation. Therefore, energy per pattern and
the total energy cannot be compared per memory and memory map. However, trends between
memories are the same for energy per pattern and the total energy. DDR2 always consumes
more energy than DDR3 memories, since DDR2 runs at an operation voltage of 1.8 V and DDR3
runs at 1.5 V. Hence, it is not a good choice to choose DDR2-800 over DDR3-800, since worst-
case performance in terms of bandwidth and latency and average-case performance in terms of
bandwidth and total execution time are similar. Comparing DDR2-400 with DDR2-800, it holds
that DDR2-400 always consumes less energy than DDR2-800. DDR3-800 consumes less energy
than DDR3-1600 for small requests up to 128 bytes and afterwards, DDR3-1600 is more energy
efficient, which is by the fact that faster memories can transfer data faster, but interference for
small requests is bigger.

7.5 Suitability for mixed time-criticality systems

Returning to the problem statement in Section 1.1, the original goal of the project is to exploit
memory maps with the use of predictable open-page policy to create a mixed time-criticality sys-
tem that is suitable for both HRT and SRT. By allowing memory maps that interleave over 1,
2, 4, and 8 banks instead of only the maximum number of banks, worst-case performance for
requests up to 128 bytes are improved, as shown in Chapter 5, thus improving performance for
HRT. By exploiting data locality of traffic and data locality of split up requests using a conser-
vative, although predictable open-page policy, average-case performance is improved compared to
average-case performance with a close-page policy, as shown in Section 6.2.4, making the pro-
posed controller suitable for SRT. Therefore, not only is the proposed memory controller suitable
for SRT, it also improves performance for HRT.



8. CONTRIBUTIONS

Contributions made by this project can be categorized into two groups, work that is done to for
worst-case analysis and work that is done for average-case analysis.

As for worst-case analysis, the existing pattern generation tool has been altered to interleave
over one, two, four, and eight banks, instead of only the maximum number of banks. Although
this is a small change, this greatly improves worst-case performance of small requests, but also
increases the design space. Furthermore, the existing pattern generation tool is instrumenyed
with a counter that counts the number of NOPs added to the access patterns to show which
timing constraints are critical for a particular memory map. For all possible memory maps with
BI 1 to 8 and BC 1 to 64, the critical constraints and the worst-case performance in terms of
bandwidth, latency, and energy is analyzed with a CPA policy for DDR2-400, DDR2-800, DDR3-
800, and DDR3-1600. This is done for request sizes of 16, 32, 64, 128, 256, 512, and 1024 bytes.
Furthermore, worst-case performance results in terms of bandwidth are verified by simulation.

As for average-case, synthetic and application based trace files are created. Four types of
synthetic traces are created using a Matlab model. These are the sequential, random, thrashing,
and worst-case trace. Each type of trace is created for 32, 64, 128, and 256 byte requests. The
application based traces, however, are created by altering the code of the cycle-accurate ARM
simulator SimpleScalar to extract code and request dependencies. Using the altered SimpleScalar,
traces for different request sizes (32, 64, 128, and 256 bytes) are generated for the H263 decoder
that decodes one frame. In the existing SOC generation tool flow, a traffic generator is imple-
mented in SystemC that can read the generated trace files. The implemented traffic generator
is able to do a high-level simulation of processor behavior, based on the number of outstanding
requests allowed by the processor and the memory access response times. To exploit data locality
without interfering with worst-case performance, a predictable open-page policy is analyzed and
implemented. Also, patterns and scheduling rules for the predictable open-page policy are created
and implemented in the SystemC environment. Furthermore, bank state-awareness is implemen-
ted using an address decoder that decodes logical addresses into banks, rows, and columns. After
the SystemC simulation tooling supported all aspects of average-case analysis, simulations with
stand-alone applications and multiple applications are run for the same combinations of memory
maps as for worst-case analysis with request sizes of 32, 64, 128, and 256 bytes. Stand-alone
applications are run for both a close-page and a predictable open-page policy and multiple applic-
ations are only run with the predictable open-page policy. Result of the simulations are evaluated
for average-case performance in terms of percentage of hits, bandwidth, total execution time, and
total energy.



9. FUTURE WORK

Following the work done in this project, a number of future research topics are indentifief:

• Generalize patterns; because of the conservative open-page policy the set of patterns is
expanded greatly. The four modes of patterns (ACTPRE, ACTNoPRE, NoACTPRE, and
NoACTNoPRE) can be merged into one master pattern with two entry points and two exit
points, which will result in a smaller pattern set. The two entry and exit points correspond
to the hit and miss entry and exit points.

• Evaluate worst-case performance for memories with a 4 and 8 bit IW for small requests;
memories with a IW of 16 bits are analyzed during this project and show that small requests
suffer from timing constraints, as shown in Chapter 5. Although timing constraints cannot
be altered, the IW can. Can bandwidth, latency, and energy be optimized by using 4 or 8
bit IW instead of 16 bit?

• Analyze the impact of traffic load on hits and misses; Section 6.2.4 and Section 6.2.5 show
that a BC of two is enough to issue consecutive row hits with a high traffic load and it is
hence worthwhile increasing BI to increase the row-range of the memory map. Does this
still hold if the traffic load is low and is there a trade-off to be made?

• Evaluate the impact on data locality when partitioning applications to different banks; Sec-
tion 6.2.5 shows that possible data locality of applications can get thrashed by other applic-
ations, since they try to access another row of the same clustered banks or another bank
cluster. By mapping applications to their own cluster of banks, they no longer have the
possibility to thrash each others data locality. Is there a trade-off between mapping each
application to its own bank and mapping two or more applications to the same cluster of
banks that share data locality, so that bank parallelism can be exploited for worst-case or
average-case performance?

• Evaluate the impact of total traffic load to the memory on data locality when running
multiple traces; if total traffic load is lower, is the chance that applications are interfering
with each other is also lower?

• Analyze simulations that run concurrent traces that do not have the same request size;
Which trade-offs for worst-case and average-case must be made when applications do not
have the same request size?

• Create a tool that automates the process of choosing the right memory map and lets the
user choose to optimize for bandwidth, latency, or energy. This can be done for worst-case
at design time and for average-case a set of ARM binaries or traces must be used as input.
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A. MEMORY SPECIFICATIONS

This chapter shows the XML files that are used by the tooling [8] to automatically generate
patterns which are used for worst-case analysis and average-case simulations.

A.1 Memory Specification DDR2-400

<memspec>

<parameter id="memoryId" type="string" value="MICRON_128MB_DDR2-400_16bit" />

<parameter id="memoryType" type="string" value="DDR2" />

<memarchitecturespec>

<parameter id="width" type="uint" value="16" />

<parameter id="nbrOfBanks" type="uint" value="8" />

<parameter id="nbrOfColumns" type="uint" value="1024" />

<parameter id="nbrOfRows" type="uint" value="8192" />

<parameter id="dataRate" type="uint" value="2" />

<parameter id="burstSize" type="uint" value="8" />

</memarchitecturespec>

<memtimingspec>

<parameter id="clkMhz" type="double" value="200" />

<parameter id="REFI" type="uint" value="1560" />

<parameter id="RC" type="uint" value="11" />

<parameter id="RCD" type="uint" value="3" />

<parameter id="CL" type="uint" value="3" />

<parameter id="RL" type="uint" value="3" />

<parameter id="WL" type="uint" value="2" />

<parameter id="AL" type="uint" value="0" />

<parameter id="RP" type="uint" value="3" />

<parameter id="RFC" type="uint" value="26" />

<parameter id="RAS" type="uint" value="8" />

<parameter id="RTP" type="uint" value="2" />

<parameter id="WR" type="uint" value="3" />

<parameter id="FAW" type="uint" value="10" />

<parameter id="RRD" type="uint" value="2" />

<parameter id="CCD" type="uint" value="2" />

<parameter id="WTR" type="uint" value="2" />

<parameter id="DQSCK" type="uint" value="0" />

</memtimingspec>

<mempowerspec>

<parameter id="idd0" type="uint" value="110" />

<parameter id="idd2n" type="uint" value="40" />

<parameter id="idd3n" type="uint" value="55" />

<parameter id="idd4r" type="uint" value="160" />

<parameter id="idd4w" type="uint" value="160" />

<parameter id="idd5" type="uint" value="240" />

<parameter id="vdd" type="double" value="1.8" />

</mempowerspec>

</memspec>
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A.2 Memory Specification DDR2-800

<memspec>

<parameter id="memoryId" type="string" value="MICRON_128MB_DDR2-800_16bit" />

<parameter id="memoryType" type="string" value="DDR2" />

<memarchitecturespec>

<parameter id="width" type="uint" value="16" />

<parameter id="nbrOfBanks" type="uint" value="8" />

<parameter id="nbrOfColumns" type="uint" value="1024" />

<parameter id="nbrOfRows" type="uint" value="8192" />

<parameter id="dataRate" type="uint" value="2" />

<parameter id="burstSize" type="uint" value="8" />

</memarchitecturespec>

<memtimingspec>

<parameter id="clkMhz" type="double" value="400" />

<parameter id="REFI" type="uint" value="3120" />

<parameter id="RC" type="uint" value="23" />

<parameter id="RCD" type="uint" value="5" />

<parameter id="CL" type="uint" value="5" />

<parameter id="RL" type="uint" value="5" />

<parameter id="WL" type="uint" value="4" />

<parameter id="AL" type="uint" value="0" />

<parameter id="RP" type="uint" value="5" />

<parameter id="RFC" type="uint" value="51" />

<parameter id="RAS" type="uint" value="18" />

<parameter id="RTP" type="uint" value="3" />

<parameter id="WR" type="uint" value="6" />

<parameter id="FAW" type="uint" value="18" />

<parameter id="RRD" type="uint" value="4" />

<parameter id="CCD" type="uint" value="2" />

<parameter id="WTR" type="uint" value="3" />

<parameter id="DQSCK" type="uint" value="0" />

</memtimingspec>

<mempowerspec>

<parameter id="idd0" type="uint" value="180" />

<parameter id="idd2n" type="uint" value="95" />

<parameter id="idd3n" type="uint" value="95" />

<parameter id="idd4r" type="uint" value="420" />

<parameter id="idd4w" type="uint" value="405" />

<parameter id="idd5" type="uint" value="300" />

<parameter id="vdd" type="double" value="1.8" />

</mempowerspec>

</memspec>
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A.3 Memory Specification DDR3-800

<memspec>

<parameter id="memoryId" type="string" value="MICRON_128MB_DDR3-800_16bit" />

<parameter id="memoryType" type="string" value="DDR3" />

<memarchitecturespec>

<parameter id="width" type="uint" value="16" />

<parameter id="nbrOfBanks" type="uint" value="8" />

<parameter id="nbrOfColumns" type="uint" value="1024" />

<parameter id="nbrOfRows" type="uint" value="8192" />

<parameter id="dataRate" type="uint" value="2" />

<parameter id="burstSize" type="uint" value="8" />

</memarchitecturespec>

<memtimingspec>

<parameter id="clkMhz" type="double" value="400" />

<parameter id="REFI" type="uint" value="3120" />

<parameter id="RC" type="uint" value="20" />

<parameter id="RCD" type="uint" value="5" />

<parameter id="CL" type="uint" value="5" />

<parameter id="RL" type="uint" value="5" />

<parameter id="WL" type="uint" value="5" />

<parameter id="AL" type="uint" value="0" />

<parameter id="RP" type="uint" value="5" />

<parameter id="RFC" type="uint" value="44" />

<parameter id="RAS" type="uint" value="15" />

<parameter id="RTP" type="uint" value="4" />

<parameter id="WR" type="uint" value="6" />

<parameter id="FAW" type="uint" value="20" />

<parameter id="RRD" type="uint" value="4" />

<parameter id="CCD" type="uint" value="4" />

<parameter id="WTR" type="uint" value="4" />

<parameter id="DQSCK" type="uint" value="0" />

</memtimingspec>

<mempowerspec>

<parameter id="idd0" type="uint" value="90" />

<parameter id="idd2n" type="uint" value="50" />

<parameter id="idd3n" type="uint" value="50" />

<parameter id="idd4r" type="uint" value="230" />

<parameter id="idd4w" type="uint" value="240" />

<parameter id="idd5" type="uint" value="200" />

<parameter id="vdd" type="double" value="1.5" />

</mempowerspec>

</memspec>
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A.4 Memory Specification DDR3-1600

<memspec>

<parameter id="memoryId" type="string" value="MICRON_128MB_DDR3-1600_16bit" />

<parameter id="memoryType" type="string" value="DDR3" />

<memarchitecturespec>

<parameter id="width" type="uint" value="16" />

<parameter id="nbrOfBanks" type="uint" value="8" />

<parameter id="nbrOfColumns" type="uint" value="1024" />

<parameter id="nbrOfRows" type="uint" value="8192" />

<parameter id="dataRate" type="uint" value="2" />

<parameter id="burstSize" type="uint" value="8" />

</memarchitecturespec>

<memtimingspec>

<parameter id="clkMhz" type="double" value="800" />

<parameter id="REFI" type="uint" value="6240" />

<parameter id="RC" type="uint" value="38" />

<parameter id="RCD" type="uint" value="10" />

<parameter id="CL" type="uint" value="10" />

<parameter id="RL" type="uint" value="10" />

<parameter id="WL" type="uint" value="8" />

<parameter id="AL" type="uint" value="0" />

<parameter id="RP" type="uint" value="10" />

<parameter id="RFC" type="uint" value="88" />

<parameter id="RAS" type="uint" value="28" />

<parameter id="RTP" type="uint" value="6" />

<parameter id="WR" type="uint" value="12" />

<parameter id="FAW" type="uint" value="32" />

<parameter id="RRD" type="uint" value="5" />

<parameter id="CCD" type="uint" value="4" />

<parameter id="WTR" type="uint" value="6" />

<parameter id="DQSCK" type="uint" value="0" />

</memtimingspec>

<mempowerspec>

<parameter id="idd0" type="uint" value="120" />

<parameter id="idd2n" type="uint" value="70" />

<parameter id="idd3n" type="uint" value="65" />

<parameter id="idd4r" type="uint" value="350" />

<parameter id="idd4w" type="uint" value="430" />

<parameter id="idd5" type="uint" value="260" />

<parameter id="vdd" type="double" value="1.5" />

</mempowerspec>

</memspec>



B. TIMING CONSTRAINTS

B.1 DDR2-400

Tab. B.1: DDR2-400 timing constraints

Notation Restriction description Cycles
tRC Activate to Activate same bank 11
tRRD Activate to Activate diff bank 2
tRAS Activate to Precharge same bank 8
tRCD Activate to Read/Write 3
tWR Datawrite to Precharge 3
tWTR Datawrite to Read 2
tFAW Minimum time for four activates 10
tRP Precharge to Activate/Refresh 3
tRL Read to Dataread 3
tRTP Read to Precharge 2
tCCD Read to Read / Write to Write 4
tRTW Read to Write 6
tRFC Refresh to Activate 26
tREFI Refresh to Refresh 1560
tWL Write to Datawrite 2

B.2 DDR2-800

Tab. B.2: DDR2-800 timing constraints

Notation Restriction description Cycles
tRC Activate to Activate same bank 23
tRRD Activate to Activate diff bank 4
tRAS Activate to Precharge same bank 18
tRCD Activate to Read/Write 5
tWR Datawrite to Precharge 6
tWTR Datawrite to Read 3
tFAW Minimum time for four activates 18
tRP Precharge to Activate/Refresh 5
tRL Read to Dataread 5
tRTP Read to Precharge 3
tCCD Read to Read / Write to Write 4
tRTW Read to Write 6
tRFC Refresh to Activate 51
tREFI Refresh to Refresh 3120
tWL Write to Datawrite 4
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B.3 DDR3-800

Tab. B.3: DDR3-800 timing constraints

Notation Restriction description Cycles
tRC Activate to Activate same bank 20
tRRD Activate to Activate diff bank 4
tRAS Activate to Precharge same bank 15
tRCD Activate to Read/Write 5
tWR Datawrite to Precharge 6
tWTR Datawrite to Read 4
tFAW Minimum time for four activates 20
tRP Precharge to Activate/Refresh 5
tRL Read to Dataread 5
tRTP Read to Precharge 4
tCCD Read to Read / Write to Write 4
tRTW Read to Write 6
tRFC Refresh to Activate 44
tREFI Refresh to Refresh 3120
tWL Write to Datawrite 5

B.4 DDR3-1600

Tab. B.4: DDR3-1600 timing constraints

Notation Restriction description Cycles
tRC Activate to Activate same bank 38
tRRD Activate to Activate diff bank 5
tRAS Activate to Precharge same bank 28
tRCD Activate to Read/Write 10
tWR Datawrite to Precharge 12
tWTR Datawrite to Read 6
tFAW Minimum time for four activates 32
tRP Precharge to Activate/Refresh 10
tRL Read to Dataread 10
tRTP Read to Precharge 6
tCCD Read to Read / Write to Write 4
tRTW Read to Write 8
tRFC Refresh to Activate 88
tREFI Refresh to Refresh 6240
tWL Write to Datawrite 8



C. FULL STATE-MACHINE OF PROPOSED SCHEDULING RULES

readM
iss

readH
it

w
riteM

iss

w
riteH

it

sw
itch

refresh

readH
it

readM
iss

sw
itch

refresh

readM
iss

readH
it

sw
itch

refresh

w
riteH

it

w
riteM

iss

sw
itch

refresh
w
riteM

iss

w
riteH

it

w
riteM

iss

w
riteH

it

w
riteM

iss

w
riteH

it

readM
iss

readH
it

w
riteM

iss

w
riteH

it

sw
itch

refresh

readM
iss

readH
it

sw
itch

refresh

readM
iss

readH
it

readM
iss

readH
it

readM
iss

readH
it

sw
itch

refresh

w
riteM

iss

w
riteH

it

sw
itch

refresh

w
riteM

iss

w
riteH

it

w
riteM

iss

w
riteH

it

readM
iss

readH
it

w
riteM

iss

w
riteH

it

w
riteM

iss

w
riteH

it

readM
iss

readH
it

w
riteM

iss

w
riteH

it

readM
iss

readH
it

readM
iss

readH
it

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Fig. C.1: Proposed scheduling rules



D. CRITICAL TIMING CONSTRAINTS FOR DIFFERENT MEMORIES

D.1 Critical timing constraints DDR2-400

Tab. D.1: Critical timing constraints in cycles for DDR2-400

BI 1 1 1 1 1 1 1
BC 1 2 4 8 16 32 64
Granularity (bytes) 16 32 64 128 256 512 1024

Read constraints ACT to ACT 7 3
Precharge 3 6 6 6 6 6

Write constraints ACT to ACT 7 3
Precharge 4 8 11 11 11 11 11

BI 2 2 2 2 2 2 2
BC 1 2 4 8 16 32 64
Granularity (bytes) 32 64 128 256 512 1024 2048

Read constraints ACT to ACT 3
Precharge

Write constraints ACT to ACT 3
Precharge 4 3

BI 4 4 4 4 4 4 4
BC 1 2 4 8 16 32 64
Granularity (bytes) 64 128 256 512 1024 2048 4096

Read constraints ACT to ACT
Precharge

Write constraints ACT to ACT
Precharge

BI 8 8 8 8 8 8 8
BC 1 2 4 8 16 32 64
Granularity (bytes) 128 256 512 1024 2048 4096 8192

Read constraints FAW
Write constraints FAW
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D.2 Critical timing constraints DDR2-800

Tab. D.2: Critical timing constraints in cycles for DDR2-800

BI 1 1 1 1 1 1 1
BC 1 2 4 8 16 32 64
Granularity (bytes) 16 32 64 128 256 512 1024

Read constraints ACT to ACT 17 13 5
Precharge 3 8 8 8 8

Write constraints ACT to ACT 17 13 5
Precharge 3 11 16 16 16 16

BI 2 2 2 2 2 2 2
BC 1 2 4 8 16 32 64
Granularity (bytes) 32 64 128 256 512 1024 2048

Read constraints ACT to ACT 12 5
Precharge

Write constraints ACT to ACT 12 5
Precharge 4 1

BI 4 4 4 4 4 4 4
BC 1 2 4 8 16 32 64
Granularity (bytes) 64 128 256 512 1024 2048 4096

Read constraints ACT to ACT 2
Precharge

Write constraints ACT to ACT 2
Precharge

BI 8 8 8 8 8 8 8
BC 1 2 4 8 16 32 64
Granularity (bytes) 128 256 512 1024 2048 4096 8192

Read constraints FAW 2
Write constraints FAW 2
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D.3 Critical timing constraints DDR3-1600

Tab. D.3: Critical timing constraints in cycles for DDR3-1600

BI 1 1 1 1 1 1 1
BC 1 2 4 8 16 32 64
Granularity (bytes) 16 32 64 128 256 512 1024

Read constraints ACT to ACT 27 23 15
Precharge 15 15 15 15

Write constraints ACT to ACT 27 23 15
Precharge 6 10 18 33 33 33 33

BI 2 2 2 2 2 2 2
BC 1 2 4 8 16 32 64
Granularity (bytes) 32 64 128 256 512 1024 2048

Read constraints ACT to ACT 22 15
Precharge

Write constraints ACT to ACT 22 15
Precharge 6 10 17 1

BI 4 4 4 4 4 4 4
BC 1 2 4 8 16 32 64
Granularity (bytes) 64 128 256 512 1024 2048 4096

Read constraints ACT to ACT 11
Precharge

Write constraints ACT to ACT 11
Precharge 6 9

BI 8 8 8 8 8 8 8
BC 1 2 4 8 16 32 64
Granularity (bytes) 128 256 512 1024 2048 4096 8192

Read constraints FAW 5
Write constraints FAW 5



E. GROSS BANDWIDTH FOR DIFFERENT MEMORIES

E.1 Gross bandwidth DDR2-400

Tab. E.1: Gross bandwidth (MB/sec) for DDR2-400

BC 1 BC 2 BC 4 BC 8 BC 16 BC 32 BC 64
BI 1 granularity (B) 16 32 64 128 256 512 1024

bandwidth (MB/sec) 209.7 331.2 466.1 585.4 671.2 724.4 754.2

BI 2 granularity (B) 32 64 128 256 512 1024 2048
bandwidth (MB/sec) 418.4 659.0 714.0 746.0 763.1 771.9 776.4

BI 4 granularity (B) 64 128 256 512 1024 2048 4096
bandwidth (MB/sec) 657.7 714.0 746.0 763.1 771.9 776.4 778.7

BI 8 granularity (B) 128 256 512 1024 2048 4096 8192
bandwidth (MB/sec) 714.0 746.0 763.1 771.9 776.4 778.7 779.8

E.2 Gross bandwidth DDR2-800

Tab. E.2: Gross bandwidth (MB/sec) for DDR2-800

BC 1 BC 2 BC 4 BC 8 BC 16 BC 32 BC 64
BI 1 granularity (B) 16 32 64 128 256 512 1024

bandwidth (MB/sec) 262.3 449.6 699.4 968.5 1199.1 1361.1 1459.7

BI 2 granularity (B) 32 64 128 256 512 1024 2048
bandwidth (MB/sec) 535.0 984.9 1372.6 1461.8 1511.4 1537.5 1550.9

BI 4 granularity (B) 64 128 256 512 1024 2048 4096
bandwidth (MB/sec) 1067.3 1371.7 1461.8 1511.4 1537.5 1550.9 1557.7

BI 8 granularity (B) 128 256 512 1024 2048 4096 8192
bandwidth (MB/sec) 1300.4 1461.8 1511.4 1537.5 1550.9 1557.7 1561.1
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E.3 Gross bandwidth DDR3-1600

Tab. E.3: Gross bandwidth (MB/sec) for DDR3-1600

BC 1 BC 2 BC 4 BC 8 BC 16 BC 32 BC 64
BI 1 granularity (B) 16 32 64 128 256 512 1024

bandwidth (MB/sec) 286.8 525.8 901.3 1402.1 1941.4 2403.7 2728.5

BI 2 granularity (B) 32 64 128 256 512 1024 2048
bandwidth (MB/sec) 573.1 1050.2 2119.8 2696.1 2900.0 3014.3 3074.8

BI 4 granularity (B) 64 128 256 512 1024 2048 4096
bandwidth (MB/sec) 1144.2 2095.0 2695.6 2900.0 3014.3 3086.7 3112.1

BI 8 granularity (B) 128 256 512 1024 2048 4096 8192
bandwidth (MB/sec) 1546.0 2695.6 2900.0 3014.3 3086.7 3112.1 3124.9
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