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Flavio Kreiliger, Ondřej Benedikt, Marek Vlk, Aasem Ahmad, Jǐŕı Vlasák, and
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Stanislav Baganov, Adéla Poubová, Elnaz Babayeva, Dina Deeva, Mette Scheltema,
Juan Valencia, Inga Makaryan, and many others for all the funny moments to-
gether. For the half-marathon, the personal growth training, common life changes,
profoundly changing conversations, time together and all the beauty and love you
share and bring to my life. Without you, this way would not be as productive and
enjoyable as it was. Thank you, girls from wITches group for accepting, supporting,
being enthusiastic, and genuinely devoted to the thing we do and doing it with all
our hearts. Thank you for all the fun together and for showing that age difference
is not an obstacle for it!

To open opportunities for further growth, a person needs to learn new things
constantly. Thank you, Olesea Mostipac and Anastasia Gräber, for introducing and
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Abstract
Growing user demands result in an increasing number of applications integrated
into embedded systems. These applications can have real-time requirements, which
means the utility of computations is sensitive to their timing behavior. To reduce
the cost, manufacturers minimize the number of platform components. As a result,
applications share platform resources, which causes contention and worsens their
timing behavior. Applications can be scheduled on platform resources at design time
to guarantee that real-time requirements are satisfied. This scheduling problem is
challenging as there are exponentially many options on how to construct a schedule
that satisfies real-time requirements and optimizes system performance. During
design-space exploration, the system designer needs to solve the scheduling problem
many times. Therefore, the computation time of the solution approach significantly
influences system development time and its cost, with the latter also depending on
the system performance. Thus, a solution providing reasonable computation time
and quality trade-off needs to be found. Most of the existing works either propose
exact solutions that cannot solve industrial-sized instances or propose heuristic
algorithms without validating its efficiency with optimal solutions.

In this thesis, we address this problem through a three-stage approach, corre-
sponding to three problems with gradually increasing complexity and accuracy of
the model. The four main contributions of this thesis are: 1) We explore and quan-
titatively compare three formalisms to solve the problems optimally, Integer Linear
Programming (ILP), Satisfiability Modulo Theory, and Constraint Programming,
and propose computation time improvements. To increase the scalability of the
ILP approach, we introduce a particularly interesting optimal approach that wraps
the ILP in the branch-and-price framework. 2) For each problem, we present a
scalable and efficient heuristic algorithm that decomposes the problem to decrease
its computation time. Each heuristic conceptually improves the heuristic from the
previous stage. 3) We quantitatively and qualitatively compare the efficiency of the
optimal and heuristic strategies. The results show that the heuristic algorithms can
solve on average 8 times larger instances than the optimal approaches. Furthermore,
the heuristic algorithms sacrifice up to 2% of solution quality on average, finding
a feasible solution for more than 77% of problem instances up to 6 times faster.
4) We demonstrate the practical applicability of the proposed heuristic algorithms
and optimal approaches on case studies of real systems in both the automotive and
consumer electronics domains. For a case study of an Engine Management System
with more than 10 000 tasks and messages, our heuristic algorithm finds a solution
in less than an hour.

Keywords: embedded systems, optimization, real-time systems, resource
scheduling.
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Abstrakt
Rostoućı požadavky uživatel̊u vedou k zvyšuj́ıćımu se počtu aplikaćı integrovaných
do vestavěných systémů. Tyto aplikace mohou mı́t požadavky na provoz v reálném
čase, které ovlivňuji užitečnost výpočt̊u po deadlinu. Aby se sńıžili náklady,
výrobci minimalizuj́ı počet součástek systému. Výsledkem je, že aplikace sd́ılej́ı
jednotlivé komponenty, což zp̊usobuje kolize a zhoršuje jejich chováńı v čase. Běh
aplikaci může být rozvržený na komponentech systému j́ıž v rámci návrhu, aby bylo
zaručeno splněńı požadavk̊u na běh v reálném čase. Takový rozvrhováćı problém je
obt́ıžný, protože existuje exponenciálńı počet možnost́ı jak sestavit rozvrh, který
splňuje požadavky na provoz v reálném čase a optimalizuje výkon systému. Ve fázi
optimalizace nastaveńı parametru systémů, návrhář řeš́ı tento rozvrhováćı problém
opakovaně. Nutný výpočetńı čas pak významně ovlivňuje čas vývoje systému a
náklady s t́ım spojené, které rovněž záviśı na výkonu systému. Proto muśı být
nalezeno řešeńı poskytuj́ıćı přiměřený kompromis potřebného výpočetńıho času
a výsledného výkonu. Většina stávaj́ıćıch praćı navrhuje bud’to optimálńı řešeńı,
která nedokážou vyřešit instance pr̊umyslové velikosti, a nebo heuristické algoritmy,
u kterých ale často chyb́ı srovnáńı s optimálńımi řešeńı.

V této práci řeš́ıme popsaný rozvrhováćı problém tř́ıfázovým př́ıstupem, který
odpov́ıdá třem problémům s postupně vzr̊ustaj́ıćı složitosti a přesnost́ı modelu.
Čtyři hlavńı př́ınosy této práce jsou následuj́ıćı: 1) Zkoumáme a kvantitativně
porovnáváme tři formalizmy pro optimálńı řešeńı problémů, Celoč́ıselné Lineárńı
Programováńı (ILP), Splnitelnosti formuĺı v teoríıch predikátové logiky (SAT) a
Programováńı s omezuj́ıćımi podmı́nkami (CP) a nav́ıc navrhujeme několik zlepšeńı
výkonnosti model̊u. Abychom zvýšili škálovatelnost př́ıstupu ILP, navrhujeme
obzvláště zaj́ımavý optimálńı př́ıstup branch-and-price, který využ́ıvá ILP model. 2)
Pro každý problém předkládáme škálovatelný a výkonný heuristický algoritmus, který
dekomponuje problém na menš́ı d́ılč́ı podproblémy, č́ımž snižuje potřebný výpočetńı
čas. Přitom, každá heuristika koncepčně zlepšuje heuristiku z předchoźı fáze. 3)
Kvantitativně a kvalitativně porovnáváme efektivitu optimálńıch a heuristických
strategíı. Výsledky ukazuj́ı, že heuristické algoritmy mohou řešit v pr̊uměru 8krát
větš́ı instanci problému ve srovnáńı s optimálńımi př́ıstupy. Kromě toho, heuristické
algoritmy ztráćı v pr̊uměru nejvýše 2% kvality ve srovnáńı s optimálńımi př́ıstupy,
přičemž jsou schopné naj́ıt př́ıpustné řešeńı pro v́ıce než 77% testovaćıch instanci
až 6 krát rychleji. 4) Ukazujeme praktickou použitelnost navržených heuristických
algoritmů a optimálńıch př́ıstup̊u na př́ıpadových studíıch reálných systémů jak v
oblasti automobilového pr̊umyslu, tak i spotřebńı elektroniky. Pro př́ıpadovou studii
systému ř́ızeńı motoru s v́ıce než 10 000 úloh a zpráv náš heuristický algoritmus
najde řešeńı za méně než hodinu.

Kĺıčová slova: optimalizace, rozvrhováńı zdroj̊u, systémy reálńıho času,
vestavěné systémy.
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Goals and Objectives
The thesis addresses optimization algorithms for time-triggered scheduling in real-
time embedded systems. The four main goals are:

1. Study the existing literature for the time-triggered scheduling of real-time
embedded systems and determine its weak points in terms of terminology,
problem statement, and used approaches.

2. Devise mathematical models, reflecting the most important constraints and
criteria of the time-triggered scheduling of embedded real-time systems prob-
lem both in safety-critical and in non-safety-critical domains.

3. Propose heuristic and exact algorithms that use problem-specific knowledge to
increase the efficiency to solve industrial-sized problems of the time-triggered
scheduling of embedded real-time systems.

4. Verify the proposed algorithms on benchmark instances and compare the
quality of the obtained solutions of heuristic algorithms with the solutions
obtained by the exact approaches. Show applicability of the proposed ap-
proaches on realistic use-cases.
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Chapter

Introduction

Nowadays, technology develops extremely fast, which can be seen in automotive
and consumer electronics domains. For automotive systems, the advanced driver-
assistance system (ADAS) went all the way from lane-keeping assistance in the
early 2000s to self-driving cars providing taxi services in different parts of the world.
These taxis can be found, e.g., in Singapore, USA (Pittsburgh, San Francisco,
Tempe, Phoenix), Russia (Skolkovo, Moscow), and Japan (Tokyo). Although these
cars typically operate in limited areas with a predictable environment and lower
traffic volumes, they still need to accomplish a myriad of non-trivial tasks previously
carried out by a human being. The next step in the ADAS development trajectory
is fully autonomous cars, safely operating in all environments, which are expected
to be introduced to the mass market during the next decade [113]. For consumer
electronics systems, high development speed is seen on smartphones. While the
first smartphone developed 25 years ago had a minimal range of applications that
mainly focused on calling and receiving faxes and emails [28], modern smartphones
is a single device that we use for diverse everyday needs, including taking photos
and videos, listening to the music, and using it as a navigation tool. In other
words, a smartphone integrates multiple functionalities that were previously parts of
different systems. Both automotive components and mobile phones are examples of
embedded systems, defined as systems built for particular purposes. An embedded
system is realized by one or more applications that can have real-time requirements.
For real-time applications, correctness depends not only on the result but also on
the time the result is obtained.

To maintain the high development speed, it is crucial to integrate multiple appli-
cations, sharing platform resources efficiently. However, sharing causes contention
that needs to be resolved by resource scheduling to satisfy real-time requirements
of the applications. In the rest of this section, we first present trends in embedded
real-time systems scheduling. Then, the problem considered in this thesis is stated,
and the overview of the solution approach is given. Next, we list key contributions,
before we conclude by the outline of the thesis.

1.1 Trends in Scheduling of Embedded Real-Time
Systems

This section discusses the necessary aspects of scheduling in embedded real-time
systems and observed trends to create a better understanding of the problem and
contributions of this thesis. We start this section by discussing applications and
their characteristics, followed by an introduction to trends in real-time systems
scheduling. Finally, we present the closest state-of-the-art works to provide an
overview of the existing research in the domain of time-triggered scheduling of
real-time systems.

3
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Figure 1.1: Example of an application set in a car with three periodic applications with
periods p1 = 10, p2 = 10, and p3 = 15. The applications run on an Engine Control Unit
and an ABS control module and communicate via a switched time-triggered Ethernet
network.

1.1.1 Applications

The functionality of an embedded system is realized with a single or multiple
applications. An application is a program running on platform resources that
performs a well-defined function for the user, such as playing video content in a
smartphone or managing the engine in a car. An application comprises one or
more tasks that may have data dependencies and may communicate by messages.
Each task executes on a platform component, where it is assigned. Thus, tasks
are statically assigned to resources and cannot migrate. Tasks can be sensing,
actuation, or computation. For example, tasks in the engine management system
can be sensing engine oil pressure and fuel pressure or computing and setting how
much idling air and fuel to inject. Figure 1.1 shows an example of an application set
with 3 periodic applications running on an Electronic Control Unit (ECU) and an
anti-lock braking system (ABS) control module that communicate via a switched
time-triggered Ethernet network. The applications comprise 5, 4, and 3 activities
(tasks and messages), respectively. The tasks here can be sensing wheel rotation
speed and sending it over the network to the motor to compute the car speed that
can be used by a cruise-control application.

Based on the criticality of timing requirements, real-time applications can
have hard or soft real-time requirements [23]. Applications with hard real-time
requirements may be safety-critical applications, e.g., in avionics, automotive,
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healthcare, and space domains. Here, a missed deadline may result in massive
material losses and deaths. An example of a hard real-time application is the
aforementioned cruise-control application, where the vehicle speed is read by a
speed sensor, processed, and the throttle position is adjusted to maintain the
required speed. This needs to be executed with a specific frequency, i.e., periodically
to guarantee the safety of the system. On the other hand, for applications with soft
real-time requirements, timing requirements must be respected to ensure the correct
behavior of the system. However, there is more flexibility for scheduling soft-real
applications, since it is feasible to fail in providing some timing requirements at the
cost of system performance or perceived quality. We find soft real-time applications
in the consumer electronics domain. The example is audio devices, where failure to
play some samples may result in quality degradation.

1.1.2 Scheduling

There exist two basic paradigms to schedule resources in real-time systems: Event-
Triggered (ET) [31] and Time-Triggered (TT) [64] scheduling. In the ET approaches,
also called online or dynamic approaches, scheduling is performed at run-time and
triggered by events. In contrast, the schedule is computed offline and repeated
during execution in the TT approach, also called offline or static approach. The
main advantage of the ET approaches over the TT approach is their flexibility in
two aspects. Firstly, they are often able to adapt to the actual demand without a
redesign of the system [8], which saves both time and money. Secondly, they are
work-conserving in the sense that the schedule is adjusted to the actual execution
time of the application, unlike the worst-case execution time used in the TT
approach [63]. Considering the worst-case execution time results in a higher system
utilization, increasing the system cost. However, it is often easier to provide evidence
of how the system will execute with the TT approach since the schedule primarily
determines this. This may result in a much shorter and less expensive process
of certification for safety-critical systems [14]. Another disadvantage of the ET
over TT approach is the difficulty to guarantee particular real-time requirements
of applications, such as jitter or latency. For these reasons, the TT approach is
commonly used for safety-critical applications.

Time-Division Multiplexing (TDM) is a resource arbiter that, similarly to the
TT approach, works with a schedule of a given length, repeating it periodically.
However, TDM is typically implemented on platform resources, such as Networks
on Chips and memory controllers, rather than in software. Since it is implemented
in hardware, it has to be simple. It hence only repeats a periodic schedule, driven by
an on-chip clock. On the other hand, the TT approach requires nodes on different
distributed devices to have a global notion of time, which needs to be synchronized
and introduces extra cost. In this thesis, we use the TT and TDM approaches only
due to the applied domain.

Scheduling Objectives and Constraints

Multiple factors can influence system performance, including left-over bandwidth
for non-real-time applications and the control performance of the applications.
The primary scheduling metrics of an application considered in this work are its
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end-to-end latency and bandwidth, which are the time to run the application from
start to end and share of the resource allocated to the application, respectively.
Considering the end-to-end latency of an application as a scheduling metric results
in precedence relations, caused by data dependencies between activities, i.e., tasks
executing on processing elements and messages transmitting over the network.
Furthermore, to reduce the complexity, the system designer derives various activity-
level constraints, such as periods or deadlines to satisfy the latency and bandwidth
requirements of the applications. At the level of single resources, these requirements
make timing easier to manage. Finally, the platform can dictate some scheduling
requirements of activities, such as non-preemptiveness that makes it impossible
for one activity to interrupt the execution of another. For instance, messages
transmitting over the TTEthernet [103] network links cannot be preempted according
to the communication standard. Another source of activity-level constraints is the
application domain, which may put limitations on, e.g., a jitter of periodic activities
in control applications, which is the deviation from the true periodicity, to guarantee
sufficient control performance.

In Figure 1.1, for Application 3 with all activities scheduled on Resource 1, the
end-to-end latency in the presented schedule is 14. Note that due to the periodicity
of the activities, the precedence relations can be satisfied by activity occurrences in
different periods as it holds for activities a4 and a5 of Application 1. The earliest
activity a10 starts at 2, and the latest activity finishes at 16 in the first period and
18 and 28, respectively, in the second period. Thus, the end-to-end latency of this
application is the maximum of the end-to-end latencies in the first and the second
periods, i.e., L3 = max(16− 2, 28− 18) = 14. Furthermore, we compute the jitter
of a9 executing on Resource 3 with period 10 as a difference of start times in the
consequent periods relative to the period, i.e., jit9 = max(|18− 6− 10|, |26− 18−
10|) = max(2, 2) = 2, since it is executed at times 6, 18, and 26 in periods 1, 2, and
3. Finally, we compute bandwidth of a9 as its execution time divided by its period,
i.e. ρ9 = e9

p9
= 1

10 = 0.1.

1.1.3 State-of-the-Art

This section presents an overview of the existing works in the domain of embedded
real-time systems time-triggered scheduling and provides background, necessary
to solve hard optimization problems. To cope with the increasing size and com-
plexity of resource scheduling problems for embedded real-time systems, we need
to carefully design the approach to deal with the resource scheduling problems.
Since these problems are NP-complete, optimal approaches (such as ILP, Constraint
Programming (CP), or Satisfiability Modulo Theory (SMT)) can typically solve
small- to medium-sized problems only. Therefore, heuristic approaches are applied
to solve complex industrial-sized problems.

Algorithms can consist of constructive and generative components. Purely
constructive algorithms build the solution step-by-step and partial solutions are
always feasible. In contrast, generative algorithms work with complete, but possibly
infeasible schedules, gradually breaking fewer constraints and/or becoming of better
quality. Purely generative algorithms pay off when it is easy to find a feasible
solution, and the primary challenge lies in finding a better solution. However, in
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the considered problem of embedded real-time systems scheduling, the utilization
of platform resources is typically high, making it hard to find a feasible solution.
Thus, the most efficient algorithms for scheduling in real-time embedded systems
contain a constructive component.

Many works propose a combination of constructive and generative components
for solving the problem of resource scheduling. These approaches make use of the
following three techniques, often combining them: 1) decomposition of the problem
into smaller sub-problems [29,104], 2) conflict-refining [71], first making schedules
with possible conflicts and incrementally fix them afterward, or 3) meta-heuristics,
such as Tabu search [57], genetic algorithms [78], or simulated annealing [32]. We
will proceed by discussing each of these techniques in turn.

Problem decomposition is an inevitable element of an efficient approach. Steiner
in [104] decomposes the problem into subsets of activities, using an incremental
backtracking approach based on an SMT solver. However, Craciunas and Oliver
in [29] observed that the approach of Steiner shows good results only when the
utilization of the resources is low, which is typically not the case. To address this
issue, they decompose the problem into subsets of more and less difficult activities,
respectively, also using an SMT solver to find the schedule for the former and a
simple heuristic approach for the latter. If a valid schedule cannot be found, the
set solved by SMT is enlarged. Moreover, authors in [95] apply Dantzig–Wolfe
decomposition [30] to transform the solution space from individual time slots to
partial schedules. A branch-and-price (B&P) algorithm [35] then goes through the
search space considering only a subset of all possible partial schedules that contains
the most promising schedules regarding criterion value.

The second technique, conflict refinement, is used by Lukasiewycz and Cha-
kraborty in [71]. Here, the authors look sequentially at problems of increasing
sizes using an ILP solver, preferring to find and refine smaller conflicts over larger
ones, since resolving smaller conflicts is typically easier. Finally, following the third
technique, the authors in [57] use Tabu search, combining it with extended list
scheduling to determine the schedule for the applications.

While decomposition or conflict-refining approaches have limited scalability due
to the typical usage of exact solvers, the efficiency of meta-heuristics is sensitive to
many running parameters required to be set. On the other hand, purely constructive
approaches do not need the usage of exact solvers, and their behavior does not depend
on many parameters. Chen et al. in [26] and Kermia in [60] apply constructive
approaches, proposing different schedulability tests that define the scheduling order
of activities. However, the problems solved in these works do not include many
important aspects of modern embedded real-time systems, such as data dependencies
and end-to-end latency requirements.

The branch-and-bound method is an example of a constructive approach that
searches the solution space efficiently. The method works with a solution tree, where
nodes are partial solutions. In each child of a node, we set a decision variable(s) to a
specific value or a set of values, both extending the partial solution and cutting the
search space. Instead of searching in the entire solution space, branch-and-bound
reduces it by closing nodes that are of provably poor quality. This approach is used
by Syed and Fohler in [109], where the authors apply refined pruning techniques and
symmetry avoidance, resulting in the scalability of the approach to industrial-sized
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problems.

1.2 General Problem Statement

This thesis introduces automated methodologies to find TT schedules for applications
running on shared resources with different types of real-time requirements, such
as bandwidth, latency, and jitter while optimizing the performance of the system.
We aim for the methodologies that find schedules for industrial-sized embedded
real-time systems within a reasonable time to avoid negatively impacting design
time. On the one hand, for one-off computation, it is possible to wait for an hour or
slightly more for a schedule. On the other hand, design-space exploration may mean
making hundreds or thousands of schedules for different platform configurations,
and a reasonable time to wait for the result is maximally a couple of minutes. Next,
we present an overview of the approach proposed in this thesis.

1.2.1 Overview of Approach

Our approach addresses the problem stated above with the following three stages,
corresponding to three NP-hard problems to capture different aspects of the bigger
problem shown in Figure 1.2a.

First, we address the problem of scheduling a single resource shared by real-time
and non-real-time applications in the consumer electronics domain (Chapter 2).
Such shared resources can be processing elements, memories, interconnects, and
peripherals. We aim to satisfy the bandwidth and latency requirements of the
real-time applications while minimizing their resource utilization to improve the
performance of their non-real-time counterparts. Here, we consider low-level timing
guarantees of hardware resources.

The second stage of our approach considers coscheduling of periodic control
applications, comprising activities, including tasks such as sensing, computation,
and actuation executed on processing elements, and messages transmitted over the
network (Chapter 3). A message is introduced for each pair of data-dependent
tasks running on different resources. Data dependencies between activities require
scheduling of all resources at once to avoid unacceptably long delays caused by
independent scheduling of resources. Here, we provide guarantees on periodicity,
latency, and jitter, while scheduling non-preemptively. In this problem, we look
more at requirements dictated by applications, although still looking on timings of
tasks and messages.

Finally, the third stage looks at the application and system requirements of the
coscheduling problem described previously (Chapter 4). In this step, we consider
the control performance of the applications. Namely, we minimize the time that
the corresponding control system takes to settle, being a function of its end-to-end
latency. We believe that this three-stage approach is an appropriate way to address
the problem since the complexity of the problem is handled gradually, while the
problem formulation consequently captures the behavior of embedded real-time
systems.
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1.3 Contributions

The four key contributions of this thesis are the following:

1. We explore and quantitatively compare different formalisms to solve the stated
problems optimally : we use ILP in all chapters, SMT in Chapters 3 and 4,
and CP in Chapter 4, while applying different problem-specific computation
time improvements. We formulate ILP as both time-indexed model [62] in
Chapter 2 and relative-order model [20] in Chapters 3 and 4 to compare
the efficiency. Moreover, to increase the scalability of the ILP approach in
Chapter 2, we introduce a particularly interesting optimal approach that takes
the ILP model and wraps it in the B&P framework.

2. In Chapters 2, 3 and 4, we present scalable and efficient heuristic algorithms
for the three steps of the approach stated in Section 1.2.1. The heuristic
presented in Chapter 2 is generative, while the other two chapters propose
constructive heuristics.

3. We quantitatively and qualitatively compare the efficiency of the optimal and
heuristic strategies on different problems in all three chapters. The efficiency
considers the computation time of the strategy and quality of solution regarding
either resource utilization or control performance of the applications.

4. We demonstrate practical applicability of the heuristic algorithms on case
studies of real systems in both automotive and consumer electronics domains
for all three problems.

An overview of the solution approaches used in each chapter is presented in
Figure 1.2b, where the generative heuristic uses conflict refinement technique, while
the constructive ones use problem decomposition. Moreover, an overview of the
platform architecture considered in different chapters is shown in Figure 1.2c.

1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 addresses the scheduling
problem of applications that share a single resource. For this problem, an ILP
model, an algorithm using the existing B&P approach, and a generative heuristic are
proposed. Moreover, they are verified on synthetically generated problem instances
and a case study of an HD video and graphics processing system. The proposed
approaches are also compared to a state-of-the-art approach.

Chapter 3 proposes ILP and SMT models and a constructive heuristic approach
to solve the coscheduling problem of periodic computation and communication. The
efficiency of these approaches regarding computation time and maximum achievable
resource utilization are compared on synthetic use-cases, provided by an industrial
tool from the automotive domain [65]. Also, we demonstrate the efficiency and
scalability of the approach on a case study of an Engine Management System with
over 2000 tasks and 8000 messages.
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Extending the coscheduling problem by an optimization criterion, assuming
another platform model, generalizing end-to-end latency constraints, and fixing
requirements on the jitter of activities, Chapter 4 presents ILP, CP, and SMT models
to find an optimal solution as well as a constructive heuristic. The evaluation of
the optimal and heuristic approaches is presented on the same problem instances
as in Chapter 3, adapted to the new platform model and with realistic control
performance values. Finally, the practical applicability of the presented approaches
is shown on an automotive case study.

Chapters 2, 3 and 4 address different problems and each of them can be read
separately as research papers. Moreover, you can find their associated nomenclatures
in Appendices A, B, and C, respectively. We conclude with Chapter 5, where we
summarize the achieved results, evaluate fulfillment of the goals, and discuss future
work.



Introduction 11

Chapter 2Single resource
Constraints: latency and bandwidth

Criterion: slack utilization
Chapter 3Multiple resources

Constraints: period, jitter, latency
No criterion

Chapter 4Multiple resources
Constraints: period, jitter, latency
Criterion: control performance 

Pr
ob

le
m

 c
om

pl
ex

ity

(a) Steps of the proposed approach

Exact 
approaches

Heuristic 
approaches

 GenerativeBranch-and-Price

Constraint 
Programming

Satis�ability 
Modulo Theory Constructive

  

Integer Linear 
Programming

Stage 1

Stage 3

Stage 2

(b) Used exact and heuristic solution methods in the different chapters

Interconnect

Core 2

NI switched
Ethernet

Chapter 2

Chapter 3

Chapter 4

Memory

Core 1

Memory

Core 2Core 1

Interconnect

NI

(c) Platform architecture in the different chapters (NI is network interface)

Figure 1.2: Approach, solution, and architecture view of the thesis.
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2
Chapter

Scheduling a Single Resource
with Latency-Rate Abstraction

In this chapter, we consider the problem of scheduling of a single resource in
consumer electronics systems, where a set of applications realizes the functionality
of the system. The applications can have different types of requirements, as
illustrated in Figure 2.1. Some of them (colored white in the figure) have real-time
requirements and must always satisfy their deadlines, while other non-real-time
applications (colored gray) only require sufficient average performance [115]. The
cores and accelerators access shared resources, such as memories, interconnects and
peripherals [61,114] on behalf of the applications they execute and are referred to
as resource clients. The contention, caused by sharing the resources is resolved
by a Time-Division Multiplexing (TDM) arbiter. An important challenge with
TDM arbitration in these systems is to find a schedule that assigns the time slots
to the clients in a way that satisfies the bandwidth and latency requirements of
the real-time clients while minimizing their resource utilization (maximizing slack
capacity) to improve the performance of the non-real-time clients.

The contributions of this chapter are the following. As shown in Figure 1.2b
of Chapter 1, we present an Integer Linear Programming (ILP) model to solve
the TDM configuration problem optimally. Moreover, we propose another exact
approach that wraps the ILP model in a branch-and-price (B&P) framework [35] to
improve the scalability of the ILP model. The computation time of both the ILP
and the B&P algorithm is optimized using problem-specific knowledge, including
lazy constraints generation. Moreover, we present a stand-alone heuristic algorithm
that can be used to solve the problem, providing a trade-off between computation
time and efficiency. It is also used to reduce the computation time of the B&P
algorithm. To demonstrate the scalability of the B&P approach and compare it
both to the ILP model and an existing heuristic, we experimentally evaluate the
approaches. We also quantify the trade-off between efficiency and computation time
for the optimal and heuristic algorithms. Finally, we demonstrate the practical
relevance of the approach by applying it to a case study of an HD video and graphics
processing system. Also, the source code of our approach is released as open-source
software and can be found in [76].

Client 1

 TDM 
Arbiter

Core 1 Core 2 Core n

Resource

Bus
Client 2 Client n

A1
A2 A3

A4 A5
A6 A7 A8

A9

C1 C1 C1 C1 C1C1 C1 C1 C1 C1

Figure 2.1: Example of a multi-core system, where n applications (Al) with different
real-time requirements are mapped to the cores. The cores act as resource clients (ci)
accessing a shared resource through an interconnect controlled by a TDM arbiter.
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This chapter is organized as follows. Related work is discussed in Section 2.1.
Section 2.2 proceeds by presenting background information necessary to understand
the main contributions of the chapter. Then, the TDM configuration problem is
formalized in Section 2.3, followed by a description of the proposed ILP formulation
in Section 2.4. The B&P approach is introduced in Section 2.5 and its computation
time optimizations are discussed in Section 2.6. The heuristic algorithm for slot
assignment is then explained in Section 2.7. Section 2.8 presents the experimental
evaluation before we summarize the chapter in Section 2.9.

2.1 Related Work

Scalability is a critical issue in system design, since design time must remain
unchanged despite an exponential increase in system complexity. Most works in
the area of design automation that use exact optimization techniques do not scale
well enough to be able to manage the complexity of future consumer electronics
systems [40,47, 67, 72, 122], and only a few propose advanced techniques to address
the complexity problem. These techniques can be classified into two major groups
of approaches: 1) a decomposition of the problem into smaller sub-problems, and 2)
navigating the search smartly during design-space exploration. The first approach
deals with large problems by decomposing them into many smaller problems. This
method is used in [69,119]. The second branch of improvements uses problem-specific
information while searching the design space, which is more efficient compared to
using general design-space exploration methods. Examples of this approach are
shown in [91] and [71], where the authors look for a minimal reason for constraint
violation and prevent this situation in the rest of the search, while using boolean
satisfiability and ILP approaches, respectively.

Another way of dealing with the scalability issue is to use a heuristic approach.
Some methodologies to configure TDM arbiters have been proposed in the context
of off-chip and on-chip networks. An approach for synthesizing TDM schedules for
TTEthernet with the goal of satisfying deadlines for time-triggered traffic, while
minimizing the latency for rate-controlled traffic is proposed in [110]. Similarly, TDM
scheduling for networks is also considered in [47], where a Profinet IO IRT message
scheduling problem with different temporal constraints is solved, while minimizing
the schedule length. The methodologies in [46, 70] consider slot assignment in
contention-free TDM networks-on-chips. All of these approaches are heuristics and
the efficiencies of the proposed methods have not been quantitatively compared
to optimal solutions. Furthermore, the problem of scheduling networks is different
from our research [77], as it considers multiple resources (network links) and is
dependent on the problem of determining paths through the network.

The problem of TDM arbiter configuration with simplified client requirements
is considered in [48], where unlike this work, the authors propose a harmonic
scheduling strategy. One of the two previous solutions to the problem considered in
this chapter is the configuration methodology for multi-channel memory controllers
in [40]. The authors apply a commonly used heuristic for TDM slot assignment,
called continuous allocation [37, 42, 44, 117], where slots allocated to a client appear
consecutively in the schedule. The reasons for its popularity are simplicity of both
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implementation and analysis and negligible computation time of the configuration
algorithm. However, with growing problem sizes, this strategy results in significant
over-allocation, making satisfaction of a given set of requirements difficult. This is
experimentally shown in Section 2.8 when comparing to our approach.

Besides the difference in the problem formulation, this chapter advances the
state-of-the-art by being the first to apply a theoretically well-founded advanced
optimization approach, called B&P [35] in the field of consumer electronics systems
design. B&P combines both of the mentioned approaches to manage complexity;
it decomposes the problem into smaller sub-problems and uses more sophisticated
search-space exploration methods. Although [95] applies B&P to the problem of
FlexRay scheduling in the automotive domain, this chapter gives more elaborate ex-
planation of the approach and concentrates on the computation time optimizations.

2.2 Background

This section presents relevant background information to understand the work in
this chapter. First, we present the concept of latency-rate servers, which is an
abstraction of the service provided to a client by a resource arbiter. We then proceed
by discussing how TDM arbitration fits with this abstraction and explain how to
derive its latency and rate parameters.

2.2.1 Latency-Rate Servers

Latency-rate (Latency-Rate (LR)) [107] servers is a shared resource abstraction that
guarantees a client ci sharing a resource a minimum allocated rate (bandwidth), ρi,
after a maximum service latency (interference), Θi, as shown in Figure 2.2. The
figure illustrates a client requesting service from a shared resource over time (upper
solid red line) and the resource providing service (lower solid blue line). The LR
service guarantee, the dashed line indicated as service bound in the figure, provides
a lower bound on the amount of data that can be transferred to a client during any
interval of time.

The LR service guarantee is conditional and only applies if the client produces
enough requests to keep the server busy. This is captured by the concept of busy
periods, which intuitively are periods in which a client requests at least as much
service as it has been allocated (ρi) on average. This is illustrated in Figure 2.2,
where the client is in a busy period when the requested service curve is above the
dash-dotted reference line with slope ρi that we informally refer to as the busy line.
We now have all the necessary ingredients to provide a formal definition of a LR
server in Definition 1.

Definition 1 (LR server). A LR server provides guarantees on minimum provided
service rji to a client ci requesting the service during a busy period with duration
j. These guarantees are expressed by Equation (2.1) and are parametrized by
service latency Θi and rate ρi. The minimum non-negative constant Θi satisfying
Equation (2.1) is the service latency of the server.

rji ≥ max(0, ρi · (j −Θi)) (2.1)
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Figure 2.2: A latency-rate server and associated concepts for a client sharing a resource.

The values of Θi and ρi of each client depend on the particular choice of arbiter
and how it is configured. Examples of arbiters that belong to the class of LR servers
are TDM, several varieties of the Round-Robin and Fair-Queuing algorithms [107],
as well as priority-based arbiters like Credit-Controlled Static-Priority [6] and
Frame-based Static Priority [4]. The main benefit of the LR abstraction is that it
enables performance analysis of systems with shared resources in a unified manner,
irrespective of the chosen arbiter and configuration. It has been shown in [118]
that the worst-case finishing time of the kth request from a client ci in a LR server
can be bounded according to Equation (2.2), where szki is the size of the request
in number of required slots, arrki is the arrival time and fink−1

i is the worst-case
finishing time of the previous request from the client. This bound called service
bound is visualized for the kth request in Figure 2.2. Note that this bound is slightly
pessimistic, but only serves to illustrate how the LR abstraction is used to compute
the finishing time of requests. For optimized bounds and a quantitative evaluation
of the abstraction, refer to [100].

finki = max(arrki + Θi, fin
k−1
i ) + szki /ρi (2.2)

Equation (2.2) forms the base for timing verification of applications at a higher
level and does not make any assumptions on the applications by itself. Instead,
restrictions on the application are imposed by the higher level analysis frameworks.
For example, as shown in [92], it is possible to integrate Equation (2.2) into a
worst-case execution time estimation tool to enable bounds on execution time of
an application sharing resources to be computed. However, these tools are often
limited to analyzing applications executing on a single core. This restriction does
not apply to verification based on the data-flow model of computation [101], which
can verify that distributed applications with data dependencies meet their real-time
requirements, as demonstrated in [81]. This type of verification is particularly
suitable for throughput-oriented streaming applications, such as audio and video
encoders/decoders [19, 108,117], and wireless radios [80, 117]. In this case, Equa-
tion (2.2) is integrated into the data-flow graph as a data-flow component with two
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actors [118] before the analysis to capture the effects of resource sharing.

2.2.2 Time-Division Multiplexing

Having introduced LR servers as a general abstraction of shared resources, we
proceed by showing how the abstraction applies to resources shared using TDM
arbitration. We do this by first defining TDM arbitration and then show how the
service latency and rate parameters of the corresponding LR server are derived.

A TDM arbiter operates by periodically repeating a schedule, or frame, with
a fixed number of slots, H. The schedule comprises a number of slots, each
corresponding to a single resource access with bounded execution time in clock
cycles. Every client ci is allocated a number of slots φi in the schedule at design time.
The rate (bandwidth) allocated to a client, ρi, is determined purely by the number
of allocated slots in the schedule and is computed according to Equation (2.3).

ρi = φi/H (2.3)

The service latency, on the other hand, depends on the slot distribution that
determines where the allocated slots are located in the schedule.

Although it may intuitively seem like computing the service latency is just a
matter of identifying the largest gap between slots allocated to the client in the
schedule, this is not correct. The reason is that according to Definition 1, the rate
ρ has to be continuously provided after the service latency Θ. The problem is
illustrated in Figure 2.2, which shows a TDM schedule along with its corresponding
service bound. As we can see, the service latency of Θ = 3, which is the largest
gap in the schedule, does not provide a conservative LR guarantee (it fails at time
slot 6 in the TDM table) and the actual service latency of this schedule is Θ = 4.
This example shows us that the notion of service latency is more complex than it
initially seems, making it harder to compute. This chapter uses a very general way
to compute the service latency, Θ, of a TDM arbiter by directly using Definition 1.
The rate of a given schedule is known by Equation (2.3) and the worst-case provided
service to a client ci during a busy period of any duration j (i.e. rji ) can be derived
by analyzing the schedule (later shown in Section 2.4). For a given schedule, it is
hence only a matter of finding the minimum service latency that satisfies the LR
characterization in Equation (2.1).

In terms of implementation, we assume a scalable interconnect supporting TDM
arbitration. A simple bus fails to scale as the number of clients are increasing, as the
critical path gets longer and prevents it from synthesizing at high frequencies. Al-
though TDM-based networks-on-chips address this scalability problem, they behave
like multiple TDM resources (one per link), resulting in a different configuration
problem. Instead, we consider a pipelined tree-shaped interconnect supporting a
distributed implementation of TDM arbitration, such as the memory tree proposed
in [41], which provides the required scalability yet behaves like a single resource.
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2.3 Problem Formulation

The problem of finding a TDM slot allocation with a given frame size that satisfies
the requirements of a set of clients, while minimizing the rate allocated to real-time
clients is formulated in this section. We refer to this problem as TDM Configuration
Problem/Latency-Rate with given frame size (TCP/LR-F).

An instance of the TDM configuration problem/latency-rate with given frame
size (TCP/LR-F) problem is defined by a tuple of requirements 〈C, Θ̂, ρ̂, H〉, where:

• C = {c1, ..., cn} is the set of real-time clients that share a resource, where n
is the number of clients.

• Θ̂ = [Θ̂1, Θ̂2, ..., Θ̂n] ∈ Rn≥0 and ρ̂ = [ρ̂1, ρ̂2, ..., ρ̂n] ∈ Rn≥0 are given service
latency (in number of TDM slots) and rate (bandwidth) (required fraction of
total available slots) requirements of the clients, respectively.

• H is a given TDM frame size, H ∈ Z+.

To satisfy the given requirements of a problem instance, we proceed by formaliz-
ing a TDM schedule and its associated parameters:

• The set F = {1, 2, · · · , H} denotes TDM slots.

• D = [d1, d2, ..., dH ] is a schedule we want to find, where di ∈ {C∪∅} indicates
the client scheduled in slot i or ∅ (empty element) if the slot is not allocated.

• φ = {φ1, φ2, ..., φn} is the number of slots allocated to each client, i.e. φi =|
{dj} : dj = ci |.

• Θ = [Θ1,Θ2, ...,Θn] ∈ Rn≥0 and ρ = [ρ1, ρ2, ..., ρn] ∈ Rn≥0 are the service
latency and allocated rate, respectively, provided by the TDM schedule.

The goal of TCP/LR-F is to find a schedule D for n clients sharing the resource
such that the objective function, Φ, being the total allocated rate of all the real-time
clients in C is minimized as shown in Equation (2.4), while the service latency and
rate constraints (Equations (2.5) and (2.6) below) are fulfilled. This ensures that
all real-time requirements are satisfied while maximizing the unallocated resource
capacity available to non-real-time clients, thus maximizing their performance.

Minimize:
∑
ci∈C

ρi = Φ (2.4)

ρi ≥ ρ̂i, ci ∈ C (2.5)

Θi ≤ Θ̂i, ci ∈ C (2.6)

Note that although the considered TCP/LR-F problem has a frame size H as
a given parameter, the problem of finding the best frame size is addressed in [5],
where both optimal and heuristic approaches are presented. It is also shown that
the formulated problem with arbitrary frame size is NP-hard by transforming the
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Periodic Maintenance Scheduling Problem (PMSP) [11] to the TCP/LR problem
with arbitrary frame size. To prove NP-hardness of our problem with a given
frame size using the same logic, the frame size H of the instance we transform
Periodic Maintenance Scheduling Problem (PMSP) to is set to the least common
multiple (lcm) of the client periods, making it a special case that is covered by the
existing proof. The instance of PMSP is NP-hard with the schedule length equal
to the lcm of the periods since the solution to PMSP has either this length or its
integer multiples. Due to cyclicity of the schedule, if there exists any schedule for
a given instance of PMSP, there always exist a schedule of length equal to lcm.
Therefore, TCP/LR-F problem is NP-hard for any fixed frame size.

2.4 ILP Model

Having established that TCP/LR-F is NP-hard, we know that there exist no
algorithms with polynomial complexity that solves the problem optimally unless
P=NP. An approach to find optimal solutions based on ILP is hence justified, as
there are available solvers to efficiently explore the vast solution space. In this
section, we start by presenting an ILP model of our problem using only four simple
constraints. After this, we present three optimizations of the model that significantly
reduce the solution space and the computation time of the solver.

We now present the basic ILP formulation. The proposed model is based on
the time-indexed scheduling approach [62]. This means that for each client ci ∈ C,
there are exactly H binary variables tji , defined according to:

tji =

{
1, if slot j is allocated to client ci.

0, otherwise.

The minimization criterion (2.7) is reformulated from Equation (2.4) in terms
of the variables presented above. The solution space is defined by four constraints:
Constraint (2.8) states that a slot can be allocated to maximally one client. Con-
straint (2.9) then dictates that enough slots must be allocated to a client to satisfy
its rate requirement, which is computed according to Equation (2.3). The follow-
ing two constraints focus on the worst-case provided service offered by the TDM
schedule to a client, rji (rji ≤ r

j
i ), where rji corresponds to the lower solid blue line

labeled ’provided service’ in Figure 2.2. Constraint (2.10) states that the worst-case
provided service to a client ci during a busy period of any duration j starting in
any slot k cannot be larger than the service provided by its allocated slots.

Lastly, Constraint (2.11) states that the worst-case provided service of the client,
rij , must satisfy its LR requirements and is a straight-forward implementation of
Definition 1.

Minimize:

∑
ci∈C

∑
j∈F t

j
i

H
. (2.7)

subject to: ∑
ci∈C

tji ≤ 1, j ∈ F. (2.8)
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H∑
j=1

tji ≥ H · ρ̂i, ci ∈ C. (2.9)

rji ≤
(k+j) mod H∑

l=k

tli, k ∈ F, ci ∈ C, j ∈ F. (2.10)

rji ≥ ρ̂i · (j − Θ̂i), j ∈ F, ci ∈ C. (2.11)

After introducing the basic ILP model of TCP/LR-F, we proceed by discussing
a few computation time optimizations. The first optimization exploits that an
increased lower bound on the number of slots allocated to a client, φ

i
can be found by

considering both its rate (first part) and service latency (second part) requirements
in Equation (2.12). Unlike the rate requirement, the number of slots required to
satisfy the service latency requirement depends on where the slots are allocated
in the frame, which is not known beforehand. This lower bound is obtained by
assuming an equidistant allocation, which results in the minimum number of slots
required to be allocated to satisfy the service latency requirement.∑

j∈F
tji ≥ φi = max(dρ̂i ·He ,

⌈
H

Θ̂i + 1

⌉
). (2.12)

For example, having requirements ρ̂1 = 0.5 and Θ̂1 = 3 for client c1 and a frame
size H = 10, the lower bound on the number of allocated slots φ

1
is the maximum

of the d0.5 · 10e = 5 slots required to satisfy the bandwidth requirement and the⌈
10

3+1

⌉
= 3 slots required to allocate each fourth slot in the TDM table to the client.

Thus, the lower bound for client c1 equals φ
1

= 5, which in this case is determined
by its bandwidth requirement.

The second optimization removes redundant constraints generated by Con-
straints (2.10) and (2.11). As one can see, H2 · n constraints are generated by
Constraint (2.10) and H · n constraints by Constraint (2.11). However, it is not
necessary to generate Constraints (2.10) and (2.11) for j < Θ̂i, since the service
bound provided by the LR guarantee is always zero in this interval by Definition 1.
This is clearly seen in Figure 2.2, where the provided service curve is zero for the
first four slots.

Additional constraints can be removed if more slots are required to satisfy the
service latency requirements than the rate requirements, i.e. when the second term
in the max-expression in Constraint (2.12) is dominant. In the remainder of this
chapter, we refer to clients with this property as latency-dominated, as opposed
to bandwidth-dominated, clients. As shown in [5], for latency-dominated clients
Constraints (2.10) and (2.11) only need to be generated for a single point where
j = bΘ̂ic+ 1.

The third optimization reduces the solution space by reducing rotational symme-
try. This means that for any given TDM schedule, H − 1 similar schedules can be
generated by rotating the given schedule and wrapping around its end. The problem
is that all these schedules have the same criterion value and only one of them needs
to be in the considered solution space. Constraint (2.13) addresses this problem
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by adding a constraint that fixes the allocation of the first slot to the client with
the smallest minimum number of required slots φ

i
(defined in Constraint (2.12)).

This particular choice of client has been experimentally determined to significantly
reduce the computation time of the solver.

t1t = 1, t = argminci∈C φ
i
. (2.13)

2.5 Branch-and-Price Approach

The presented ILP model finds optimal solutions in reasonable time for current multi-
core systems. However, despite the optimizations, it does not scale to many-core
systems with 32 or more clients. To expand the range of problems that we are able
to solve by the ILP model described in the previous section, a B&P approach [35]
is introduced, which uses the ILP problem formulation from the previous section
as a building block. B&P allows solving instances of the TCP/LR-F problem with
larger number of clients, where the ILP formulation becomes too slow. The first
reason for this behavior is that it does not need as many constraints in the ILP
formulation for non-latency-dominated clients, where H2 · n Constraints (2.10) are
required in the ILP. Moreover, it reduces the number of explored symmetrical
solutions and typically has a smaller branching tree. Both of these properties result
in significantly reduced computation time for large problem instances compared to
the previously described ILP model. The structure of this section is the following.
First, background on the B&P approach is provided. Then, all the necessary
problem-dependent parts of the algorithm are described. The computation time
optimizations of the algorithm are given in the following section.

2.5.1 Preliminaries

Branch-and-price is an exact method to solve ILP problems, which combines
column generation and branch-and-bound approaches. In order to obtain a problem
formulation for the B&P approach, Dantzig-Wolfe decomposition [35] is performed
on the ILP model from the previous section. At higher level, this decomposition
transforms the space of binary variables tji of the ILP model into the space of
complete solutions for individual clients, i.e. B&P works with complete schedules
for individual clients instead of dealing with allocation of single slots. The solutions
for a single client are called columns.

The process of applying Dantzig-Wolfe decomposition on the ILP model re-
sults in an ILP master model MM(Ω) that contains a set of all possible columns
Ω = {Ω1,Ω2, · · · ,Ωn} for each client. Columns are iteratively generated by a so
called sub-model, here an ILP model for a single client. Then, they are combined
into a complete solution for all clients by the master model. Note that each client
requires its own instance of the sub-model, since they have distinct requirements.

An example column set is shown in Figure 2.3. In the considered TCP/LR-F
problem, columns are complete TDM schedules for individual clients.

Here, the set of columns Ω1 for the first client with requirements ρ̂1, Θ̂1 contains
two columns on the top of the figure and the set of columns Ω2 for the second client
is at the bottom. The decision variables ωi,k indicate whether or not column zk is
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Figure 2.3: Example of a set of columns for the restricted master model.

included in the schedule for client ci. One of the possible solutions here is to use
column 2 for the first client and column 1 for the second one, i.e. ω1,1 = 0, ω1,2 = 1,

ω2,1 = 1, ω2,2 = 0. Each column zk is defined via a set of coefficients hji,k. This
coefficient is equal to 1 if column zk allocates slot j to client ci and 0 otherwise.

A drawback of using columns instead of the binary variables tji of the ILP model
is the large number of possible columns. However, it is sufficient to gradually
generate only the most promising ones and expand the search space of solutions
step-by-step. At a certain (final) moment it can be proven (see [35]) that the
optimal solution is found. A master model that considers only a subset of columns
ΩR = {ΩR1 ,ΩR2 , · · · ,ΩRn } ⊆ Ω is called the Restricted Master Model and is denoted
as MM(ΩR).

Thus, the idea, described above, is known as the column generation approach.
Since column generation is only able to solve the linear relaxation of the master
model, it is necessary to extend this approach with a branch-and-bound technique
in order to get an integer solution. This combination is known in the literature as
branch-and-price.

2.5.2 Outline of the Algorithm

The overall scheme of the B&P algorithm in 8 steps is shown in Figure 2.4. First
of all, the algorithm must generate a set of initial columns ΩR in Step 1 using a
heuristic. Note that the quality of the initial columns only affects the computation
time and not the optimality of the solution. Step 2 starts the process of column
generation by solving the linear relaxation of the restricted master model. The
output of this step is quantitative directions (dual values) that guide the column
search for the sub-model. Next, a new column for some client is constructed by
the sub-model (Step 3) subject to the directions obtained in the previous step by
MM(ΩR). If a new promising column for any client is found, the column is added
to ΩR and the next iteration of the column generation algorithm starts (back to
Step 2). Promising column is a column that have a chance to improve the solution if
chosen for a client. Otherwise, the optimal linear solution of the relaxed MM(ΩR) is
a lower bound for the optimal integral solution and is denoted as ΦLB . If bounding
takes place in Step 4, i.e. this branch is already worse or the same as the best
solution known so far, the current node is closed in Step 8. In case the branch
is still promising, Step 5 checks whether or not the solution obtained by column



Scheduling a Single Resource with Latency-Rate Abstraction 23

1

3

4

5

6

Solution Integral? 

 
 

No

No

Branch

8Backtrack
Update 

Check bounds. 

No

Yes

Column Generation

Generate initial columns        for 
Restricted Master Model (              )

2 Solve Linear Relaxation of 

Solve sub-model to find column    with
negative reduced cost. Column found? 

Add column   
   to 
 

7

Yes

Yes

Figure 2.4: Outline of the branch-and-price algorithm.

generation is integral. In case it is, a new candidate solution to the initial integer
master model is found. This solution defines a new upper bound on the criterion,
ΦUB , which is updated before the node is closed in Step 8. In case neither bounding
nor the check on integrality closes the node, branching takes place.

Using the branch-and-bound technique means having a branching tree, which is
in essence a set of nodes with parent-child relationships. The node is defined by a
partial solution, i.e. a chain of slot assignment decisions made in the parent nodes.
A decision is to impose/forbid assignment of a slot to a client. At the beginning,
the first slot is fixed in the root node, as mentioned in the optimizations of the ILP
model in Section 2.4. The column generation procedure (Steps 2, 3, 7) together
with bounding (Step 4) and checking solution on integrality (Step 5) are launched
in each node. In case the node is not closed, a child node is generated with a new
decision, i.e. which slot to impose/forbid assignment to which client.

2.5.3 Master Model Formulation

The master model combines TDM tables for individual clients in order to provide
a feasible solution, where each slot is allocated at most once in the schedule and
requirements of all clients are satisfied. Moreover, it searches for the feasible schedule
with the minimum total allocation. The master model is formulated as an integer
linear programming problem, but in column generation it is solved as a linear
problem, as stated earlier.

For TCP/LR-F, the Dantzig-Wolfe decomposition of the ILP model from Sec-
tion 2.4 results in the following master model. The columns in ΩR are defined via
coefficients hji,k, indicating whether or not a slot in a column is allocated to a client,
defined according to

hji,k =

{
1, if slot j is allocated to client ci in zk ∈ Ωi

0, otherwise.
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Decision variables indicating whether client ci ∈ C uses column zk ∈ Ωi, are
defined as

ωi,k =

{
1, if client ci uses column zk ∈ Ωi

0, otherwise.

It is a binary decision variable, which can be interpreted in the linear relaxed master
model as the weight or ”probability” of using column zk for client ci.

Furthermore, another set of decision variables is introduced. Variables yj reflect
the over-allocation of slot j in the final solution, i.e. yj = max(0, vj), where slot j
is allocated by vj − 1 clients. It means that any feasible solution has yj = 0,∀j ∈ F .
These variables are introduced in order to have an initial set of columns ΩR even
in cases where a feasible solution could not be found in reasonable time in Step 1
of Figure 2.4. This is important since it is in general not possible to find ΩR that
contains a feasible solution in polynomial time.

Minimization of the total allocated rate for the restricted master model is
formalized in the objective function

Minimize :

∑
ci∈C

∑
zk∈ΩR

i
φi,k · ωi,k

H
+M ·

∑
j∈F

yj = ΦMM , (2.14)

where φi,k is the total number of allocated slots to client ci in column zk and M
is some sufficiently big number, in this work chosen to be M = 10. The sum of
over-allocation variables yj are multiplied by M to provide a major penalty for
overlapping (infeasible) schedules to ensure they are weeded out quickly.

The master model comprises only two constraints. The first one, Constraint (2.15),
is meant for counting the number of times slot j is over-allocated in the schedule,
which is expressed by variable yj .∑

ci∈C

∑
zk∈Ωi

hji,k · ωi,k ≤ yj + 1, j ∈ F. (2.15)

Coefficients bi,k are introduced for the second constraint, indicating whether
column zk was constructed for client ci:

bi,k =

{
1, if zk ∈ ΩRi .

0, otherwise.

The second constraint, Constraint (2.16), forces the solver to choose at least one
column for each client. For the linear relaxation, the sum of ”probabilities” of using
columns for a particular client ci from ΩRi must be greater than or equal to 1. Note
that this sum is always 1 in the optimal solution of the initial problem, as criterion
minimization pushes it down. Considering this constraint reduces computation time,
since a feasible solution can be found earlier in the branching tree of the master
model, resulting in a better upper bound. Having a good upper bound earlier allows
bounding more efficiently, which reduces computation time.∑

zk∈ΩR
i

bi,k · ωi,k ≥ 1, ci ∈ C. (2.16)
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2.5.4 Sub-model Formulation

The main purpose of the sub-model is to generate the columns ΩR for the master
model. Apart from that, the sub-model is used to check optimality of the restricted
master model MM(ΩR). The following condition guarantees optimality of the
solution obtained by MM(ΩR) (see [116] for the proof) and it is used for constructing
the sub-model formulation:

Condition 1 (Optimality condition). A solution to a linear relaxation of MM(ΩR)
is optimal if and only if there is no column zk ∈ Ω that is infeasible for the dual
model to the linear relaxation of MM(ΩR).

The notion of duality between two LP models is described in [35]. Basically,
it exchanges constraints and variables in their LP formulations. Note that the
procedure of constructing a dual master model formulation DMM(ΩR) to MM(ΩR)
does not contain any design decisions and follows automatically from the formulation
of MM(ΩR).

The formulation of DMM(ΩR) is given below, where λj are dual variables
that correspond to the set of Constraints (2.15) and σi are dual variables for Con-
straints (2.16) of the master model. DMM(ΩR) aims to maximize Criterion (2.17)
with respect to Constraints (2.18)–(2.20).

Maximize : −
∑
j∈F

λj +
∑
ci∈C

σi. (2.17)

subject to:

−
∑
j∈F

hji,k · λj + bi,k · σi ≤
φi,k
H

, ci ∈ C, zk ∈ Ωi, (2.18)

λj ≤M ′, j ∈ F (2.19)

λj ≥ 0, j ∈ F (2.20)

Variables λj and σi are called shadow prices. In terms of the TCP/LR-F
problem, they can be interpreted as how much the value of Criterion (2.14) of the
master model would decrease if the corresponding constraints of MM are relaxed.
Particularly, λj indicates a potential gain in terms of criterion value if slot j is
allowed to be allocated twice (in general, allowing slot j to be allocated k times, the
criterion reduces by (k − 1) · λj). Meanwhile, σi is the price of having one column
for client ci both in terms of its allocated rate ρi and its slot assignment, i.e. the
criterion value (2.14) would reduce by σi if client ci could have no columns in the
final solution.

As already stated, the sub-model generates new promising columns for an indi-
vidual client. Promising are those that violate feasibility of DMM(ΩR) according to
the optimality stated in Condition 1. The negated value by which Constraints (2.18)–
(2.20) are violated by a new column zk is called the reduced cost. In TCP/LR-F,
the reduced cost value can be interpreted as how much the cost of having certain
column in a final solution (in terms of the criterion value) must be reduced before it
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is included in the optimal solution. From the point of view of Condition 1, negative
reduced cost means the current solution of MM(ΩR) is not optimal. Basically, the
sub-model searches for a new column, defined by Equations (2.9), (2.10) and (2.11).
To find such a column with minimal reduced cost, it uses the ILP model from
Section 2.4 for a single client. This is how the ILP model is used as a building block
in a bigger framework.

Having minimal reduced cost does not necessarily mean that the column brings
the result towards an optimal solution. However, choosing the column with the
minimal reduced cost is a heuristic that behaves very well in practice [35] and
eventually leads to the optimal solution due to Condition 1.

Next, the formulation of the sub-model is given. Since it is required to minimize
the reduced cost, violation of Constraints (2.18)-(2.20) needs to be formulated in
terms of the sub-model variables. Remember that the values λj and σi are constants
from the sub-model point of view, since they are obtained from the master model
after Step 2 in Figure 2.4. Thus, Constraints (2.19) and (2.20) are satisfied by
default and it is sufficient to consider violation of Constraint (2.18) only.

Looking closely at Constraint (2.18), it is clear that the sub-model only needs
to determine slot allocation for the given client ci, i.e. variables hji,k are in fact the

same as tji from the ILP model, previously described in Section 2.4. Furthermore,

φi,k is the number of allocated slots in column k, which implies φi,k = φi =
∑
j∈F t

j
i .

Finally, bi,k is always 1 in the sub-model, since the schedule is constructed for client
ci. Thus, the sub-model for client ci has the criterion Φsub (2.21), which is the
reduced price expression.

Minimize :
∑
j∈F

tji · λj +

∑
j∈F t

j
i

H
− σi = Φsub. (2.21)

The constraints of the sub-model duplicate the constraints of the ILP model in
Section 2.4 for C = {ci}, i.e. considering client ci only. Constraint (2.22) states that
the bandwidth requirement must be fulfilled, Constraint (2.23) computes the points
of the worst-case provided service line and Constraint (2.24) guarantees satisfying the
service latency requirement for the given client according to Definition 1. Moreover,
all the optimizations for the ILP model, described in Section 2.4, are used for the
sub-model as well.

H∑
j=1

tji ≥ H · ρ̂i (2.22)

rji ≤
(k−j) mod H∑

l=k

tji , k ∈ F, j ∈ F (2.23)

rji ≥ ρ̂i · (j − Θ̂i), j ∈ F. (2.24)

Thus, here the ILP model, formulated in Section 2.4, is used as a piece in a larger
framework to solve large problems more efficiently due to the ILP decomposition,
i.e. instead of solving a large model that considers all clients at the same time, the
master model and the sub-model solve smaller sub-problems. We present a small



Scheduling a Single Resource with Latency-Rate Abstraction 27

illustrative example of the column generation algorithm on a problem instance with
2 clients in the following subsection.

2.5.5 Illustration of Column Generation

A short illustration of the column generation algorithm described earlier in this
section is shown here. The small problem instance used for this purpose considers 2
clients c1, c2 with Θ̂ = [3, 3] and ρ̂ = [0.5, 0.3]. The TDM frame size is H = 10. We
assume initial columns with h1,1, h2,1 for clients c1, c2, respectively, according to:

ΩR = {h1,1 = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] , (2.25)

h2,1 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0]} , (2.26)

the restricted master model MM(ΩR) is formulated as:

Minimize :
5

10
· ω1,1 +

4

10
· ω2,1 + 10

∑
j∈F

yj

subject to :

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y1

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y2

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y3

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y4

0 · ω1,1 + 0 · ω2,1 ≤ 1 + y5

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y6

0 · ω1,1 + 1 · ω2,1 ≤ 1 + y7

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y8

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y9

1 · ω1,1 + 0 · ω2,1 ≤ 1 + y10

1 · ω1,1 + 0 · ω2,1 ≥ 1

0 · ω1,1 + 1 · ω2,1 ≥ 1.

The trivial solution to the relaxed MM(ΩR) is ω1,1 = 1, ω2,1 = 1, yj = 0 ∀j ∈ F
having objective function Φ = 0.9. The corresponding dual solution is λj = 0 ∀j ∈ F ,
σ1 = −0.5, σ2 = −0.4.

When we formulate the sub-model from Equations (2.21)-(2.24) for client c1 to
obtain a new column, its solution is [0, 1, 1, 0, 1, 1, 0, 0, 1, 0]. However, its reduced
price Φsub =

∑
j∈F t

j
1 · 0 + 0.5− 0.5 = 0 (see Equation (2.21)) is not negative, which

means that this column cannot improve the objective function of MM(ΩR). On the
other hand, the sub-model for client c2 finds [1, 0, 0, 0, 1, 0, 0, 1, 0, 0] with reduced
price

∑
j∈F t

j
2 · 0 + 0.3− 0.4 = −0.1, which has potential to improve the objective

function of MM(ΩR).
When the new column for c2 is added into MM(ΩR) (see Step 7 in Figure 2.4),

MM(ΩR) is solved again in Step 2. In this case, the primal solution stays practically
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the same (i.e. ω1,1 = 1, ω2,1 = 1, ω2,2 = 0, yj = 0 ∀j ∈ F ), but the dual
solution changes to λ = [0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0], σ1 = −0.6, σ2 = −0.4. For this
dual solution, the sub-model for client c1 finds column [0, 1, 1, 0, 1, 1, 0, 0, 1, 0] with
reduced price Φsub = 0 · 0.1 + 0.5− 0.6 = −0.1. This new column allows MM(ΩR)
to find solution ω1,1 = 0.5, ω2,1 = 0.5, ω2,2 = 0.5, ω1,2 = 0.5, yj = 0 ∀j ∈ F with a
better value of the objective function equal to Φ = 0.85.

The last column h2,3 = [1, 0, 0, 1, 0, 0, 1, 0, 0, 0] is added in the next iteration
when MM(ΩR) achieves the optimal solution of the relaxed master model, which
equals to Φ = 0.8. After that there is no column with negative reduced price and
column generation stops with

ΩR = {h1,1 = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] , (2.27)

h2,1 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0] , (2.28)

h2,2 = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0] , (2.29)

h1,2 = [0, 1, 1, 0, 1, 1, 0, 0, 1, 0] , (2.30)

h2,3 = [1, 0, 0, 1, 0, 0, 1, 0, 0, 0]} . (2.31)

If the solution is integer (i.e. ω1,1 = 0, ω2,1 = 0, ω2,2 = 0, ω1,2 = 1, ω2,3 = 1,
yj = 0 ∀j ∈ Ω), a new better solution was found and the B&P algorithm continues
by Step 8. Otherwise, the algorithm goes to Step 6 where the branching takes place.

2.5.6 Branching Strategy

The third and last main component of the B&P approach is the branch-and-bound
procedure. Here, we focus on the branching strategy used. B&P approaches usually
use the 0/1 branching scheme, i.e. some binary variable is set either to 0 or to 1 in
two child nodes. First of all, the important decision is how to choose variables to
branch on. Branching on master model variables (ωi,p) is not effective since new
columns are added in each iteration and the number of decisions to make increases
with added columns, which results in a large decision tree and long computation
time. Moreover, it is more efficient to consider variables of the sub-model as the
branching variables, since it influences several columns at once.

Generally, branching adopts a depth-first search. Note that two branching
decisions must be made: which client to allocate to which slot. Two branching
strategies show good results for different sizes of problems. Both strategies start by
sorting clients in ascending order according to their service latency requirements to
begin branching from the clients with more critical requirements.

The first branching strategy has experimentally shown good results for smaller
problems (up to 16-32 clients). It fixes tji in the following order, assuming the
above described sorting of the clients: t21, · · · , tH1 , t12, · · · , tHn , i.e. slots are assigned
sequentially from left to right for each client. Note that the first slot is always
allocated to the client with the tightest service latency requirements to reduce
symmetry in the solution space (similar to the ILP from Section 2.4). This branching
first makes decisions of type tji = 0, i.e. branching goes first to the branch where
slot j is forbidden to be allocated to client ci and only then to the branch where it
is fixed to be allocated. The reason for this is to obtain a feasible solution as fast as
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C1 C1 C1 C1 C1Ck C1 C1 C1 C1 C1C2

C1 C1 C1 C1 C1Ck C1 C1 C1 C1 C1C2 C1 C1 C1 C1 C1 C1Ck C1 C1 C1 C1 C1C2 !C1

C1 C1 C1 C1 C1Ck C1 C1 C1 C1 C1C2 C1 C1 C1 C1 C1 C1 C1Ck C1 C1 C1 C1 C1C2 !C1 C1

C1 C1 C1 C1 C1Ck C1 C1 C1 C1 C1C2 C1 !C1 C1 C1 C1 C1 C1Ck C1 C1 C1 C1 C1C2 !C1 !C1

Figure 2.5: The first three layers of the example branching tree.

possible, since negative decisions are less likely to eliminate any column in ΩR and
therefore do not require time to be spent running column generation. Moreover,
going through the solution space in a systematic manner reduces the number of
explored symmetrical solutions.

The second branching strategy shows better results for larger use-cases (more
than 16-32 clients). It begins by computing the total ”probabilities” of including
each slot j ∈ F in the solution for all its columns, ωtotal

j . For example, for the

first client this means computing ωtotal
j =

∑
zk∈ΩR

1 :hj
1,k=1 ω1,k. Then it chooses the

non-decided slot jc with maximum total ”probability” of being in the solution,
jc = argmaxj∈F ω

total
j and branches on it. In case there are multiple slots with the

same maximum ωtotal
j , the leftmost slot jc is chosen. While branching on variable

t1jc , it goes to the branch t1jc = 1 first. If the first client is fully decided or all
the ”probabilities” of undecided slots are zero, the procedure continues with the
following client. This branching strategy typically leads to a feasible solution early
on as slots with non-zero probability are the promising ones to allocate.

An example with the first three layers of a branching tree using the second
branching strategy is shown in Figure 2.5. It assumes the root node contains the
set of columns ΩR from Figure 2.3 and the master model resulted in the variables
ω1,1 = 0.2, ω1,2 = 0.8, ω2,1 = 0.7, ω2,2 = 0.3 in Step 2 of Figure 2.4. For the first
client there are 4 slots j = (4, 8, 9, 10) with the same ωtotal

j = 1 and neither of
them is decided yet. Therefore, the branching decision in the root node is to use
client ci = 1 and slot j = 4 for branching. As a consequence, the left child has
a partial solution, where t41 = 1 and the right child has t41 = 0 (!c1). Note that
column generation in the nodes of the second layer starts with a changed set of
initial columns. Therefore, the branching decisions are made based on different
values of ωi,j .

2.6 Computation Time Optimizations

The main components of the B&P approach are specified for TCP/LR-F in the
previous section. However, there are plenty of opportunities for reducing the
computation time of the approach. Numerous experiments and observations were
done and this section presents the five most successful optimizations to reduce
computation time.

First of all, starting the B&P approach from a feasible initial solution obtained
by a heuristic implies a significant reduction of the computation time, since having a
good upper bound on the solution in the beginning reduces the size of the branching
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tree. If the heuristic is good, it may often be able to find the optimal solution by
itself. In this case, the B&P approach only has to prove the optimality in the root
node of the branching tree, considerably reducing the computation time. This is
the case for our heuristic, later presented in Section 2.7.

Secondly, since the sub-model for non-latency-dominated clients requires H2

constraints for checking service latency guarantees, lazy constraints [53] are used.
The basic idea is to initially formulate the problem only with the most esssential
constraints, omitting those that are only rarely violated. These other constraints are
checked and added one-by-one to the model only if the solution violates any of them.
This process is done in an efficient way. Instead of always starting from the beginning
of the branching tree, it continues search from the place in the tree it last finished.
We apply this technique to the sub-model, which we initially formulate assuming
all clients are latency dominated, i.e. having only H Constraints (2.10) and (2.11)
for j = bΘ̂ic+ 1. Next, for bandwidth-dominated clients, the solution is checked
for satisfaction of Constraints (2.10) and (2.11) for j > bΘ̂ic + 1. If a constraint
is violated, it is added to the model and the solver continues its search until it is
finished. The key idea behind this optimization is to exploit that although service
latency is not always the largest gap between two consecutively allocated slots to
the same client, it often is, and the extra constraints for bandwidth-dominated
clients are hence typically not necessary.

The next optimization also concerns the branch-and-bound part. We use problem-
specific information to set the bounding condition more effectively. The bounding
condition in every node is set to be ΦLB > ΦUB − 1/H, where the discretization
step 1/H is subtracted. The reason is that unless there is at least one slot less,
which is exactly 1/H in terms of utilization, it is not an improved solution to the
problem.

Column generation often suffers from a so called ”tailing-off” effect, i.e. at
the moment the reduced prices of sub-models are close to zero it starts to take
a lot of iterations to converge to exact zeros. To deal with this issue, the fourth
optimization, Lagrangian relaxation, is introduced. It estimates the lower bound
ΦLB on Φ inside the column generation loop by Equation (2.32), before the master
model is solved to optimum. Thus, using Lagrangian relaxation stops the column
generation process before Condition 1 holds and closes the node, saving computation

time. It is applicable when either the estimated lower bound Φ
LB ≥ ΦUB or if the

estimated lower bound Φ
LB

and the one given by the master model after previous
iteration ΦMM

curr discretize to the same number of allocated slots. Equation (2.32)
computes the lower bound on the criterion value of the master model after each
iteration inside the column generation procedure after Step 3 of Figure 2.4. The
estimation is the current criterion value of the master model ΦMM

curr plus the sum of
all of the reduced prices Φsub

i of the sub-models [51]. The Lagrangian relaxation
cannot lower bound it incorrectly [51], i.e. it does not break optimality.

Φ
LB

= ΦMM
curr +

∑
ci∈C

Φsubi (2.32)

Note that each time the Lagrangian relaxation is applied, all the sub-models
must be solved to optimum. Hence, running Lagrangian relaxation each iteration of
column generation could increase the total computation time, so it is an important
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decision when to start this process. In our approach, Lagrangian relaxation is
performed each n iterations, where n is the number of clients. This design decision
is motivated by that when new columns are generated for all n clients, there is
higher chance that the reduced prices have changed significantly and there is space
for the Lagrangian relaxation to close the node.

The fifth and the final optimization of the computation time is solution com-
pletion by the ILP from Section 2.4. Sometimes branching goes deep enough so
that it is possible to reduce computation time by launching the ILP model to find a
schedule for all clients simultaneously. It is done when some percent of positive or
negative decisions has been made. Our experiments have shown that for different
sizes of problems these parameters should be set differently. For example, it is
necessary to increase them with increasing number of clients, since larger problems
could require running the ILP for a long time. Thus, nodes at this depth are solved
to optimality using the ILP model and are closed afterwards. This procedure is
done by taking the decisions that have already been made, fixing corresponding
variables in the ILP model and solving this problem with an ILP solver.

2.7 Heuristic Approach

Although the proposed exact approaches solve TCP/LR-F optimally, it is sometimes
acceptable to sacrifice the quality of the solution in order to reduce computation
time. Moreover, as mentioned earlier, the B&P approach can use a heuristic solution
to compute good initial columns that reduce the total computation time. Thus, the
purpose of this section is to present a heuristic that solves the TCP/LR-F problem.

Heuristics of the constructive type (ones that construct a solution step-by-step)
for the considered TCP/LR-F problem lack a good strategy to backtrack from
low quality solutions and this is the reason we propose a generative heuristic that
produces a complete solution at once. Although the generated solution may initially
be infeasible, the heuristic gradually changes it towards a feasible one.

The proposed heuristic exploits the sub-model, previously described in Sec-
tion 2.5.4. It is used in combination with the lazy constraints presented in Sec-
tion 2.6 and with the optimality gap set to 5%, i.e. it is not necessarily the optimal
solution that is returned by the solver, but one that is no further than 5% relative
distance from the result of the linear relaxation of the problem. These improvements
significantly reduce the computation time.

The heuristic constructs the schedule by iteratively running the sub-model for
different clients in a cyclic manner. Remember that the sub-model aims to minimize

Φsub =
∑
j∈F t

j
i · λj +

∑
j∈F t

j
i

H − σi, where the dual price coefficients λj control
allocation of slot j. In this heuristic, λj is not coming from the master model, but
is determined by the solutions from previous iterations. Note that in the column
generation procedure, this is done by the master model in Step 2 of Figure 2.4. Here,
the heuristic substitutes Steps 2 and 7 of Figure 2.4 with a procedure that assigns
appropriate coefficients λj . Meanwhile, the dual price σi is omitted in the heuristic
as it is a constant in a sub-model and constants play no role in minimization.

Algorithm 2.1 shows the proposed heuristic. The number of clients n, service
latency Θ̂ and bandwidth requirements ρ̂ are used as input. Furthermore, there
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are two parameters of the heuristic, a coefficient α, which controls the speed of
convergence to the final solution, and the maximum number of iterations of the
sub-model Nmax

iter . Each iteration includes two main steps: first coefficients λj
are computed on Line 4 (explained later) and then the sub-model for client ci is
launched on Line 5. Note that the current solution is the schedule constructed out
of the n last created columns for individual clients. The heuristic stops either when
the maximum number of iterations, Nmax

iter , is reached or if the current solution

tj,curri is collision-free, i.e. there are no two clients that share a slot in the current
solution.

Algorithm 2.1 The proposed generative heuristic

1: Inputs: n, Θ̂, ρ̂, α,Nmax
iter

2: Niter = 0, i = 1, tj,curri = 0

3: while Niter < Nmax
iter and tj,curri has collisions do

4: λ = Coefficients computation(ci, α)
5: tj,curri = SubModel(Θ̂i, ρ̂i, λ)
6: Niter = Niter + 1
7: i = (i mod n) + 1
8: end while
9: Output: tj,curri

The core of the heuristic is fast assignment of coefficients λj to each slot for
a given client, such that if multiple clients allocate the same slot, some of them
will change their allocation. As we are minimizing the criterion value, a higher
value of the coefficient means it is less desirable for a client to allocate slot j
(λj ∈ [0.9, 2.5], j ∈ F ). The procedure of assigning coefficients λj for client ci is
presented in Algorithm 2.2. The algorithm considers four mutually exclusive and
jointly exhaustive cases that are detailed below:

1. Slot j is allocated to some client ck 6= ci and not allocated to client ci in
the current schedule tj,curri . Generally, in this situation slot j should not be
allocated to client ci to avoid conflict, but in early stages of the heuristic this
slot can be used if necessary, since it is not known in advance which allocation
is better. The corresponding coefficient is assigned λj = min(2, 1 + dj,i · α),
where dj,i is the number of times slot j was allocated in the previous iterations
to any client ck, k 6= i. The coefficient dj,i hence adds state to the iterative
algorithm: the more times the slot was allocated to other clients before, the
less attractive it is to allocate this slot to client ci. Furthermore, the higher the
value of coefficient α, the faster the schedule converges, since dj,i · α becomes
larger. The upper bound of 2 limits the maximal penalization.

2. Slot j is allocated to client ci in tj,curri and there is no conflict. The constant
value of λi = 0.9 is chosen here, since the algorithm prefers not to change the
clients allocation unless necessary. In case this value would be set too low, the
algorithm will tend to allocate a new slot rather than changing the allocation
of the currently assigned slots.
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3. Slot j is allocated in tj,curri to client ci and there is a conflict. All but one of
the conflicting clients should leave the slot. However, it is not clear in advance
which client should have the slot. Therefore randomness is introduced here
- the coefficient in this case is selected from uniformly distributed numbers
between 1 and 2.5.

4. In case j is not allocated in the current schedule, a value λj = 1.0 is assigned.

Algorithm 2.2 Coefficients computation

1: Inputs: ci, α
2: for all j ∈ F do
3: dj,i = number of times slot j was allocated in the previous iterations to any

client ck 6= ci

4: λj =



min(2, 1 + dj,i · α), if tj,curri = 0, tj,currk = 1,

for some k 6= i. (1)

0.9, if tj,curri = 1, tj,currk = 0,

for every k 6= i. (2)

1 + rand() · 1.5, if tj,curri = 1, tj,currk = 1,

for some k 6= i. (3)

1, if tj,currk = 0

for every k = 1, ..., n. (4)
5: end for
6: Output: λ

2.8 Experimental Results

This section experimentally evaluates and compares the TDM configuration method-
ology based on the B&P approach and the proposed heuristic. First, the experimen-
tal setup is explained, followed by an experiment that compares the proposed B&P
and heuristic approaches to the existing ILP from Section 2.4 in terms of scalability.
Furthermore, it shows the trade-off between criterion value and computation time
for the heuristic approach.

2.8.1 Experimental Setup

Experiments are performed using three sets of 5 × 200 synthetic use-cases, each
comprising 8, 16, 32, 64 or 128 real-time clients on one resource. The three sets
are bandwidth-dominated, latency-dominated and mixed-dominated use-cases. The
concepts of latency-dominated and bandwidth-dominated clients were previously
introduced in Section 2.4. A mixed-dominated client is one that requires ap-
proximately equal allocated rate to satisfy both service latency and bandwidth
requirements according to the right or left part of Equation (2.12), respectively.
A mixed-dominated use-case comprises only mixed-dominated clients. This type
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of use-cases was not considered in [5] due to high time complexity. The reason
for looking at this group of instances is that the problem is more difficult than in
bandwidth-dominated use-cases, but unlike latency-dominated cases, constraints
cannot be removed by the computation time optimizations in Section 2.4. The
reason for evaluating these three classes is to show the impact of the requirements
on the computation time of the proposed B&P approach, as well as fairly evaluate
the efficiency of the heuristic. We proceed by explaining how bandwidth and service
latency requirements are generated for the three sets.

Parameters for synthetic use-case generation are given in Table 2.1. Firstly,
bandwidth requirements of each client in a use-case are generated. Here, β is an
interval from which bandwidth requirements for each client are uniformly drawn.
The use-case is accepted if the total required rate of all clients is in the range
[0.8, 0.95] for bandwidth-dominated use-cases, [0.35, 0.5] for latency-dominated
use-cases and [0.7, 0.9] for mixed-dominated use-cases. Otherwise, it is discarded
and the generation process restarts. The interval of acceptance is lower for both
mixed-dominated and latency-dominated sets to leave space for over-allocation to
satisfy the tighter service latency requirements. Each time the number of clients is
doubled, the range of bandwidth requirements is divided by 2. This is to make sure
the total load is comparable across use-cases with different number of clients, which
is required to fairly evaluate scalability.

Table 2.1: The parameters for use-case generation

Clients
Bandwidth-dominated Latency-dominated Mixed-dominated

β γ β γ β γ

8 [0.06, 0.16] [0.6, 0.9] [0.02, 0.07] [1.6, 3.3] [0.06, 0.14] [0.95, 1.4]

16 [0.03, 0.08] [0.5, 0.75] [0.01, 0.035] [1.58, 3.26] [0.03, 0.07] [0.9, 1.3]

32 [0.015, 0.04] [0.4, 0.6] [0.005, 0.0175] [1.56, 3.22] [0.015, 0.035] [0.85, 1.2]

64 [0.0075, 0.02] [0.3, 0.45] [0.0025, 0.00875] [1.54, 3.18] [0.0075, 0.0175] [0.8, 1.1]

128 [0.00375, 0.01] [0.2, 0.3] [0.00125, 0.004375] [1.52, 3.14] [0.00375, 0.00875] [0.75, 1.0]

Service latency requirements are uniformly distributed according to 1
γ·ρ̂ , where

a larger value of γ indicates a tighter requirement. The γ values are given in
Table 2.1. The reduction of service latency requirements with increasing number
of clients is empirically determined to provide instances with comparable difficulty
by having similar total allocated rates for the final optimal schedules. Lastly, if
the total possible load due to the service latency requirements (the right part
of Equation (2.12)) is outside the interval [0.75, 0.95] and [0.7, 0.9], for latency-
dominated and mixed-dominated use-cases, respectively, new latency requirements
for the use-case are generated. For all sets, generated use-cases that are found
infeasible using the optimal approach are discarded and replaced to ensure a sufficient
number of feasible use-cases. Finally, the frame size is set to H = n · 8 to make sure
that the number of slots available to each client is constant across the experiment.

All in all, this generation process ensures that all use-cases are feasible, have
comparable difficulty, and that all clients in the three sets have the desirable
dominating property. Experiments were executed on a high-performance server
equipped with 2x Intel Xeon X5570 (2.93 GHz, 20 cores total) and 100 GB memory.
The ILP model and ILP part of B&P and the heuristic were implemented in IBM
ILOG CPLEX Optimization Studio 12.5.1 and solved with the CPLEX solver using
concert technology for the latter two. The B&P and heuristic approaches were
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implemented in JAVA. The source code of the ILP model, B&P approach, and the
heuristic together with benchmarks is available at https://github.com/CTU-IIG/
BandP_TDM.

2.8.2 Results

The experiments evaluate the scalability of the proposed B&P approach and the
trade-off between computation time and the total rate (the criterion) allocated to
8, 16, 32, 64 and 128 real-time clients for the optimal and heuristic approaches.
Moreover, it compares the proposed approaches with already existing exact (the
ILP formulation from Section 2.4) and heuristic (continuous allocation) strategies.
A time limit of 3 000 seconds per use-case was set in order to obtain the results of
the experiments in reasonable time. Furthermore, to get higher quality solutions
at expense of increased computation time, the heuristic was launched 8 times for
latency-dominated and mixed-dominated use-cases to exploit the random component
of the heuristic. Note that the heuristic is only run once for bandwidth-dominated
use-cases, since these are easier for the heuristic to solve. The heuristic parameters
were set to α = 0.1, Nmax

iter = 250. Besides, the used branching strategy for the
use-cases with 8 and 16 clients is the first (consecutive) one mentioned in Section 2.6,
while for the use-cases with 32, 64 and 128 clients the second (maximum total
probability) one was selected. Furthermore, after 10, 30, 60, 80, and 95% of
positively decided slot allocations and 40, 100, 120, 260 and 300% of negative
decisions in terms of time slots (with 100% being H) is done for the use-cases with 8,
16, 32, 64 and 128 clients, respectively, the completion by the ILP model is launched
as discussed in Section 2.6. These numbers were empirically determined to provide
a reasonable trade-off between computation time and quality of the solution.

The distribution of all values later in this section is shown in the form of box
plots [58], where the quartile, median and three quartiles together with outliers
(plus signs) are shown. Outliers are numbers that lie outside 1.5×the interquartile
range away from the top or bottom of the box that are represented by the top and
the bottom whiskers, respectively. Note that outliers were also successfully solved
within the time limit.

Bandwidth-dominated use-cases

Figure 2.6 shows the vertical axis in logarithmic scale of the computation time for
the bandwidth-dominated use-cases for the heuristic, B&P and ILP approaches for
8, 16, 32, and 64 clients, respectively. The ILP struggles to scale to use-cases with
32 clients, as 52 out of 200 use-cases are not solved to optimality within the given
time limit, resulting in a failure rate of above 25%. Therefore, the results for 64
and 128 clients are only represented by the heuristic on the left and B&P on the
right. The results show that the B&P approach significantly outperforms the ILP
model, scaling well to the use-cases with 32, 64 and 128 clients. More specifically,
B&P requires 10% (4 minutes) and 2% (14 minutes) of the ILP computation time
for 8 and 16 clients, respectively. Moreover, it solves the use-cases with 32, 64 and
128 clients in 0.5, 6 and 29 hours, respectively, resulting in less than 9 minutes
computation time per use-case on average for the use-cases with 128 clients. The
quality of the solution is shown in Table 2.2, where the first number is the number

https://github.com/CTU-IIG/BandP_TDM
https://github.com/CTU-IIG/BandP_TDM


36 Experimental Results

of failures and the second one is the average distance (excluding the failures) to the
best solution obtained by one of the two optimal approaches. Failure is defined as no
feasible solution for the heuristic and no optimal solution for the exact approaches
within the time limit. The results for 128 clients are not presented in the table, since
they are identical to the results for 64 clients. The reason for this is that for both
types of use-cases, the heuristic was able to solve all 200 use-cases to optimality
and B&P only had to prove optimality of the solutions.
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Figure 2.6: Computation time distribution for the bandwidth-dominated use-cases.

Comparing the heuristic and the B&P approach for the bandwidth-dominated
use-cases, the results indicate a slight time reduction with some loss in the quality
of the solution for the heuristic. The distributions of the computation time of both
the heuristic and the B&P approach for 8, 16, 32, 64 and 128 clients look similar
with exception of the use-cases marked as plus signs, for which the heuristic was
not able to find any feasible solutions. As B&P starts with the heuristic solution, if
the heuristic fails to find a feasible solution, it takes significantly longer for B&P.
However, the results in Table 2.2 show that when the heuristic managed to find
feasible solutions, it always found the optimal one. The second issue that seems
suspicious is the visible similarity of the distribution of computation time of both
the heuristic and B&P approaches, which is caused by using log10 scale, where the
small difference becomes invisible. In reality, the total computation time of the
heuristic and the B&P differ. The heuristic runs in 25%, 29%, 96%, 99% and 99%
of the B&P computation time for 8, 16, 32, 64 and 128 clients, respectively. Such a
similarity for 32, 64 and 128 clients is a result of the heuristic being successful in
all use-cases, which could be caused by having more space for allocation without
collisions when the frame size is longer.

To push the limits of the B&P approach and find the maximum number of
clients it can manage, a use-case with 256 clients was generated by following the
rules in Table 2.1. However, because of the memory limit of 100 GB, B&P was not
able to finish the run for a single use-case. The current limits for our approach is
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hence somewhere between 128 and 256 bandwidth-dominated clients in a use-case.

Table 2.2: Number of failures and average distance to the best obtained solution by either
B&P or ILP approaches. (BD – bandwidth-dominated, LD – latency-dominated and MD –
mixed-dominated use-cases)

Clients
8 clients 16 clients 32 clients 64 clients

BD LD MD BD LD MD BD LD MD BD LD MD

ILP 0/0 0/0 1/0 0/0 1/0 1/0 52/0.0005 0/0 172/0 - 0/0 -

B&P 0/0 6/0 3/0 0/0 1/0 0/0 0/0 0/0 0/0 0/0 5/0 0/0

Heuristic 8/0 46/0.01 23/0.01 2/0 76/0.006 26/0.003 0/0 71/0.001 8/0.0001 0/0 61/0.0001 0/0

This experiment shows that for bandwidth-dominated use-cases the B&P approach
significantly outperforms the ILP model for all sizes of use-cases, both in terms of
computation time and quality of the obtained solution. Moreover, considering all
1 000 use-cases, the heuristic saves up to 75% of the computation time. This is
done while sacrificing less than 1.5% of the use-cases that it fails to solve and giving
optimal results for the other 98.5%.

Latency-dominated use-cases

The second group of use-cases that we focus on is latency-dominated use-cases. Since
these use-cases are more complex than the bandwidth-dominated ones, instances
with 128 clients take too long to run for all approaches and are not included in the
results. The distribution of log10 of the computation time is shown in Figure 2.7.
Here, it is clear that for smaller use-cases with 8 and 16 clients, the ILP model
significantly outperforms the B&P approach. That is, the ILP runs in 2% (15
minutes) and 42% (176 minutes) of the B&P computation time for 8 and 16 clients,
respectively. However, with increasing number of clients the situation becomes
different. For 64 clients, B&P requires less time (total 26 hours versus the ILP
with 65 hours, i.e. 2.5 times faster), but it is not able to find any feasible solution
within the time limit for 5 use-cases. For the use-cases with 128 clients, running
the heuristic 8 times in the beginning takes more than 50 minutes on average and
in case the heuristic is not able to find a feasible solution, which happened in 14
use-cases out of 56, B&P was able to find a solution in 2 use-cases out of 14 within
the given time limit.

As expected, the heuristic does not show good results on this type of use-cases
with very demanding service latency requirements. Its failure rate goes up to 38%
for 16 clients, while the lowest failure rate is observed for 8 clients (23%). However,
the average distance from the best solution found by wither B&P or ILP does not
exceed 1% for any feasible use-case. It manages to save 40%, 60% and 90% of the
computation time of the least demanding optimal approach (whichever is faster,
ILP or B&P) for 16, 32 and 64 clients, respectively.

The main reason the results for latency-dominated use-cases are different from
their bandwidth-dominated counterparts is that latency-dominated clients require
O(H) instead of O(H2) constraints. Therefore, the ILP model is able to quickly
find a solution for larger problems and, as a consequence, B&P starts to be faster
only from 64 clients.

For the latency-dominated use-cases, we conclude that B&P shows better results
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Figure 2.7: Computation time distribution for the latency-dominated use-cases.

than the ILP starting from larger problem instances with 64 clients. The heuristic
saves more time than B&P, sacrificing approximately the same number of solvable
use-cases with increasing size of problem instances.

Mixed-dominated use-cases

Finally, experimental results for the set of mixed-dominated use-cases is shown in
Figure 2.8.

Again, the ILP model fails to scale to use-cases with 32 clients, not even a feasible
solution was found within a given time limit in 172 out of 200 use-cases, which means
a failure rate above 85%. Thus, the results for 32 and 64 clients are only represented
by the heuristic on the left and B&P on the right. For the use-cases with 8 clients,
the ILP model outperforms B&P in terms of total computation time, although
B&P is slightly better in terms of median of the computation time. However, B&P
is not able to prove the optimality within the time limit for 3 use-cases, while the
ILP failed only once. For 16 clients, the ILP model runs in 20 hours, while the
branch-and price approach needs less than 5 hours, saving 77% of the computation
time. For 32 and 64 clients, B&P requires on average less than 1 and 5 minutes for
one use-case, respectively, demonstrating improved scalability.

For the mixed-dominated use-cases, the heuristic fails to find a feasible solution
in 23 and 26 use-cases for 8 and 16 clients, respectively, and saves 95% and 88%
of the computation time of the fastest optimal approach. The heuristic shows
good results, especially on the use-cases with 32 and 64 clients, where it is able to
solve almost all of them in 90 minutes and 14 hours, respectively, leaving only the
proof of optimality to the B&P approach. This result is caused by having more
latency-dominated clients in the sets with 8 and 16 clients than in the sets of 32
and 64 clients, which makes the work for the heuristic easier. For the use-cases with
128 clients, the average time of running the heuristic 8 times is 75 minutes, which



Scheduling a Single Resource with Latency-Rate Abstraction 39

already exceeds the given time limit.
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Figure 2.8: Computation time distribution for the mixed-dominated use-cases.

The results for the mixed-dominated use-cases show significant reduction of
computation time of the B&P approach compared to the ILP model, starting approxi-
mately from use-cases with 16 clients, while giving optimal solutions for all synthetic
use-cases. The heuristic saves 32% of computation time on average, sacrificing
approximately 8% of the solvable use-cases.

Conclusion from experiments

From these experiments, we confirm the exponential complexity of the problem,
although our implementation solves an instance with 64 clients and 512 slots in less
than 8 minutes on average for all type of use-cases. Moreover, the ILP model is
not able to solve use-cases with more than 16 clients for bandwidth-dominated and
mixed-dominated use-cases and 32 clients for latency-dominated use-cases. Thus,
the B&P approach is better for more complex use-cases, while ILP typically shows
better results for the use-cases with smaller number of clients. More specifically, the
proposed B&P approach improves scalability from 16 to 128 clients for bandwidth-
dominated use-cases and from 16 to 64 clients for mixed-dominated use-cases, while
latency-dominated use-cases remain unchanged at 64 clients. In total, the work in
this chapter improves scalability with approximately a factor 8.

To further improve the scalability of the B&P approach, it is necessary to apply
additional advanced methods on the given problem. Alternatively, it is possible
to use the proposed heuristic, which enables saving up to 95% of the computation
time with loss of maximally 38% of feasible use-cases, being 1% in distance from
the optimal solution on average. In contrast, the commonly used continuous slot
assignment algorithm [37,42, 44, 117] failed to find any feasible solution in all 3 000
use-cases. This simple yet common heuristic is hence unable to cover any use-cases
of reasonable complexity. Finally, the heuristic presented in this chapter is not able
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Figure 2.9: Architecture of the HD video and graphics processing system.

to find any feasible solution for some use-cases, and we believe that it is a limitation
given by the usage of generative approach only.

2.8.3 Case Study

We now proceed by demonstrating the practical applicability of our proposed TDM
configuration methodology by applying it to a small case study of an HD video
and graphics processing system, where 7 memory clients share a 64-bit DDR3-1600
memory DIMM [55]. The considered system is illustrated in Figure 2.9.

Similarly to the multi-channel case study in [40], we derive the client requirements
from a combination of the industrial systems in [102,106] and information about
the memory traffic of the decoder application from [21]. However, we assume 720p
resolution instead of 1 080p and that all memory requests have a fixed size of 128 B
to be able to satisfy the requirements with a single memory channel.

The Input Processor receives an H.264 encoded YUV 4:2:0 video stream with
a resolution of 720 × 480, 12 bits per pixel (bpp), at a frame rate of 25 frames
per second (fps) [102], and writes to memory (IPout) at less than 1 MB/s. The
Video Engine (VE) generates traffic by reading the compressed video and reference
frames for motion compensation (VEin), and writing decoder output (VEout). The
motion compensation requires at least 285.1 MB/s to decode the video samples at
a resolution of 1280 × 720, 8 bpp, at 25 fps [21]. The bandwidth requirement to
output the decoded video image is 34.6 MB/s.

The GPU is responsible for post-processing the decoded video. The bandwidth
requirement depends on the complexity of the frame, but can reach a peak bandwidth
of 50 MB/frame in the worst case [106]. Its memory traffic can be split into pixels
read by the GPU for processing (GPUin) and writing the frame rendered by the GPU
(GPUout). For GPUin, we require a guaranteed bandwidth of 1 000 MB/s, which
should be conservative given that the peak bandwidth is not required continuously.
GPUout must communicate the complete uncompressed 720p video frame at 32 bpp
within the deadline of 40 ms (25 fps). With a burst size of 128 B, this results in a
maximum response time (finishing time - arrival time) of 1388 ns per request. To
provide a firm guarantee that all data from this client arrives before the deadline,
we separate this into a service latency and a rate requirement according to the LR
server approach. There are multiple (Θ, ρ) pairs that can satisfy a given response
time requirement according to Equation (2.2), where a higher required bandwidth
results in a more relaxed service latency requirement. Here, we require a bandwidth
of 184.3 MB/s, twice the continuous bandwidth that is needed, to budget time for
interference from other clients. According to Equation (2.2), this results in a service
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latency requirement of 718 ns (574 clock cycles for an 800 MHz memory).
The HDLCD Controller (HDLCD) writes the image processed by the GPU to

the screen. It is latency critical [102] and has a hard deadline to ensure that data
arrives in the frame buffer before the screen is refreshed. Similarly to GPUout,
HDLCD requires at least 184.3 MB/s to output a frame every 40 ms. Note that
each rendered frame is displayed twice by the HDLCD controller to achieve a screen
refresh rate of 50 Hz with a frame rate of 25 fps. Lastly, a host CPU and its
associated Direct Memory Access (DMA) controller also require memory access
with a total bandwidth of 150 MB/s to perform system-dependent activities [106].

The derived requirements of the memory clients in the case study are summa-
rized in Table 2.3. We conclude the section by explaining how to transform the
requirements into the abstract units of rate and service latency (in slots) used
by our approach. The rate is determined by dividing the bandwidth requirement
of the client with the minimum guaranteed bandwidth provided by the memory
controller. The service latency requirement in slots is computed by dividing the
latency requirement in clock cycles by the Worst-Case Execution Time (WCET)
of a memory request. Given a request size of 128 B and assuming the real-time
memory controller in [3], the WCET of a memory request to a DDR3-1 600 is 46
clock cycles at 800 MHz and the memory guarantees a minimum bandwidth of
2 149 MB/s [43]. For simplicity, we ignore effects of refresh interference in the
memory, which may increase the total memory access time over a video frame with
up to 3.5% for this memory. The total required bandwidth of the clients in the case
study is 1 839.3 MB/s. This corresponds to 85.6% of the guaranteed bandwidth of
the memory controller, suggesting a suitably high load. In this use-case, all clients
are bandwidth dominated.

Table 2.3: Client requirements in the case study

Client Bandwidth [MB/s] Latency [cc] ρ̂ Θ̂[slots]
IPout 1.0 - 0.0005 -
VEin 285.1 - 0.1326 -
VEout 34.6 - 0.0161 -
GPUin 1000.0 - 0.4652 -
GPUout 184.3 574 0.0858 12.5
LCDin 184.3 574 0.0858 12.5
CPU 150.0 - 0.0698 -
Total 1839.3 0.8558

We apply our configuration methodologies to find the optimal TDM schedule
to satisfy the client requirements, while minimizing the total allocated bandwidth.
The frame size is set to 64, which ensures that the use-case is solvable and provides
a reasonable trade-off between access granularity and total TDM schedule size
for the number of clients in the case study. Although the size of the problem is
rather small, the B&P approach results in more than 10 times reduction of the
computation time compared to the ILP model. More specifically, the B&P approach
requires 138 milliseconds, while the ILP model finishes in 1 395 milliseconds. The
reason B&P is faster even though the case study is small is that the heuristic
provides an optimal solution, as it typically does for bandwidth-dominated use-
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cases, significantly reducing the computation time of the approach. From this case
study, we conclude that B&P can be advantageous not only for larger models, but
also for the models of smaller sizes.

2.9 Summary

This chapter introduces two optimal and a heuristic approach to configure single
resources shared by Time-Division Multiplexing (TDM) to satisfy the bandwidth and
latency requirements of real-time clients. This is done while minimizing their total
allocated rate (bandwidth) to improve the average performance of non-real-time
clients. The problem considered here is to assign TDM slots to the clients, i.e., to
find a TDM schedule with a given length. To solve the TDM configuration problem,
we propose an integer linear programming problem (ILP) and an optimal approach
that takes this model and wraps it in a branch-and-price (B&P) framework to
reduce its computation time and thereby improve its scalability. We further present
computation time improvements for both approaches. They use problem-specific
properties to remove unnecessary constraints and reduce the solution space. In
addition, a stand-alone generative heuristic that quickly finds a schedule is proposed
for cases where an optimal solution is not required. This is also used to provide
promising initial schedules for the B&P approach.

We experimentally evaluate the scalability of the ILP and the B&P approaches
and quantify the trade-off between computation time and solution quality for the
proposed optimal and heuristic algorithms on three groups of synthetic use-cases,
representing different groups of possible bandwidth and latency requirements of the
clients. The three groups are: 1) bandwidth-dominated clients with more intense
bandwidth requirement than latency requirement; 2) latency-dominated clients
where the latency requirement is more demanding; and 3) mixed-dominated clients
with equally demanding bandwidth and latency requirements. The results show
that the computation time of all approaches depends on the type of the group, being
the shortest for the use-cases with bandwidth-dominated clients and the longest
for the ones with mixed-dominated clients for the same size of use-cases. This can
be intuitively explained by the complexity and the number of constraints involved.
Whereas for bandwidth dominated clients due to one of the computation time
improvements we can remove the most demanding constraints, for mixed-dominated
clients these constraints are present. The results on all use-cases also show that the
heuristic provides near-optimal solutions in 86% of the use-cases with an average
allocated bandwidth less than 0.26% from the optimum using less than 50% of the
time of the fastest optimal approach (either ILP or B&P). For example, the average
time for the heuristic to solve one problem instance with 64 clients and 512 TDM
slots is less than 2 minutes. However, we believe that the efficiency of the heuristic
is limited by the usage of the generative approach only and can be improved by
incorporating a constructive component to the approach as well.

Finally, throughout the experiments, the B&P approach outperforms the ILP
model on larger use-cases, improving the scalability by a factor of 8, or more
concretely from 16 to 128 clients. On the other hand, the ILP model shows better
results on some use-cases of modest size and, therefore, it is used in the heuristic to
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solve sub-problems of smaller sizes. Finally, we demonstrate the practical relevance
of our approach by applying it to a case study of an HD video and graphics
processing system.
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3
Chapter

Computation and
Communication Coscheduling

Whereas the previous chapter focused on the scheduling of a single independent
resource in consumer electronics domain, where the applications have soft real-
time requirements, in this chapter, we focus on coscheduling of multiple resources
and safety-critical applications with hard real-time requirements running on these
resources in the automotive domain. The functionality of such applications is
realized by a set of tightly coupled periodic tasks that communicate with each
other either over an on-chip or off-chip interconnect, such as buses, networks, or
crossbars. Additionally, these embedded applications are required to realize many
end-to-end control functions within predefined time bounds, while also executing
the constituent tasks in a specific order.

The considered problem is illustrated in Figure 3.1c, where tasks a1, a2, a3, a4

are mapped to Cores 1 to 3, where each core has its local memory and communicate
via a crossbar switch. This architecture is inspired by Infineon AURIX TriCore [1],
and it is also captured in a more general form in Figure 1.2c of Chapter 1. The
crossbar switch is assumed to be a point-to-point connection that links an output
port of each core with input ports of the remaining cores. Although there is no
contention on output ports since tasks on cores are statically scheduled, scheduling
of the incoming messages on the input ports must be done to prevent contention.
Moreover, there are two chains of dependencies, indicated by thicker (red) arrows,
i.e., a1 → a5 → a2 and a3 → a6 → a4. Note that although this example contains 6
resources to be scheduled, the only input port that must be scheduled in this case
is the one of Core 3, since there are no incoming messages to other cores.

Recent works on Time-Triggered (TT) scheduling mostly consider zero-jitter (ZJ)
scheduling [29, 45, 72, 104, 123] also called strictly periodic scheduling, where the
start time of an activity is at a fixed offset (instant) in every period. If there are two
consecutive periods in which the activity is scheduled at different times (relative
to the period), we call it Jitter-Constrained (JC) scheduling. On the one hand, ZJ
scheduling results in lower memory requirements, since the schedule takes less space
to store and typically needs less time to find an optimal solution. On the other hand,
it puts strict requirements on a schedule, causing many problem instances to be
infeasible, as we later show in Section 3.5. This may lead to increasing requirements
on the number of cores for the given application, thus making the system more
expensive. Even though some applications or even systems, are restricted to being
ZJ, e.g., some systems in the avionics domain [7], many systems in the automotive
domain allow JC scheduling [38,89]. Therefore, this chapter explores the trade-off
between JC and ZJ scheduling. Although not all activities have ZJ requirements,
some of them are typically sensitive to the delay between consecutive occurrences,
since it greatly influences the quality of control [13,33,68]. Assuming constrained
jitter instead of ZJ scheduling allows the resulting schedule to both satisfy strict
jitter requirements of the jitter-critical activities and to have more freedom to
schedule their non-jitter-critical counterpart.

45
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Figure 3.1: Coscheduling problem description with examples of zero-jitter and jitter-
constrained solution, where a5 is a message between a1 and a2 and a6 is a message between
a3 and a4.

The example JC schedule in Figure 3.1a considers the scheduling problem
illustrated in Figure 3.1c. It assumes that activities a1, a2 and a5 have a required
period of 9 time units, while a3, a4, and a6 must be scheduled with a period of 6.
The resulting JC schedule in Figure 3.1a has a hyper-period (length) of 18 time
units, which is the least common multiple of both periods. Hence, activities a1, a2

and a5 are scheduled 2 times and activities a3, a4, and a6 are scheduled 3 times
during one hyper-period, defining its number of jobs, i.e., activity occurrences. Note
that activities a2 and a5 are not scheduled with zero-jitter since a2 in the first
period is scheduled at time 7, while in the second period at time 5 (+9). Similarly,
a5 is scheduled at different times in the first and second periods (4 and 2 (+9),
respectively), thus with jitter equal to 2. In contrast, Figure 4.3 illustrates that using
ZJ scheduling results in collisions between a2 and a4 on Core 3, and between a5

and a6 in the crossbar switch. Moreover, an exact approach (see SMT formulation
in Section 4.4.1) can prove that the instance is infeasible with ZJ scheduling. Thus,
if an application can tolerate some jitter in the execution of activities a2 and a5

without unacceptable quality degradation of control, then the system cost could be
reduced, as shown in Figure 3.1a.

The three main contributions of this chapter are: 1) Two models, one Integer
Linear Programming (ILP) formulation and one Satisfiability Modulo Theory
(SMT) model with problem-specific improvements to reduce the complexity and
the computation time of the formulations. The two models are proposed due to
significantly different computation times on problem instances of low and high
complexity, respectively. The formulations optimally solve the problem for smaller
applications with up to 50 activities in a reasonable time. 2) A constructive
heuristic approach, called 3-LS, employing a three-step approach that scales to
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real-world use-cases with more than 10000 activities. 3) An experimental evaluation
of the proposed solution for different jitter requirements on synthetic data sets that
quantifies the computation time and resource utilization trade-off and shows that
relaxing jitter constraints enables an average increase in resource utilization of up
to 28% for the price of up to 10 times longer computation time. Moreover, the 3-LS
heuristic is demonstrated on a case study of an engine management system, which
it successfully solves in 43 minutes.

The rest of this chapter is organized as follows: the related work is discussed
in Section 3.1. Section 3.2 proceeds by presenting the system model and the
problem formulation. The description of the ILP and SMT formulations and their
computation time improvements follow in Section 3.3. Section 3.4 introduces the
proposed heuristic approach for scheduling periodic activities, and Section 3.5
proceeds by presenting the experimental evaluation before the chapter is concluded
in Section 3.6.

3.1 Related Work

Even though this chapter targets the TT approach, the survey of related work would
not be complete without mentioning works that consider the Event-Triggered (ET)
paradigm. A broad survey of works related to periodic (hard real-time) scheduling
is provided by Davis and Burns in [31]. Next, Baruah et al. [15] introduce the notion
of Pfair schedules, which relates to the concept of ZJ scheduling while scheduling
preemptively, i.e. where execution of an activity can be preempted by another
activity. Similarly to the ZJ approach that requires the time intervals equal to
execution times of activities to be scheduled equidistantly in consecutive periods
as a whole, Pfair requires equidistant allocation, while scheduling by intervals of
one time unit. On the non-preemptive scheduling front, Jeffay at al. [56] propose
an approach to schedule periodic activities on a single resource with precedence
constraints. The problem of coscheduling tasks and messages in an event-triggered
manner is considered in [54,59,112]. However, these works do not consider jitter
constraints, as done in our research [75].

The TT approach attracted the attention of many researchers over the past
twenty years for solving the problem of periodic scheduling. The pinwheel scheduling
problem [49] can be viewed as a relaxation of the JC scheduling concept, where
each activity is required to be scheduled at least once during each predefined
number of consecutive time units. If minimizing number of jobs, the solution of
the pinwheel problem approaches the ZJ scheduling solution, since it tends to have
an equidistant schedule for each activity. Moreover, the Periodic Maintenance
Scheduling Problem [11] is identical to ZJ scheduling, as it requires jobs to be
executed exactly a predefined number of time units apart.

Considering works that formulate the problem similarly, some authors deal with
scheduling only one core [39,79], while others focus only on interconnects [16,34].
These works neglect precedence constraints and schedule each core or interconnect
independently, unlike the coscheduling of cores and interconnects in this chapter.
The advantage of coscheduling lies in synchronization between tasks executing on
the cores and messages transmitted through an interconnect that results in high
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efficiency of the system in terms of resource utilization. Steiner [104] introduces
precedence dependencies between activities, while dealing with the problem of
scheduling a TTEthernet network. However, Steiner assumes that all activities
have identical processing times, which in our case will increase resource utilization
significantly.

Some works do not put any constraints on jitter requirements, which is not
realistic in the automotive domain, since there can be jitter-sensitive activities.
Puffitsch et al. in [89] assume a platform with imperfect time synchronization and
propose an exact constraint programming approach. Abdelzaher and Shin in [2]
solve a similar problem by applying both an optimal and a heuristic branch-and-
bound method. Furthermore, the authors in [86] consider the preemptive version
of our problem that makes it impossible to apply their solution to the problem
considered in this chapter, which assumes non-preemptive execution.

Jitter requirements are not considered in the problem formulations of [78] and [90],
where the authors propose heuristic algorithms to deal with the coscheduling
problem. Finally, in [33] the authors solve the considered problem with an objective
to minimize the jitter of the activities using simulated annealing, while we assume
a set of constraints rather than an objective. Note that these approaches with JC
activities are heuristics and the efficiency of the proposed methods have not been
compared to optimal solutions.

There also exist works that schedule both tasks and messages, while assuming
ZJ scheduling. Lukasiewycz and Chakraborty [71] solve the coscheduling problem
assuming the interconnect to be a FlexRay bus, which results in a different set of
constraints. Their approach involves decomposing the initial problem and solving
the smaller parts by an ILP approach to manage scalability. Besides, Lukasiewycz
et al. in [72] introduce preemption into the model formulation. Moreover, Craciunas
and Oliver [29] consider an Ethernet-based interconnect and solve the problem using
both SMT and ILP. However, ZJ scheduling is less schedulable and requires more
or faster resources, as shown in Section 3.5. In summary, this work is different in
that it is the first to consider the coscheduling problem of periodic applications with
jitter requirements and solves it by a heuristic approach, whose quality is evaluated
by comparing with the exact solution for smaller instances.

3.2 System Model

This section first introduces the platform and the application models used in this
chapter. Then, the mapping of activities to resources is described, concluded by
the problem statement.

3.2.1 Platform Model

The considered platform comprises a set of homogeneous cores on a single multi-core
Electronic Control Unit (Electronic Control Unit (ECU)) with a crossbar switch, as
shown in Figure 3.1c. This is similar to the TriCore architecture [1]. The crossbar
switch provides point-to-point connection between the cores, and input ports act as
communication endpoints and can receive only a single message at a time. Tasks on
different cores communicate via the crossbar switch that writes variables in local
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memories of the receiving cores. On the other hand, intra-core communication is
realized through reading and writing variables that are stored in the local memory of
each core. The set of m resources that include m

2 cores and m
2 crossbar switch input

ports is denoted by U = {u1, u2, · · · , um}. Moreover, the cores are characterized by
their clock frequency and available memory capacity.

Although this work focuses on multi-core systems with crossbar switches, the
current formulation is easily extensible to distributed architectures with multiple
single-core processing units, connected by a bus, e.g. CAN [22]. Furthermore, assum-
ing systems with fully switched networks, e.g. scheduling of time-triggered traffic in
TTEternet [103] leads to a similar scheduling problem as shown in Chapter 4.

3.2.2 Application Model

The application model is based on characteristics of realistic benchmarks of a specific
modern automotive software system, provided in [65]. We model the application as
a set of periodic tasks T that communicate with each other via a set of messages M ,
transmitted over the crossbar switch. Then A = T ∪M , denotes the set of activities,
which includes both the incoming messages on the input ports of the crossbar
switch and the tasks executed on the cores. Each activity ai is characterized by the
tuple {pi, ei, jiti} representing its period, execution time and jitter requirements,
respectively. Its execution may not be preempted by any other activity, since
non-preemptive scheduling is considered. The release date of each activity equals
the start of the corresponding period and the deadline is the end of the next period.
This deadline prolongation extends the solution space. The period of a message
is set to the period of the task that sends the message. Additionally, execution
time of messages on the input ports correspond to the time it takes to write the
data to the local memory of the receiving core. Thus, since the local memories
are defined by both their bandwidth and latency, execution time for each message
ai ∈ M is calculated as ei = szi

bnd + lat, where szi is the size of the corresponding
transmitted variable given by the application model, while bnd is the bandwidth of
the memory and lat is its latency given by the platform model. This is the same as
the conservative case of latency-rate server concept presented in Chapter 2, when
each request starts a new busy period. The benefit of this being modeled as an
Latency-Rate (LR) server is that it covers a variety of arbitration policies that
could be used for the local memories.

We estimate required memory to store the schedule by the total number of
jobs of all activities, assuming that 8 bytes is enough to store start time of a job.
Although there is an overhead to store the schedule, this estimation is reasonable
for our purposes, since we compare schedules with different number of jobs running
on the same platform. Thus, we estimate the amount of memory required to store
the schedule as in Equation (3.1), where the number of jobs in the schedule ntotal

is multiplied by 8.

mem = ntotal · 8 (3.1)

Cause-effect chains are an important part of the model. A cause-effect chain
comprises a set of activities that must be executed in a given order within predefined
time bounds to guarantee correct behavior of the system. As one activity can be
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a part of more than one cause-effect chain, the resulting dependency relations are
represented by a directed acyclic graph (Directed Acyclic Graph (DAG)) that can
be very complex in real-life applications [85], such as automotive engine control.
Similarly to [29] and [50], activities of one cause-effect chain are assumed to have
the same period. More generalized precedence relations with activities of distinct
periods being dependent on each other can be found in e.g. [36]. Thus, the resulting
graph of precedence relations consists of distinct DAG’s for activities with different
periods, although not necessarily only one DAG for each unique period. An example
of a precedence relation is shown in Figure 3.2, which includes the activities from
Figure 3.1. Note that many activities may not have any precedence constraints,
since they are not part of any cause-effect chain. For instance, it could be simple
logging and monitoring activities.

DAG 2
 

DAG 1
 
 

p=6p=9

DAG 3
 

p=18

Precedence Relations

Figure 3.2: An example of the resulting precedence
relations, where activities in DAG 1 have period 6,
activities in DAG 2 have period 9 and activities in
DAG 3 have period 18.

Lastly, each cause-effect
chain has an end-to-end dead-
line constraint, i.e. the maxi-
mum time that can lapse from
the start of the first activity till
the end of the execution of the
last activity in each chain equal
to two corresponding periods.
However, as the first activity in
each chain can be scheduled at
the beginning of the period at
the earliest and the last activity of the chain at the end of the next period at the
latest, the end-to-end latency constraint is automatically satisfied due to release
and deadline constraints of the activities. Therefore, end-to-end latency constraints
do not add further complexity to the model.

3.2.3 Mapping Tasks to Cores

The mapping map : A → U , map = {map1, · · · ,mapn} of tasks to cores and
messages to memories is assumed to be given by the system designer, which reflects
the current situation in the automotive domain, e.g. for engine control. Note that
for the previously discussed extension to fully switched network systems, both
mapping and routing (i.e. define path through the network for each message) that
respect some locality constraints are necessary. Since mapping influences routing
and therefore message scheduling, for such systems it is advantageous to solve the
three-steps at once, e.g., as done in [111].

To get a mapping for the problem instances used to validate the approaches
in this chapter, a simple ILP model for mapping tasks to cores is formulated the
following way. The variables zi,j ∈ {0, 1} indicate whether task i = 1, · · · , |T |
is mapped to resource j = 1, · · · , m2 (zi,j = 1) or not (zi,j = 0). Note that we
consider only cores as resources and tasks on cores as activities while mapping. The
mapping of messages follows implicitly form these. The mapping tries to balance
the load, which is formulated as a sum of absolute values of utilization differences
on two consecutive resources in Equation (3.2). Since the absolute operator is
not linear, it needs to be linearized by introducing the load variables oj ∈ R in
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Equations (3.3) and (3.4).

Minimize:
∑

j∈1,..,m2

oj (3.2)

subject to:

oj ≥
∑

i=1,··· ,|T |

ei
pi
· zi,j −

∑
i=1,··· ,|T |

ei
pi
· zi,j+1, j = 1, · · · , m

2
(3.3)

oj ≥
∑

i=1,··· ,|T |

ei
pi
· zi,j+1 −

∑
i=1,··· ,|T |

ei
pi
· zi,j , j = 1, · · · , m

2
. (3.4)

Moreover, each task must be mapped to a single resource, as stated in Equation (3.5).∑
j=1,··· ,m2

zi,j = 1, i = 1, · · · , |T |. (3.5)

Note that this simple mapping strategy is not considered a contribution of this
chapter, but only a necessary step to provide a starting point for the experiments,
since the benchmark generator does not provide the mapping.

3.2.4 Problem Formulation

Given the above model, the goal is to find a schedule with a hyper-period H =
lcm(p1, p2, · · · , pn) with lcm being the least common multiple function, where the
schedule is defined by start times sji ∈ N of each activity ai ∈ A for every job

j = 1, 2, · · · , njobsi , with njobsi = H
pi

. The schedule must satisfy the periodic nature
of the activities, the precedence relations and the jitter constraints. The considered
scheduling problem is multi-periodic non-preemptive scheduling of activities with
precedence and jitter constraints on dedicated resources.

The formal definition of a zero-jitter schedule is the following:

Definition 2 (Zero-jitter (ZJ) schedule). The schedule is a ZJ schedule if and
only if for each activity ai Equation (3.6) is valid, i.e. the difference between the
start times sji and sj+1

i in each pair of consecutive periods j and j + 1 over the
hyper-period equals the period length.

sj+1
i − sji = pi, j = 1, 2, · · · , njobsi − 1. (3.6)

Zero-jitter scheduling deals exclusively with ZJ schedules. If for some activity
and some periods j and j+ 1 Equation (3.6) does not hold in the resulting schedule,
we call it jitter-constrained (JC) schedule.

The scheduling problem, where a set of periodic activities are scheduled on
one resource is proven to be NP-hard in [24] by transforming from the 3-Partition
problem. Thus, the problems considered (both ZJ and JC) here are also NP-hard,
since they are generalizations of the aforementioned NP-hard problem.
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3.3 Exact Models

Due to significantly different timing behavior of the models on problem instances
with varying complexity (see Section 3.5), both SMT and ILP models are formulated
in this chapter. Moreover, the NP-hardness of the considered problem justifies
using these approaches, since no polynomial algorithm exists to optimally solve the
problem unless P=NP. This section first presents a minimal SMT formulation to
solve the problem optimally, then continues with a linearization of the SMT model
to get an ILP model. It concludes by providing improvements to both models that
exploit problem-specific knowledge, reducing the complexity of the formulation and
thus the computation time.

3.3.1 SMT Model

The SMT problem formulation is based on the set of variables sji ∈ {1, 2, · · · , H},
indicating a start time of job j of activity ai. Following the problem statement in
Section 3.2.4, we deal with a decision problem with no criterion to optimize. The
solution space is defined by five sets of constraints. The first set of constraints
is called release date and deadline constraints and it requires each activity to be
executed in a given time interval of two periods, as stated in Equation (3.7).

(j − 1) · pi ≤ sji ≤ (j + 1) · pi − ei, (3.7)

ai ∈ A, j = 1, · · · , njobsi .

The second set, Constraint (3.8), ensures that for each pair of activities ai and al
mapped to the same resource (mapi = mapl), it holds that either aji is executed
before akl or vice-versa. These constraints are called resource constraints. Note that
due to the extended deadline in Constraint (3.7), the resource constraints must be
added also for jobs in the first period with jobs of the last period, since they can
collide.

sji + ei ≤ skl ∨ skl + el ≤ sji ,

s1
i + ei +H ≤ sn

jobs
l

l ∨ sn
jobs
l

l + el ≤ s1
i +H,

ai, al ∈ A : mapi = mapl, j = 1, ..., njobsi , k = 1, ..., njobsl .

(3.8)

For the ZJ case, it is enough to formulate Constraints (3.8) for each pair of activities

only for jobs in the least common multiple of their periods, i.e. j = 1, · · · , lcm(pi,pj)
pi

and k = 1, · · · , lcm(pi,pj)
pl

. Moreover, the problem for ZJ scheduling is formulated

using n variables. One variable s1
i is defined for the first job of each activity and

other jobs are simply rewritten as sji = s1
i + pi · (j − 1).

The next set of constraints is introduced to prevent situations where two con-
secutive jobs of one activity collide. Thus, Constraint (3.9) introduces precedence
constraints between each pair of consecutive jobs of one activity, considering also
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the last and the first job.

sji + ei ≤ sj+1
i ,

s
njobs
i
i + ei ≤ s0

i +H,

ai ∈ A, j = 1, · · · , njobsi − 1.

(3.9)

Next, due to the existence of cause-effect chains, precedence constraints are
formulated in Equation (3.10), where Predi denotes the set of directly preceding
activities of ai.

sji + ei ≤ sjl , (3.10)

ai, al ∈ A : al ∈ Predi, j = 1, · · · , njobsi .

The jitter constraints can be formulated either in terms of relative jitter, where
we bound only the difference in start times of jobs in consecutive periods or in
terms of absolute jitter, bounding the start time difference of any two jobs of an
activity. Experiments have shown that defining jitter as absolute or relative does not
significantly influence the resulting efficiency. The difference in terms of maximal
achievable utilization is less than 1% on average with relative jitter showing higher
utilization. Therefore, further in the chapter we use the relative definition of jitter.
Note that the results for absolute jitter formulation do not differ significantly from
the results presented in this chapter. The formulation of relative jitter is given
in Equation (3.11), where the first constraint deals with jitter requirements of
jobs inside one hyper-period and the second one deals with jobs crossing a border
between two hyper-periods.

|sji − (sj−1
i + pi)| ≤ jiti,

|(s1
i +H)− (s

njobs
i
i + pi)| ≤ jiti,

j = 2, · · · , njobsi , ai ∈ A.

(3.11)

3.3.2 ILP Model

The formulation of the ILP model is very similar to the SMT model described above.
The main difference in formulation is caused by the requirement of linear constraints
for the ILP model. Thus, since Equations (3.7), (3.9) and (3.10) are already linear,
they can be directly used in the ILP model. However, resource Constraints (3.8)
are non-linear and to linearize them, we introduce new set of decision variables that
reflect the relative order of each two jobs of different activities:

xj,ki,l =

{
1, if aji starts before akl ;

0, otherwise.

Therefore, resource constraints are formulated by Equation (3.12), which ensures

that either aji is executed before akl (the first equation holds and xj,ki,l = 1) or

vice-versa (the second equation holds and xj,ki,l = 0). However, exactly one of
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these equations must always hold due to binary nature of xj,ki,l , which prevents the
situation where two activities execute simultaneously on the same resource. Note
that we use 2 ·H in the right part of the constraints, since the maximum difference
between two jobs of distinct activities can be maximally 2 ·H due to release date
and deadline constraints.

sji + ei ≤ skl + 2 ·H · (1− xj,ki,l ),

skl + el ≤ sji + 2 ·H · xj,ki,l ,

ai, al ∈ A : mapi = mapl, j = 1, ..., njobsi , k = 1, ..., njobsl .

(3.12)

Furthermore, to formulate the jitter constraints (3.11) in a linear form, the absolute
value operator needs to be eliminated. As a result, Equation (3.13) introduces four
sets of constraints, two for the jobs inside one hyper-period and two for the jobs on
the border.

sji − (sj−1
i + pi) ≤ jiti,

sji − (sj−1
i + pi) ≥ −jiti,

(s1
i +H)− (s

njobs
i
i + pi) ≤ jiti,

(s1
i +H)− (s

njobs
i
i + pi) ≥ −jiti,

j = 2, · · · , njobsi , ai ∈ A.

(3.13)

Unlike the time-indexed ILP formulation [62] used in Chapter 2, where each variable
ti,j indicates that the activity i is scheduled at time j (having H · n variables), the
approach used here can solve problems with large hyper-periods when there are

fewer jobs with longer execution time. Hence, it utilizes only njobs +
njobs·(njobs−1)

2

with njobs =
∑n
i=1 n

jobs
i variables, which is a fraction of the variables that the

time-indexed formulation requires for this problem.

3.3.3 Computation Time Improvements

While the basic formulations of the SMT and ILP models were presented previously,
four computation time improvements for the models are introduced here to reduce
the complexity of the formulation and computation time of the solver. Note that
the improvements do not break the optimality of the solution.

The first improvement removes redundant resource constraints. Due to the
release date and deadline constraints (3.7), it is known that for two activities
ai, al start times of their jobs j and k, respectively, are in the following ranges:
sji ∈ [(j − 1) · pi, (j + 1) · pi − ei] and skl ∈ [(k − 1) · pl, (k + 1) · pl − el]. Therefore,
it is necessary to include resource constraints only if the intervals overlap. This
improvement results in more than 20% of the resource constraints being eliminated,
reducing the computation time significantly since the number of resource constraints
grows quadratically with the number of activities mapped to a given resource.

Instead of setting the release date and deadline constraint (3.7), the second
improvement provides this information directly to the solver. Thus, each constraint
is substituted by setting the lower bound of sji on (j − 1) · pi and the upper bound
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on (j+ 1) · pi− ei. Hence, instead of assuming the variables sji in interval [1, · · · , H]
and pruning the solution space by the periodicity constraints, the solver starts with
tighter bounds for each variable. This significantly cuts down the search space,
thereby reducing computation time. Due to the different solver abilities for SMT
and ILP, this optimization is only applicable to the ILP model.

We can further refine the lower and upper bounds of the variables by exploiting
knowledge about precedence constraints, which is the third improvement. For each
activity, the length of the longest critical path of the preceding and succeeding
activities that must be executed before and after the given activity, tb and ta

respectively, are computed. First, the values of tbi and tai are obtained by adding
up the execution times of the activities in the longest chain of successors and
predecessors of the activity ai, respectively, as proposed by [27]. For the example
in Figure 3.2, assuming the execution times of all activities are equal to 1, tb1 = 0,

ta1 = 2, tb6 = 1, ta6 = 1, tb2 = 2, ta2 = 0. Additionally, the bounds can be improved by
computing the sum of execution times of all the predecessors, mapped to the same
resource, i.e.

tbi = max(
∑

l: l∈Predi, mapl=mapi

el, t
b
i ), (3.14)

tai = max(
∑

l: l∈Succi, mapl=mapi

el, t
a
i ). (3.15)

For the example in Figure 3.2 and a single core, the resulting values are the
following: tb1 = 0, ta1 = 2, tb6 = 1, ta6 = 2, tb2 = 4, ta2 = 0. Hence, the lower bound of
sji can be refined by adding tbi and the upper bound can be tightened by subtracting

tai , i.e. sji ∈ [(j − 1) · pi + tbi , (j + 1) · pi − ei − tai ]. This can also be used in the first
improvement, eliminating even more resource constraints.

The fourth and final improvement removes jitter constraints (3.13) for activities
with no freedom to be scheduled with larger jitter than required. For instance, for
jobs of a2 from Figure 3.2 with e2 = 1, tb2 = 4, ta2 = 0 and p2 = 9, there are only 14
instants t, where it can be scheduled, i.e. t ∈ {4, · · · , 17}. If jit2 ≥ 13, the jitter
constraint can be omitted since the activity can be scheduled only at 14 instants
due to the third improvement and it is not possible to have jitter bigger than 13
time units and still respect the periodicity of the activity. We denote by Ii the
worst-case slack of the activity, i.e. the lower bound on the number of time instants
where activity ai can be scheduled and we compute it according to Equation (3.16).
Hence, the jitter constraints are only kept in the model if Inequality (3.17) holds,
i.e. the activity has space to be scheduled with larger jitter than required. We
refer to an activity satisfying Equation (3.17) jitter-critical. Otherwise, it is a
non-jitter-critical activity.

Ii = 2 · pi − (tb + ta + ei) + 1, (3.16)

jiti ≤ Ii − 2, ai ∈ A. (3.17)

Experimental results have shown that even on smaller problem instances with 40-55
activities, the proposed improvements reduce computation time by up to 30 times
for the ILP model and 12 times for the SMT model. Moreover, the first and the
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third improvements result in the most significant reduction of the computation time.
However, when experimentally comparing these two improvements, we see that the
behavior is rather dependent on the problem instance characteristics, as both the
first and the third improvements can be the most effective on different problem
instances.

3.4 Heuristic Algorithm

Although the proposed optimal models solve the problem exactly, this section
introduces a heuristic approach to solve the problem in reasonable time for larger
instances, possibly sacrificing the optimality of the solution within acceptable limits.

3.4.1 Overview

The proposed heuristic algorithm, called 3-Level Scheduling (3-Level Scheduling
(3-LS)) heuristic, creates the schedule constructively. It assigns the start time
to every job of an activity. Moreover, it implements 3 levels of scheduling, as
shown in Figure 3.3. The first level inserts activity after activity into the schedule,
while removing some of the previously scheduled activities, au, if the currently
scheduled activity as cannot be scheduled. However, in case the activity au to be
removed had problems being scheduled in previous iterations, the algorithm goes to
the second level, where two activities that were problematic to schedule, as and
au are scheduled simultaneously. By scheduling these two activities together, we
try to avoid problems with a sensitive activity further in the scheduling process.
Simultaneous scheduling of two activities means that two sets of start times sc and
su are decided for activities as and au concurrently. The third scheduling level is
initiated when even coscheduling two activities as and au simultaneously does not
work. Then, the third level starts by removing all activities except the ones that
were already scheduled by this level previously and their predecessors. Next, it
co-schedules the two problematic activities again. Note that although there may be
more than two problematic activities, the heuristic always considers maximally two
at once.

Having three levels of scheduling provides a good balance between solution
quality and computation time, since the effort to schedule problematic activities is
reasonable to not prolong the computation time of the approach and to get good
quality solutions. Experimental results show that 94% of the time is spent in the
first scheduling level, where the fastest scheduling takes place. However, in case
the first level does not work, the heuristic algorithm continues with the more time
demanding second scheduling level and according to the experimental results it
spends 3% of time in this level. The final 3% of the total computation time is
spent in the third scheduling level that prolongs the computation time the most
since it unschedules nearly all the activities scheduled before. Thus, three levels of
scheduling is a key feature to make the heuristic algorithm cost efficient and yet
still able to find a solution most of the time. As seen experimentally in Section 3.5,
it suffices to find a good solutions for large instances within minutes.

Note that the advantage of scheduling all jobs of one activity at a time compare
to scheduling by individual jobs lies in the significantly reduced number of entities
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Figure 3.3: Outline of 3-Level Scheduling heuristic.
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we need to schedule. Hence, unlike the exact model that focus on scheduling jobs for
all of the activities at a time, the 3-LS heuristic approach decomposes the problem
to smaller sub-problems for one activity. This implies that the 3-LS heuristic is
not optimal and is also a reason why it takes significantly less time to solve the
problem.

3.4.2 Sub-model

The schedule for a single activity or two activities at the same time, respecting
the previously scheduled activities, is found by a so called sub-model, conceptually
similar to the sub-model used in branch-and-price approach in Section 2.5. The sub-
model for one activity ai that is non-jitter-critical (i.e. ai for which Inequality (3.17)
does not hold) is formulated as follows. The minimization criterion is the sum
of the start times of all ai jobs (Equation (3.18)). The reasons for scheduling
activities as soon as possible are twofold. Firstly, it is done for dependent activities
to extend the time interval in which the successors of the activity can be scheduled,
thereby increasing the chances for this DAG component to be scheduled. Secondly,
scheduling at the earliest instant helps to reduce the fragmentation of the schedule,
i.e. how much free space in the schedule is left between any two consecutively
scheduled jobs, resulting in better schedulability in case the periods are almost
harmonic, i.e. being multiples of each other, which is common in the automotive
domain [65].

Minimize:
∑

j∈1..njobs
i

sji . (3.18)

Note that the activity index i is always fixed in the sub-model since it only schedules
a single activity at a time.

The start time of each job j can take values from the set Dj
i (Equation (3.20)),

which is the union of intervals, i.e.

Dj
i = {[li,j1 , rj1] ∪ [li,j2 , ri,j2 ] ∪ · · · ∪ [li,jw , ri,jw ]},

ri,jo < li,jo+1, l
i,j
o ≤ ri,jo , j = 1, · · · , njobsi , o = 1, · · · , w − 1.

(3.19)

and {li,j1 , ri,j1 , · · · , li,jw , ri,jw } ∈ Z2·w, where w is the number of intervals in Dj
i and

li,jo , ri,jo are the start and end of the corresponding interval o. This set of candidate
start times is obtained by applying periodicity constraints (3.7) and precedence
constraints (3.10) to already scheduled activities and changing the resulting intervals
so that the activity can be executed fully with respect to its execution time. Note
that since we insert only activities whose predecessors are already scheduled, all
constraints are satisfied if the start time of the job sji belongs to Dj

i .
For the example in Figure 3.2 with all the execution times equal to 1, with a

single core, and with no activities scheduled, D1
2 = {[0 ·p2 + tb2; 2 ·p2− ta2−e2−1]} =

{[0 + 4; 18 − 0 − 1 − 1]} = {[4; 16]}, which is basically the application of the
third improvement from Section 3.3. Now, suppose in the previous iterations
a1

8 is scheduled at time 4 and a1
10 is scheduled at time 6. Then, the resulting

D1
2 = {[5; 5] ∪ [7, 16]}, since a1

2 must be scheduled after a1
8 and it cannot collide

with any other activity on the core.

sji ∈ D
j
i , j = 1, 2, · · · , njobsi . (3.20)
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Furthermore, similarly to the ILP model in Section 3.3, the precedence constraints
for consecutive jobs of the same activity must also be added.

sji + ei ≤ sj+1
i ,

s
njobs
i
i + ei ≤ s0

i +H,

j = 1, 2, · · · , njobsi − 1.

(3.21)

The pseudocode of the sub-model is presented in Algorithm 3.1. As an input it takes
the first activity to schedule a1, and the optional second activity to schedule a2

together with their requirements, and the set of intervals D. If a2 is set to an empty
object, the sub-model must schedule only activity a1. In case a1 is non-jitter-critical,
this scheduling problem can be trivially solved by assigning sji = li,j1 and checking
that it does not collide with the job in the previous period. If it does, we schedule
this job at the finish time of the previous job if possible, otherwise at the end of the
resource interval it belongs to. If the start time is more than the refined deadline of
this job from Section 3.3.3, the activity cannot be scheduled.

This rule will always result in a solution, if one exists, while minimizing (3.18).
Moreover, if for some job sji , the interval Dj

i is empty, then there is no feasible
assignment of this activity to time with the current set of already scheduled activities.

Algorithm 3.1 Sub-model used by 3-LS heuristic

1: Input: a1, a2, D
2: if a2 = NULL then
3: if a1 is non-jitter-critical then
4: S = minx∈Di

x : Constraint (3.21) holds
5: else
6: S = ILP (a1, D)
7: end if
8: else
9: S = ILP (a1, a2, D)

10: end if
11: Output: S

On the other hand, when a1 is jitter-critical, the sub-model is enriched by the set
of jitter constraints (3.13) and the strategy to solve it has to be more sophisticated.
The sub-model in this case is solved as an ILP model, which has significantly shorter
computation times on easier problem instances in comparison to SMT, as shown
experimentally in Section 3.5. This is important for larger problem instances where
sub-model is launched thousands of times, since the heuristic decomposes a large
problem to many small problems by scheduling jobs activity by activity. Although
this problem seems to be NP-hard in the general case because of the non-convex
search space, the computation time of the sub-model is still reasonable due to the
relatively small number of jobs of one activity (up to 1000) and the absence of
resource constraints.

We formulate Constraint (3.20) as an ILP in the following way. First, we set
lj1 ≤ sji ≤ rjw defined earlier in this section, and for each ri,jt and li,jt+1 two new
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Constraints (3.22) and a variable yi,j,t ∈ {0, 1} is introduced, which handles the “∨”

relation of the two constraints similarly to the variable xj,ki,l from the ILP model in
Section 3.3.

sji + (1− yi,j,t) ·H ≥ li,jt+1,

sji ≤ r
i,j
t + yi,j,t ·H.

(3.22)

Finally, when the sub-model is used to schedule two activities at once, i.e. a2 is
not an empty object, Criterion (3.18) is changed to contain both activities, and the
resource constraints (3.12) for a1 and a2 are added. The resulting problem is also
solved as an ILP model, but similarly to the previous case takes rather short time to
compute due to small size of the problem. Note that the 3-LS heuristic also utilizes
the proposed computation time improvements for the ILP model from Section 3.3
and always first checks non-emptiness of Dj for each job j before creating and
running the ILP model.

3.4.3 Algorithm

The proposed 3-LS heuristic is presented in Algorithm 3.2. The inputs are the set
of activities A, the priority rule Pr that states the order in which the activities
are to be scheduled and the rule to choose the activity to unschedule Un if some
activity is not schedulable with the current set of previously scheduled activities.
The algorithm begins by initializing the interval set D for each aji as Dj

i = {[(j −
1) · pi + tbi ; j · pi− tai − ei− 1]} (Line 3). Then it sorts the activities according to the
priority rule Pr (Line 4), described in detail Section 3.4.4. The rule always states
that higher priority must be assigned to a predecessor over a successor, so that no
activity is scheduled before its predecessors. Note that the first part of the first
level of scheduling is similar to the list scheduling approach [121].

In each iteration, the activity with the highest priority as in the priority queue
of activities to be scheduled Q, is chosen and scheduled by the sub-model (Line 7).
If a feasible solution S is found, the interval set D is updated so that all precedence
and resource constraints are satisfied. Firstly, for each al that is mapped to the
same resource with as, i.e. if mapl = maps, the intervals in which as is scheduled
are taken out of Dl. Secondly, for each successor al of activity as the intervals
are changed as Dj

l = Dj
l \ {[0, Sj + ec − 1]}, since a successor can never start

before a predecessor is completed. Next, the feasible solution is added to the set of
already scheduled activities, represented by their schedules Sch, and Q is updated
to contain previously unscheduled activities, if there is any. If the current activity
as is not schedulable, at least one activity has to be unscheduled. The activity to
be unscheduled au is found according to the rule Un and this activity with all its
successors Succu are taken out of Sch (Line 14). Next, the set of intervals D is
updated in the inverse manner compared to the previously described new activity
insertion. To prevent cyclic scheduling and unscheduling of the same set of activities,
a set R of activities that were problematic to schedule is maintained. Therefore, the
activity to schedule as has to be added to R (Line 16) if it is not there yet.

If the activity to be unscheduled is not problematic, i.e. au 6∈ R, the algorithm
schedules as without au in the next iteration. Otherwise, the second level of
scheduling takes place, as shown in Figure 3.3. In this case, the sub-model is called
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Algorithm 3.2 3-Level Scheduling Heuristic

1: Input: A
2: Sch = ∅, R = ∅, Scratch = ∅
3: D.initialize()
4: Q = sort(A, Pr)
5: while |Sch| < |A| do
6: as = Q.pop() // Schedule as alone

7: S = SubModel(as, NULL, D)
8: if SubModel found feasible solution then
9: Q.update() // Add unscheduled activit ies to Q

10: Sch.add(S) // First scheduling level

11: D.update()
12: else
13: au = getActivityToUnschedule(Sch, Un)
14: Sch = Sch \ {au ∪ Succu}
15: D.update()
16: R.add(as)
17: if R.contains(au) then // Schedule as and au simultaneously

18: S = SubModel(as, au, D)
19: if SubModel found feasible solution then
20: Sch.add(S) // Second level

21: else
22: Sch = Scratch ∪ Predas ∪ Predau
23: D.update()
24: S = SubModel(as, au, D)
25: if SubModel found feasible solution then
26: Sch.add(S) // Third level

27: D.update()
28: Scratch.add(as, au, Predas , Predau)
29: else
30: Output: FAIL
31: end if
32: end if
33: end if
34: end if
35: end while
36: Output: tj,curri
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to schedule as and au simultaneously (Line 20) and the set of two schedules S are
added to Sch.

Sometimes, even simultaneous scheduling of two problematic activities does
not help and a feasible solution does not exist with the given set of previously
scheduled activities Sch. If this is the case, we go to the third level of scheduling
and try to schedule these two activities almost from scratch, leaving in the set
of scheduled activities Sch only the set Scratch of activities that were previously
scheduled in level 3 and the predecessors of as and au (Line 29). The set Scratch
is introduced to avoid the situation where the same pair of activities is scheduled
almost from scratch more than once, which is essential to guarantee termination
of the algorithm. At the third scheduling level, the algorithm runs the sub-model
to schedule as and au with a smaller set of scheduled activities Sch. In case of
success, the obtained schedules S are added to Sch (Line 29) and as together with
au and their predecessors Predas and Predau are added to the set of activities
Scratch, scheduled almost from scratch. If the solution is not found at this stage,
the heuristics fails to solve the problem. Thus, the 3-LS heuristic proceeds iteration
by iteration until either all activities from A are scheduled or the heuristic algorithm
fails. Note that the same structure of the algorithm holds for both ZJ and JC cases.

3.4.4 Priority and Unscheduling Rules

There are two rules in the 3-LS heuristic: Pr to set the priority of insertion and Un to
select the activity to unschedule. The rule to set the priorities considers information
about activity periods P , activity execution times E, the critical lengths of the
predecessors execution before tb and after ta and the jitter requirements jit. However,
not only the jitter requirements of the activity need to be considered, but also the
jitter requirements of its successors. The reason is that if some non-jitter-critical
activity would precede an activity with a critical jitter requirement in the dependency
graph, the non-jitter-critical activity postpones the scheduling of the jitter-critical
activity, resulting in the jitter-critical activity not being schedulable. We call this
parameter inherited jitter of an activity, computed as jitinheri = minaj∈Predi jitj .
Using the inherited jitter for setting the priority is similar to the concept of priority
inheritance [99] in event-triggered scheduling.

Thus, the priority assignment scheme Pr sets the priority of each activity ai
to be a vector of two components (min(Ii, jit

inher),max(Ii, jit
inher)), where Ii is

the worst-case slack of the corresponding DAG, defined in Equation (3.16). The
priority is defined according to lexicographical order, i.e. by comparing the first
value in the vector and breaking the ties by the second. We compare first by the
most critical parameter, either jitter jitinheri or the worst-case slack Ii, since those
two parameters reflect how much freedom the activity has to be scheduled and the
activity with less freedom should be scheduled earlier. This priority assignment
strategy considers all of the aforementioned parameters, by definition outperforming
the strategies that compare based on only subsets of these parameters.

The rule Un to choose the activity to unschedule is a multi-level decision process.
The general rules are that only activities that are mapped to the resource where
activity as is mapped are considered and we do not unschedule the predecessors
of as. Moreover, the intuition behind the Un rule is that unscheduling activities
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with very critical jitter requirements or with already scheduled successors should be
done only if no other options exist. The exact threshold for being very jitter-critical
depends on the size of the problem, but based on experimental results we set the
threshold of a high jitter-criticality level to the minimum value among all periods.
Thus, whether or not an activity is very jitter-critical is decided by comparing its
jitter to the threshold value thresh = minai∈A pi.

The rule Un can hence be described by three-steps that are executed in the
given order:

1. If there are activities without already scheduled successors and with jiti ≥
thresh, choose the one with the highest Ii.

2. If all activities have successors already scheduled, but activities with jiti ≥
thresh exist, we choose the one according to the vector (number of successors
scheduled, Ii) comparing lexicographically.

3. Finally, if all activities have jit < thresh, the step chooses the activity to
unschedule according to the priority vector (jitinher, Ii) comparing lexico-
graphically.

Step 1 is based on the observation that activities with very critical jitter requirements
are typically hard to schedule, unlike those with no jitter requirements or less critical
ones. Besides, unscheduling many activities instead of one may cause prolongation
of the scheduling process and possibly more complications with further scheduling
of successors. Moreover, since only activities of cause-effect chains are a part of
precedence relations, there are many activities with no predecessors and successors
that can be unscheduled. This is typical for the automotive domain [65]. Step 2
allows unscheduling of activities with already scheduled predecessors, preferring to
keep in the schedule activities with critical jitter requirements. Step 3 states that
if all of the activities have very critical jitter requirements, the activity with the
highest value of inherited jitter should be unscheduled. In all three steps, ties are
broken by choosing the activity with higher worst-case slack I value by the same
intuition as in the Pr rule.

We have experimentally determined that comparing to the unscheduling rule
with only worst-case slack (Ii) considered, the gain of the presented unscheduling
rule is 5% higher utilization achieved on average.

3.5 Experiments

This section experimentally evaluates and compares the proposed optimal models
and 3-LS heuristic on synthetic problems with jitter requirements set differently
to show the advantages and disadvantages of JC scheduling. Furthermore, we
quantify the trade-off of additional cost in terms of memory to store the schedule
and increase in computation time versus this gained utilization. The experimental
setup is presented first, followed by experiments that evaluate the proposed exact
and heuristic approaches for different jitter and period requirements. We conclude
by demonstrating our approach on a case study of an Engine Management System
with more than 10 000 activities to be scheduled.
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Table 3.1: Generator parameters for the sets of problem instances

Set |T | P [ms] Variable accesses Chains
per task per task

1 20 1, 2, 5, 10 4 4

2 30 1, 2, 5, 10 4 6

3 50 1, 2, 5, 10, 20, 50, 100 4 8

4 100 1, 2, 5, 10, 20, 50, 100 4 15

5 500 1, 2, 5, 10, 20, 50, 100 8 50

3.5.1 Experimental Setup

Experiments are performed on problem instances that are generated by a tool
developed by Bosch [65]. There are five sets of 100 problem instances, each set
containing 20, 30, 50, 100 and 500 tasks, respectively. The same problem instance
is presented with different jitter requirements. The generation parameters for each
dataset are presented in Table 3.1, and the granularity of the timer is set to be
1 µs. Message communication times are computed for the considered platform with
the following parameters: bandwidth bnd = 400 MB/s and latency lat = 50 clock
cycles.

The mapping is determined as described in Section 3.2.3 such that the load is
balanced across the cores, i.e. the resulting mapping utilizes all cores approximately
equally. The resulting problem instances contain 30-45, 50-65, 90-130, 180-250 and
1500-2000 activities (tasks and messages) for sets with 20, 30, 50, 100 and 500 tasks,
respectively.

While we initially assume a system with 3 cores connected over a crossbar
(resulting in 6 resources), inspired by the Infineon Aurix Tricore Family TC27xT,
the approach can scale to a higher number of cores, as later shown in Section 3.5.2.

The metric for the experiments on the synthetic datasets is the maximum
utilization for which the problem instance is still schedulable. The utilization is
defined as rq =

∑
ai∈A:mapi=q

ei
pi

on each resource q = 1, · · · , 6. To achieve the
desired utilization on each resource, the execution times of activities are scaled
appropriately. The experiments always start from a utilization of 10%, increasing
in steps of 1%, solving until the approach is not able to find a feasible solution.
The last utilization value for which the solution was found is set as the maximum
utilization of the approach on the problem instance. This approach to set the
maximum schedulable utilization may not be completely fair, since a failure at
a particular utilization doses not guarantee that there are instances with higher
utilization that are schedulable. However, the utilization is monotonic in most cases,
and we run each experiment 100 times, looking at the distributions and it is fair
enough. Therefore, we have chosen to approximate the results by using this metric
to get results that are easier to interpret.

Experiments were executed on a local machine equipped with Intel Core
i7 (1.7 GHz) and 8 GB memory. The ILP model and ILP part of the 3-LS
heuristic were implemented in IBM ILOG CPLEX Optimization Studio 12.5.1 and
solved with the CPLEX solver using concert technology, while the SMT model
was implemented in Z3 4.5.0. The ILP, SMT and heuristic approaches were im-
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Table 3.2: Number of problem instances that optimal approaches failed to solve before the
time limit of 3 000 seconds

jiti
pi/2 pi/5 pi/10 0

Set 1 Set 2 Set1 Set 2 Set 1 Set 2 Set 1 Set 2

ILP 14 76 9 53 6 45 4 27

SMT 2 51 3 13 2 9 2 7

plemented in the JAVA programming language. The source code of the exact
approaches, the heuristic approach, and the problem instances are available at
https://github.com/CTU-IIG/CC_Scheduling_WithJitter

3.5.2 Results

First, the experiments compare the computation time of the optimal ILP and SMT
approaches to show for which problem instances it is advantageous to use each
approach. Secondly, we evaluate the trade-off between the maximum achievable
utilization and computation time of the 3-LS heuristic and the optimal approaches
for differently relaxed jitter requirements. Thirdly, since memory consumption to
store the final schedule is also a concern, the trade-off between solution quality and
required memory is evaluated for systems of different sizes. Finally, a comparison
of different period settings is presented to show the applicability of the approach
to different application domains and to evaluate the behavior of both ZJ and JC
approaches for different periods. A time limit of 3 000 seconds per problem instance
was set for the optimal approaches to obtain the results in reasonable time. Note
that the best solution found so far is used if the time limit is hit.

Comparison of the ILP and SMT models with different jitter require-
ments

First of all, we compare the computation time distribution for Set 1 and Set 2 (of
smaller instance sizes with 30-45 activities and 50-65 activities, respectively) for the
SMT and ILP approaches with jitter requirements of each activity ai ∈ A set to
jiti = pi

2 , jiti = pi
5 , jiti = pi

10 and jiti = 0. Since the first problem instance from
Set 3 was computing for two days before it was stopped with no optimal solution
found for both SMT and ILP models, the experiments with optimal approaches
only use the first two sets. We will return to the larger sets in Section 3.5.2 when
evaluating the 3-LS heuristic. The distribution is shown in the form of box plots
similarly to Chapter 2.

The number of problem instances from Set 1 and Set 2 that the optimal
approaches failed to solve within the given time limit is shown in Table 3.2. Moreover,
Figure 3.4 displays the computation time distribution on Set 1, where only problem
instances that both the ILP and SMT solvers were able to optimally solve all jitter
requirements within the timeout period are included. For Set 1, it is 82 (out of
100), and for Set 2, it is 21 (out of 100) problem instances. The computation time
distribution for Set 2 shows a similar trend, but since the sample is too small to be
representative, we do not display them.

https://github.com/CTU-IIG/CC_Scheduling_WithJitter
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Figure 3.4: Computation time distribution for the SMT and ILP models with different
jitter requirements for Set 1.

The results in Table 3.2 show that for more difficult problem instances the SMT
model is significantly better than the ILP model in terms of computation time,
since it is able to solve more problem instances within the given time limit. On the
other hand, the comparison on the problem instances that both approaches were
able to solve in Figure 3.4 indicates that the ILP runs faster on simpler problem
instances that can be found at the bottom of the boxplots. As one can see, more
relaxed jitter requirements result in longer computation time, which is a logical
consequence of having larger solution space.

Thus, the SMT model is more efficient than the ILP model for the considered
problem on more difficult problem instances, while the ILP model shows better
results for simpler instances, which justifies the usage of the ILP model in the
sub-model of the 3-LS heuristic. Besides, more relaxed jitter requirements cause
longer computation time for the optimal approaches. Therefore, the SMT approach
results are used for further comparison with the 3-LS heuristic.

Comparison of the optimal and heuristic solutions with different jitter
requirements

Figure 3.5 shows the distribution of the maximum utilization on Set 1 for the SMT
model and the 3-LS heuristic with different jitter requirements. For comparison, we
use the solution with the highest utilization, while the low value of initial utilization
guarantees that at least some solution is found. The time limit caused 3 problem
instances in Set 1 not to finish when using the SMT approach and these instances
are not included in the results. The results for Set 2 are similar to those of Set 1,
but due to the small number of solvable instances we do not show them. The
results for the optimal approach shows that stricter jitter requirements cause lower
maximum achievable utilization. Namely, the average maximum utilization is 89%,
75%, 69%, 61% for Set 1 and 95%, 81%, 74%, 67% for Set 2 for the instances with
jitter requirements equal to half, fifth, tenth of a period and zero, respectively.
Meanwhile, the comparison of the 3-LS heuristic to the optimal solution reveals
that the average difference goes from 17% and 23% for Set 1 and Set 2, respectively,
with the most relaxed jiti = pi

2 to 0.1% for both sets with ZJ scheduling. This
difference for problem instances with more relaxed jitter requirements is caused
by very large complexity of the problem solved. One more reason for a significant
difference in maximal utilization of the SMT model and the 3-LS heuristic is absence
of flexibility of the heuristic, resting in assigning precise start times. It is not able to
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Figure 3.5: Maximum utilization distribution for the optimal SMT and 3-LS heuristic
approaches with different jitter requirements for Set 1.

slightly move the already scheduled jobs of activities so that the currently scheduled
activity still have a chance to be scheduled. Thus, a possible improvement is a more
flexible solution representation that allows the existing schedule to adjust to the
new activities to be scheduled better, which is applied to the heuristic in Chapter 4.

However, while the heuristic solves all problem instances in hundreds of mil-
liseconds, the SMT model fails on 62 problem instances out of 200 within a time
limit of 3 000 seconds. This reduction of the computation time by the heuristic
is particularly important during design-space exploration, where many different
mappings or platform instances have to be considered. In that case, it is not possible
to spend too much time per solution. Hence, we conclude that the 3-LS heuristic
performs better with decreasing jitter requirements and hence particularly well for
ZJ scheduling, resulting in an average degradation of 7% for all instances. Moreover,
unlike the SMT model, the 3-LS heuristic always finds feasible solutions in hundreds
of milliseconds, hence providing a reasonable trade-off between computation time
and solution quality.

Comparison of the heuristic with ZJ and JC scheduling

While the previous experiment focused on comparing the optimal approach and the
heuristic, therefore using only smaller problem instances, this experiment evaluates
the 3-LS heuristic on all sets. Due to time restrictions, only two jitter requirements
were considered, jiti = pi

5 and jiti = 0. Figure 3.6 shows the distribution of
the maximum utilization for the 3-LS heuristic on Sets 1 to 5. In all sets, 100
problem instances were used for this graph. The results show that with growing
size of the problem instance, the maximum utilization generally increases. The
average difference in maximum utilization of the 3-LS heuristic on the problem
instances with JC and ZJ requirements is 15.3%, 9.7%, 8.6%, 4.2% and 7.5% for
Sets 1 to 5, respectively, with JC achieving higher utilization. The decreasing
difference with growing sizes of the problem is caused by the growing average
utilization. For instance, the average maximum utilization for Set 5 is 89.1% for the
problem instances with JC requirements and 82.6% for the problem instances with
ZJ requirements, pushing how far the maximum utilization for the JC scheduling
can go. This tendency of increasing maximum utilization for the ZJ scheduling can
be intuitively supported by the fact that more and more activities are harmonic
with each other, which results in easier scheduling. In reality, harmonization costs a
significant amount of over-utilization, especially when activities with smaller periods
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are concerned. On problem instances without harmonized activity periods, the JC
scheduling can show notably better results compared to ZJ scheduling, as previously
shown in Section 3.5.2.
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Figure 3.6: Maximum utilization distribution of the 3-LS heuristic for activities with
jitter-constrained and zero-jitter requirements on the problem instance sets of increasing
sizes.
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Figure 3.7: Computation time distribution for the 3-LS heuristic for activities with
jitter-constrained and zero-jitter requirements on the problem instance sets of increasing
sizes.

Figure 3.7 shows the computation time of ZJ and JC using the 3-LS heuristic.
Similarly to the optimal approach, the 3-LS heuristic takes longer to solve problem
instances with JC requirements due to a larger solution space. Specifically, the
average computation time for JC heuristic for Sets 1 to 5 are 0.3, 0.6, 3.6, 14.5 and
1 003.6 seconds, respectively, while for ZJ scheduling it is 0.15, 0.28, 1.6, 4 and 109
seconds. Thus, solving a problem instance with JC requirements with 1 500 - 2 000
activities takes less than 17 minutes on average, which is still reasonable. Hence,
the 3-LS heuristic with JC scheduling provides better results, but requires more time
than the 3-LS heuristic with ZJ scheduling. Notice the increase in the computation
time of the heuristic with increasing sizes, which can be caused by the usage of
ILP solver for some activities. Thus, it is possible that for the hypothetical Set 7,
the heuristic would run unreasonably long. This is supported by the results on the
Engine Management Case Study with more than 10 000 activities in Section 3.5.3.

To summarize this experiment, JC scheduling is promising in terms of maximum
utilization, as it schedules with up to 55% higher resource utilization. Besides, the
computation time of the proposed heuristic is affordable even for larger problem
instances, while the optimal models fail to finish in reasonable time already for much
smaller instances. Moreover, the proposed heuristic solves the problem instances with
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ZJ requirements near-optimally with a difference of 0.1% in schedulable utilization
on average. Generally, the JC heuristic provides more efficient solutions than the
ZJ heuristic, while requiring longer computation time.

Evaluation of maximum utilization and required memory trade-off with
different number of cores

The trade-off between maximum achievable utilization and the amount of memory
required to store the schedule is evaluated by this experiment. Figure 3.8 shows the
average maximum utilization achieved on systems with different number of cores
and with gradually increasing percentage of JC jobs on 50 problem instances from
Set 2 (due to time restrictions). In the experiment, the jitter constraint is set to
jiti = pi

5 and the instances are solved to optimality. Furthermore, the problem
instances with different number of cores are solved in steps with the percentage of
jobs of zero-jitter activities increasing by 5%. The percent of JC activities estimates
amount of memory necessary to store the schedule, since more JC activities mean
both a higher number of elements to store and a higher demand on memory as
mentioned in Section 3.2. Note that the execution times of the activities are scaled
so that each resource has the required utilization.
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Figure 3.8: Utilization distribution for different percents of jitter-constrained activities for
different architectures.

The results show that introducing more JC jobs and thus increasing memory
requirements for storing the final schedules can significantly improve the average
maximum utilization. For example, the architecture with 4 cores has a maximum
utilization of 61% when all jobs are ZJ. Relaxing the jitter requirements of half
the jobs results in 69% utilized resources, and relaxing all of the jobs increases the
maximum utilization to 76%. Concerning the required memory to store the schedule,
the problem instances with 4 cores on average contain 80 jobs with JC scheduling
and 49 jobs while scheduling in ZJ manner. Thus, according to Equation (3.1), the
memory overhead of relaxing jitter is 31·8 = 248 bytes, which is a reasonable price
to pay for utilization gain of 15% on average on each resource.

The results demonstrate that on average there is no significant dependency on
the number of cores we have in the system. Hence, JC scheduling can result in high



70 Experiments

utilization gain, although at the cost of increased memory requirements to store the
resulting schedule.

Comparison of the different period settings

To show that the approach is applicable to other domains, an experiment with
different period settings is performed. All problem instances from Set 2 are solved
monoperiodically (pi = 10 ms for each activity ai ∈ A), or with harmonic periods
(activities with pi = 2 ms are changed to pi = 5 ms), or with initial periods (i.e.
with periods 1, 2, 5, 10 ms), or with non-harmonic periods (with periods 2, 5, 7,
12 ms). Figure 3.9 displays the average maximum utilization achieved by the 3-LS
heuristic with ZJ and JC scheduling (jiti = pi

5 ) on 100 problem instances from
Set 2. Since the optimal approach was not able to solve 7 out of 10 first instances
with non-harmonic periods within the given time limit, due to its complexity and
extended hyper-period, the optimal approach results are not included in the figure.
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Figure 3.9: Utilization distribution for problem instances with different periods.

The results show that the maximum utilization for both ZJ and JC is achieved
when scheduling monoperiodically, which is explained by having less possible colli-
sions in the resulting schedule. An interesting observation is that for JC scheduling
all other period settings on average resulted in very similar maximum utilization,
while the ZJ approach shows the variation of 27% with non-harmonic periods, 62%
with initial periods and 65% with harmonic period set. The relative insensitivity of
JC scheduling to period variations can be caused by the significantly larger solution
space resulting from relaxation of the strict jitter constraints. This allows solutions
with high utilization to be found, even with the non-harmonic period setting. The
order of computation time distribution using different period settings is the same
as in Figure 3.9, i.e. monoperiodic is the fastest and non-harmonic the slowest.

From this experiment, we conclude that the proposed approach is applicable to
other domains, where the application periods have different degree of harmonicity.
Furthermore, increasing harmonicity of the period set results in higher maximum
utilization, lower computation time and lower gain of JC scheduling in comparison
with ZJ scheduling in terms of maximum utilization.

3.5.3 Engine Management System Case Study

We demonstrate the applicability of the proposed 3-LS heuristic on an Engine
Management System (EMS). This system is responsible for controlling the time
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and amount of air and fuel injected by the engine by considering the values read by
numerous sensors in the car (throttle position, mass air flow, temperature, crankshaft
position, etc). By design, it is one of the most sophisticated engine control units in
a car consisting of 1 000-2 000 tightly coupled tasks that interact over 20 000 to
30 000 variables, depending on the features in that particular variant. A detailed
characterization of such an application is presented by Bosch in [65], along with a
problem instance generator that creates input EMS models in conformance with
the characterization.

We consider such a generated EMS problem instance, comprising 2000 tasks
with periods 1, 2, 5, 10, 20, 50, 100, 200 and 1 000 ms and with 30 000 variables in
total, where each task accesses up to 12 variables. There are 60 cause-effect chains
in the problem instance with up to 11 tasks in each chain. We consider the target
platform to be similar to an Infineon AURIX Family TC27xT with a processor
frequency of 125 MHz and an on-chip crossbar switch with a 16 bit data bus running
at 200 MHz, thus having a bandwidth of 16-bit·200 MHz / 8 = 400 MB/s. The time
granularity is 1 µs, and the resulting hyper-period is 1 000 ms. However, setting the
hyper-period to be 100 ms results in a utilization loss of less than 0.5%, arising from
shortening the scheduling periods of tasks with periods 200 ms and 1 000 ms and
over-sampling, which is a reasonable sacrifice to decrease the memory requirements
of the schedule. The tool in [65] provides the number of instructions necessary to
execute each task, which is used to compute the worst-case execution time with the
assumption that each instruction takes 3 clock cycles on average (including memory
accesses that hit/miss in local caches).

The mapping of tasks to cores by the simple ILP formulation previously described
in Section 3.2 requires minimally 3 cores with a utilization of approximately 89.6%
on each core and approximately 30% on each input port of the crossbar. Moreover,
the resulting scheduling problem has 10 614 activities with 104721 jobs for the JC
assumptions in total. Neither SMT nor ILP can solve this problem in 24 hours,
but the JC heuristic with jiti = pi

5 for all ai solves the problem in 43 minutes. By
gradually introducing more activities ai with jiti = 0, we have found a maximum
value of 85% ZJ activities for which the 3-LS heuristic is still able to find a solution,
which takes approximately 12 hours. Note that the computation time has increased
by introducing more ZJ activities, due to the more restricted solution space. However,
to store the schedule in the memory for 0% ZJ jobs, 104 721·8 = 818 Kbytes of
memory is required according to Equation (3.1), while with 85% of ZJ jobs it is
only 19 394·8 = 152 Kbytes. Thus, for realistic applications the optimal approaches
take too long, while the 3-LS heuristic approach is able to solve the problem in
reasonable time. Moreover, increasing the percent of ZJ activities has shown to
provide a trade-off between computation time and required memory to store the
obtained schedule.

3.6 Summary

This chapter introduces a coscheduling approach to find a time-triggered schedule
for periodic tasks with hard real-time requirements executing on multiple cores and
communicate over an interconnect such as buses, networks, or crossbars. More-
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over, the tasks have precedence and jitter requirements due to the nature of such
applications in the automotive domain. We concentrate specifically on the jitter
requirements since existing works either forbid any jitter (zero-jitter (ZJ) approach)
or put no constraints on it. In contrast, we propose a jitter-constrained (JC)
approach that allows for more flexibility at the cost of higher memory required to
store the schedule.

To optimally solve the considered problem, we propose both an Integer Linear
Programming (ILP) model and a Satisfiability Modulo Theory (SMT) model that
exploit precedence constraints to reduce the computation time by constraining
variable domains. Furthermore, a three-step heuristic scheduling approach, called
3-LS heuristic, where the schedule is found constructively is presented. The 3-LS
heuristic decomposes the problem into smaller sub-problems and utilizes the for-
mulated optimal models to solve single sub-models. The heuristic works in three
levels, where the scheduling complexity and the time consumption grow for each
level, providing a right balance between solution quality and computation time.

We experimentally evaluate the efficiency of the proposed optimal and heuristic
approaches with JC requirements, comparing to the widely used ZJ approach and
quantify the gain in terms of maximum utilization of the resulting systems. The
results show that optimal JC scheduling achieves higher utilization with an average
difference of 28% compared to optimal ZJ scheduling. Moreover, the experimental
evaluations indicate that the SMT model can solve more problem instances optimally
within a given time limit than the ILP model, while the ILP model shows better
computation time on simpler problem instances. We also show that the 3-LS
heuristic solves the problem instances with ZJ requirements near-optimally, while
the results for the JC case indicate that there is room for improvement due to lack
of flexibility, which is later addressed in Chapter 4. However, the computation
time of the proposed heuristic is acceptable even for larger problem instances, while
the optimal models fail to finish in reasonable time already for smaller problem
instances. For example, the 3-LS heuristic solves a problem instance from the three
largest sets in slightly more than 3 minutes on average.

The approach is demonstrated on a case study of an Engine Management System,
where 2000 tasks are executed on cores, sending around 8000 messages over the
interconnect. Here, we show that for realistic applications, the proposed optimal
solutions cannot find a feasible solution in 24 hours, while the 3-LS heuristic can
find one solution in less than one hour. This provides a trade-off between required
memory to store the schedule and computation time depending on the percent of
activities with zero-jitter requirements.



4
Chapter

Coscheduling with Control
Performance Optimization

The previous chapter focused on the problem of coscheduling computation on
cores and on-chip communication over interconnect in safety-critical automotive
systems with real-time requirements. In this chapter, we introduce a criterion
that deals with the control performance of the applications to the coscheduling
problem. Thus, we formulate the problem from the application view and simplify
the work of the application engineer, who can focus on control issues and avoid
translating it to timing requirements. Furthermore, in this chapter, we assume
a more scalable platform architecture, being a distributed system with electronic
control units (ECUs) connected by an off-chip switched time-triggered Ethernet
network [18] as shown in Figure 1.2c of Chapter 1. To move with current trends, we
also consider the presence of both control and video traffic in the system to address
rapidly developing an advanced driver-assistance system (ADAS). In terms of the
solution approach, we try out three optimal approaches to solve the problem: Integer
Linear Programming (ILP), Satisfiability Modulo Theory (SMT), and Constraint
Programming (CP) to compare their computational efficiency on this problem.
Finally, we address the main drawback of the 3-Level Scheduling (3-LS) heuristic
from the previous chapter, being the absence of flexibility, by considering the
solution space of priority queues from which the solution is constructed rather than
working directly with activity start times. Fixing the order (priority queue) of the
activity start times in the solution instead of fixing a particular activity start times
leaves the heuristic more room to decide which changes to apply to the schedule.

At present, car manufacturers face the problem of integrating applications that
are typically received from different suppliers as (hardware) components. Sensors
and actuators that are parts of such applications may be spatially distributed, and
thus, these applications may require transmitting data over a network. A current
trend in the automotive domain is to move from having multiple specific buses, such
as CAN, FlexRay, and MOST, that have limited bandwidth to a common switched
network, such as deterministic Ethernet. The goal is threefold: 1) to allow for the
incorporation of applications with high bandwidth requirements, 2) to reduce the
communication complexity, and 3) to increase the durability of the product [66].
Therefore, the platform model considered in this chapter consists of multiple ECUs
connected by a time-triggered Ethernet as in Figure 4.1.

The control performance of the resulting system may significantly depend on
how the applications are integrated into a car. Moreover, the control performance
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Figure 4.1: Assumed platform model.
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of some applications is more sensitive to the changes in their timing behavior than
others. Hence, it is essential to consider this aspect during the integration stage.
The main factors that influence the control performance of an application are its
jitter and end-to-end latency. The control performance degrades when sensing or
actuation is done at different times within a period [25]. Therefore, it is important
to avoid such degradation by scheduling it with zero jitter. Moreover, whereas for
some applications the control performance degrades less with increasing end-to-end
latency, others experience larger degradation. Thus, this issue should be considered
when solving the scheduling problem. In this chapter, we address the problem of
finding a periodic schedule that optimizes the high-level control performance, while
satisfying hard real-time constraints, such as deadlines, jitter, data dependencies,
and end-to-end latency constraints. This problem is challenging, as it belongs to
the class of NP-hard problems [24].

Although the problem of control-scheduling codesign is a widely studied area [120],
control algorithms are often provided by control engineers as runnables that cannot
be modified during system scheduling. To the best of our knowledge, this is the
first work that addresses Time-Triggered (TT) scheduling of applications with
given sampling periods to optimize the control performance considering different
sensitivities of applications to their end-to-end latency.

The main contributions of this chapter are the following: 1) ILP, CP and
SMT models that solve the problem optimally and exploit particular properties
of the problem to reduce the computation time. The three models are proposed
to compare the efficiency of the approaches. 2) A heuristic approach that first
constructively creates a schedule and then improves it via a local neighborhood
search, thus ensuring the coarsest possible scheduling granularity at each stage
of the algorithm to address the problem complexity. This approach provides a
reasonable trade-off between computation time and solution quality compared to
the optimal approaches. 3) An experimental evaluation of the proposed solution on
datasets generated by a tool developed by Bosch [65] that examines the scalability of
the proposed approaches and quantifies the computation time, control performance,
and resource utilization of the heuristic and optimal approaches. The evaluation
shows that the CP approach using solver-specific features significantly outperforms
the ILP and SMT approaches. Furthermore, the heuristic approach has on average
17 times lower computation time, resulting in solutions on average 0.8% worse than
the CP approach, while sacrificing on average 14% of utilization. Also, the proposed
approaches are demonstrated on an automotive case study, for which the heuristic
finds a solution in less than 4 minutes with objective value degradation of 1.6%
from the solution, found by the best of the optimal approaches in 24 hours.

The rest of this chapter is organized as follows: the related work is discussed
in Section 4.1. Section 4.2 proceeds by presenting the platform, application and
control models, followed by Section 4.3, in which the problem formulation is
given. A description of the optimal formulations and their computation time
improvements follows in Section 4.4. Section 4.5 introduces the proposed heuristic
approach for scheduling periodic activities, and Section 4.6 proceeds by presenting
the experimental evaluation, before the chapter is concluded in Section 4.7.
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4.1 Related Work

Works in TT domain focus on a wide variety of aspects, such as timing properties
of the schedules [47,83,87,124], application to specific platforms [89] and control
performance of the applications [29, 123]. The authors in [87] and [124] address
timing properties for the problem of finding a schedule with the maximum possible
extension of activity processing times. Whereas the former work allows for limited
preemption on ECUs, i.e., tasks can be executed in multiple separated parts, the
latter assumes nonpreemptive scheduling, similar to this chapter. Puffitsch et al.,
in [89], on the other hand, concentrate on platform-specific features, introducing
additional constraints to address nonperfect time synchronization.

While solving the problem of TT coscheduling of communication and computa-
tion in the automotive domain, jitter and end-to-end latency of the applications are
often constrained to guarantee sufficient control performance. In the previos chapter,
we consider jitter-constrained activities and show that strict jitter requirements
may result in the significant underutilization of system resources. zero-jitter (ZJ)
scheduling and bounded end-to-end latency are also considered in, e.g., [73] and [96].
To enlarge the solution space, the authors in [73] allow for limited preemption on
ECUs and apply an ILP-based approach to solve the problem. In [96], on the other
hand, no preemption is allowed, and a CP-based approach is used. However, unlike
the end-to-end latency minimization performed in this chapter, constraining latency
lacks flexibility. In reality, tight constraints may result in unschedulable instances,
whereas loose ones may yield poor control performance. Meanwhile, minimization
is able to set it as good as it is possible.

Some works have addressed the schedule integration problem, in which mul-
tiple components, sharing resources are integrated into one system. In [93], the
authors solve the problem of integration of the applications with given schedules by
keeping the end-to-end latency of the applications untouched. In [17], the authors
integrate new applications, assuming the set of already configured applications on
the resources. During the integration of the new applications, the schedules of the
already-configured applications are fixed, whereas the end-to-end latency of the
new applications is bounded. Although both approaches result in limited control
performance degradation, this may cause low utilization of the resources. As a
consequence, this may require the introduction of new ECUs and network links that
increases cost of the resulting system.

Sometimes, it is possible to redesign controllers, which enables control-scheduling
codesign. Following this direction, Aminifar et al. in [9] address designing high-
quality embedded control systems, assuming Event-Triggered (ET) scheduling. The
authors consider setting periods and processing times to be a part of the optimization
problem. The period is also a changeable design parameter in [94], in which the
authors solve the problem of optimizing control performance while scheduling in
both a TT and a ET manner. The authors set application periods such that the
resulting weighted sum of application control performances is optimized. In addition,
Goswami et al. in [45] set the control performance to be a function of sampling
periods and end-to-end latency, while addressing a similar TT scheduling and
period-setting problem. However, since different control applications are designed
by different suppliers, in the considered problem it is not possible to redesign the
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controllers.
Finally, some works that address the same scheduling problem aim at minimizing

end-to-end latencies, assuming the controller design to be given, similarly to this
chapter. Whereas Craciunas and Oliver in [29] minimize the end-to-end latency of
communication on the switched network, Zhang et al. in [123] propose multiobjective
optimization with the goal to minimize the end-to-end latencies and response times of
applications. These works consider scheduling tasks and messages, while optimizing
application-level timing properties. However, in this work, we consider high-level
control performance as the optimization objective.

4.2 System Model

This section introduces the platform, application, and control models used in this
chapter.

4.2.1 Platform Model

Unlike the platform model in the previous chapter with multiple cores located
on one Electronic Control Unit (ECU), communicating via a crossbar switch, the
considered platform in this chapter includes multiple ECUs connected to each other
by a switched network based on a time-triggered automotive Ethernet with a tree
topology, similar to the one in Figure 4.1. This distributed architecture is commonly
used for automotive systems [66]. ECUs are grouped into multiple domains, where
ECUs in the same domain are interconnected by bidirectional links to a switch. We
consider switches that are connected in chains by bidirectional links. Thus, there
is only one path from any source to any destination ECU, and tasks on different
ECUs in the same domain communicate via a switch and via multiple switches
across the domains.

The set of resources comprises mECU ECUs and mLinks = 2 · mECU + 2 ·
(mDom − 1) links, where mDom is the number of domains. The total number of
resources is defined as m = mECU +mLinks.

4.2.2 Application Model

The system comprises components that are provided independently by different
suppliers. Without loss of generality, each component is always represented by one
application appw ∈ App, which must be executed periodically with a certain period
pw ∈ N. As in Chapter 3, the application model is based on the characteristics
of realistic benchmarks of modern automotive software systems, provided in [65].
We model the application as a set of periodic tasks T that communicate with each
other via a set of messages transmitted over the switched network. Each message
comprises a set of frames M to be sent over the switch links. Then, A = T ∪M ,
denotes the set of activities, which includes the tasks executed on the ECUs and
the frames transmitted over the network links.

Since an application is a sequence of sensing, computation, and actuation,
the activities in an application are data-dependent. Similarly to the previous
chapter, this dependency is represented as a general directed acyclic graph (DAG) of
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precedence relations. We show examples of such graphs for a set of two applications
in Figure 4.2. Note that although periods of these applications are harmonic, i.e.,
dividable by each other, in this chapter, we do not restrict ourselves to harmonic
periods only. Also, we assume general DAGs without restricting neither to chains
nor to out-trees.

Furthermore, we assume that the mapping mapi : T → {1, 2, · · · ,m} of tasks
is given by manufacturers, while the routing of messages and mapping of frames
is straightforwardly derived from the task mapping. Each activity ai ∈ A must
be executed periodically with period pi ∈ P that is the same for all activities
of an application, i.e., pi = pw for ai ∈ appw. Only activities belonging to the
same application can have precedence relations, since the applications are provided
separately, i.e., precedence relations apply only to activities within the same period
just like in the previous chapter.

We assume that time is discretized with sufficient precision and the processing
time (either execution or transmission time) ei ∈ N for each activity is provided.
Unlike the previous chapter, the applications are heterogeneous regarding the
volumes of data they transfer over the network, which is more realistic assumption
for modern automotive systems. For example, an engine management systems
transfers sensor values, and autonomous driving systems transfer video or lidar
data. Thus, traffic of both small and large size is always present in the system.

The control functionality is designed robustly, such that an application can
tolerate a certain maximum end-to-end latency, Lw, of the resulting schedule. The
end-to-end latency is the time from the beginning of the earliest activity until
the end of the latest activity. The maximum possible end-to-end latency is set as
L̂w = c · pw for an application appw, where c is a positive integer and a tunable
parameter, which is tuned by the application provider. Note that in the previous
chapter, this parameter is fixed to be 2, while here we generalize it to allow more
flexibility in the solution. However, increasing this tunable parameter results in
higher computation time.

Finally, the main differences of application model in this chapter are: heteroge-
neous traffic, generalized tunable parameter for the maximum end-to-end latency,
and a fixed jitter requirements, described later in this section together with their
benefits.

4.2.3 Control Model

In this chapter, we consider linear and time-invariant (LTI) systems. The mathe-
matical model of such a system can be written as

ẋ(t) = A · x(t) +B · u(t),

y(t) = C · x(t),

where x(t), u(t) and y(t) represent the system states, control input and system
output, respectively. A, B and C are constant system matrices.

Traditionally, an embedded controller is implemented according to a constant
sampling period p. Assuming the system states are sensed at time instants t1, · · · , tn
and are represented by states x1, · · · , xn, the sampling period of an application is
given by p = tk+1 − tk. Further, the task execution time and frame transmission
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Figure 4.2: An example set of applications.

98
 

s2=6 

Application period

 

s1=4 

1=7

t0                                       5                                     10                                     15

LinkECU1,SW1

LinkSW1,ECU2

ECU1

ECU2

ECU3

LinkSW1,ECU3 7

s4=9 

s3=7 

 

 

 

 

  

 

Figure 4.3: An example schedule for ECU1, ECU2, and ECU3, and links ECU1 →
SW1, SW1 → ECU2, and SW1 → ECU3 for applications from Figure 4.2 with periods
p1 = p2 = p3 = p4 = 5 and p5 = p6 = p7 = p8 = p9 = 15.

time contribute to end-to-end latency L (also called delay). Corresponding to the
end-to-end latency, new control inputs are applied at discrete time instants tk + L
and are represented by u[k], k = 1, · · · , n.

From the above assumptions, the equivalent sampled data model can be derived
as

x[k + 1] = φ · x[k] + Γ0 · u[k −
⌊
L

p

⌋
] + Γ1 · u[k −

⌈
L

p

⌉
],

y[k] = C · x[k],

(4.1)

where φ, Γ0 and Γ1 for τ = L−
⌊
L
p

⌋
are given by [10] as:

φ = eA·p,

Γ0 =

∫ p−τ

0

(eAtdt) ·B,

Γ1 =

∫ p

p−τ
(eAtdt) ·B.

It is assumed that the control input u[k] in Equation (4.1) is computed according
to the feedback control law given by

u[k] = K · x[k] + F · r, (4.2)

where r is the reference input and K and F are feedback and feedforward gains,
respectively. These gains are designed by control engineers satisfying certain control
performance requirements assuming ideal implementation conditions, such as zero
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delay. The performance metric here is the settling time, ξ, of the system, which is
defined as the time taken by the system to reach and stay within a threshold of the
reference input, as shown in Figure 4.5. In most cases, the settling time is expected
to increase with an increase in end-to-end latency.

Given the control law, continuous-time system matrices, sampling period and end-
to-end latency, the closed-loop system can be simulated according to Equations (4.1)
and (4.2), and the settling time can be calculated. Thus, it is possible to prepare a
look-up table for each control application that contains the values of settling time
ξwk for Nw discrete values of end-to-end latency Lw that define the piecewise linear
control function of the application, as in Figure 4.4. Such a look-up table can be
represented as LUT = {(δwk , ξwk )}, k = 1, · · · , Nw. Here, ξwk ≤ ξwk+1 for δwk < δwk+1.
This table is used in the objective function of the scheduling algorithm to minimize
performance degradation due to application end-to-end latency. Note that this
technique elevates scheduling to consider the real application performance.

4.3 Problem Formulation

This section first presents the general problem formulation, followed by an intro-
duction of the scheduling constraints, and concludes with the formulation of the
minimization criterion. Given the above model, the aim is to find a schedule of
length H = lcm(pi ∈ P ), called the hyperperiod (lcm is the least common multiple
function) for each considered resource, i.e. ECUs or network links. To preserve the
control behavior of the resulting system, tasks are scheduled on ECUs with zero
jitter. Definition 2 states precisely what is ZJ scheduling.
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On the other hand, since resources can be allocated more efficiently by relaxing
jitter constraints while scheduling meesages on the network links, we allow for
non-zero-jitter (NZJ) scheduling for the network links, which are typically the
scheduling bottleneck of the system. This strategy results in significantly higher
utilization of the resources as shown in experiment evaluations of the previous
chapter. Note that this decision does not influence control performance, since
control performance is sensitive to input and output jitter only [25]. Moreover,
unlike Jitter-Constrained (JC) scheduling assumed in the previous chapter, NZJ
scheduling does not put any constraints on the jitter of the activities. However,
jitters of the messages are implicitly constrained due to ZJ scheduling of the tasks,
precedence relations and end-to-end latency constraints.

Similarly to Chapter 3, the schedule is defined by start times si ∈ Z for the
first job (occurrence) of each task ai ∈ T and by sji ∈ Z for each job of each frame

ai ∈ M , j = 1, 2, · · · , njobsi with njobsi = H
pi

. However, for the conciseness of the

presentation, we define sji for all ai ∈ A with sji = si + (j − 1) · pi for ai ∈ T .

4.3.1 Scheduling Constraints

First, the constraints on activity start times are given in Equation (4.3). Note
that the constraint here is generalized compared to the previous chapter, since we
introduced a tunable parameter c.

(j − 1) · pi ≤ sji ≤ (j + c− 1) · pi − ei,

ai ∈ A, j = 1, 2, · · · , njobsi .
(4.3)

Second, the precedence relation constraints that ensure the satisfaction of the
data dependencies are set in Equation (4.4), where Predi denotes the set of directly
preceding activities.

sji − s
j
k ≥ ek, ai, ak ∈ A : ak ∈ Predi,

j = 1, 2, · · ·njobsi .
(4.4)

To prevent collisions of activities on resources, we formulate the resource con-
straints. Equation (4.5) presents these constraints for each pair of jobs of each two
activities on the same resource. Here, either job j of activity i is executed after job
l of activity k or vice versa.

sji − s
l
k ≥ ek ∨ slk − s

j
i ≥ ei,

ai, ak ∈ A : mapi = mapk,

j = 1, 2, · · · , njobsi , l = 1, 2, · · · , njobsk .

(4.5)

As in [87], we use the Bezout identity to formulate resource constraints for ZJ
tasks on ECUs. This formula reduces the number of resource constraints on one

ECU relative to Equation (4.5) from
njobs
ECU ·(n

jobs
ECU−1)

2 to 2 · |AECU |, with njobsECU and
|AECU | denoting the total number of jobs and activities on one ECU, respectively.
For two tasks to satisfy sji − slk ≥ ek from Equation (4.5), we are interested in all

differences sji − slk = (si + j · pi) − (sk + l · pk) for j ∈ Z, l ∈ Z. Bezout identity
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states that if pi and pk are integers with greatest common divisor gi,k = gcd(pk, pi),
then there exist integers j and l such that pi · j + pk · l = gi,k. More generally, the
integers of the form pi · j + pk · l are exactly the multiples of gi,k. Then, due to
the Bezout identity, the difference (si + j · pi) − (sk + l · pk) for j ∈ Z, l ∈ Z is
equivalent to si − sk + w · gi,k, w ∈ Z. The smallest positive representative of this
set over w is (si − sk) mod gi,k.

Thus, the resource constraints for tasks on ECUs are formulated in Equa-
tion (4.6), whereas Equation (4.5) is used for frames on the links.

(si − sk) mod gi,k ≥ ek,
(sk − si) mod gi,k ≥ ei,
ai, ak ∈ T : mapi = mapk.

(4.6)

The example in Figure 4.6 presents a schedule of two ZJ tasks a1 and a2 with
periods p1 = 6 and p2 = 9. We can see that the value (s1 − s2) mod g1,2 = (1− 6)
mod 3 = 1 indicates the minimum distance among all jobs when the jobs in the
schedule are in the order a2 → a1 in time, whereas (s2 − s1) mod g1,2 = (6 − 1)
mod 3 = 2 is the minimum distance when a1 → a2, which correspond to the left
and the right parts of the ∨ (OR) expression in Equation (4.5), respectively.

Next, we formulate and prove Theorem 1, which states the necessary and
sufficient schedulability condition of two ZJ tasks. Although it is presented here
to use the defined concepts, it is applied later in Section 4.5 to reduce problem
complexity and computation time of the heuristic. This technique allows us to
efficiently schedule ZJ task with a set of pre-scheduled activities on the same
resource, which is especially useful since we perform it often.

Theorem 1 (Schedulability of two ZJ tasks). Two ZJ tasks ai and ak can be
scheduled without collisions if and only if tasks ai′ and ak′ with execution times
ei′ = ei, ek′ = ek and periods pi′ = pk′ = gi,k can be scheduled without collisions.

Proof. If the initial tasks ai and ak are schedulable, Equations (4.6) hold for some
si and sk. We set si′ = si mod gi,k and sk′ = sk mod gi,k. Due to the additive
property of modular arithmetic, (si′−sk′) mod gi,k = (si mod gi,k−sk mod gi,k)
mod gi,k = (si − sk) mod gi,k. Thus, Equations (4.6) also hold for si′ and sk′ .

In the other direction, if Equations (4.6) hold for ai′ and ak′ for some si′ and
sk′ , we set si = si′ and sk = sk′ . Then, Equations (4.6) trivially hold for si and
sk.

Note that since tasks ai′ and ak′ have the same period, it is sufficient to check
the collision of the first job of the tasks only.

Finally, the constraints on end-to-end latency are formulated in Equations (4.7)
with Succi being the set of directly succeeding activities. The end-to-end latency is
the maximum time between start and end for any pair of root and leaf activities,
i.e., activities with no predecessors and successors, respectively. Since the roots and
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Figure 4.6: A schedule of two ZJ tasks a1 and a2 with periods p1 = 6 and p2 = 9 with the
minimum distance between two jobs equal 1 from a2 to a1 and 2 from a1 to a2. Dotted
lines are ZJ tasks a1′ and a2′ with p1′ = p2′ = g1,2 = 3 from Theorem 1.

leafs are always tasks, we omit job indices. Note that Lw is a variable completely
determined by the start times of activities.

si + ei − sk ≤ Lw,
ai, ak ∈ appw : Succi = ∅, P redk = ∅,

Lw ≤ L̂w = c · pw, w ∈ App
(4.7)

4.3.2 Control Degradation Minimization

We minimize the accumulated performance degradation over all applications in
Equation (4.8), where the control performance value Jw for each application is
defined by Equations (4.9) and (4.10). This is essentially a linearization of an
interpolation of the piecewise linear function defined by the look-up table LUT .

We define the binary variable λwk for each interval k = 1, · · · , Nw and each
application w ∈ App as

λwk =

{
1, if latency Lw is in interval [δwk , δ

w
k+1);

0, otherwise,

where λwNw
= 1 states that Lw = δwNw

, since the end-to-end latency cannot be
greater than δwNw

. As stated in Section 4.2, the end-to-end latency is bounded,

therefore it always holds that δwNw
= L̂w = c · pw.

Additionally, the rational variable γwk ∈ [0, 1) is the position of Lw in the interval
[δwk , δwk+1). Equation (4.11) guarantees that only one interval is chosen, whereas
Equation (4.12) allows γwk for to be nonzero only for the interval [δwk , δ

w
k+1), where

Lw lies. Note that if λwNw
= 1, the second summand of Equations (4.9) and (4.10)

is zero, and the values are set for the last pair of values in the look-up table LUT .

Minimize:
∑

w∈App
Jw = Φ (4.8)

Jw = ξwNw
· λwNw

+

Nw−1∑
k=1

(ξwk · λwk + γwk · (ξwk+1 − ξwk )), (4.9)

Lw = δwNw
· λwNw

+

Nw−1∑
k=1

(δwk · λwk + γwk · (δwk+1 − δwk )), (4.10)

Nw∑
k=1

λwk = 1, (4.11)
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γwk ≤ λwk ,
w ∈ App, k = 1, · · · , Nw.

(4.12)

For the example in Figure 4.4, where the hollow red dot indicates the actual end-to-
end latency value Lw, one can observe that γw2 = 0.5, since Lw lies in the middle of
the interval (δw2 , δ

w
3 ).

4.4 Optimal Approaches

Two exact approaches are formulated in this section, ILP and CP models. We present
two models to experimentally compare their efficiencies for the considered problem.
Furthermore, we also implemented an SMT model for this problem, straightforwardly
using the constraints as in the problem statement. To formulate the criterion, we
used if-then statements. However, the introduction of non-integer arithmetic by
piecewise linear functions resulted in a significant increase of computation time for
Z3 Microsoft solver. Since it runs tens or even hundreds of times longer, we do not
compare it further with ILP and CP models.

Following the problem statement, both approaches are based on decision variables
sji that indicate the start time of job j of activity ai. Note that there are two
strategies to formulate precedence relations allowing for a Directed Acyclic Graph
(DAG) of data dependencies to span over several periods, as Application 1 in
Figure 4.3. The first one is to bound start time variables as sji ≤ pi. Then, a new

variable σji per start time variable sji would be introduced to indicate in which
period the start time variable should be considered for precedence relations to hold.
For the example schedule in Figure 4.3, the values for this strategy are s1

1 = 4, and
it is executed in period 1, i.e., σ1

1 = 1, whereas s1
4 = 4 and σ1

4 = 2. Another strategy
is to allow for start time variables sji to go beyond its period. For the example in
Figure 4.3, the values are s1

1 = 4 and s1
4 = 9. The advantage of this strategy is less

variables and simpler constraints, whereas the disadvantage is that the new resource
constraints (4.3) for frames in the next c + 1 hyperperiods (a tunable parameter)
and the first frame in hyperperiod c + 2 should be added (assuming there is an
activity with period equal to the hyperperiod). The reason is that one frame ak can
be scheduled at time sk and another at time H + sk on the same network link. This
scheduling causes a collision, since the schedule repeats after H time units. Due to
a more general view of resource constraints (4.6) for tasks on ECUs, they guarantee
the absence of collisions without introducing constraints in further hyperperiods.

Furthermore, since a start time variable can take values from multiple periods,
consecutive jobs of the same frame can collide. To prevent this situation, we intro-
duce Constraint 4.13 to both exact models, which creates a precedence constraint
between each pair of consecutive jobs of one frame, considering the last and first
jobs also.

sji + ei ≤ sj+1
i ,

s
njobs
i
i + ei ≤ s0

i +H,

ai ∈ T, j = 1, · · · , njobsi − 1.

(4.13)
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Although the criterion given in Equation (4.8) can be straightforwardly imple-
mented in CPLEX [52]used to solve the ILP model, it also has a built-in function
for piecewise linear functions. However, the ILP approach runs faster with the
straightforward implementation, therefore we use it for the ILP model. On the
other hand, since the CP approach works with integer variables only, it is both
complicated and inefficient to implement the criterion straightforwardly. Therefore,
we use a built-in function for the CP model.

4.4.1 Integer Linear Programming Model

Due to modulo operation, the only non-linearity in the problem formulation in
Section 4.3 lies in the resource constraints for both tasks on the ECUs and frames on
the network links. As in the previous chapter, we formulate resource Constraint (4.5)
for frames with a set of decision variables that reflect the relative order of every
pair of jobs of different activities:

xj,li,k =

{
1, if aji starts before alk;

0, otherwise.

Resource Constraint (4.14) ensures that either aji is executed before alk (the first

equation holds and xj,li,k = 1) or vice versa (the second equation holds and xj,li,k = 0).

We set M = max(UBji + ei−LBlk, UBlk + ek −LBji ), where UBji and LBji are the

maximum and the minimum values that sji can take, respectively. This is derived
from Equation (4.14) using bounds on the start time variable.

sji + ei ≤ slk +M · (1− xj,li,k),

slk + ek ≤ sji +M · xj,li,k,

ai, ak ∈ A, j = 1, ..., njobsi , l = 1, ..., njobsk .

(4.14)

As the number of resource constraints for frames grows very quickly with the size of
the problem instance, we use lazy constraints. At the beginning, the solver generates
constraints for the jobs in the first hyperperiod only. Each time the solver finds
a new solution, it looks for collisions in the schedule and, if necessary, adds the
missing resource constraints.

Instead of non-linear Constraint (4.6) for tasks using the modulo operator, we
use its linear version derived in [87] from Equation (4.6). A new integer variable
called the quotient variable qi,k ∈ Z is introduced for each ordered pair of different
tasks (ai, ak) ∈ T 2. This variable is the quotient from the modulo operation, an
artificial variable completely determined by the start times as follows:

qi,k =
⌈si − sk

gi,k

⌉
(4.15)

Thus, Constraints (4.6) are linearized in Equations (4.16), which realize the definition
of modulo operator by restricting the value to be less than gi,k.

ei ≤ sk − si + qi,k · gi,k < gi,k,

ek ≤ si − sk + qk,i · gi,k < gi,k,
(4.16)



Coscheduling with Control Performance Optimization 85

We sum up the two Equations (4.16) and obtain ei+ek ≤ qi,k ·gi,k+qk,i ·gi,k < 2·gi,k.
The right inequality results in qi,k + qk,i < 2. Since the quotients are integer
variables and the tasks have nonzero execution times, qi,k + qk,i = 1, which leads
us to the substitution qi,k = 1 − qk,i. Moreover, we discard the strict inequality
in Equation (4.16), since it is guaranteed by the substitution. This technique also
reduces the number of variables and resource constraints by half.

For higher computational efficiency, we bound the quotient variables in the
following manner: LBi−UBk

gi,k
− 1 < qi,k ≤ UBi−LBk

gi,k
. These values are derived

straightforwardly from Equations (4.16).

4.4.2 Constraint Programming Model

Although it is possible to implement the model from Section 4.3 straightforwardly,
experiments have demonstrated that the usage of solver-specific constraints results
in a significantly lower computation time. Therefore, this section is tool-specific
to provide the guidelines for the implementation in the CP solver. All decision
variables sji and Lw are implemented in the CP solver as interval variables, which is
a special type of variable suited specifically for scheduling problems. Each activity
job aji is represented by a rectangle in a schedule, as in Figure 4.3, and has two

fields, aji .startOf denotes the start time and aji .length denotes the execution time.

Constraint (4.7), which sets the end-to-end latency of each application, is realized
with the span(Lw, Aw) function. It states that the value of the variable Lw must
be measured from the start of the variable with the lowest startOf in the set of
variables Aw to the end of the variable with the highest startOf in Aw. In our
case, Aw = {ai ∈ A : Predi = ∅ ∨ Succi = ∅}. Thus, we set the end-to-end latency
variable Lw to span all root-to-leaf pairs of variables for this application. Then, we
set Lw.length ≤ c · pw using .setLengthMax function to set bounds on the latency,
as in Equation (4.7).

Constraints on activity start times (4.3) are set with the sji .setStartMin((j−1)·pi)
and sji .setEndMax((j + c) · pi − 1) functions, taking as argument the value to
set. Then, precedence relation constraints (4.4) are formulated with function
endBeforeStart(sji , s

j
k), which states that job j of activity ai should end before job

j of activity ak may start.

Moreover, experimental evaluations have demonstrated that the most efficient
method to implement resource Constraints (4.5) and (4.6) in the CP optimizer is
to add a constraint noOverlap(Ar) for set of activities Ar ∈ A on resource r, i.e.
Ar = {ai ∈ A : mapi = r}. Additionally, to avoid collisions we create variables sji for
j = 1, · · · , (c+1) ·njobs+1. We link variables in the second, third, etc. hyperperiods
with the variables in the first hyperperiod using constraint startAtStart.

Finally, we set the parameter Workers to 1, indicating the number of workers
running in parallel to solve problem. It has experimentally shown significant
reduction of the computation time. From our experience, setting this parameter to
1 typically reduces computation time in the current version of CP optimizer (IBM
ILOG CPLEX Optimization Studio 12.8) independently of the problem and server
characteristics on which it is run.
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4.4.3 Computation Time Improvements

Since the periodic scheduling problem with precedence constraints is a generalization
of the job shop scheduling (JSS) problem [12], we adjust a disjunctive graph
representation [20] that has shown good results for JSS to reduce the number
of generated resource constraints for frames on network links (4.5). While the
optimizaition itself is presented later in this section, we first introduce the necessary
concepts for this improvement. A disjunctive graph comprises a node for each activity
job and an arc between pair of jobs either mapped to the same link or in precedence
relations. The arcs are of two types, conjunctive and disjunctive. A conjunctive
arc is a directed arc reflecting the order of jobs in time, whereas a disjunctive arc
is an undirected arc between two jobs on the same resource with undefined order.

3

3 3
3
3

3

3

Figure 4.7: Disjunctive graph
for applications from Figure 4.2.

The disjunctive graph for periodic applications from

Figure 4.2 is shown in Figure 4.7, where conjunc-
tive arcs are given by precedence relations, whereas
disjunctive arcs are defined by all pairs of activity
jobs on the same resource. Since the source of NP-
hardness of the problem is related to disjunctive arcs,
reducing the number of disjunctive arcs in the prob-
lem decreases the computation time. Observe that
disjunctive arcs have the same meaning as the xj,li,k
variables in the ILP problem, i.e., xj,li,k = 1 means
that the conjunctive arc is directed from ai to ak and
xj,li,k = 1, vice versa. Therefore, we create resource
constraints (4.14) only for activity jobs, which are connected by disjunctive arcs,
and for the conjunctive arcs we add precedence constraints (4.4), which are resource
constraints (4.14) with variable x set to the value according the conjunctive arc
direction.

To deduce disjunctive arc directions we first compute the length of the longest
critical path of the preceding and succeeding activities that must be executed before,
tb, and after, ta, the given activity, as in Equations (3.14) and (3.15) from Chapter 3,
respectively. Then, we set LBji = (j − 1) · p + tbi and UBji = (j + c − 1) · p − tai .
Moreover, to reduce the symmetry in the solution space, we set UBi = pi − 1 for
roots, since the schedule with si = pi is equivalent to the one with start time si = 0
due to the ZJ nature of the tasks.

Finally, we deduce disjunctive arc directions with Condition (4.17), which checks
whether the scheduling interval of aji always precedes the scheduling interval of alk.
We check this condition for each pair of jobs with a disjunctive arc.

LBlk + ek > UBji (4.17)

4.5 Heuristic Approach

This section introduces a conceptually easy-to-follow, yet efficient heuristic approach
that first constructs a feasible solution and then optimizes it using local neighborhood
search. Like in the previous chapter, the heuristic approach solves larger problem
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instances than the optimal approaches in a reasonable time, although sacrificing
the optimality of the solution within acceptable limits.

4.5.1 Overall Approach

The proposed heuristic approach comprises two stages, firstly looking for a feasible
solution and, secondly, improving it. The stages are called feasibility and optimiza-
tion stage, respectively. The feasibility stage is similar to 3-LS heuristic presented
in Section 3.4 in the sense that both are constructive and solve similar scheduling
problems. However, the feasibility stage of the heuristic proposed in this chapter
addresses an important drawback of the 3-LS heuristic from the previous chapter,
lacking flexibility.

The first possible reason for the inflexibility of the 3-LS heuristic is that it
works with fixed start times of activities, i.e., with schedules. Here, we provide
more flexibility by changing the activity orders, implemented as priority queues,
from which schedules are constructed. While the 3-LS heuristic unschedules some
activities if a feasible solution cannot be found, the heuristic presented in this
chapter makes this decision itself after the order is changed. Although this may
prolong the computation time, working with priority queues instead of start times
results in a higher success rate of finding a feasible solution.

The second reason for inflexibility of the 3-LS heuristic is that it considers a
single granularity level, i.e. scheduling and unscheduling by activities only. In
contrast, this heuristic adjusts the granularity of the elements in the priority queue.
Firstly, the activities of one applications are put together, then the activities of one
application can be separated in the queue if the heuristic failed to schedule some
activity. Finally, if only some jobs of a message cannot be scheduled, the message
is split into jobs in the queue. Note that tasks on the ECUs are always scheduled
as one entity, since a ZJ activity, according to Definition 2, derives the schedule for
all jobs from the first one straightforwardly.

This procedure ensures the coarsest possible level of scheduling granularity at
each stage of the algorithm, since we do not increase number of scheduling entities
when it is not necessary. This results in a reduced computation time of the heuristic.

The feasibility stage is shown in Figure 4.8. It constructs a schedule element-by-
element based on a current priority queue Q (Steps 2 and 3), being the internal
loop. If the schedule is obtained, the optimality stage starts. However, when some
element εi cannot be scheduled, it is split into jobs if it is a message and there are
jobs that were scheduled (Step 5). Then, the element εd preventing εi from being
scheduled, is found (Step 6), and problematic jobs of εi with its predecessors are
put before εd in Q (Step 7). We call Steps (2-8) the external loop of our algorithm.
The feasibility stage stops when either all jobs are scheduled or an infinite loop is
detected.

When the feasibility stage finds a solution, the optimization stage iteratively
applies a local neighborhood search [82] to improve the solution. In each iteration,
it solves the optimization problem described in Section 4.3 for a chosen set of
applications, a neighborhood, while fixing the schedule for the rest of the applications
to the best one found thus far. Therefore, it looks locally in the neighborhood
defined by the chosen set of applications. This local neighborhood search strategy
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Figure 4.8: Outline of the feasibility stage of the heuristic approach.
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Figure 4.9: Example of a delay graph for applications from Figure 4.2 scheduled as in
Figure 4.3. Solid lines indicate precedence relations, whereas dashed lines indicate resource
constraints. Delay elements on levels 1 to 5 are shown for a9.

reduces the computation time by squeezing the search space, considering only a
subset of the decision variables. The optimization stage reuses the CP and ILP
formulations from Section 4.4. We provide an experimental comparison of the
efficiency of these two approaches in the optimization stage in Section 4.6.

4.5.2 Feasibility Stage

First, we introduce the novel concept of a delay graph, which is used to find the
prescheduled element preventing the current element from being scheduled. Second,
we outline the sub-model that schedules an element, given a partial schedule of the
higher priority elements similarly to the previous chapter. Finally, we present the
feasibility stage in detail.

Delay Graph to Modify Priority Queue

We introduce the novel concept of a delay graph to find an element εd preventing
the current element εi from being scheduled. This concept also ensures termination
of the external loop. A delay graph Gd is a directed acyclic graph with frame jobs
and tasks as nodes. An edge is directed from one node to another if removing the
former node from Q can result in an earlier start time of the latter node.

To make the scheduling process more straightforward, we do not allow an element
to be considered by the scheduler before its predecessors in the priority queue Q.
Therefore, the earliest time that εi can be scheduled is the maximum of the finish
times of its predecessors, i.e., ŝi = maxεk∈Predi(sk + ek).

If no activity prevents εi from being scheduled directly after the latest predecessor,
i.e. at time ŝi, we add edge from its latest predecessor to εi in the delay graph.
Otherwise, we add an edge from the element preventing the considered element
from being scheduled at ŝi to εi. Thus, we can only have an edge from an element
on another resource if it is a predecessor. Otherwise, it is a resource constraint on
the resource to which the element is mapped. If an element cannot be scheduled
at ŝi due to resource constraints, one element causing the delay is always found,
namely, job εjd, such that sd ≤ ŝi ≤ sd + ed, i.e., scheduled at this time moment.

Figure 4.9 shows a delay graph for applications from Figure 4.2 scheduled as in
Figure 4.3. The nodes are ZJ tasks and NZJ frame jobs, as mentioned before. Here,
the priority queue is set as Q = {a1, a2, a3, a4, a5,a6, a7, a8, a9}. For all elements
except a5, a6, and a9, a corresponding parent is its predecessor. Observe that a5

could be scheduled at time 0, since it has no predecessors. However, it is scheduled
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Figure 4.10: Example of the interval set DECU1 used to increase the efficiency of the
heuristic for a given schedule on ECU1.

at time 1 due to a1 being scheduled at time 0. Therefore, we put an edge from a1

to a5. The same reasoning holds for pairs a3
2 and a1

6, and a8 and a9.

Sub-model to Schedule an Element

We find a start time for an element, respecting the previously scheduled set of
elements by a sub-model. It uses the time interval representation of the occupied
resource to find the earliest start time for the currently scheduled element, such that
precedence, end-to-end latency, ZJ, and resource constraints hold. The sub-model
respects the precedence and end-to-end constraints by setting the minimum and the
maximum possible values for the start time. Finally, it finds the earliest possible
start time for a given element going through the set of occupied intervals within
the given bounds, applying a trick to reduce the time required to detect collisions
using Theorem 1.

Algorithm 4.1 presents the sub-model. As input, it takes an element εi to be
scheduled; ŝi and ši, the earliest and the latest possible start times of this element
due to the predecessor and end-to-end latency constraints, respectively; the set
of predecessor elements Predi finishing at ŝi; and the set of resource occupation
intervals Dr, which is the union of time intervals in which prescheduled jobs are
running on resource r = mapi. DECU1

for the schedule of ECU1 from Figure 4.3 is
shown in Figure 4.10.

Similarly to the sub-model of the 3-LS heuristic, the set Dr is a union of time
intervals, for which resource r is occupied by already scheduled activities. For the
example in Figure 4.10, DECU1

= {[0, 2], [4, 6], [9, 11], [14, 15]}. It is introduced to
reduce computation time of the sub-model, since instead of going over all scheduled
elements and checking that no element is already scheduled at a given time, we can
iterate over intervals in Dr. Formally, Dr is a union of nonintersecting intervals,
sorted in ascending order, i.e., Dr = ∪nint

f=1 [lf , uf ] with lf , uf ∈ N due to discrete-time
and integer execution times and uf < lf+1.

To schedule ZJ task ai, we use Theorem 1, which states the necessary and
sufficient condition for the schedulability of two ZJ tasks. For each prescheduled
task ak on the ECU, we add execution time intervals of task ak′ with the same
execution time to Dr, but with a period equal to pk′ = gi,k (Line 9). Thus, while
scheduling a ZJ task, we only need to go over time intervals for the first task job
instead of looking at time intervals for all the jobs, resulting in significantly reduced
computation time, since we construct D for scheduling each ZJ task.

The sub-model always schedules an element as soon as possible. The motivation
is twofold: first, it typically produces schedules with smaller fragmentation in each
iteration. This is an especially sensitive issue here, since we have both short (control
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Algorithm 4.1 Sub-model to schedule an element

1: Inputs: εi, ŝi, ši, Predi, Dr

2: if εi ∈ T then // Treat ZJ tasks

3: for εk ∈ T : mapk = mapi do
4: s1

k′ = sk mod gi,k
5: j = 1
6: while sjk′ ≤ min{ši, H} do

7: sjk′ = s1
k′ + (j − 1) · gi,k

8: j = j + 1
9: Dr.add([sjk′ , s

j
k′ + ek])

10: end while
11: end for
12: end if
13: for f = 1 to nint do // Find the earl iest start time of the element

14: if min(lf , ši)−max(uf−1, ŝi) ≥ ei then
15: si = max(uf , ŝi)
16: if si = ŝi then
17: parenti = Predi
18: else
19: c = {z ∈ {1, · · · , nint} : uz ≤ si < lz+1}
20: end if
21: end if
22: end for
23: if εi is not scheduled then
24: c = {z ∈ {1, · · · , nint} : lz ≤ ŝi < uz}
25: end if
26: parenti = {εd ∈ A : sd + ed = uc}
27: Output: si

traffic) and long (video traffic) transmission times of frames on the network. Thus,
frames with long transmission times have higher risk of not being scheduled given a
schedule with high fragmentation, whereas frames with short transmission times can
heavily fragment the schedule. Although sometimes scheduling at the earliest time
can result in higher fragmentation of the schedule because of precedence constraints,
experiments have shown that this strategy shows a good success rate comparing to
other strategies. The second reason is that this strategy results in solutions with
lower end-to-end latency and, therefore, better objective value.

In the rest of this subsection, we describe the implementation details of the
sub-model. The main loop of the sub-model iterates over intervals in Dr until it
finds free space in the schedule after ŝi to put the element respecting its execution
time ei. Then, if there is a free time interval of length ei starting at ŝi, we set
the parents in the delay graph to elements in Predi (i.e., to the predecessor(s)
finishing at ŝi) (Line 17). Otherwise, the delaying element is the element scheduled
last in the occupied interval before si (Line 19). If the current element cannot be
scheduled, we choose the element finishing at the end of the interval to which ŝi
belongs (Line 24). In the example in Figure 4.10, we assume a new element a1

10
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to schedule on ECU1 with execution time e10 = 3, and without predecessors. The
sub-model first checks the interval [2, 4], which is not enough, and then it finds that
in interval [6, 9] we can schedule a1

10. The parent in the delay graph is set to a1
1

applying Line 26, i.e. looking at the last element scheduled in the interval [4, 6].

It may be necessary to go beyond one hyperperiod, since sji can be maximally
(j+c)·pi due to Equation (4.3). For this purpose, we look at Dr in the hyperperiods,
where the interval [ŝi, ši] lies. Due to periodicity of the schedule, we just add the
corresponding number of hyperperiods to the interval edges lf and uf .

Algorithm

The proposed heuristic approach is presented in Algorithm 4.2. The inputs are the
set of activities A, the rule to set the priority queue Prfeas, and the maximum
running time of the heuristic tfeasmax . After populating the priority queue Q (Line 2),
the algorithm iterates over the external loop, where it adjusts the priority queue
according to the feedback it gets from the internal loop. If some element εi failed
to be scheduled by the sub-model (Line 12), we first find the delaying element εd
(Line 13) on the current delay level ld. Delay level defines which delay element εd
for εi to set, depending on the distance (number of edges) in the delay graph.

We obtain an element εd on delay level ld from εi in the delay graph Gd by
a graph transformation in the following manner. We go from εi via edges in the
opposite direction, storing an element on the second end of the edge only if it is not
a predecessor of the node on the first end of the edge. Then, εd is the element on
the ld position in this sequence of stored elements. For the example in Figure 4.9,
the parent on the first level for the activity a9 is ε1d = a8 and on the second level it
is ε2d = a3

2.

When at least one of εi and εd is different from the previous iteration, the delay
level is reset to 1 (Line 18). In contrast, when the last prioritizing εi over εd in
the priority queue did not have the desirable effect, we increase the delay level by
one and set the new delaying element (Line 16). Finally, the current problematic
element and all of its predecessors are put immediately before εd in Q. This strategy
prevents us from becoming stuck with the same problematic element. Moreover,
applying this strategy, we aim not to disturb the prescheduled elements, interfering
more only if necessary.

The algorithm is terminated either when we have a complete solution or when we
detect an infinite loop over iterations of the external loop. Since both the internal
and external loops are deterministic, we identify an infinite loop when we encounter
the same priority queue Q for the second time. However, since we aim for problem
instances with more than 100000 jobs, we detect infinite loops in the sequence of
pairs (εi, εd) to reduce the computation time. We detect an infinite loop if the same
sequence of pairs (εi, εd) appears in Step 7 of Figure 4.8 twice. We additionally set
a time limit tfeasmax on the running time of the heuristic, since sometimes detection of
the infinite loop can be very time consuming, especially for larger instances. We set
tfeasmax = 300 seconds in our experiments in Section 4.6. The time limit is hit only for
2% of the largest problem instances, with no effect on problem instances of smaller
and medium sizes.

We exploit the advantage of a low running time of the feasibility stage of the
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Algorithm 4.2 Feasibility stage of the heuristic approach

1: Inputs: A,Prfeas, t
feas
max

2: Q = sort(A, Prfeas)
3: ld = 1
4: while Infinite loop not detected and running time less than tfeasmax do

// External loop. Changing Q :

5: ŝi = 0
6: Predi = ∅
7: Q′ = Q
8: while Q′ is not empty or εi is scheduled do

// Internal loop. Schedule construction:

9: εi = Q′.pop()
10: si = sub-model(εi, ŝi, Predi, Dmapi)
11: Dmapi .update(), ŝ.update(), Pred.update()
12: if εi is not scheduled then
13: εd = Gd.getParent(lr)
14: if (εi, εd) is the same as previously then
15: ld = ld + 1
16: εd = Gd.getParent(lr)
17: else
18: ld = 1
19: end if
20: Q.putBefore({εi, AllPredi}, εd)
21: end if
22: end while
23: end while
24: Output: S

heuristic and always run it with three strategies to set priorities Prfeas:

1. in increasing order of the slack values UBi − LBi;

2. in decreasing order of amounts of transmitted data, since it is hard to schedule
late large chunks non-preemptively. We break ties by the increasing order of
the slack values;

3. in decreasing order of possibility to improve the objective value (settling time),
i.e., ξwNw − ξw1 ,

choosing the solution with the best objective value. This strategy is beneficial, since
for instances with high utilization, we need to target the feasibility with strategies 1)
and 2). On the other hand, for less-utilized systems, it is beneficial to use strategy
3).

4.5.3 Optimization Stage

The optimization stage works iteratively by searching in the neighborhood of solution
Sbest with the best objective value Φbest found thus far. The neighborhood are
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solutions with different start times of activities in a subset of applications only.

Algorithm 4.3 presents the optimization stage of the heuristic, where the input
values are the schedule obtained by the feasibility stage S with objective value
ΦS , the number of applications considered in the neighborhood Napps, the number
of solutions in the neighborhood Nsol, the improvement tolerance τopt to stop
the search, the priority rule Propt to choose the neighborhood and the maximum
computation time toptmax for one run of the optimal model (either CP or ILP), which
is used to evaluate a neighbor.

Algorithm 4.3 Optimization stage of the heuristic approach

1: Inputs: S, Napps, Nsol, τopt, Propt, t
opt
max

2: Φbest = ΦS
3: Φcur = Φbest + 2 · τopt Sbest = S
4: while Φcur − Φbest > τopt do
5: Φcur.initialize()
6: for f = 1 to Nsol do
7: Sneigh = App.getApps(Napps, Nsol, Propt)
8: S = solve(Sbest, tmax)
9: Φcur.update(), Scur.update()

10: end for
11: Φbest.update(), Sbest.update()
12: end while
13: Output: Sbest

Start times of activities of applications that are not in the current neighborhood
are fixed to the corresponding values in Sbest, whereas start times of activities of
applications chosen to be in the neighborhood can be changed. For each iteration of
the inner loop, the neighborhood set Sneigh ∈ App (|Sneigh| = Napps) is generated
(Line 7). Then, the resulting problem is solved by the CP or ILP approaches from
Section 4.4. The computation time is limited by tmax to address the time complexity
of optimal approaches.

While looking at the neighbors of the current solution, the neighbor with the
best objective value is stored (Line 9). After evaluating all neighbors by CP or ILP,
Sbest is updated. Neighbors of the new solution are generated in the next iteration
if the improvement over the previous iteration was larger than τopt. Otherwise, the
search procedure is stopped and the best solution is returned.

We experimentally compared three priority rules Propt to set applications in
neighborhood:

1. random;

2. according to the application room for improvement, which is defined as the
difference of the current control performance value and the minimal possible
objective value of the application, i.e., Jw − ξw1 ;

3. choosing one application w with the highest value Jw − ξw1 and the other
applications with the highest number of shared resources with w.
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Table 4.1: Platform-generation parameters

Set P [ms] nT nexp mECU rmin
1 1, 2, 5, 10 20 15 2 0.45
2 1, 2, 5, 10 30 15 2 0.5
3 1, 2, 5, 10, 20, 50, 100 50 30 2 0.6
4 1, 2, 5, 10, 20, 50, 100 100 30 3 0.65
5 1, 2, 5, 10, 20, 50, 100 500 50 8 0.7

Unlike the first and third strategies, which result in a very long computation times
since it stagnates very slowly, the second strategy exhibits a reasonable trade-off
between computation time and solution quality. Thus, we use only Strategy 2 to
set application in neighborhood.

4.6 Experimental Results

This section experimentally evaluates and compares the proposed optimal models
and the heuristic approach on synthetic problems regarding both the feasibility and
optimality aspects. In addition, we quantify the trade-off between computation time
and quality of the solution of heuristic and optimal approaches, where the quality is
both maximal achievable utilization of the resources and control performance of the
applications. The experimental setup is presented first, followed by two experiments,
the first evaluating control performance and the second quantifying the utilization
gain. We conclude by demonstrating our approach on a realistic automotive case
study.

4.6.1 Experimental Setup

Experiments are performed on problem instances with the same application spec-
ification, as was used in the previous chapter, generated by a tool developed by
Bosch [65]. The applications are executed on a platform similar to the one in Fig-
ure 4.1, i.e., there are a number of switches (domains) to which ECUs are connected.
Moreover, we synthetically generate the control performance degradation values
based on the simulated values for realistic control applications. There are five sets
of 100 problem instances of different sizes. The generation parameters for each set
are presented in Table 4.1, and the granularity of the timer is set to be 1 µs.

Each generated set of problem instances comprises a given number of tasks nT ,
and we set the expected number of tasks executed on one ECU, nexp. We compute
the number of ECUs as mECU = d nT

nexp
e. The number of tasks executed on one

ECU is different among the sets to obtain a reasonable network utilization, not
too low for sets with less tasks and still schedulable for the largest set. Although
our approach can work with any number of domains mDom, there are 2 domains
only for the set with the largest instances (Set 5), since typically, 5-6 ECUs are
interconnected by one switch.

The mapping of tasks to ECUs is done in the following way. The probability
of interdomain communication is set to 0.2, i.e., 20% of communicating tasks are
situated on ECUs in different domains. Note that setting this parameter too high
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results in unschedulable instances with overloaded links between switches. The
mapping of tasks to ECUs is performed such that the load is balanced across the
cores, i.e., the resulting mapping utilizes all cores approximately equally. The
mapping of frames to the links, on the other hand, follows straightforwardly from
the platform topology and the task mapping as there is always exactly one route
between each pair of ECUs.

Each application represents a control function for which the plant model is
derived from the automotive domain. These plants represent DC motor speed
control [74, 97], DC motor position control [74], car suspension [97] and cruise
control systems [74, 84]. Given a sampling period (equal to the component task
and message repetition periods), we design a controller assuming a specific delay.
Now, for given maximum and minimum possible delay values and the granularity
of discretization, we compute a set of delay values. For each delay value δwk and the
given sampling period pw, we simulate the closed-loop system (i.e., the controller
and the plant) for step response, according to Equation (4.1) and (4.2), to analyze
the settling time ξwk . Thus, for each application, we compute a table showing the
variation in the settling time with the delay.

We assume the network to be a time-triggered Ethernet with a bandwidth of
100 Mbps [105]. The frame transmission times are computed as the amount of data
they transmit over the network divided by the network bandwidth. For messages
that transmit video content, we set a maximum desirable utilization of one video
message in its period to 0.1 to still be schedulable while reflecting typical message
sizes. This corresponds to one message transmitting maximally 10 Mbps, which
is a realistic assumption, since data that exceed this value are typically split into
multiple messages due to decreasing reliability of the transmission with increasing
message sizes.

For the optimality experiments, when the utilization of one of the resources is
greater than 100%, or the utilization of each resource is less than rmin presented
in Table 4.1, the problem instance is simply discarded and generated again. The
resulting problem instances on average contain 54, 82, 168, 421 and 6 276 activities
(tasks and frames) for Sets 1-5, respectively. We set the tunable latency coefficient
from Section 4.3 to c = 2, as it allows for some flexibility of the solution while
not jeopardizing its control performance [98]. The number of discrete values for
settling time ξ is Nw = 10 for all applications. Moreover, the parameters for
the optimization stage of the heuristic are set in the following manner: Napps =
(2, 2, 2, 2, 1), Nsol = (3, 3, 3, 3, 1), τopt = 10−2, toptmax = (10, 10, 10, 30, 300) seconds
given for Sets 1 to 5. These values have experimentally demonstrated reasonable
results in terms of computation time and criterion quality.

Experiments were executed on a local machine equipped with an Intel Core
i7 (1.7 GHz) processor and 8 GB memory. The ILP and CP models were implemented
in IBM ILOG CPLEX Optimization Studio 12.8 and solved with the CPLEX and CP
optimizer solvers using concert technology. The ILP, CP and heuristic approaches
were implemented in the JAVA programming language.
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4.6.2 Results

First, the experiments compare the computation time of the two optimal ILP and
CP approaches to show that the CP approach undoubtedly outperforms the ILP
approach with growing problem sizes. Second, the computation time and solution
quality trade-off in terms of control performance is evaluated for the heuristic
approach and the CP approach. Finally, we evaluate the maximum achievable
utilization of the heuristic and the optimal approach.

A time limit of 3 000 seconds per problem instance was set to obtain the results
in reasonable time, and the best solution found thus far is used if the time limit is
hit. Observe that the optimal approach can stop either due to the optimal solution
being found or because of the time limit. If it hits the time limit, the optimal
approach has either found a feasible solution or not. The heuristic finishes either
when it is not able to find a feasible solution during the feasibility stage or when it
has finished the optimality stage, in which case we have a solution. The heuristic
approach never hit the time limit with these experimental settings. Notice that the
evaluation results are dependent on the time limit value for the exact approaches,
since it affects both the computation time and quality of the obtained solution.

Similarly to the previous chapters, the distribution in graphs is shown in the
form of box plots [58], where the quartile, median and three quartiles together
with outliers (diamonds) are shown. Outliers are numbers that lie outside 1.5×the
interquartile range (three quartiles value minus quartile value) away from the top or
bottom of the box that are represented by the top and bottom whiskers, respectively.
Note that outliers were also successfully solved within the time limit.

Computation Time and Criterion Quality Trade-off Evaluation

Figure 4.11 shows the computation time comparison of the optimal ILP and CP
approaches and the heuristic approach with CP and ILP used during the optimization
stage on the problem instances from Sets 1 to 5. The computation time of the
optimal ILP approach on Sets 1 and 2 is on average 2.5 times longer than the
computation time of the optimal CP approach, whereas for most of the instances
already for Set 3, the optimal ILP model cannot find a feasible solution within
the time limit of 3 000 seconds, failing to find optimal solutions for all problem
instances. To justify that the ILP scalability issue is not a result of the solver used,
we also solved the ILP models by Gurobi Optimizer 8.0. It also failed to find feasible
solutions for most of the instances of Set 3 within the time limit. The reason is a
large number of resource constraints (4.14), which prevents the ILP approach from
scaling. In particular, there are as many constraints as there are pairs of frame
jobs that can collide as mentioned in Section 4.4.3. On the other hand, the usage
of a built-in function that generates one noOverlap constraint per one resource in
the CP approach results in a tremendous reduction of computation time thanks
to elaborate constraint propagation techniques of the CP optimizer solver. The
CP approach finds a solution even for the largest Set 5 (for 84 instances out of 100
todo: update
), with up to 8 397 activities within the given time limit, although failing to prove
an optimal solution for all 100 problem instances. Therefore, only the CP approach
is used for further comparison with the heuristic.
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Table 4.2: Number of problem instances where feasibility stage of the heuristic, optimal
ILP, and optimal CP approaches failed to find a feasible solution. For optimal approaches,
the number after slash is number of time outs within the time limit of 3 000 seconds

Approach Set 1 Set 2 Set 3 Set 4 Set 5
heuristic 4 1 20 20 13
optimal CP 0/0 0/11 1/71 0/69 16/100
optimal ILP 0/2 0/15 78/100 - -
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Figure 4.11: Computation time (on a logarithmic scale) of the optimal CP and ILP
approaches and the heuristic CP and ILP approaches for Sets 1-5.

The number of problem instances for which the feasibility stage of the heuristic
approach (that is the same for both heuristic ILP and heuristic CP), the optimal
CP, and the optimal ILP failed to find a feasible solution, as well as the number of
instances, for which the optimal approaches failed to prove optimality are reported
in Table 4.2. These numbers do not reflect a fair evaluation of the approaches
in terms of quality, since we could generate new instances with lower resource
utilization, making all instances solvable by the heuristic approach. We present
the fair evaluation of the maximum achievable utilization on resources by both
approaches in the following subsection. However, this experiments fairly evaluate
the approaches in terms of the computation time and the criterion value. The
optimal CP approach fails to find any solution for the largest Set 5 within the time
limit for 16 instances out of 100, which indicates that the approach starts having
scalability issues for this size of problem.

As can be observed from in Figure 4.11, the computation time for problem
instances that both the optimal CP and heuristic approaches were able to solve
increases exponentially with increasing problem size. This tendency is less visible
for the optimal CP approach due to the growing number of timeouts with increasing
problem size. The heuristic approach exhibits significantly lower computational
times on average: approximately 60, 33, 46, 11 and 6 times less for heuristic ILP
and 10, 28, 33, 9, 6 times less for heuristic CP for Sets 1 to 5, respectively. In
absolute values, heuristic CP requires on average 3, 13, 64, 279 and 501 seconds,
whereas the optimal CP approach requires 35, 379, 2 070, 2 474 and 3 000 seconds
for Sets 1 to 5, respectively. For the CP model, the difference decreases quickly
because of the time limit, being completely determined by the time limit for Set 5.
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Figure 4.12: Relative difference of objective values for heuristic CP and heuristic ILP with
optimal CP approaches on Sets 1-5 with the time limit of 3 000 seconds. Higher values
mean that the optimal CP is better.

For Set 5, usage of the ILP in the optimization stage (heuristic ILP) does not result
in any objective value improvement of the feasibility stage solution, since it always
times out with no solution found. Therefore, although on smaller instances heuristic
ILP results in shorter computation times, with increasing problem instance sizes it
becomes too slow.

Figure 4.12 shows the relative difference in the objective values of heuristic
ILP, heuristic CP and the optimal CP approaches for problem instances that all
approaches were able to solve within the time limit. The optimal CP approach is
used as the baseline for comparison due to its consistently better results over the
results shown by the ILP approach. The median values for Sets 1 to 5 are 0, 0.15,
1.42, 2.7 and 1.2% for heuristic ILP and 0, 0.2, 0.84, 2 and 0.97% for heuristic CP.
We can see that heuristic ILP degrades in solution quality with increasing problem
instances sizes. Additionally, the optimal CP starts performing poorly in terms of
the criterion for Set 5, as demonstrated by the prevalence of negative difference
values in Figure 4.12.

As mentioned earlier, the time limit value affects both computation time and
solution quality. Nevertheless, during the design exploration stage, it is typically
crucial to have the solution within a reasonable time while possibly sacrificing some
solution quality, and some time limit must be set. Moreover, for Set 5 with the
largest problem instances, running the CP approach and the heuristic approach
until the first feasible solution is found takes on average 1021 and 208 seconds,
respectively, and the heuristic approach is on average 7% better, which demonstrates
the clear advantage of heuristic CP over the optimal CP for larger problem instances.

Finally, we conclude that the CP approach scales significantly better than the
ILP approach both in the optimal and heuristic solutions. Additionally, the heuristic
runs many times faster than the optimal CP approach while obtaining solutions with
reasonable reduction of control performance. Finally, the criterion quality of the
heuristic approach degrades moderately with increasing problem size, whereas the
computation time remains reasonable.
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Figure 4.13: Maximally achievable utilization obtained by the optimal CP and heuristic
approaches for Sets 1-4.

Comparison of Maximum Utilization

We evaluate the ability of the heuristic approach to find a feasible solution compared
to the optimal approach with growing resource utilization of the problem instances
as follows. The metric is the maximum utilization for which the problem instance
is still schedulable. As in the previous chapter, the utilization of resource r is
defined as rr =

∑
ai∈A:mapi=r

ei
pi

. We scaled the execution times of activities on
the resources with maximum utilization to achieve the desired utilization on these
resources. Thus, unlike the previous chapter, here we achieve the desired utilization
only on a subset of resources with initially maximum utilization. There are much
more resources than in the previous chapter here, and inter-switches links are clearly
bottleneck resources. To both capture the reality and obtain reasonable results, it
makes sense to increase utilization of only bottleneck resources. The experiments
always start from a utilization of 10%, increasing by 1% in the next experiment,
solving until the approach is unable to find a feasible solution. The maximum
utilization value is the last one for which a feasible solution can be found. As argued
in the previous chapter, although this strategy may not be completely fair, due to
monotonic behavior of the feasibility in most cases it is indeed the highest value.
Moreover, the results are easier to interpret with this strategy.

Figure 4.13 shows the distribution of the maximum utilization values for the
optimal CP and heuristic approaches that were cut off after the time limit of
3000 seconds. The difference in the maximum utilization is on average 9, 13, 16,
17, and 0.05% for problem instances from Sets 1 to 5, respectively. Note that for
Sets 3, 4, and 5 there are instances on which the heuristic approach achieves higher
utilization, located under zero value of relative difference axis. Due to the time
limit, the heuristic CP approach yields maximum achievable utilization similar to
the optimal CP approach for the largest set of instances.

Thus, the heuristic approach exhibits a reasonable degradation of the maximum
achievable utilization with increasing problem sizes for smaller sets, whereas for the
largest set, it achieves the same utilization as the optimal CP approach.

4.6.3 Automotive Case Study

We proceed by demonstrating the practical applicability of our proposed heuristic
and optimal approaches on an automotive case study, which is based on an auto-
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Table 4.3: The use-case characteristics

Domain |App| |T | |M | mECU P [ms]
∑
ei [ms]

body 3 15 10 7 10-20 5.9 - 12.1
chassis 4 26 11 8 5-10 2.5 - 11.4
information 3 13 10 5 20 7.9 - 13.9
electric 4 17 9 7 5-20 0.8 - 8.4
safety 6 27 16 10 5-20 1.4 - 5.9
telematics 1 6 6 6 20 10.1

motive architecture similar to the one in Figure 4.1 with 31 ECUs connected by
a time-triggered Ethernet network with 4 switches. Thus, there are 68 network
links that connect 31 ECUs. The functionality of the case study is implemented
by 21 applications consisting of 104 tasks and 62 messages with 652 frames. The
application characteristics are presented in Table 4.3. The control settling values for
the applications are obtained by simulating control behavior of a given application
in MATLAB, i.e., the same manner as for the synthetic problem instances previously
presented in this section. Finally, the resulting utilization of the resources ranges
from 0 to 70% with zero value for not used network links.

We apply our approaches to find a schedule with a low control performance
degradation, such that zero-jitter, precedence, and end-to-end latency constraints
are satisfied. The objective values of the optimal and heuristic approaches as a
function of computation time are shown in Figure 4.14, in which both the objective
value and the computation time axes are cut for better visibility. The optimal CP
and ILP approaches failed to find the optimal solution within 24 hours. The optimal
CP approach found its best solution with the criterion 65.73 after 500 seconds,
whereas the optimal ILP approach found a solution with the same criterion after
8000 seconds. Thus, the results of the optimal approaches on the case study are
consistent with the trends of the main experiments. On the contrary, the heuristic
using ILP outperformed the CP heuristic on this case study unlike for the datasets
in Section 4.6.2. Therefore, the optimal CP approach yields the best results if there
is some time, whereas the heuristic using ILP was a good choice on this use-case
when time is bounded, such as during the design exploration phase.

Note that this case study corresponds to an automotive system of a relatively
low complexity, which is the reason why the optimal approaches exhibit good results
comparing to the heuristic approach. Nonetheless, the heuristic approach is required
to scale to future systems of larger complexity, as demonstrated in Section 4.6.2.

4.7 Summary

This chapter presents an approach to find a time-triggered schedule of periodic
applications with hard real-time requirements while minimizing their control per-
formance degradation. The control performance degradation of an application is
defined as its settling time, and it depends on its end-to-end latency. To preserve the
control performance of the applications, we also put jitter requirements on activities.
Particularly, we require tasks to be executed with zero jitter, whereas we do not
constraint the jitter of messages to allow more flexibility. Similarly to the previous
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Figure 4.14: Objective function values progressing with time for the heuristic and optimal
approaches applied to an automotive case study.

chapter, there are data dependencies among activities (tasks and message frames).
However, here we consider a distributed architecture with electronic control units
connected by a switched time-triggered Ethernet network, which results in a higher
complexity of the problem due to a higher number of message frames to schedule.

We solve the considered problem optimally using ILP, CP, and SMT models,
applying computation time improvements that reduce the number of variables
and constraints in the model. Moreover, we propose a heuristic to solve the
problem quickly and efficiently. The heuristic comprises two stages called feasibility
and optimality stages. The first stage works similarly to the 3-LS heuristic from
Chapter 3, which builds a schedule constructively with a given order of activities.
However, the heuristic here addresses a critical drawback of the 3-LS heuristic, being
the absence of flexibility. Unlike the 3-LS heuristic that makes changes directly
to activity start times, this heuristic applies changes to the activity order, from
which the schedule is generated. This leaves more space for the heuristic to decide
which changes should be made to improve the schedule. Moreover, the feasibility
stage works in three granularity levels of elements to be scheduled: applications,
activities, and jobs, starting from the application level and going to the next level
only if necessary. This allows us to address the least possible number of items
to reduce the computation time while obtaining high-quality solutions. We also
increase the time efficiency of the heuristic by using a schedulability condition
of two zero-jitter tasks, proven in this chapter, which results in a significantly
reduced search space. In the second stage, the heuristic approach searches for a
better solution by applying a local neighborhood search, iteratively decomposing
the problem to manage complexity.

We experimentally evaluate the scalability of the optimal and heuristic ap-
proaches and quantify the trade-off between computation time and solution quality
of the proposed approaches. The results show that although the ILP approach in
both the optimal and heuristic forms behaves slightly better on smaller instances,
it fails to scale to larger instances. Moreover, the heuristic approach requires on
average 6 times less computation time than its optimal counterpart, sacrificing
1% of the solution quality and 1% of the utilization for the dataset with 5 000 to
10 000 activities. Particularly, the heuristic approach solves a problem instance
from the three largest sets in less than 5 minutes on average. We also demonstrate
the practical relevance of our approach by applying it to an automotive case study
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with 21 applications running on a platform with 31 ECUs and 68 network links.
Here, we show that the heuristic approach can find a solution in less than 4 minutes
while sacrificing 1.6% of the best objective value found by the optimal approaches
in 24 hours.
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5
Chapter

Conclusions and Future Work

This section concludes by summarizing what was learned and how it can be applied,
before discussing how we fulfilled the stated goals. Finally, it presents possible
directions for future research.

5.1 Conclusions

The number of applications sharing platform components in embedded real-time
systems grows rapidly due to consumer demand for integrating multiple functionali-
ties into one device. Moreover, the number of platform components are minimized
to reduce the cost of the final system. This results in many applications sharing
platform resources, which can cause significant collisions, and timing requirements
may not be satisfied. Resources are sometimes scheduled in a time-triggered manner
to prevent this situation. Finding time-triggered schedules is a challenging problem
lying in a class of NP-hard problems, involving non-trivial timing requirements
and optimization criteria. To solve this problem, we propose a three-step approach
corresponding to three problems to capture different aspects of the underlying
integration problem. Optimal approaches to solve these problems have limited
scalability, failing to find a solution in reasonable time for larger and more difficult
problem instances. To cope with this issue, we propose heuristic approaches to solve
instances of modern and future sizes and complexities efficiently and in a reasonable
time.

However, on a higher level of abstraction, the main contribution of this thesis is a
methodology to work with optimization problems. The three steps of our approach
show the application of the methodology on three optimization problems: first, the
problems are formulated; then, the optimal models are formulated and improved
using problem-specific properties; next, the heuristic to solve the problem faster
but sub-optimally is proposed that reuses the existing optimal formulations; finally,
the heuristic is compared on smaller instances with optimal approaches, and its
behavior is evaluated on larger problem instances.

We continue this section by discussing the contributions of this thesis in details.
First, we discuss the design and implementation of scalable and efficient heuristic
algorithms, followed by characteristics and comparisons of the optimal approaches
used in this thesis. Then, the experimental evaluation of the proposed optimal
and heuristic approaches is presented, before we discuss demonstration of practical
applicability of the proposed approaches on realistic case studies.

5.1.1 Scalable and Efficient Heuristic Algorithms

We propose three efficient heuristics to solve industrial-sized instances of the consid-
ered problems in a reasonable time in Sections 2.7, 3.4, and 4.5. The first heuristic
for the problem of TDM arbiter scheduling in Section 2.7 is a generative one. It
constructs the whole solution at once, allowing a time slot to be allocated by
multiple clients. As this can result in collisions, it assigns a cost for allocating each

105



106 Conclusions

time slot for each client and runs the schedule generation, respecting the costs in
the next iteration. The cost assigning procedure involves memory state, which
reflects how many times a given slot has already been allocated to the considered
client and other clients in the previous iterations. The cost is set low if this slot
was allocated only to this client before, higher if it was empty and even higher if
it was allocated to other clients in previous iterations. This strategy is aimed to
change the current client schedule only if it collides with some other client, avoiding
unnecessary changes. However, as shown in Section 2.8, this heuristic has room for
improvement, especially for problem instances where it is challenging to find any
feasible solution.

Therefore, in the second step of our approach, we propose heuristic called 3-Level
Scheduling (3-LS) heuristic for safety-critical systems scheduling problem. It works
in three levels, the first being constructive creation of a schedule by setting activity
start times. The heuristic backtracks if some activity cannot be scheduled, first
trying to remove one of the prescheduled activities. However, if the activity to be
removed already had problems being scheduled, the 3-LS heuristic schedules the
two activities, the problematic one and the one to be unscheduled, at the same time,
which is the second level. Finally, if this does not result in a conflictless solution, in
the third level it removes almost all activities and schedules the two activities from
scratch. The three levels provide a good trade-off between solution quality and
computation time, since the effort for scheduling problematic activities is reasonable
to not unnecessary prolong the computation time and to get the solution of a good
quality.

However, the main drawback of 3-LS heuristic is lack of flexibility, caused by
looking at the solution space of fixed schedules. To address it, in the third step of
our approach we propose a heuristic that works in the solution space of activity
orders, from which the schedules are constructed. Since working with orders is
more flexible than working with activity start times, a smart interchange of two
activities in a given order has higher chances to result in a feasible solution than a
smart change in activity start times. The heuristic works the following way. Firstly,
it tries to construct the schedule from the given order. If it fails to find a feasible
solution, we promote the activity or job that could not be scheduled, using a novel
concept of a reason graph that helps us to define which changes to do in the priority
queue. In this heuristic, we make use of the theorem, proven in Section 4.3, which
reduces computation time of the heuristic. Moreover, the heuristic has three levels
of scheduling granularity: it schedules by applications, by activities or by jobs,
going to the level with more elements only if necessary. This provides a reasonable
trade-off between computation time and solution quality.

Finally, Table 5.1 presents a comparison of the three proposed heuristics: the
heuristic to solve TDM problem from Chapter 2, 3-LS heuristic from Chapter 3, and
the heuristic solving the coscheduling problem with control regarded in Chapter 4.
Whereas the heuristic to solve TDM problem uses an ILP solver for every problem
instance, 3-LS heuristic can work without using one if there are only activities with
relaxed jitter requirements. Meanwhile, the feasibility stage of the control heuristic
does not use any exact solver, applying it for the optimization of the obtained
solution in the second stage only. As there is a risk of rapidly decreasing scalability
with increasing problem sizes with exact solvers, getting a feasible solution without
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Table 5.1: Comparison of the heuristic approaches from Chapters 2, 3, and 4.

Deterministic
behavior

Coarsest
Granularity

Dependence on
exact solvers

Element of a
search space

Main concepts to
increase efficiency

Stage 1 no activities
fully

dependent
fixed schedule

1. memory state,
2. lazy constraints

Stage 2 yes activities
sometimes
dependent

fixed schedule
1. interval representation

of a search space,
2. 3 scheduling levels

Flexi yes occurrences
partially

independent
order

1. Theorem 1 of
schedulability,

2. 3 granularity levels

using exact solvers is an advantage.

5.1.2 Characteristics and Comparison of Exact Approaches

In this section, we look at three different formalisms to optimally solve our problem:
Integer Linear Programming (ILP) used in Chapters 2, 3, and 4; Satisfiability Modulo
Theory (SMT) used in Chapters 3 and 4; and Constraint Programming (CP) used in
Chapter 4. We present a comparison and our experience with both the formalisms
and the tools for solving the corresponding models that are IBM ILOG CPLEX
and Gurobi solvers for the ILP, Microsoft Z3 solver for SMT and IBM CPLEX CP
optimizer solver for CP. Note that some of these conclusions are problem-dependent
and do not need to apply to problems in different domains, since adding or removing
specific constraints or reformulating criterion can change the computation time of
the solvers significantly.

Computational Efficiency

An improvement of the computational efficiency of the exact approaches can belong
to one of the following 4 categories: 1) reducing the number of constraints and
decision variables without changing the search space of feasible solutions (used in
Chapters 2, 3, and 4); 2) reducing the search space by introduction of additional
constraints (called cuts in ILP), reducing variable domains, or breaking symmetries
in the solution (used in Chapters 2, 3, and 4); 3) Reformulating the constraints
so they can be used by the solver more efficiently (used in Chapters 2 and 4); 4)
adjusting solver-specific features (used in Chapter 4).

Improvements from the first two categories apply to all formalisms and in terms
of computation time they are similar across all formalisms and solvers. On the other
hands, techniques in Categories 3 and 4 are generally solver-specific regarding both
implementation and resulting efficiency. For instance, reformulation of resource
constraints using the modulo operation of the Bezout identity in Section 4.3 resulted
in significant time reduction of the ILP model, while the SMT and CP problems have
shown longer computation time with the Bezout inequality applied. The intuition
behind this is that instead of accelerating the solving process, some techniques
can worsen pruning and propagation of the SMT and CP approaches. As far as
the space reduction is concerned, it should be done consciously, since it can cause
enormous prolongation of the computation time. An example of this situation was
adding an upper bound on the criterion as a constraint to the CPLEX solver for the
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TDM configuration problem in Chapter 2. Adding an upper bound resulted in some
instances running ten to hundred times slower, most probably due to the absence of
the first feasible solution that enables bounding in the search tree. Instead, setting
this value as a solver parameter resulted in computation time reduction since it
discarded only a part of feasible solutions of the worse quality. This enabled smaller
search tree by smart bounding in nodes, i.e., not continuing further in the nodes
that cannot result in the optimal solution.

The main reason for the high efficiency of the CP approach in Chapter 4 is
the usage of solver-specific variable and constraint representation that resulted
in thousands times faster solving process. Another example of an improvement
belonging to the fourth category is the usage of lazy constraints for ILP when only
crucial constraints are generated in the beginning, and others are added if needed
during the search process. This significantly improved the efficiency of the ILP
approach in Chapters 2 and 4. Finally, we set a single thread solving process for
the CP approach in Chapter 4, which belongs to the fourth category. Setting a
single thread in CP optimizer often shows good results on scheduling problems.

Finally, we observed that the SMT solver works efficiently on a fully discrete
domains on our problem in Chapter 4. However, merely introducing rational
coefficients without changing neither decision variables nor constraints resulted in
an efficiency reduction of roughly 50%. Generally, the SMT approach has shown
the most unstable behavior regarding computation time, such as a tendency to run
infinitely long for smaller problem instances with specific constraints. However,
since we only have experience with a single solver for this formalism, we do not
know if the problem is inherent to the formalism or to the solver.

User Experience

Since CPLEX, CP optimizer, and Gurobi are commercial products unlike Microsoft
Z3, the first three tools provide much better user support. There are documentations,
examples and special forums for users of CPLEX, CP Optimizer, and Gurobi,
where questions are answered promptly, and tool developers are interested in
resolving problems and bugs. These three tools provide clear documentation for
each supported programming language. Development with Microsoft Z3 can be
more challenging, since there are tutorials for its usage only as a native script and
in Python. Although there are examples of codes for Z3 in each programming
language it supports, not every feature is covered in the examples, and sometimes it
takes time to understand how certain things can be implemented. Also, it has less
features provided to the user. For instance, although defining a piece-wise linear
function is possible in SMT using if-then-else statements, the computation efficiency
is low due to the continuous nature of this function. Thus, while the conceptual
ideas behind the Z3 solver for SMT are easily accessible, programming not in a
native script may be an adventure full of hidden surprises.

User experience can be measured by simplicity to model, program and debug.
Unlike ILP that works only with linear expressions, CP and SMT handle non-linear
constraints, such as OR, modulo, multiplication of variables, etc. Thus, whereas
for ILP we need to transform constraints and criterion to linear form, for both CP
and SMT it is possible to have expressions in a natural form. This saves user time
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Table 5.2: Supported API of different optimization tools.

CPLEX C, C++, C#, Java, Visual Basic, Python, Matlab, FORTRAN
CP optimizer C++, C#, Java, Python

Gurobi C, C++, C#, Java, Visual Basic, Python, Matlab, R
Z3 C, C++, .Net, Java, Python, and OCaml

and often simplifies later modification and debugging. Although ILP tools have
build-in transformations of some non-linear expressions, such as piece-wise linear
functions or OR expressions, often they are not as efficient as transforming it by
hand as shown in Chapter 4 with criterion formulated as piece-wise linear function.

Finally, Table 5.2 contains the list of supported API of the considered tools by
the time of writing this thesis.

Portability

Since CPLEX and CP optimizer are both developed by IBM, they use very similar
syntax. However, to implement the solution efficiently, it is inevitable to get
acquainted with available language features, such as interval variables or global
constraints, mentioned in Section 4.4. Furthermore, since both CPLEX and Gurobi
solve the same type of problem, they support export and import from and to
.lp files that contain a problem in an algebraic form. Therefore, it is possible to
solve by models generated by CPLEX using Gurobi or vice-versa quickly. However,
to implement some computation time improvements, such as lazy constraints or
built-in piecewise linear function, as in Chapter 4, it is still required to implement
the model in one of the supported languages. For the Z3 solver, the problem
formulation cannot be straightforwardly transformed from one of the other tools.
However, with example codes and basic knowledge of how Z3 works in the used
programming language (e.g., constants cannot be directly used by the solver, they
need to be wrapped into either integer (mkInt()) or real (mkReal()) objects in
Java), the models can be programmed quite intuitively, unless particular features
are necessary that are not covered in the examples.

Appropriate Usage

Finally, this subsection presents what we have learned during these four years of
work with the optimal formalisms and their solvers. First of all, every formalism
is the best for the things for which it was designed. Therefore, for problems in
a linear form that do not require applying additional techniques for linearization,
there is a good chance that ILP will outperform both SMT and CP approaches.
However, since NP-hard problems always contain non-linearities, this statement
is not supported by any experiments presented in this thesis. Moreover, ILP also
shows lower computation times on instances of smaller sizes and lower complexity,
making it suitable for use in heuristic algorithms, where a large number of small
problems are to be solved. Generally, with growing size and complexity, CP and
SMT approaches typically start outperforming ILP on real-time systems scheduling
problems.
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We have also noticed that the CP approach often finds the first feasible solution
much faster than ILP, whereas ILP is typically better at proving optimality and
infeasibility due to its elaborated propagation techniques, especially for scheduling
problems. Thus, if finding a feasible solution is challenging and a system designer
can afford sub-optimality of the solution, it is better to choose the CP formalism,
whereas if it is critical to prove optimality of the solution or that the problem is
infeasible with given input parameters, it is more appropriate to use ILP.

Regarding making changes in the problem, ILP typically behaves more pre-
dictably than CP and SMT regarding the number of introduced constraints and
variables. In other words, we observed that adding or reformulating constraints and
criterion could cause significantly larger changes in running time of CP and SMT
than of ILP. Thus, if the model is under changes, it is better to choose ILP and
only when the final version of the model is formulated, to implement it in CP or
SMT efficiently. On the other hand, CP and SMT approaches provide framework
for formulating non-linear expressions efficiently, which both simplifies implemen-
tation and reuse of the existing models. However, the effort in implementing the
same problem using a different formalism is limited, as mentioned in the previous
subsection.

5.1.3 Quantitative Comparison of the Proposed Approaches

We compared optimal and heuristic algorithms on realistic problem instances for the
three steps of our approach. The criteria are the computation time of the approach,
maximum achievable utilization on the resources, and the criterion value itself,
being slack utilization for the first step and control performance for the third step.
As expected, the experimental results have shown that optimal approaches are far
less scalable than the heuristic approaches. Average improvements in the maximal
size of the instance that heuristic approaches can solve in slightly less than 1 hour
over that of optimal approaches are approximately 10 times. Regarding criterion
value, the average difference is 0.9% for all three steps, while the heuristics lost
on average 11% of maximal utilization, considering the instances that the optimal
approaches solved within the time limit. Furthermore, the average computation
time of the heuristic solutions on the largest datasets are 2, 3, and 5 minutes for
the heuristics from Steps 1, 2, 3 of our approach, respectively. These values are
reasonable for one run and acceptable for design exploration phase of the modern
and future systems.

5.1.4 Practical Applicability

We demonstrated practical applicability of the proposed approaches on the case
studies typical for the corresponding domains in Sections 2.8.3, 3.5.3, and 4.6.3.
For the first step of the approach, we focused on a case study of an HD video
and graphics processing system, where we first derive the client requirements and
present a detailed description of the components. Then, we apply our configuration
methodologies to find the optimal schedule, each of which runs in less than a second.
Next, for the second step of our approach dealing with safety-critical systems, we
consider a case study of Engine Management System (EMS) in Section 3.5.3. It
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controls the time and amount of air and fuel injected by the engine by working with
the values read by numerous sensors in the car. Engine Management System (EMS)
is one of the most sophisticated engine control units with more than 10000 tasks
and messages. While the proposed optimal approaches fail to find any schedule in
24 hours, the 3-LS heuristic solves the case study in less than an hour, showing
its applicability to industrial-sized problem instances. Finally, in Section 4.6.3,
we verify the proposed optimal and heuristic solutions for the third step of our
approach, where we consider a distributed automotive architecture with 31 ECUs
connected by 68 time-triggered Ethernet network links. All the proposed approaches
were able to find a feasible solution, although both the ILP and CP models failed to
prove optimality of the solution found in a week. In contrast, the heuristic approach
has found a solution in less than 4 minutes with the criterion value within 1.6%
relative difference of the solution found by the optimal approaches.

5.2 Fulfillment of the Goals

This section addresses the fulfillment of the stated goals:

1. Study the existing literature for real-time embedded systems scheduling and
determine its weak points regarding problem statement and solution approaches.

For the first step of our approach, the study of existing literature presented in
Section 2.1 revealed that no existing solutions provide latency-rate guarantees
and minimize the total allocated rate to increase the performance of non-real-
time applications. Moreover, the state-of-the-art approach for TDM scheduling
with latency-rate guarantees provided is highly inefficient regarding the total
allocated rate, as we showed in Section 2.8. For the second step of the
approach, state-of-the-art solutions for hard real-time systems scheduling
either eliminate any activity (task or message) jitter or do not put any
constraints on it, as discussed in Section 3.1. However, constraining the jitter
instead of eliminating it can result in significant maximum utilization gain,
as demonstrated in Section 3.5, reducing the cost of the system. As far as
the third step of our approach is concerned, as discussed in Section 4.1, there
are no scheduling approaches that look at the control behavior of the system
globally, considering different importance of applications control behavior and
without activity periods being changeable. These aspects are especially useful
in the automotive domain since there are many control applications there.
Finally, only a few existing works on real-time embedded systems scheduling
provide scalable approaches, as discussed in Sections 2.1 and 4.1. However,
none of them addresses the points discussed above.

2. Devise mathematical models, reflecting the most important constraints and
criteria of the embedded real-time systems scheduling problem both in consumer
electronics and in safety-critical domains.

The mathematical models are presented in Sections 2.3, 3.2, and 4.3. For
the first step of our approach applicable to the consumer-electronics domain
domain, we formulate the model regarding the latency-rate characteristics
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and minimizing utilized rate. The main benefit of the considered latency-
rate abstraction is that it enables performance analysis of systems with
shared resources in a unified manner, irrespective of the chosen arbiter and
configuration. For the second step of our approach, the devised mathematical
model considers periodicity, precedence relations, end-to-end latency, and
jitter constraints. In the third step of our approach, the model devised in the
second step is changed in these three ways: 1) we fix jitter requirements on the
computational resources and relax them on the network, 2) we generalize end-
to-end latency requirements, and 3) we introduce an optimization criterion,
being the aggregated control performance of the applications in the system.

3. Propose exact and heuristic algorithms to solve industrial-sized problems of
embedded real-time systems scheduling that use problem-specific knowledge.

Section 2.4 presents an ILP model for the first step of our approach that
uses problem-specific knowledge to reduce the solution space and improve
computation time. Then, in Section 2.5, we introduce a solution that wraps
the ILP model into a branch-and-price framework to enhance its scalability.
Moreover, a heuristic is proposed in Section 2.7 to solve the same problem
faster, but with a possible loss in criterion value. Later, Section 3.3 introduces
an ILP and SMT models for the second step of our approach that shows
different behavior on problem instances of different complexity. However,
none of the proposed optimal approaches scale to the large sizes of modern
and future systems. Therefore, Section 3.4 proposes a three-step heuristic
scheduling algorithm, called 3-LS heuristic, where the schedule is found
constructively. Finally, in Section 4.4, ILP and CP models are presented to
deal with the third step of the approach. Moreover, in Section 4.5 we present
a heuristic approach that constructs the solution based on a priority queue,
changing it if necessary.

4. Verify the proposed algorithms on benchmark instances and compare the
quality of the obtained solutions by heuristic with the solutions, obtained by the
exact approaches. Show applicability of the proposed approaches on realistic
use-cases.

For the first step of our approach, we present experiments in Section 2.8,
confirming that the branch-and-price approach is more scalable than the pure
ILP approach. Namely, it solves instances with 64 clients, while the ILP
approach only scales to 16 clients. Moreover, the proposed heuristic provides
a reasonable trade-off between computation time and solution quality, solving
the problem near-optimally in 86% of the use-cases in half of the time required
by the branch-and-price approach. Also, we present a case study of an
HD video and graphics processing system that demonstrates the practical
applicability of the approach.

For the second step of our approach, Section 3.5 presents experiments showing
the efficiency of both scheduling with zero jitter and constraining it reasonably.
It shows that up to 28% higher resource utilization can be achieved by at cost
of 10 times longer computation time. Furthermore, it shows that the SMT
approach outperforms the ILP approach on larger problem instances, while ILP
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shows better results on smaller instances. However, neither approach scales
to industrial-sized problems, whereas the proposed 3-LS heuristic provides
a reasonable trade-off of solution quality and computation time compared
to the optimal approaches. It shows an average degradation of maximum
resource utilization of 7%, while running tens of times faster on the sets with
the smallest problem instances. Besides, the proposed solutions for the second
step of the approach are demonstrated on a case study of an EMS with more
than 10000 activities, a heuristic solves that in less than an hour.

Finally, for the third step of the approach, in Section 4.6, we show that the
CP model outperforms the ILP and SMT models, scaling to significantly
larger instances. Moreover, the heuristic approach provides a solution on
average 6 times faster than CP approach, while sacrificing 1% of the solution
quality and 1% utilization for the most complex problem instances. Also, we
demonstrate the applicability of the approaches on an automotive case-study
with 21 applications running on the platform with 31 ECUs and 68 network
links, for which the heuristic finds a solution within less than 4 minutes with
objective value degradation of 1.6% from the best solution, found by the
optimal approach in 24 hours.

5.3 Future Work

This section presents two directions to extend this thesis in the future to increase
the efficiency and applicability of the solution.

5.3.1 Mapping and Routing Problems

The number of components in complex real-time embedded systems, including
scalable interconnects, on-chip, and off-chip switched networks is increasing rapidly.
The mapping and routing problems that concern activity assignment to resources
and finding a route that a message should take in the switched network, respectively,
go along with the scheduling problem. Although sometimes mapping and routing
are already given and we need to deal with scheduling only, in the other cases
there is a freedom to set it. Mapping and routing done efficiently, for instance in
switched networks or networks-on-chip, can significantly increase the utilization of
the system and potentially reduce cost. However, when we introduce the additional
complexity to the scheduling problem which is NP-hard on its own, the solution
process becomes complicated. Thus, the fourth step of our approach would be to
efficiently solve the optimization problem, merging these three problems: scheduling,
routing, and mapping, together. Solving these three problems at once would result
in a more efficient solution for the price of the enormous complexity of the resulting
problem.

5.3.2 Incorporation of Platform-Specific Constraints

When applying the solution proposed in this thesis, some platform-specific con-
straints can arise. The first source of such constraints is the network. In this thesis,
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we assume a general time-triggered network that can have additional constraints
for specific network types. We can observe an example of such constraint for
Time-Sensitive Networks [88] that, for instance, require a frame of a flow to be
fully transmitted on one link before transmission is initiated on the subsequent link
of the route or buffer limit constraint in switches. The second source of platform-
specific constraints is a limited memory of platform resources. While scheduling
in a time-triggered manner, the schedule length could become very large. We can
prevent it by limiting the schedule length, which also introduces a lot of complexity
to the solution. Finally, in this work we consider the activities of one application to
have the same period. However, sometimes tasks with different periods are data
dependent. This requires definition of an appropriate framework since end-to-end
latency can have multiple interpretations when tasks of different periods are data
dependent [54].
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[96] K. Schild and J. Würtz. Scheduling of time-triggered real-time systems.
Constraints, 5(4):335–357, 2000.

[97] R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and S. Chakraborty.
Constraint-driven synthesis and tool-support for flexray-based automotive
control systems. In Proceedings of the seventh IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pages 139–
148. ACM, 2011.

[98] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl.
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Chapter

Nomenclature – Chapter 2

Background and Problem Statement Symbols

ci Real-time client.

C Set of real-time clients.

n Number of clients.

φi Number of slots, allocated to client ci.

rji Minimum provided service to client ci during a busy period of duration j.

szki Size of k-th request by client ci.

arrki Arrival time of k-th request by client ci.

finki Finishing time of k-th request by client ci.

Θ̂i Required service latency of client ci.

Θi Service latency of client ci provided by a schedule.

ρ̂i Required bandwidth (bandwidth) of client ci.

ρi Allocated bandwidth of client ci provided by a schedule.

H Schedule length.

F Set of time slots.

D Schedule.

dj Schedule element at time j.

Φ Total allocated bandwidth of all real-time clients in C.

Symbols Used in ILP Model and Branch-and-Price
Approach

tji Variable indicating that time slot j is allocated to client ci.

rji Worst-case provided service to client ci during a busy period of duration j.

φ
i

Lower bound on the number of slots allocated to client ci.

Ω Set of all possible columns.

MM(Ω) Master model that contains Ω.

ωi,k Variable indicating that column zk is included in the schedule for client ci.

zk column from set Ω.
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hji,k Coefficient that indicates column zk allocates slot j to client ci.

ΩR Subset of columns.

MM(ΩR) Restricted master model that works on subset of columns ΩR only.

ΦLB Lower bound for the optimal integral solution.

ΦUB Upper bound for the optimal solution.

yj Variable reflecting the over-allocation of slot j in the solution.

vj The number of clients to which slot j is allocated in the solution.

M Big number used to penalize criterion of master model for over-allocated
slots.

ΦMM Criterion value of the master model.

bi,k Coefficient indicating that column zk was constructed for client ci.

DMM(ΩR) Dual master model.

λj Variable of dual master model equal a potential gain of criterion ΦMM if
slot j is allowed to be allocated more than once.

σi Variable of dual master model equal to reduction of ΦMM if client ci has
no columns in the solution.

φi,k Number of slots allocated to client ci in column zk.

Φsubi Criterion value of sub-model for client ci.

ωtotalj the total ”probabilities” of including each slot j ∈ F in the solution.

Φ
LB

estimated lower bound on ΦMM .

ΦMM
curr current criterion value of the master model.

Symbols Used in Heuristic and Experimental Eval-
uation

β Interval from which bandwidth requirements for each client are uniformly
drawn.

γ Interval from which latency requirements for each client are uniformly
drawn.
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System Model Symbols

m Number of resources.

U Set of resources (cores + input ports).

uk Resource k.

T Set of tasks.

M Set of messages.

A Set of activities (tasks and messages), A = T ∪M .

ai i-th activity.

n Number of activities.

P Set of activity periods.

pi Period of ai.

ei Execution time of ai.

jiti Jitter of ai.

mapi Number of resource to which task ai is mapped.

zi,j Variable that indicates task i is mapped to resource uj .

oj Variable equal to the load on resource uj .

H Hyper-period (schedule length).

sji Start time of job j of activity ai.

njobsi Number of jobs of activity ai.

mem Amount of memory required to store the schedule in bytes.

Symbols Used in ILP and CP Models

xji Variable indicating that time slot j is allocated to client ci.

Predi Direct predecessors of ai.

Succi Direct successors of ai.

tbi Length of the longest critical path of the preceding activities that must be
executed before activity ai.

tai Length of the longest critical path of the succeeding activities that must
be executed after activity ai.

Ii Worst-case slack of activity ai.
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Symbols Used in Heuristic and Experimental Eval-
uation

Q Priority queue comprising activities to be scheduled.

D Set of already scheduled activities, represented as a union of intervals on
each resource.

Sch Set of already scheduled activities, represented by their schedules.

R Set of activities that were problematic to schedule.

jitinheri Jitter inherited by activity ai.

au Scheduled activity to remove from the schedule.

as Activity to schedule.

Scratch Set of activities that were previously scheduled from scratch and the
predecessors of as and au.

S Schedule obtained by the heuristic.

ry Utilization of resource y.
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System Model Symbols

mECU Number of ECUs in a problem instance.

mDom Number of domains in a problem instance.

mLinks Number of network links in a problem instance.

m Number of resources.

appw Application w.

App Set of applications.

pi Period of ai.

T Set of tasks.

M Set of message frames.

A Set of activities (tasks and messages), A = T ∪M .

ai i-th activity.

n Number of activities.

mapi Number of resource to which task ai is mapped.

ei Execution time of ai.

Lw End-to-end latency of appw.

L̂w Bound on end-to-end latency of application appw.

c Tunable coefficient to bound end-to-end latency.

LUTw Look-up table for application appw with settling time ξ values.

ξwk Control performance value of application appw for end-to-end latency value
δwk .

δwk End-to-end latency value of application appw for which k-th settling time
of the system are measured.

N Number of measurements for one application in LUT .

Problem Formulation Symbols

H Hyper-period (schedule length).

sji Start time of job j of activity ai.

njobsi Number of jobs of activity ai.
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Predi Direct predecessors of ai.

Succi Direct successors of ai.

gi,k Greatest common divisor of periods of activities ai and ak.

LBji Lower bound on start time of aji .

UBji Upper bound on start time of aji .

Jw Settling time of application appw for end-to-end latency value Lw = δwk .

λwk Variable indicating that Lw is in interval [δwk , δ
w
k+1).

γwk Variable reflecting the position of Lw in the interval [δwk , δwk+1).

Symbols Used in ILP and CP Models

xji Variable indicating that time slot j is allocated to client ci.

q Quotient variable.

tbi Length of the longest critical path of the preceding activities that must be
executed before activity ai.

tai Length of the longest critical path of the succeeding activities that must
be executed after activity ai.

Ii Worst-case slack of activity ai.

Symbols Used in Heuristic and Experimental Eval-
uation

Q Priority queue comprising activities to be scheduled.

εi Element to be scheduled, either activity or frame job.

Gd Directed acyclic graph with frame jobs and tasks being nodes. An edge is
directed from one node to another if removing the former node from Q
can result in an earlier start time of the latter node.

εd An element, which removing from the schedule can result in earlier start
time of currently scheduled element.

ld Number of parent of the currently scheduled activity in the reason graph
Gd to set as εd.

D Set of already scheduled activities, represented as a union of intervals on
each resource.

nint Number of intervals in D.

ŝi Earliest possible start time of the currently scheduled element due to data
dependency constraint.
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Predi Set of predecessors finishing at ŝi.

ši Latest possible start time of the currently scheduled element εi due to
end-to-end latency constraint.

Φ Objective function value.

Sneigh The neighborhood set.

ry Utilization of resource y.

nT Number of tasks in a problem instance.

nexp Expected number of tasks executed on one ECU.
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