
�����������	
�� ������������ �����������������!���� �������������������"#$�#��������������������������������������%�	&��'&
()
*���&	����
*'+�'��	�'+
����������,-�./0,�12����������3#4#�5�6�.07-�./88�"5�������������9�������������:;;<7#�#�=#��;��;��
>�	���
&�&��?
"���������=����������-������������������������@(������('�A
BC
D	()���(?
��E	(F%
G
@H��	?
��
��&�
()IJKLMNIOPQRQLSMSKTL?
��U�%(&
'F�B�	?
� �������������������

VWXXXYZ[\]̂_àbcdeadfghhifjbbiihkilmhnoabkpnfqriohsi tfuhnbkcpvwaxymhfqzut{f|bkoabmmhafcbaf}hapcpxymhf{p~hef�psh�|apopnxmporfqriohsi�xkwxarf��f���� �kohakxmfiẁha�piba�fq�hkfjbbiihkif{dqndl~ohakxmfiẁha�piba�fzadf�hkkrf��hiibk�xìhaf�dtdfgwp�iohk

A Reconfigurable SDRAM Controller for
Verifiable Mixed Time-Criticality Systems

Jasper J.A. Kuijsten
Electronic Systems, Eindhoven University of Technology

E-mail: j.j.a.kuijsten@student.tue.nl

Abstract—Reconfiguration capabilities for Multiple-Processor-
System-on-Chip (MPSoC) platforms are increasingly common,
offering increased flexibility and improved performance. How-
ever, reconfiguration is problematic for mixed time-criticality
systems which may run real-time applications and whose require-
ments have to be verified. Feasible verification, not exploding in
complexity as the number of applications increases, depends on
two platform properties: predictability for bounded performance
and composability for isolation of applications. For verification of
reconfigurable mixed time-criticality platforms, these properties
have to be maintained during reconfiguration.

This paper proposes a solution to the verification problem
for reconfigurable mixed time-criticality systems in the context
of SDRAM. First, a predictable SDRAM controller is made
composable by means of composable arbitration and an extension
to the existing predictability method. Second, a reconfiguration
method was developed to allow for reconfiguration of the SDRAM
controller without violating predictable and composable proper-
ties. The solutions were implemented for the CompSoC MPSoC,
both as SystemC simulation model and hardware implementation
on FPGA. The work presented in this paper allows CompSoC
to start and stop applications at run-time and reconfigure the
SDRAM controller as required. Moreover, predictability and
the established composability are preserved, such that verifi-
cation complexity does not increase. This research proposes
reconfiguration and composability concepts applicable to mixed
time-criticality systems in general and increases flexibility for
CompSoC.

Index Terms—SDRAM, real-time, verification, reconfiguration,
latency-rate, TDM, predictability, composability

I. INTRODUCTION

Embedded Multi-Processor-System-on-Chip (MPSoC) plat-
forms offer high computational power while keeping power
consumption at practical values [1]–[3], by running multiple
applications in parallel. Applications have requirements on
platform performance, as prerequisites for correct function-
ality. A subset of those applications may have real-time
requirements, such as a minimum throughput or maximum
response latencies. Use-cases are unique sets of concurrently
running real-time applications and non-real-time applications.
MPSoCs that host use-cases with mixed real-time require-
ments, are mixed time-criticality systems.

Configuring parameters of mixed time-criticality systems
such that all application requirements are satisfied is chal-
lenging. Design-time verification assures all requirements are
met, usually by system-level simulations. However, MPSoCs
employ resource sharing between applications to reduce cost
and power. Applications within a use-case may have to
compete for shared resource access. Their behavior becomes
inter-dependent due to interference, possibly impacting per-
formance. Verification of real-time requirements is only valid
if interference is considered by simulating use-cases instead

of applications. This becomes unfeasible when the number of
considered applications increases and both the number of use-
cases and simulation complexity explode [4], [5].

Predictable and composable systems offer solutions for
the verification feasibility problem. Predictable systems bound
interference and provide bounds for performance. Applications
for which a model is available can be verified using formal per-
formance analysis frameworks [6], [7]. Other applications can
only be verified by simulation, feasable only with composable
systems that isolate applications from each other, removing
application-to-application interference. This allows individual
application verification instead of verification of use-cases.

Modern MPSoCs are host to multiple use-cases, all having
unique requirements. Upon a use-case switch, reconfiguration
may take place to change the configuration of the system, such
that it is able to satisfy current requirements. Reconfiguration
is important for MPSoCs because it increases flexibility.
Figure 1 shows an example scenario with multiple use-cases
and a platform with enough resources to satisfy requirements
for at most two applications concurrently. A single use-case
A,B,C cannot be allocated. However, application A and C
are mutually exclusive and reconfiguration support allows all
applications to be allocated over use-cases A,B and B,C.

B

A C

Use−case
switch

R
u

n
n

in
g

a
p

p
lic

a
ti
o

n
s

Time

Figure 1. Example use-case switch

Reconfiguration for mixed time-criticality systems further
complicates design-time verification of real-time requirements.
Persistent applications [8] are applications with real-time
requirements, which are in multiple use-cases and run during
use-case switches. Verification thus has to consider conditions
before, after and during use-case switches. Verification by
formal performance analysis remains possible if platforms are
predictable during use-case switches. Verification by simu-
lation of individual applications is feasible if platforms are
composable even during use-case switches, such that appli-
cations remain isolated and reconfiguration of one does not
affect another.

This paper presents a solution for the verification problem
for reconfigurable mixed time-criticality systems. The four
main contributions are: 1) A method for composability on top
of predictability for SDRAM. 2) A method for reconfigura-
tion of Time-Division-Multiplexing (TDM) arbiters for mixed

time-criticality systems. 3) An implementation of the proposed
methods for composability and TDM arbiter reconfiguration
for SDRAM for CompSoC [9], both as a SystemC simulation
model and hardware platform on FPGA. 4) Extensions to an
automated design-time tool flow to instantiate CompSoC with
reconfiguration capabilities for a predictable and composable
SDRAM controller.

Section II gives background information on SDRAM and
CompSoC. Contributions begin at Section III, with a method
of composability for SDRAM. Next, Section IV proposes a
method of arbiter reconfiguration for real-time environments.
An implementation of these concepts for CompSoC is dis-
cussed in Section V. Section VI presents results to show
correct functionality of the proposed concepts and implemen-
tation. Section VII discusses related work, followed by closing
conclusions in Section VIII and recommendations for future
work in Section IX.

II. BACKGROUND

A. CompSoC

CompSoC is a predictable and composable MPSoC. The
predictability property assures that application performance is
at all times bounded, despite possible interference from other
applications and system processes. Independently from pre-
dictability, composability guarantees that concurrently execut-
ing applications do not affect each other, removing application-
to-application interference.

Relevant components of CompSoC are processor tiles, a
network-on-chip interconnect and a memory controller for
SDRAM. A SystemC implementation is used for doing sim-
ulations. A hardware CompSoC platform runs on FPGA.
CompSoC is instantiated by an automated tool flow, con-
sidering specified hardware and application specifications. A
platform configuration for all system parameters is determined
at design-time to allow design-time verification.

Use-cases are cliques of simultaneously running applica-
tions. Prior the work presented here, the SDRAM of CompSoC
is configured based on a single super-use-case, the union
of all use-cases. Other components are configured based on
maximum cliques of simultaneously running applications. All
cliques part of a maximum clique share a configuration,
significantly reducing the number of configurations.

B. SDRAM specifics

SDRAM are natively challenging for use in real-time en-
vironments. SDRAM behavior is highly unpredictable due to
their internal architecture. SDRAM hold a number of memory
banks, each containing rows and columns. Banks have a row
buffer, containing the currently active row, which is the only
one that can be accessed. SDRAM unpredictability comes
from mainly three sources [10]. 1) Row access times depend
on whether a row is already active and already stored in the
row buffer, or whether it first needs to be activated. 2) The data
bus is bi-directional and requires a delay for switching direc-
tion, when a read follows a write or vice versa. 3) SDRAM
have strict timing constraints between individual commands,
of which the largest effect is caused by a refresh command.
Refreshes are periodically executed to prevent loss of data
integrity, during which the SDRAM cannot be accessed.

C. Predictable SDRAM

Timing and architectural constraints have to be considered
when scheduling memory commands. Multiple scheduling
mechanisms exist with different predictability and perfor-
mance properties. CompSoC uses memory patterns [11] to
achieve both acceptable performance and predictable behavior
of the memory. Memory patterns are static sequences of
SDRAM commands, compiled at design-time and considering
the targeted SDRAM specifications. Within a pattern, all
timing constraints between individual SDRAM commands are
satisfied. Patterns have a certain bank interleaving (BI) and
burst count (BC) number to set bank level parallelism and
the number of read or write bursts within a pattern. The
combinations of BIs and BCs offer different bandwidth and
latency properties and are selected on application requirements
[12]. A pattern always gets executed in full such that the
SDRAM command sequence is only pre-emptive at the pattern
level.

Five patterns are used for reads (R), writes (W), switches
from read to write (RtW) and write to read (WtR) and refreshes
(REF). Read and write patterns are access patterns, used to
service read and write requests. They access the memory with
a certain access granularity known as an atom. Switching
patterns execute before either an upcoming read or write
pattern if the previously executing access pattern was of the
other type. Patterns access a known amount of data within
a known amount of time, providing a known bandwidth and
latency.

Gross bandwidth defines the maximum guaranteed band-
width the SDRAM can offer. Applications are guaranteed a
certain net bandwidth, a fraction of the gross bandwidth. Gross
bandwidth is the bandwidth pattern sets offer during back-to-
back execution of worst-case ordered patterns. Pattern sets are
read-dominant or write-dominant when the respective access
pattern is longer than the combination of the other access
pattern and both switching patterns. For these pattern sets,
worst-case bandwidth occurs when the dominating pattern
is used continuously. Pattern sets are mixed-dominant when
either combination of switching pattern and following access
pattern is longest. These pattern sets offer minimum bandwidth
when read and write requests interleave continuously.

Arbiters arbitrate shared resource access over requesters,
those processes requesting resource usage. In this work,
applications are single-threaded processes, such that every
application is a requester. A predictable arbiter has known
worst-case bounds on latency to receiving resource access
and the rate of offered service. Effects from interference are
bounded such that performance guarantees can be derived.

Arbiters characterize three resource performance aspects, 1)
rate of service, 2) latency to service, 3) over-allocation of
rate of service, the excess provided service to the requested
service due to limited arbiter precision. Generally, arbiters
suffer from coupling between these aspects, such that setting
a specific value for one aspect will affect others. Credit-
Controlled-Static-Priority (CCSP) [13] is the most advanced
arbitration scheme available to CompSoC, usually used to
arbitrate the Predator [14] SDRAM controller. It is able to
decouple all three performance aspects by employing both
requester priorities and a continuous budgeting system.

2

In this paper, any use of the pattern name abbreviations, un-
less specifically mentioned otherwise, refers to pattern lengths,
i.e. the number of memory commands of a pattern. Pattern
lengths also directly relate to their execution times, since the
memory processes one command each clock cycle.

D. LR-servers

SDRAM performance bounds are based on the Latency-
Rate (LR) server model [15]. They are able to abstract
shared resource behavior. LR-servers guarantee requesters a
minimum allocated rate of service after a maximum service
latency, shown graphically in Figure 2. The service guarantee
bounds the amount of received service independently of the
behavior of other requesters. The service latency and allocated
rate are controlled by the arbiter. The LR service guarantee is
only valid during busy periods, which are periods during which
the requested service is at least as much as is allocated on
average. Busy periods are shown in Figure 2 as those intervals
where requested service is above the reference busy line.

CompSoC SDRAM is abstracted as a LR-server and its
LR guarantees allow for derivation of worst-case response
times (WCRT). The SDRAM is predictable if requests always
finish before their WCRT. For the first request of busy periods,
worst-case delay from arrival to receiving service is bounded
by the service latency. Following requests at latest receive
service at the worst-case finishing time of the previous request.
A request finishing time is bounded by taking its worst-case
delay to service and adding the time required to service the
request, with certain size, with the guaranteed allocated rate,
known as the completion latency.

A
c
c
u

m
u

la
te

d

s
e

rv
ic

e
 u

n
it
s

Service cycles

busy line

busy period

completion latency

requested service

offered service

guaranteed service

allocated rate

service latency

Figure 2. LR-server with annotations

For this work the LR-model is slightly modified to op-
timize performance for predictable SDRAM [16]. WCRT are
determined using a completion latency valid only for Predator.
Completion latencies are generally determined using the allo-
cated rate and assuming a fully pre-emptive resource. Predator
is only pre-emptive on pattern level, such that requesters
are guaranteed maximum rate for a short time instead of
the allocated rate for a longer time. Completion latencies
for Predator are thus shorter than anticipated by a general
LR model.

E. Composable SDRAM

Composability is achieved by artificially reducing perfor-
mance of applications to their worst case. Request service
times may be dependent on behavior of other requesters,

but are bounded by the WCRT if the shared resource is
predictable. Variations in application behavior due to variations
in interference behavior are removed by always delaying
requests to WCRT, truly isolating applications. Delayblocks
[17], sitting in the path from SDRAM to requester, are used
to delay to WCRT.

III. COMPOSABILITY METHOD

The first contribution of this paper is a novel method
for composable SDRAM. This section first introduces TDM
arbitration and elaborates on its composable properties. Next,
composable patterns are proposed.

A. TDM arbitration introduction
TDM arbiters regulate access to a resource across multiple

requesters by dividing time into slices and appointing resource
access to requesters for slice durations. TDM arbiters use a
frame consisting of slots, each representing a slice of the time
required to service the complete frame. Slots are allocated to
requesters, giving them resource access in those slots. Slot
sizes are set to the service time of one atom. Slots are non-
preemptive because atoms cannot be pre-empted. A scheduling
decision is made every time a request is serviced or, if idle,
when the schedule interval has passed. This interval is equal
to the execution time of the shortest access pattern. Every
scheduling decision the index is updated, selecting the next
slot for scheduling. A new frame iteration is started if the
index moves from the last to the first slot.

A TDM configuration consists of 1) a frame size parameter
which determines the number of slots in the frame, and 2) an
allocation of slots to requesters. Many allocation strategies
exist, but these are not the focus of this work. A greedy
allocation strategy is used, which allocates continuous blocks
of slots per application.

B. TDM composability
Conceptually, TDM arbiters are composable by design.

Requesters always receive service for their allocated duration,
independently of who is serviced for the remainder of the
frame iteration. However, its composability property depends
on what the arbiter decides to do when a scheduled requester
does not have any pending requests. A work-conserving ar-
biter schedules another requester with pending requests. A
non-work-conserving arbiter does not schedule any and the
resource falls idle. For a work-conserving TDM arbiter, the
instant when requests for a particular requester receive service
is dependent on the number of pending requests of other
requesters. This application-to-application dependence may
cause requests to be served sooner than expected, invalidating
composability. Non-work-conserving arbiters do not have this
dependence and are conceptually composable.

Using a non-work-conserving TDM arbiter to arbitrate
specifically a SDRAM, does not give composable behavior.
The reason is varying slot sizes. Slot sizes vary because
service times for atoms do, and they cannot be preempted.
Service times are variable for three reasons: 1) Read and
write requests may have a different service time, depending
on the corresponding patterns lengths. 2) Switching patterns
are required to execute before the access pattern when a read
request follows a write request or vice versa. 3) A scheduled

3

requester may experience delayed execution due to a refresh.
Occurrence of the first and second reason is shown in Figure 3.
The figure shows execution of four consecutive requests, all
with different service times. Only the first two reasons result in
application-to-application interference. Firstly, different access
pattern lengths cause time instants of upcoming scheduling
decisions to vary depending on the current request type,
and consequently affecting upcoming request service times.
Secondly, the service time of the current request is dependent
on the type of the previously serviced request, via a potentially
required switching pattern. The third reason, interference from
refreshes, can be ignored because it is not induced by appli-
cations.

Read WriteReadWrite

Write W/R Read Read WriteR/W

Requests

Memory
patterns

Time

Figure 3. Predictable pattern execution

C. Composable patterns
Composable patterns are proposed to solve slot size de-

pendence on application behavior. Composable patterns are
memory patterns with two properties that overcome non-
composability of the original predictable patterns. First, all
access patterns are equally long and second, switching patterns
are always executed by incorporating them into the access
patterns. The same execution trace as shown in Figure 3 is
shown in Figure 4, using composable patterns. Service times
are equal and consequently slot sizes are too.

R/W + Write W/R + Read W/R + Read R/W + Write

Read Read WriteWriteRequests

Memory
patterns

Time

Figure 4. Composable pattern execution

Composable patterns are generated by adapting predictable
patterns, still considering the original timing constraints. Two
different methods are used, depending on the pattern set dom-
inance property. For mixed-dominant patterns: First, switching
patterns are inserted in full in front of their correspond-
ing access pattern, i.e. the read-to-write switching pattern
is inserted before the write pattern, and the write-to-read
switching pattern is added before the read pattern. Second,
after appending the switching patterns the access patterns may
have different lengths. SDRAM idle commands (NOP) are
appended to the shortest access pattern to make them equally
long. For read-dominant or write-dominant pattern sets, both
switching patterns are appended to only the shortest access
pattern. Again, if after adding switching patterns the access
patterns are not equally long, the shortest pattern is appended
with NOPs. Equation (1) describes the relation between access
patterns (AP) lengths of a composable pattern set Pc and a

predictable pattern set Pp, for both mixed-dominant (md) and
read-dominant or write-dominant (rdwd) pattern sets.

APc =

{
max(Rp,Wp) (rdwd)
max(WtRp +Rp, RtWp +Wp) (md)

(1)

An example result of converting predictable patterns to
composable patterns is shown in Table I. Besides the newly
sized access patterns and removed switching patterns, also the
refresh pattern and introduced idle pattern (I) are shown. Re-
freshes do not affect composability, hence the refresh pattern
can be differently sized. In addition to the previously discussed
steps from predictable to composable patterns, an idle pattern
is introduced. Idle periods can be invoked by both letting the
controller fall idle by executing no pattern, or by executing ex-
plicit idle patterns. If not using idle patterns, the scheduling in-
terval enforces a duration of one slot for idle periods. For both
methods, the SDRAM controller executes NOP commands
and initially timing behavior is identical. However, whether
an actual pattern is sent to, buffered in, and executed by the
SDRAM controller, or whether the controller just executes a
right number of NOPs without an explicit pattern, influences
its buffer usage. Without explicit idle patterns, buffer usage
differs between situations where requests are scheduled or not,
as patterns are used for the first but not the second case. For
situations where differences in buffer usage influence timing
behavior, application-to-application interference could occur.
Idle patterns are hence introduced for composable pattern sets,
eliminating SDRAM controller buffer usage dependence on
application behavior and the non-composability that follows.

Table I
PATTERN LENGTHS (MIXED-DOMINANT SET)

Pp Pc

R 31 38
W 35 38

WtR 5 0
RtW 3 0
REF 44 44
I - 38

D. Performance analysis and evaluation
The second part of this work, starting with Section IV,

focuses on reconfiguration for SDRAM with predictable and
composable properties. The proposed method of composability
is particularly appealing for reconfiguration, compared to the
method using CCSP and delaying to WCRT. Reconfiguration
for TDM arbitration is per application, while reconfiguration
for CCSP is only possible per use-case. Reconfiguration per
use-case is non-composable because it affects all applications
within the use-case by definition. Reconfiguration of the
SDRAM controller is thus preferably explored for TDM arbi-
tration. However, before spending effort on a reconfiguration
solution for the composability method using TDM arbitration
and composable patterns, its performance is investigated to
determine its usability in practice.

Composable access patterns are on average at least as
long, but often longer than the original predictable patterns.
The same amount of data is accessed using longer patterns,

4

implying composable patterns have reduced efficiency and
offer reduced gross bandwidth. Use-cases with high bandwidth
requirements may not be allocated successfully using compos-
able patterns, but would have been with predictable patterns.
Equation (2) analytically expresses the relation between gross
bandwidth for predictable and composable patterns, using
efficiency factor epc. Gross bandwidth is not affected for read-
dominant or write-dominant pattern sets, because the dominant
pattern has not changed.

epc =

{
1 (rdwd)
Rp+Wp+WtRp+RtWp

Rc+Wc
(md)

(2)

Composable patterns also have an effect on request service
times. Latencies may increase due to two aspects. 1) Access
patterns may incorporate switching patterns and additional
appended NOPs. Switching patterns are hence always exe-
cuted, even though they are not always needed. 2) Requests
may experience an increased service latency, because previous
requests take longer to finish. It is not possible to analytically
determine average request latency increases for arbitrary sit-
uations. This depends on the number of required switching
patterns, which is arbiter, application and use-case specific. A
lower bound can be determined by only taking pattern lengths
in account, ignoring possibly increased service latencies, and
considering a worst-case ordered request stream. A lower
bound on average latency increase is then given by 1/epc.

Three experiments are performed to determine: 1) Gross
bandwidth reduction when using composable patterns, for a
diverse range of memories and pattern sets. 2) Request latency
increase due to composable patterns for real life applications.
3) Request latency performance of TDM arbitration and com-
posable patterns compared to CCSP arbitration and delaying to
the WCRT for real life applications. These three experiments
together present sufficient information to decide on usability
of the composability solution in practice.

Results are discussed in Section VI as part of the final
results. For now it is sufficient to know that, respectively for
each experiment: 1) Gross bandwidth reduces, but is unlikely
to affect use-case allocation chances. 2) Using composable
patterns increases request latencies on average by 45% over
using predictable patterns. 3) Request latencies on average in-
crease with 42% when using TDM arbitration and composable
patterns, compared to using CCSP arbitration, predictable pat-
terns and a delayblock to delay to WCRT. Actual performance
differences are highly dependent on platform parameters.

It is concluded that the composability method of TDM
arbitration and composable patterns is usable in real life
situations. Section IV proposes a reconfiguration method for
it.

IV. RECONFIGURABLE TDM ARBITRATION

This paper presents work on a reconfigurable mixed time-
criticality system, such that it can be host to multiple use-
cases. Each use-case has a unique set of requirements and
upon a use-case switch, the system must be able to stop and
start applications and reconfigure affected resources such that
they satisfy the updated requirements. Such a reconfiguration
is a system-wide process. Events take place on three levels:

1) Reconfiguration on system-level, i.e. use-case switching,
initiated by starting and stopping of applications. 2) Recon-
figuration of applications, i.e. changes to the configuration of
applications during their lifetime. 3) Arbiter reconfiguration,
the process of making changes to the TDM frame at run-time.
Slots are reconfigured to match the configuration of starting
use-cases, as determined at design-time.

Start and stop reconfiguration events are not challenging
themselves. Applications may require LR guarantees and
composability for design-time verification, but only during
their lifetime, the period in which they are active. By definition,
start and stop events take place outside application lifetime.
Starting and stopping applications, on arbiter level adding
and removal of their allocated slots, can be done arbitrarily
without increasing verification efforts beyond feasibility. The
challenge for use-case switching is how other applications,
besides the one inducing the use-case switch, experience the
reconfiguration. Different types of applications are distin-
guished, based on their real-time requirements during use-case
switches. All applications receive predictable and composable
service during regular execution. Persistent composable appli-
cations are real-time applications and active in multiple use-
cases, requiring composability for design-time verification by
simulation. The challenge is to process reconfigurations for
use-case switching without affecting them. Composability is
lost otherwise. Persistent predictable applications are real-time
applications which depend on LR guarantees for design-time
verification by formal performance analysis. These applica-
tions can be affected by reconfiguration events, as long as their
LR guarantees are not invalidated. Non-persistent applications
are active in only one use-case and never experience arbiter
reconfiguration.

This section describes a method of arbiter reconfiguration
to reconfigure applications while keeping LR guarantees
valid and preserving composability, allowing for system-level
reconfigurations to start and stop applications while keeping
verification efforts feasible.

A. Maintaining composability

Use-case switching with persistent composable applications
has two prerequisites. 1) The reconfiguration process needs to
be independent of the scheduling process, such that processing
reconfiguration events does not delay scheduling decisions.
This is easily satisfied when scheduling and reconfiguration are
handled by separate submodules of the arbiter. 2) Persistent
composable applications are never reconfigured during their
lifetime. They must have identical slot allocations over all
their use-cases. This complicates the allocation process due
to coupling in configurations between use-cases. The actual
effects depend on the used allocation strategy. For this work,
using greedy allocation, fragmentation of the TDM frame
becomes an issue.

Algorithm 1 determines slot allocations. Persistent compos-
able applications are given priority and receive allocation over
all their use-cases. Next, all persistent predictable applications
are allocated to their use-cases. Persistent predictable applica-
tions may have different allocations over their use-cases, due
to already allocated persistent composable applications, and
may require reconfiguration during their lifetime. This has to

5

be done without invalidating their LR guarantees. Last, non-
persistent applications receive their allocation.

Algorithm 1 Allocation algorithm

Input: persistent composable applications ~Ac, other applications ~Ao,
slot requirements ~R, use-cases ~U ,

Output: TDMA configurations ~C
for all a in ~Ac do

location← 0
for all u in ~U [a] do

repeat
~S[u]← findSpace(location, ~R[a])
location← increment(location)

until ~S[u] or reached end of frame
end for
if ~S = ~1 then

~C[~U [a]]← setSlots(a, location, ~R[a])
end if

end for
for all a in ~Ao do

location← 0
for all u in ~U [a] do

repeat
S ← findSpace(location, ~R[a])
location← increment(location)

until S or reached end of frame
if S then

~C[u]← setSlots(a, location, ~R[a])
end if

end for
end for

B. Predictable arbiter reconfiguration
Persistent predictable applications require reconfiguration

if their slot allocation differs between the two use-cases.
If so, allocated slots are moved by adding newly allocated
slots and removing old ones. Behavior for both configurations
has been verified at design-time. However, their behavior is
temporarily undetermined during the use-case switch when
slots are added and removed. This is only allowed if behavior
stays predictable, i.e. still follows the LR guarantees. Two
prerequisites have to be satisfied: 1) An application has to
receive service for at least the allocated number of slots during
each frame iteration. Failure to satisfy this temporarily de-
creases the allocated rate and invalidates completion latencies.
2) Arbiter latencies, the maximum interval between two slots
of an allocation, cannot exceed the value determined at design-
time for regular execution. This would invalidate the service
latency bound.

Figure 5 shows two reconfiguration scenarios. An applica-
tion owns one slot in a frame of four. The index moves right as
time passes, every fourth update selecting the first slot again.
Arrow lengths indicate observed arbiter latency, expressed in
slots, being three during regular execution. A reconfiguration
event that moves the allocated slot takes places at time tr
when the index is at the appointed location. Scenario 1a and
2a add and remove slots directly and simultaneously at tr. For
scenario 1, the allocated slot moves to the left. For 1a, due to
the unfortunate reconfiguration time instant, the allocated slot
moves past the index. A full frame iteration without service
occurs, both increasing arbiter latency beyond the regular
value and temporarily reducing the allocated rate to zero.

Both service latency and completion latency are invalidated.
For 2, the allocated slot moves to the right. For 2a, arbiter
latency again increases beyond its regular value, invalidating
the service latency.

r
t

r
t

r
t

r
t

1a)

1b)

2a)

2b)

Time

Figure 5. Arbiter latencies during reconfiguration. Unpredictable: 1a and
2a. Predictable: 1b and 2b

It is possible to reconfigure the TDM arbiter without inval-
idating guarantees for the reconfigured application. The solu-
tion consists of three aspects. 1) The reconfiguration event for
moving slots consists of two distinct reconfiguration actions to
add and remove slots. Of these two actions, adding is always
processed before removing. 2) Processing a reconfiguration
event is never interrupted by events related to other applica-
tions. 3) Removal of slots is only allowed at the beginning of
a frame, i.e. at the start of a new frame iteration. These rules
assure that adding and removal of slots take place in separate
frame iterations and slots do not get added to another requester
before being properly removed. Reconfiguration using this
method is shown in Figure 5, scenarios 1b and 2b. Arbiter
latencies do not increase and frame iterations with too few
allocated slots do not occur. For a single frame iteration,
moved applications temporarily have more slots allocated to
them than during regular execution. Latencies temporarily
decrease and offered service increases, temporarily improving
application performance. Both service latency and completion
latency are valid during reconfiguration and LR guarantees
are obeyed.

It is worth noting that it is possible to offer composability
to persistent predictable applications, which may be recon-
figured. LR guarantees are valid during reconfiguration and
delayblocks can delay to a valid WCRT. The proposed ar-
biter reconfiguration method is particularly appealing, because
WCRT do not increase. Alternatively to the proposed method,
one could also determine WCRT during reconfiguration and
apply these to regular execution. This gives more pessimistic
worst-case bounds.

V. IMPLEMENTATION

The concepts discussed in Section III and Section IV are
only part of a larger effort for composability of the SDRAM
and reconfiguration support at system level. This section de-
scribes the implementation and integration of composable pat-
terns and a reconfigurable TDM arbiter with supporting func-
tionality into CompSoC. A composable SDRAM controller
and use-case switching capabilities require support on multiple
levels. Top-down, there are: 1) At design-time, composable
pattern generation and support for the tool flow to consider
multiple use-cases to determine run-time configurations per
use-case 2) At run-time, support for reconfiguration in the

6

arbiter driver software. 3) In hardware, the arbiter module itself
and an infrastructure to deliver reconfiguration events at the
arbiter. The following subsections elaborate on each of them.

use−cases application requirements

SDRAM

arbiter configuration per use−case

arbiter configuration

pattern set

pattern generation
and selection

use−cases start/stop event

arbiter configuration event(s)

(a) (b)

driver

arbiter configuration module

Figure 6. Design-time (a) and run-time (b) flows

A. Design-time tool flow

The CompSoC tool flow determines an arbiter configuration
at design-time by the flow shown in Figure 6a. The flow is
identical for CompSoC with or without support for multiple
use-cases, except for the use-case data. The tool flow previ-
ously used a super-use-case for configuration of the SDRAM
controller. With reconfiguration support, the flow uses max-
imum cliques of simultaneously running applications. The
tool flow output is now multiple arbiter configurations instead
of just one, all using a common pattern set. In the pattern
generation and selection process, support is added in two areas.
First, there is the pattern generation, to which conversion to
composable patterns is added. Second, the pattern selection
process is to consider all use-cases instead of the previously
used super-use-case. With the ability to switch use-cases, all
use-cases are individually considered to determine maximum
slack bandwidth. The selected pattern set offers most slack
summed over all use-cases. Applications which are in many
use-cases, influence final pattern selection more than those
who are in few.

Arbiter configuration takes place as discussed in Section IV
and shown in Algorithm 1. At this stage of the tool flow,
application requirements are expressed in number of slots. The
selected pattern set is used to convert bandwidth requirements
to slot requirements [18].

B. Run-time software

Support for multiple use-cases requires support in Comp-
SoC software and hardware, as shown in Figure 6b. Upon a
system-level application start or stop, the involved processes
are, 1) checking the need for reconfiguration, 2) creating
configuration events 3) sorting reconfiguration events.

1) Checking the need for reconfiguration: Not all use-case
switches require reconfiguration for other applications besides
the one starting or stopping. Use-case switches within the same
maximum clique share configurations and reconfiguration is
thus not necessary. If the upcoming use-case is part of a
different maximum clique reconfiguration may be required and
applications that are in both the current and next use-case are
marked.

2) Creating reconfiguration events: The driver compiles a
list of reconfiguration events. Such events contain information
on which slots are to be added or removed for a requester. For
marked applications, allocations on both sides of the use-case
switch are compared and a reconfiguration event is created if
they differ, to move their slots, consisting of a separate adding
and removal action. Overlap between allocations of the current
and next configuration is handled when creating the removal
action. Recently added slots, by the adding action of the same
reconfiguration event, should not be removed immediately
after by the following removal action. Without this precaution,
overlapping slots between the two configurations are missing
from the new allocation and the resulting reduced allocated
rate leads to violation of the LR guarantees. Reconfiguration
events for starting or stopping applications are straightforward.

3) Sorting reconfiguration events: The reconfiguration
event list is sorted to determine in which sequence they should
be performed. The reconfiguration order of active applications
matters, because the current and next allocations of different
applications might interfere, i.e. the allocation for an applica-
tion in the next use-case that is reconfigured first, uses slots
still allocated to another application in the current use-case.
Occurrence of such a situation is the switching condition for a
bubble-sort algorithm to order all reconfiguration events such
that allocations do not interfere. The worst-case computational
complexity O(n2) is not an issue for CompSoC for any
practical number of applications. Circular dependencies are
conceptually possible if two applications switch slots, but do
not occur with the used allocation strategy.

C. Run-time hardware

Hardware related to reconfiguration support is limited to
the infrastructure used to deliver reconfiguration events at the
arbiter, and the arbiter itself. The infrastructure was already in
CompSoC prior to this work. The TDM arbiter is implemented
as discussed in Section IV. Scheduling and reconfiguration
processes are implemented as distinct submodules, such that
they work in parallel. Furthermore, a shadow frame is used.
This frame is a second TDM frame, not used for making
scheduling decisions, but only for reconfiguration purposes.
Shadow frame contents are copied into the regular frame at
transitions between frame iterations, making reconfigurations
effective only at this time. Removal of slots is only allowed
during a transition between frame iterations and adding slots
is only allowed directly if no removal event is waiting.
Adding events that can be processed directly are processed
on the regular frame. Removal and queued adding of slots are
performed on the shadow frame.

VI. EXPERIMENTAL RESULTS

A. Experimental setups

Experiments are performed both on the SystemC simula-
tion environment and hardware platform on FPGA. A Xilinx
ML605 [19] is used, equipped with a Micron MT4JSF6464HY
512MB DDR3 SDRAM SODIMM. A model of this SDRAM
is available and used for the tool flow and simulations.

1) SystemC simulation model: A SystemC implementation
of Predator is used to access the SDRAM. Applications are
implemented by either a traffic generator or trace player.

7

Traffic generators generate requests as specified by the appli-
cation requirements, i.e. latency and read and write bandwidth.
Variations in request frequency around the mean bandwidth are
controllable. Alternatively to synthetically generated traffic,
traces can be used. Trace players execute cycle-precise request
level traces of real life applications. Traces are generated by
running applications on a SimpleScalar [20] ARM simulator.

2) FPGA platform: The CompSoC hardware implementa-
tion uses Xilinx µBlaze processors to execute applications.
For this work, no operating system is used such that they
run only a single application at a time. The applications
used here are synthetic applications, doing read or write
requests with a certain bandwidth as specified. Like the traffic
generators, burstiness in traffic is specifiable. Raptor, a VHDL
implementation of the Predator SDRAM controller is used.

B. Composability method performance analysis

1) Gross bandwidth reduction: As discussed in Section III,
the conversion from predictable to composable patterns may
cause a gross bandwidth reduction. An experiment is per-
formed to determine exact losses for a diverse range of
SDRAM and pattern sets. Gross bandwidth for a SDRAM is
known after pattern set generation, hence each time only the
tool flow is run and no simulations or executions on FPGA
are required.

Figure 7 shows gross bandwidth decrease with compos-
able patterns for every supported BI and BC pattern set
configuration for the Micron MT4JSF6464HY. Results are
highly dependent on pattern configurations, ranging from 0%
reduction for every pattern with BI1, to 7.9% for the pattern set
with BI4 and BC2. It is out of scope of this work to elaborately
discuss reasons for particular performance of each pattern
configuration, as it mainly depends on the pattern generation
algorithm. However, two observations are listed next. 1) epc is
mostly dependent on switching pattern sizes, because most
pattern sets are mixed-dominant with equally long access
patterns. 2) Pattern sets with BI1 do not suffer reduced gross
bandwidth. For these, predictable and composable pattern sets
are identical.

Table II shows summarized gross bandwidth reductions for
twelve SDRAM, divided over multiple SDRAM types. For
each memory type DDR2, DDR3, LPDDR and LPDDR2,
the average and maximum gross bandwidth reduction across
pattern configurations are given. Results show that for specific
pattern and memory configurations, gross bandwidth reduction
can go up to 12%. For all SDRAM types on average over all
pattern sets less than 1.6% of gross bandwidth is lost. For the
majority of combinations of pattern sets, targeted SDRAM and
use-case requirements, allocation chances are hardly affected.

Table II
GROSS BANDWIDTH REDUCTION SUMMARY

[%] Average Gross Maximum Gross
Bandwidth Reduction Bandwidth Reduction

DDR2 1.25 9.53
DDR3 1.58 12.00

LPDDR 0.77 9.53
LPDDR2 0.26 5.00

 0

 1

 2

 3

 4

 5

 6

 7

 8

BI1 BI2 BI4 BI8

G
ro

s
s
 B

a
n

d
w

id
th

 R
e

d
u

c
ti
o

n
 [

%
] BC1

BC2
BC4
BC8

BC16
BC32
BC64

Figure 7. Gross bandwidth reduction per pattern set for MT4JSF6464HY

2) Composable pattern latency performance: Section III
states that composable patterns have increased latency over
predictable patterns, for which a lower bound is given.
Simulation experiments are performed to determine request
latency increases when using composable patterns, for real
life applications using traces. Mediabench [21] applications
g721decode and h263decode are selected, both having a repre-
sentable mixture of read and write requests. They are executed
both with predictable and composable patterns, for a number
of pattern set configurations. The selected pattern sets have
practical access granularities. All other system parameters are
kept constant. A TDM arbiter is used with frame size set to
20. Applications receive 30 MB/s of guaranteed bandwidth in
both read and write directions. Latency requirements are set
such that they are satisfied by the selected pattern sets.

 0

 500

 1000

 1500

 2000

 2500

 3000

B
I1

B
C

1
 (3

2
)

B
I1

B
C

2
 (6

4
)

B
I2

B
C

1
 (6

4
)

B
I2

B
C

2
 (1

2
8
)

B
I4

B
C

1
 (1

2
8
)

B
I4

B
C

2
 (2

5
6
)

B
I1

B
C

1
 (3

2
)

B
I1

B
C

2
 (6

4
)

B
I2

B
C

1
 (6

4
)

B
I2

B
C

2
 (1

2
8
)

B
I4

B
C

1
 (1

2
8
)

B
I4

B
C

2
 (2

5
6
)

A
v
e

ra
g

e
 R

e
q

u
e

s
t

L
a

te
n

c
y
 [

n
s
]

Regular Patterns
Composable Patterns

g721decodeh263decode

Figure 8. Latency performance for predictable and composable patterns

Results for the selected pattern sets, with access granular-
ities annotated between brackets, are presented in Figure 8.
The figure shows that composable patterns increase the request
latencies by an amount significantly greater than the respective
lower bounds. All selected pattern sets have a lower bounded
latency increase of 0% except for the pattern set with BI4
and BC2, for which the lower bound guarantees a minimum
increase of 8.6%. For the shown applications, average latencies

8

increase with a range of 10% up to 61%, and on average across
all selected pattern sets with 45%. Similar results hold for
more applications in the mediabench benchmark set, whose
results are omitted here.

3) Average-case performance composability methods:
Composable SDRAM by means of composable patterns and
TDM arbitration is an alternative method to the approach of
using delayblocks. Performance of both methods is compared
experimentally by simulation. Traces of the g721decode and
h263decode applications are executed in two situations: A)
Using CCSP arbitration, predictable patterns and an active
delayblock, delaying requests to their WCRT. Only the highest
priority application is considered. B) Using TDM arbitration,
composable patterns and an inactive delayblock. The frame
size is set to 20. For both A and B, applications receive
30 MB/s of both guaranteed read and write bandwidth.

 0

 500

 1000

 1500

 2000

 2500

 3000

B
I1

B
C

1
 (3

2
)

B
I1

B
C

2
 (6

4
)

B
I2

B
C

1
 (6

4
)

B
I2

B
C

2
 (1

2
8
)

B
I4

B
C

1
 (1

2
8
)

B
I4

B
C

2
 (2

5
6
)

B
I1

B
C

1
 (3

2
)

B
I1

B
C

2
 (6

4
)

B
I2

B
C

1
 (6

4
)

B
I2

B
C

2
 (1

2
8
)

B
I4

B
C

1
 (1

2
8
)

B
I4

B
C

2
 (2

5
6
)

A
v
e

ra
g

e
 R

e
q

u
e

s
t

L
a

te
n

c
y
 [

n
s
]

A: CCSP and delaying to WCRT
B: TDMA and composable patterns

g721decodeh263decode

Figure 9. Latency performance for both composability methods

Figure 9 shows the average-case request latencies for A
and B. For B, latencies increase for all but two pattern
sets, with 46% up to 140%. For two pattern sets method
B performs better than A with reductions of 3% and 6%.
Averaged across all pattern sets, latencies for B increase
with 42%. This indicates CCSP and delaying to WCRT as
the best performing composability method. However, a fair
comparison considers more than just the shown latencies.
Some points for a fair comparison are: 1) TDM arbitration
suffers from coupling while CCSP arbitration does not. This
is not very obvious in the results presented here, because the
system parameters are chosen specifically to avoid extreme
settings, such as a very small or large frame, or very low or
high bandwidth settings. CCSP performance is far superior
for these situations. 2) Shown behavior is actual-case which
for A is equal to worst-case. Worst-case behavior for B is
far worse than worst-case behavior for A, possibly affecting
satisfaction of application latency requirements. 3) Not shown
in the figure, A offers more gross bandwidth using predictable
patterns. 4) B has increased over-allocation up to 5% per
applications with frame size 20, which may be cause for
unsuccessful allocation for larger use-cases. 5) Performance
for method A considers the highest priority application only.

Latencies are larger for applications with lower priorities. This
is particularly noticeable for larger use-cases. TDM arbitration
uses no priorities and all applications receive equal service.

Generally, the method of composability using CCSP arbi-
tration and delaying to WCRT offers superior performance
over TDM arbitration and composable patterns. Many aspects
influence performance of TDM arbitration and an exact com-
parison is difficult. However, it is concluded the composability
method of TDM arbitration and composable patterns is usable
in practice.

C. Temporal application behavior
1) Predictable reconfiguration: A simulation experiment is

set up with use-cases as shown in Figure 10. Applications
A−G are traffic generators (TG) with bandwidth requirements
as given in Table III. They are divided over use-cases U1,
U2 and U3. Applications A and D are specified persistent
composable and applications F and G specified persistent
predictable. Each is active during at least one of the use-case
switches T1 at 30 µs and T2 at 68 µs. Total execution time
is 100 µs. Side by side applications share traffic generators,
which is possible because they are mutually exclusive. All
applications have a maximum latency requirement of 2000 ns.

Table III
BANDWIDTH REQUIREMENTS FOR EXPERIMENT IN FIGURE 10

Application A B C D E F G
Requested [MB/s] 320 240 200 320 800 600 400

A

B

C

E

F

G

A
p

p
lic

a
ti
o

n
s

R
u

n
n

in
g

T2U1 T1 U2 U3

D TG4

TG3

TG2

TG1

Time

Figure 10. Use-cases for reconfiguration experiment

A pattern set with BI4 and BC1 is selected, offering a peak
net bandwidth of 1862 MB/s. A super-use-case containing all
applications requires 2880 MB/s and the experiment cannot be
allocated successfully. Figure 11 shows the arbiter configura-
tion for this experiment for CompSoC with use-case switching
capabilities. The allocation is determined by Algorithm 1 with
a set frame size of 20 slots. Persistent composable applications
A and D have identical allocations over their use-cases, while
persistent predictable applications F and G do not. Were they
to have identical allocations between U2 and U3, application
E would not be successfully allocated due to fragmentation.

Figure 12 shows finishing latencies for requests originating
from TG2, which first runs application B and later F , with
their WCRT as determined by their LR guarantees. The test is
run twice, once without and once with the proposed method of
predictable arbiter reconfiguration. Two reconfiguration events
occur during the total run-time. The first event is visible at T1
at 30 µs, when application B is stopped and application F is

9

A A A A

A A A A

A A A A

D D D D

D D D D F F F

F F F

B B B B B B B CCCCC

G G G

G G G E E E E E E E E E U3

U2

U1

Slots

U
s
e
−

c
a
s
e
s

Figure 11. Arbiter configuration for experiment in Figure 10

started. The second event at T2 at 68 µs stops application D
and starts application E, inducing a use-case switch from U2
to U3. Applications F and G are reconfigured, moving their
allocations to accommodate application E. Figure 11 shows
that both their allocations are moved left. The time instant for
T2 is chosen to cause the situation shown in Figure 5 (1a) for
application F .

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90 100

F
in

is
h

in
g

 L
a

te
n

c
ie

s
 [

n
s
]

Simulated Run-Time [µs]

Non-predictable Reconfiguration
Predictable Reconfiguration

WCRT

Figure 12. Reconfiguration at T2 for application F

Both runs show identical behavior during regular execution
and when stopping and starting applications. Only when ap-
plication F is reconfigured the behavior for F differs between
runs. Arbitrarily adding and removal slots leads to invalidation
of the LR guarantees, as some requests finish above their
allowed WCRT. The proposed arbiter reconfiguration method
maintains the LR guarantees.

2) LR-server validation: The experiment presented here
investigates LR guarantees for the hardware instance of
CompSoC on FPGA, using composable patterns and TDM
arbitration. The automated tool flow is used to instantiate
and configure a platform with two µBlazes. Each µBlaze
runs a single application doing 64 Byte SDRAM requests.
Application 1 (A1) only does read requests and Application 2
(A2) only does write requests to ensure interference. A2
requests a bandwidth of 80 MB/s, but periods of high and
low request frequencies occur. During high request frequency
intervals up to 180 MB/s is requested. A2 has a maximum
allowed request latency of 1650 ns. A1 requests 300 MB/s
with maximum allowed latencies of 2500 ns. Frame size is
set to eight slots. With these parameters, the tool flow selects
a composable pattern set with BI1 and BC2. A2 receives a
single slot, guaranteeing 90 MB/s of bandwidth. A1 has four
slots in the TDM frame.

Figure 13 illustrates accumulated requested service, pro-
vided service, guaranteed service and busy lines for A2.
Only a small part of the total execution is shown to keep
LR properties visible. The accumulated requested service
increases with one atom for every request arrival and periods
of high request frequencies initiate busy periods. The provided
service is always above the guaranteed service of 90 MB/s, but
the distance between them changes per busy period. The actual
service latencies differ, because of the differing arbiter states at
the start each busy period. The TDM index location at the time
of request arrival affects schedule latencies. However, service
latency is correctly bounded and service is provided with at
least the allocated bandwidth, as according to LR guarantees.
The discrete nature of the provided service is explained by
the pattern level pre-emption of the SDRAM controller. A2
requirements are met. The SDRAM, with composable patterns
and TDM arbitration, is correctly abstracted by a LR-server
and the LR guarantees derived at design-time are shown to
be valid at run-time on hardware.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
c
c
u

m
u

la
te

d
 R

e
q

u
e

s
te

d
 S

e
rv

ic
e

 [
B

y
te

s
]

Time [ns]

Busy Line
Minimum Guaranteed Service

Provided Service
Requested Service

Figure 13. LR-server behavior for SDRAM

3) Composability: The previous FPGA experiment is ex-
tended to show composable behavior for A1. Persistent com-
posable application A1 performs hundred read requests at
360 MB/s and is run three times, each time under different
circumstances. A) A2 is inactive and does not attempt to
interfere. It has no allocated slots in the TDM frame. B) A2
is active, does write requests and has a bandwidth allocation
of 270 MB/s, four slots in the TDM frame. C) A2 is active
and does writes. Its initial bandwidth allocation of 90 MB/s is
reconfigured to 180 MB/s after 35 µs. Its allocation changes
from one to two slots. Furthermore for all cases, frame size
is set to eight and latency requirements are chosen such
that again a pattern set with BI1 and BC2 is selected. The
experiment is performed twice, once with predictable patterns
and once with composable patterns.

Figure 14 shows temporal behavior of the applications when
using predictable patterns. The green line shows behavior of
A1 for A, when it is the only active application and no attempts
to interfere are made. This is considered its reference behavior.
Blue and red lines indicate behavior for A2 for B and C. For
these cases, A1 behavior is shown respectively as exes and

10

circles. Composability is shown if A1 has identical behavior
for A, B and C, i.e. if exes and circles are positioned on top
of each other and on the green line. This is not the case.
Interference from A2 causes most requests of A1 to finish
later, and some sooner, than without interference. Run-times
for A, B, and C are different due to the specific interference
behavior.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70

F
in

is
h

in
g

 L
a

te
n

c
ie

s
 [

n
s
]

Running Time [µs]

A: Application 1
B: Application 2
C: Application 2

B: Application 1
C: Application 1

Figure 14. Non-composable behavior using predictable patterns on FPGA

Figure 15 shows results for the experiment when using
composable patterns. A1 is not affected by interfering requests
from A2 during B, and is not affected by reconfiguration of
A2 during C. The green line, exes and circles are on identical
positions. Vertically, individual request latencies are shown to
be identical. Horizontally, request arrivals occur on the same
time instants, resulting in equal run-times. Furthermore, iden-
tical behavior over multiple runs indicates that the platform
is deterministic, although it is not required for composability.
The results show that the reconfigurable SDRAM controller is
a composable resource.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80

F
in

is
h

in
g

 L
a

te
n

c
ie

s
 [

n
s
]

Running Time [µs]

A: Application 1
B: Application 2
C: Application 2

B: Application 1
C: Application 1

Figure 15. Composable behavior using composable patterns on FPGA

Composable patterns cause an increase in request latency.

Using the simulation trace experiments, the pattern set with
BI1 and BC2 was found to have an average latency increase
of 42% over the tested mediabench applications. For this
experiment, average request latencies for A1 are 28% to 56%
larger when using a composable pattern set, losses increasing
as interference reduces. Run-times when using composable
patterns are longer than when using predictable patterns,
ranging from 10.4% to 16.5%. Run-time increases are smaller
than individual latency increases, because overall run-time also
depends on computational delays, which have not changed.

VII. RELATED WORK

Related works are grouped into two categories. Works exist
that focus on SDRAM for real-time platforms. Other works
focus on reconfiguration of resources for real-time systems.

Predator is not the only SDRAM controller for real-time en-
vironments. [22] employs static SDRAM command scheduling
at design time. The controller presented in [23], similarly to
Predator, dynamically schedules static sequences of commands
for isolated SDRAM banks. Alternatively, [24] is able to
predictably schedule SDRAM commands dynamically. All of
these SDRAM controllers are predictable and can be used for
real-time environments. However they are not composable and
thus not suitable for mixed time-criticality systems. Further-
more, they are not reconfigurable. [25] presents a SDRAM
controller with a programmable Instruction Set Architecture.
Reconfiguration options include scheduling policies, address
mapping and refresh management and performance nears that
of hardwired controllers. Unfortunately, it is not able to give
guarantees on performance and is unsuitable for real-time
systems.

Studies on reconfiguration of platforms for real-time appli-
cations exist. [26] focuses on guaranteed Quality-of-Service
(QoS) of applications, for weak-real-time platforms. Their
QoS definition still allows applications to have unpredictable
behavior under some circumstances. This is unacceptable for
CompSoC, which should be able to give firm-real-time guaran-
tees if requested. [27] presents a reconfigurable platform that
isolates applications by use of Variable Bandwidth Servers.
However, they still accept jitter on expected behavior during
reconfigurations. [28] employs a reconfiguration method which
offers no service during reconfigurations. They account for
this by slightly over-allocating applications service budgets,
the excess eventually building up enough reserves for pro-
cessing a reconfiguration event. Unfortunately, this requires
knowledge of reconfiguration latencies and puts a limit on the
amount of permissible reconfiguration per time unit. [29], [30]
analytically determine worst-case behavior due to application
reconfigurations. They reconfigure by use-case and do not
isolate applications. [31] is most related to the work presented
in this paper. It presents reconfiguration of servers, which
are scheduled by non-work-conserving TDM. Servers are
dynamically allocated. When an application stops, remaining
applications are moved left. Slots for starting applications are
added at the end of frame. Arbiter latencies for persistent
applications never increase, they may decrease, such that
reconfigurations are predictable. Although they use servers for
application isolation, they do not consider server reconfigura-
tion under isolation.

11

Overall, none of these works combine aspects of reconfig-
urability, real-time requirements, composability and SDRAM
as this work does. Neither provides a solution for mixed time-
criticality systems. Furthermore, none of the works presenting
reconfiguration for real-time platforms have an actual pre-
dictable and composable implementation on a real MPSoC.

VIII. CONCLUSIONS

This paper addresses the verification problem for recon-
figurable mixed time-criticality systems. To allow design-
time verification, real-time applications need their real-time
requirements satisfied during both regular execution and re-
configuration.

The four main contributions are: 1) A method for compos-
ability for SDRAM using TDM arbitration and composable
patterns. 2) A reconfiguration method for TDM arbiters, which
predictably reconfigures applications in isolation. 3) Imple-
mentation and integration of these solutions into CompSoC,
both as a SystemC simulation model and hardware platform
on FGPA. 4) Extensions to an automated tool flow that
instantiates and configures CompSoC with a reconfigurable,
predictable and composable SDRAM controller.

These contributions present a reconfigurable, predictable
and composable SDRAM controller for CompSoC. LR guar-
antees and composability are shown to be valid, such that
design-time verification is possible. Furthermore, the method
of predictable arbiter reconfiguration is valuable outside
CompSoC, as it can be generally applied to time-criticality
MPSoCs that employ resource sharing with TDM arbitration.

IX. FUTURE WORK

Future work on reconfiguration for mixed time-criticality
can expand on the work presented here. Extra flexibility within
real-time constraints can be added by supporting application
mode changes. Currently, applications are only reconfigured
to accommodate persistent composable applications. Mode
changing is the process of applications dynamically changing
requirements during their lifetime, initiating their reconfigu-
ration themselves. The current arbiter reconfiguration method
already supports mode changing, but support would have to
be added in CompSoC. Alternatively, improving performance
of current work, effort can be put into allocation strategies,
frame size optimization and optimizing composable pattern
lengths. Further investigation of latency performance of com-
posable patterns and TDM arbitration may also be appealing.
Composable patterns and TDM arbitrations may affect pattern
selection because their guarantees on latency performance may
be unable to satisfy application latency requirements, whereas
predictable patterns and CCSP would have satisfied these. The
issue is not investigated for this work because effects are
expected to be negligible, but more information on it may
prove useful for future usage.

REFERENCES

[1] C. van Berkel, “Multi-core for Mobile Phones,” in Proc. DATE, 2009.
[2] P. Kollig et al., “Heterogeneous Multi-Core Platform for Consumer

Multimedia Applications,” in Proc. DATE, 2009.
[3] STMicroelectronics and CEA, “Platform 2012: A Many-core pro-

grammable accelerator for Ultra-Efficient Embedded Computing in
Nanometer Technology,” 2010. White paper.

[4] B. Akesson et al., “Composability and predictability for independent
application development, verification, and execution,” in Multiprocessor
System-on-Chip — Hardware Design and Tool Integration (M. Hübner
and J. Becker, eds.), ch. 2, Springer, 2010.

[5] R. Pellizzoni, P. Meredith, M. Nam, M. Sun, M. Caccamo, and L. Sha,
“Handling mixed-criticality in soc-based real-time embedded systems,”
in Proceedings of the seventh ACM international conference on Embed-
ded software, pp. 235–244, ACM, 2009.

[6] R. Cruz, “A calculus for network delay. I. Network elements in isola-
tion,” Information Theory, IEEE Transactions on, vol. 37, no. 1, 1991.

[7] S. Sriram and S. Bhattacharyya, Embedded multiprocessors: Scheduling
and synchronization. CRC, 2000.

[8] A. Hansson et al., “Undisrupted quality-of-service during reconfigura-
tion of multiple applications in networks on chip,” in Proc. DATE, 2007.

[9] A. Hansson et al., “CoMPSoC: A template for composable and pre-
dictable multi-processor system on chips,” ACM TODAES, vol. 14, no. 1,
2009.

[10] B. Jacob et al., Memory systems: cache, DRAM, disk. Morgan Kaufmann
Pub, 2007.

[11] B. Akesson et al., “Automatic Generation of Efficient Predictable
Memory Patterns,” in Proc. RTCSA, 2011.

[12] S. Goossens, T. Kouters, B. Akesson, and K. Goossens, “Memory-map
selection for firm real-time sdram controllers,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2012, pp. 828 –831,
march 2012.

[13] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-time
scheduling using credit-controlled static-priority arbitration,” tech. rep.,
2008.

[14] B. Akesson et al., “Predator: a predictable SDRAM memory controller,”
in Proc. CODES+ISSS, 2007.

[15] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Transactions on
Networking (ToN), vol. 6, no. 5, pp. 611–624, 1998.

[16] H. Shah, A. Knoll, and B. Akesson, “Bounding SDRAM Interference:
Detailed Analysis vs. Latency-Rate Analysis,” in Proc. Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), 2013.

[17] B. Akesson et al., “Composable resource sharing based on latency-rate
servers,” in Proc. DSD, 2009.

[18] B. Akesson, Predictable and Composable System-on-Chip Memory
Controllers. PhD thesis, Eindhoven University of Technology, 2010.

[19] Xilinx, “ML605 Documentation.” http://www.xilinx.com/support/#nav=
sd-nav-link-140997&tab=tab-bk, 2012. [Online; accessed 20-Dec-
2012].

[20] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for
computer system modeling,” Computer, vol. 35, pp. 59–67, Feb. 2002.

[21] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for
evaluating and synthesizing multimedia and communicatons systems,” in
Proc. ACM/IEEE international symposium on Microarchitecture, 1997.

[22] S. Bayliss and G. Constantinides, “Methodology for designing statically
scheduled application-specific SDRAM controllers using constrained
local search,” in Proc. FPT, 2009.

[23] J. Reineke et al., “PRET DRAM Controller: Bank Privatization for
Predictability and Temporal Isolation,” in Proc. CODES+ISSS, 2011.

[24] M. Paolieri et al., “An Analyzable Memory Controller for Hard Real-
Time CMPs,” Embedded Systems Letters, IEEE, vol. 1, no. 4, 2009.

[25] M. Bojnordi and E. Ipek, “Pardis: A programmable memory controller
for the ddrx interfacing standards,” in Computer Architecture (ISCA),
2012 39th Annual International Symposium on, pp. 13 –24, june 2012.

[26] H. Kooti, D. Mishra, and E. Bozorgzadeh, “Reconfiguration-aware real-
time scheduling under qos constraint,” in Design Automation Conference
(ASP-DAC), 2011 16th Asia and South Pacific, pp. 141 –146, jan. 2011.

[27] S. Craciunas, C. Kirsch, H. Payer, H. Röck, and A. Sokolova, “Pro-
grammable temporal isolation in real-time and embedded execution
environments,” in Proceedings of the Second Workshop on Isolation and
Integration in Embedded Systems, pp. 19–24, ACM, 2009.

[28] M. Garcia-Valls, P. Basanta-Val, and I. Estevez-Ayres, “Real-time re-
configuration in multimedia embedded systems,” Consumer Electronics,
IEEE Transactions on, vol. 57, pp. 1280 –1287, august 2011.

[29] L. Santinelli, G. Buttazzo, and E. Bini, “Multi-moded resource reser-
vations,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2011 17th IEEE, pp. 37 –46, april 2011.

[30] N. Fisher and M. Ahmed, “Tractable real-time schedulability analysis for
mode changes under temporal isolation,” in Embedded Systems for Real-
Time Multimedia (ESTIMedia), 2011 9th IEEE Symposium on, pp. 130
–139, oct. 2011.

[31] N. Stoimenov, L. Thiele, L. Santinelli, and G. Buttazzo, “Resource
adaptations with servers for hard real-time systems,” in Proceedings of
the tenth ACM international conference on Embedded software, pp. 269–
278, ACM, 2010.

12

