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Abstract

Nowadays, the number of applications in complex systems increases rapidly and some of
them have real-time requirements, while others do not. These applications share resources,
such as memories, processors or interconnect, in order to reduce cost and power consumption
of the systems. However, sharing causes contention between sharing applications, which
must be resolved by a resource arbiter. This master thesis uses Time-Division Multiplexing
(TDM) for these purposes. TDM employs a table of a fixed length with slots allocated to
the applications. Although it is a commonly used arbiter, it is a difficult problem to find a
TDM frame size and slot assignment that satisfy the bandwidth and latency requirements
of the real-time applications that use the resource. Moreover, it is important to minimize
the resource utilization of these applications to provide non-real-time clients with better
performance.

This master thesis considers the described problem and proposes an efficient methodology
to solve it. The five main contributions are: 1) An optimal integer linear programming (ILP)
model, assuming a given frame size is proposed; 2) An optimal branch-and-price approach
for a given frame size is presented; 3) Two filtering heuristics for choosing a limited set of
frame sizes for the models, mentioned above, are presented. The optimal frame size for
this and the next model is found by iterating over all frame sizes in a given interval; 4)
An optimal ILP model, synthesizing the frame size is presented; 5) The four approaches
have been implemented and experimentally evaluated. From our experiments, we conclude
that the first ILP model significantly outperforms the other optimal approaches in terms
of computation time and that the heuristics provide solid reduction of computation time,
sacrificing only less than 3% of the resource utilization on average.
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Chapter 1

Introduction

The number of applications in modern systems is increasing nowadays and some of them
may have hard real-time requirements. It means that deadline or/and throughput require-
ments must be met, otherwise there is a danger of human injury or great economic loss. In
contrast, there are also non-real-time applications that do not have strict deadlines, however,
they are concerned about average performance. The applications are called clients and they
compete for shared resources, such as memories, buses or peripherals. This sharing causes
contention that must be resolved by an arbiter. Time-Division Multiplexing (TDM) is a
commonly used arbiter because it is easy to understand and analyze and TDM arbitration
has efficient implementations both in hardware and software.

For using TDM arbiters it is important to find a schedule. Construction of this schedule
requires fulfilling both bandwidth and latency requirements of the client. To define such a
schedule, two problems must be solved, determining the schedule length (frame size) and
assigning time slots to the clients. Moreover, as there are non-real-time applications, re-
source utilization (number of allocated slots) of real-time applications must be minimized,
since more left-over capacity means higher performance for non-real-time applications. On
the other hand, computation time cannot be too large, as this impacts the total design
time. Thus, we want to quickly find a TDM schedule for real time applications with as low
utilization as possible.

This master thesis considers TDM arbitration for non-CPU resources, such as memory
controllers and buses. Existing works about TDM configuration for such resources do not
consider exactly the same configuration problem for at least one of the following three reasons:
1) They assign consecutive slots to the clients, which is known as the continuous allocation
strategy. Although this strategy is easy to implement, understand and it requires negligible
computation time, it is provably the least efficient approach in terms of resource utilization.
2) The frame size is assumed to be given, not respecting the fact that it is an important
and non-trivial design decision to make. 3) Often authors only give heuristic approaches,
proposed without comparison to any optimal solution, leaving the efficiency of the approach
an open question.

The five main contributions of this master thesis are: 1) An optimal integer linear pro-
gramming (ILP) model (ILP1) is presented. It assumes given frame size. The optimal frame
size is found by running many iterations of this model with increasing frame sizes; 2) An op-
timal branch-and-price approach (B&P) for a given frame size is presented; 3) Two filtering
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2 CHAPTER 1. INTRODUCTION

heuristics for choosing a limited set of frame sizes for ILP1 and B&P, giving a good trade-off
between computation time and utilization are presented; 4) An optimal ILP model, synthe-
sizing frame sizes (ILP2), is presented; 5) The three approaches and the heuristics have been
implemented and experimentally evaluated. Their results are compared to quantify, on the
one hand, the difference between different optimal approaches in terms of computation time
and, on the other hand, the trade-off between computation time and utilization of the heuris-
tics and the optimal approaches. From this evaluation, we conclude that ILP1 significantly
outperforms the commonly used continuous allocation strategy in terms of utilization and
that the heuristics provide solid reduction of computation time, sacrificing only less than 3%
of the utilization on average.

This master thesis is organized as follows: Chapter 2 presents necessary background;
Chapter 3 formulates the problem and the problem is shown to be NP-hard; Chapters 4
and 5 present the optimal approaches (ILP1 and B&P correspondingly) for a fixed frame
size. In Chapter 6, one can find the complex model with synthesized frame size (ILP2),
followed by Chapter 7, describing the two proposed frame-filtering heuristics. Chapter 8
presents experiments to verify the proposed claims and Chapter 9 gives a description of
existing work and justifies the uniqueness of the proposed methods. Finally, Chapter 10
concludes and discusses done and possible future work.



Chapter 2

Background

This section provides a summary of relevant background information required to under-
stand this master thesis. Firstly, the concept of latency-rate servers is presented, then the
notion of TDM arbitration along with service latency and rate concepts are introduced.

2.1 Latency-Rate Servers

To begin with, the concept of latency-rate (LR ) servers is presented in Figure 2.1. An
LR server is a shared resource abstraction that ensures a client that shares a resource a
minimum allocated rate (bandwidth), ! , after a maximum service latency, ! . The red line
shows how the requests from the client are arriving at the resource over time, the blue one -
how they are serviced by the resource. However, the most important feature of LR servers
is incorporated in the black dashed line: an LR server guarantees that all of the requests of
a client are serviced not later than the points on this line, i.e. the provided service line is
never below the service bound.
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busy period
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Figure 2.1: An LR server.

An LR server is a suitable tool for performance analysis of streaming applications, such as
audio and video encoders/decoders or wireless radios, to handle sequences of requests instead
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4 CHAPTER 2. BACKGROUND

of just single ones. Considering only a single request results in a pessimistic estimation of
a worst-case service time, since the time to serve r requests is typically less than r times
serving one request, assuming that data arrives regularly and keeps the server busy (which
is more likely the case with the streaming applications). One of the main benefits of LR
servers is that based on theLR guarantee, it is possible to compute the upper bound on the
execution time of a client using the resource and this execution time considers sequences of
requests, resulting in a better bound.

The values ! and ! of a client are determined by the choice of an arbiter and how it is
configured. Not every arbiter is an LR server. To this class belong, among others, TDM
arbiters and several varieties of the Round-Robin algorithms. The second major advantage
of the LR abstraction is that performance analysis of systems with shared resources can be
done in a uniÞed manner regardless of the chosen arbiter and conÞguration.

Note, however, that LR service guarantees are conditional and they hold only in case
the client sends enough requests for server to be busy. The concept of a busy period reflects
this condition and means a period when client requests at least as much service as it has
been allocated, ! , on average. It is illustrated in Figure 2.1. The client is in a busy period,
when the requested service line is above the dash-dotted black line with slope ! .

2.2 Time-Division Multiplexing

In this section, we present the definition of the TDM arbiter, its properties and how to
compute its service latency and bandwidth. As it was told in Chapter 1, TDM arbitration
is used in this master thesis. It is known that TDM arbitration belongs to the class of LR
servers [1], therefore we can use all of the advantages of this class.

A schedule for a TDM arbiter is a table of slots allocated to the clients. It is repeating
(infinitely) many times during execution of the system. One can find an example of a TDM
schedule in Figure 2.2. The frame size f is defined as a number of slots in a TDM table.

�� �� �� �� �� �� �� �� �� ���� �� �� �� �� ��

��

Figure 2.2: An example of a TDM table with frame size f = 10, shared between two clients
P1 and P2.

A schedule for a TDM table determines a service latency, ! , and an allocated rate, ! ,
for a client. The allocated rate is defined as the ratio of allocated slots to the TDM frame
size, as it is stated in Equation (2.1). For the example in Figure 2.2 the allocated rate for

the first client ! 1 =
5
10

and the second ! 2 =
3
10

.

! =
"
f

. (2.1)

The service latency depends on the slot assignment policy that determines how the
allocated slots are distributed in the table. Mostly a continuous allocation strategy is
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used [2], [3], [4], where slots are allocated to the client one after the other. Figure 2.3 shows
an example of a TDM table with continuously allocated slots. The main benefit of this
strategy is that it is easy to understand and implement and the service latency is computed
straightforwardly by Equation (2.2), where p is the number of allocated slots. However, this
is provably the least efficient strategy in terms of total allocated rate, i.e. it is required to
allocate the largest amount of slots to satisfy a particular latency requirement. The oppo-
site case is the equidistant allocation, where slots are allocated with an equal spacing and
therefore it is a strategy with the least required number of allocated slots due to latency
requirements. Since two or more clients may need the same slot to achieve an equidistant
allocation, it is not always possible to allocate all the clients with equal spacing. Note that
service latency and allocated rate are coupled in TDM, i.e. the only way to reduce service
latency is to increase rate.

�� �� �� �� �� �� �� �� �� ���� �� �� �� �� ��

��

Figure 2.3: An example of a TDM table with continuous slot allocation.

! = f ! p = f á(1 ! ! ) (2.2)

For an arbitrary slot assignment, intuitively, the service latency is just the largest gap
between allocated slots in the table. This assumption, however, is not correct. The difficulty
lies in the definition of service latency, since it is about the maximum time before the
allocated rate is guaranteed to be continuously provided during a busy period. The problem
is that busy period can start at any time and last for an arbitrary number of slots.

The service latency computation of a client can be done quadratically with the frame size
f. The latency computation algorithm is described in detail in [5] and here only the main
equations and intuition are given. The core idea of the algorithm is to split a given TDM
table into a set of subtables with continuous allocation, compute their local latencies and
latency offsets and afterwards combine these parameters to obtain the service latency of the
client. The offset value of a subtable t " t represents the ability of the allocated slots in the
subtable to maintain the global rate guarantee through the non-allocated part (first ft ! pt

slots) of this subtable. Basically, it means that a busy period starts in a given subtable and
goes left in the TDM table, i.e we are looking at the TDM table not from left to right but
from right to left. If the offset of the subtable is positive, its value shows how much the local
latency L must be increased for the guarantee to be valid throughout this subtable. For
example, considering the schedule for the first client in Figure 2.2, there are two subtables:
one starts in the first slot and ends in the fourth and the second starts at the fifth slot and
ends in the tenth. Local latencies are L 1 = 3 + (1 ! (

1
2

)! 1) and L 1 = 2 + (1 ! (
1
2

)! 1) and

latency offsets are " 1 = 4 ! (
1
2

)! 1 á1 = 2 and " 2 = 6 ! (
1
2

)! 1 á4 = ! 2.

Equations for local latencies, L t , and latency offsets, " t , computation for each subtable
t are given in Equations (2.3) and (2.4), respectively:
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L t = ft ! pt + (1 ! ! ! 1), (2.3)

" t = ft ! ö! ! 1 ápt , (2.4)

where ft is the subtable length, pt is the number of allocated slots in the subtable t and !
is the allocated rate in the whole TDM table. The local latencies are computed according
to Equation (2.2) for the case of continuous slot allocation. The addend ! ! 1 ! 1 appears
because of slightly different definitions (difference is just in subtracting a constant) of service
latency between this work and [5]. More on this you can read in [6].

Afterwards the global analysis that considers interaction between subtables is done. The
resulting service latency ! for a TDM table is computed in Equation (2.5):

! = max
j "{ 1,2,...,! }

max
r "{ 1,2,...,! }

(
r + j ! 1!

t= r

(" t mod ! ) + L (r + j ) mod ! + ( ! ! 1 ! 1)), (2.5)

where # is the number of subtables in the TDM table. Thus, the global service latency is the
maximum value between the local latencies with sums of offsets of the previous subtables,
where the last sum goes from 0 to #. As it was mention already, to obtain the global service
latency, it is necessary to look at the busy periods that starts in each subtable and lasts
for arbitrary many subtables (in Equation (2.5) it starts in subtable r and ends in subtable
(r + j ) mod #). The worst (maximum) value is a service latency of the TDM table. Note,
however, that (1 ! ! ! 1) and (! ! 1 ! 1) as a part of the local latencies, L , cancel each other in
the global latency computation. For the TDM table in Figure 2.2 service latency is computed
in Equation (2.6). Note that latency here is not equal to the largest gap.

! = max( L 1, L 2, " 1 + L 2, " 2 + L 1) = max(3 , 2, 2 + 2, ! 2 + 3) = 4 . (2.6)



Chapter 3

Problem Statement

The way of computing provided latency-rate guarantees from a given TDM table with ar-
bitrary slot allocation along with the definition of TDM tables are stated earlier in Chapter 2.
In this chapter, the problem of determining the best frame size value and a slot allocation,
that satisfies given requirements and minimizes the total allocated rate is formulated and
then this problem is proved to be NP-hard in the general case.

3.1 Problem Formulation

The considered TDM ConÞguration Problem/Latency-Rate (TCP/LR) is formalized in
this section. An instance of the problem is defined by a tuple "P, ö! , ö! #, where:

¥ P = { 1, ..., n} is the set of clients, using the resource, where n is the number of clients.

¥ ö! = [ ö! 1, ö! 2, ..., ö! n ] $ Rn and ö! = [ö! 1, ö! 2, ..., ö! n ] $ Rn are given service latencyand
bandwidth requirementsof the clients, respectively.

Note that floating point service latency requirements make sense, since requirements
may be generated not in terms of TDM slots, but in terms of CPU clock cycles, that after
transferring to the slots definition may result in non-integer requirements. Moreover, the
service latency provided by a given TDM table could have a non-integer value, as it is given
in Chapter 2 by the way service latency is computed. A TDM table is formalized in the
following way:

¥ f denotes the TDM frame size, f $ Z+ . It is bounded as f % f % f, where f and f are the
TDM frame size lower and upper bounds, respectively. Set F = { 1, 2, á á á, f} denotes
TDM slots.

¥ S = [ s1, s2, ..., sf] is a schedule we want to find, where si $ { P, 0} . Nonzero si means
the client number si is allocated to slot i and si = 0 stands for a free slot.

¥ " = { " 1, " 2, ..., " n } is the number of allocated slots for each client, i.e.

" i =
!

j " F

| { sj } : sj = i | .

7



8 CHAPTER 3. PROBLEM STATEMENT

¥ ! = [! 1, ! 2, ..., ! n ] $ Rn and ! = [ ! 1, ! 2, ..., ! n ] $ Rn are service latencyand allocated
rate, respectively, provided by the TDM table. The service latency and bandwidth
notions and ways of its computation is defined in Chapter 2.

The goal of TCP/LR is to find a schedule S = { s1, s2, ..., sf} for n clients that share
the resource, such that the service latency and bandwidth constraints (Constraints (3.2)
and (3.3)) are fulfilled and the total allocated rate is minimized (3.1).

Minimize :
!

i " P

! i = # (3.1)

! i & ö! i , i $ P (3.2)

! i % ö! i , i $ P (3.3)

3.2 Problem Complexity

So far, the problem formulation is stated and the NP-hardness of the TCP/LR problem
is proven here. The original proof can be found in [15] and this work has contributed to the
proof.

The problems that are most similar to the TCP/LR are the pinwheel scheduling prob-
lem [8] and the Periodic Maintenance Scheduling Problem (PMSP) [10]. Since the general
pinwheel problem does not have any positive or negative result about NP-completeness yet,
the proof of NP-hardness of our problem is based on the PMSP. Using polynomial reduction
from PMSP to the TCP/LR problem, NP-hardness is shown. The decision version of the
PMSP and the decision version of the TCP/LR problems are formulated in Definition 1
and 2, respectively.

Definition 1 (Decision version of PMSP) PMSP considersm machines and service in-

tervals (integers) l1, l2, ..., lm such that
m!

i =1

1/l i % 1. The problem is to check the existence

of an inÞnite maintenance service schedule of these machines in which consecutive servicing
of machine i are exactly l i time-slots apart and no more than one machine is serviced in a
single time-slot.

Definition 2 (Decision version of TCP/LR) With a given criterion value # # does there
exist a TDM schedule such that requirements(3.2), (3.3) are fulÞlled and# % # #? If there
is such a schedule, its frame size is f#.

Next, Theorem 1 states NP-hardness of TCP/LR by polynomially reducing decision
version of PMSP on the decision version of TCP/LR.

Theorem 1 TCP/LR is NP-hard.
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Proof.
The first step of our proof is to show that if we have an arbitrary instance of the PMSP

problem, formulated in Definition 1, it is possible to construct an instance of TCP/LR prob-
lem in polynomial time, such that these instances have YES and NO answers simultaneously.
Thus, the constructed instance of the TCP/LR looks the following way: there are m clients

and requirements are given as: ö! = {
1
l1

,
1
l2

, á á á,
1
lm

} , ö! = { l1 ! 1, l2 ! 1, á á á, lm ! 1} . And

the question is whether there exists a schedule with
!

i " F

! i %
f!

i =1

ö! i . Clearly, construction of

a TCP/LR instance having an PMSP instance is linear in the number of clients.
If there exists a schedule that fulfills requirements of the PMSP problem, it means, firstly,

that this schedule is periodic, i.e. there is a sequence of slots that repeats infinitely many
times. It is given by the fact that infinite schedule in PMSP is completely defined by the
vector of the first slot occurrence of each client; secondly, the fact that it is a "YES" instance
of a PMSP means that consecutive servicing of machine i are exactly l i time-slots apart for
each i . For our problem it defines a schedule that has a perfectly equidistant allocation
for each client. This leads to the conclusion that the schedule would have latency exactly
! = l i ! 1 and bandwidth ! =

1
li

. Thus, it is a "YES" instance as well.

In case we have a "NO" instance for PMSP problem, the constructed instance for our
problem is "NO" instance as well since if there is no schedule with perfectly equidistant slot
allocation then it is inevitable to use additional slots in TCP/LR. It causes increasing of the

criterion value to
!

i " F

! i >
f!

i =1

ö! i , which is a violation. !

Note that the NP-hardness of TCP/LR with an arbitrary frame size was proven. Nonethe-
less, for the case with fixed frame size it is always possible to set the frame size f = f = f =
lcm(l1, l2, á á á, lm ) and thus the theorem is valid in both cases. Naturally, the first machine
would need g1 ál1 slots in a schedule to fulfill requirements, the second g2 ál2, á á á, the mth
machine needs gm álm , where gi $ Z+ , i = 1 , 2, á á á, m. Indeed, the resulting periodic schedule
must be a multiplier of lcm(l1, l2, á á á, lm ).
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Chapter 4

ILP Model with a Given Frame Size

Considering the NP-hardness of the TCP/LR problem, it is clear, that there is no optimal
algorithm that would solve the problem in polynomial time (unless P=NP). Thus, the use of
an ILP technique is justified. In this chapter, an ILP model formulation with four constraints
is presented, followed by five optimizations, that significantly reduce the solution space and
the computational time, but does not influence optimality of the solution.

4.1 Model Formulation

In this chapter, the optimization problem, described in Chapter 3, is formulated as an
ILP problem. This problem is later referred to as ILP1. The frame size f is fixed, i.e.
f = f = f. This model is based on the time-indexed scheduling approach [9]. It means that
for each client i $ P , there are exactly f binary variables xi,j ,

xi,j =

"
1, if slot j is allocated to client i.

0, otherwise.

As stated in Equation (3.1), allocated rate is minimized with the objective function

Minimize :

#
i " P

#
j " F xi,j

f
. (4.1)

The solution space is defined by the following set of constraints. Equation (4.2) guaran-
tees that at most one client in each slot can be allocated.

!

i " P

xi,j % 1, j $ F (4.2)

Bandwidth requirements are satisfied by Constraint (4.3). Number of allocated slots for
each client is required to be greater or equal than bandwidth requirement ö! i .

f!

j =1

xi,j & f áö! i , i $ P (4.3)

11



12 CHAPTER 4. ILP MODEL WITH A GIVEN FRAME SIZE

An intuitive approach to guarantee service latency requirements is used in this model.
Firstly, one needs to compute worst-case provided service r i,j offered by by the TDM table
to each client i starting in any slot j $ F lasting for k $ F slots. The worst possible service
curve points are expressed by Constraint (4.4). Note that since the bandwidth requirements
are already satisfied by Constraint (4.3), it is sufficient to check only the range j $ F .

r i,j %
(k! j ) mod f!

l= k

xi,l , k $ F, j $ F, i $ P (4.4)

The service latency requirements are guaranteed by the worst-case provided service curve
points. Since LR server is considered, the worst-case service curve must always lie above
the service bound, as shown in Figure 2.1. Since the service bound is completely defined by
bandwidth and service latency requirements, it can be expressed using Equation (4.5). In
essence, the expression ö! i á(j ! ö! i ) constructs the service bound line from Figure 2.1, where
j represents the clock cycles. Thus, a given latency guarantee is defined as follows:

r i,j & ö! i á(j ! ö! i ), j $ F, i $ P. (4.5)

4.2 Optimizations of Computation Time

By exploiting some information about the problem, five optimizations are introduced.
All of them reduce the solution space and consequently decrease computational time, while
preserving optimality.

The first optimization bounds the minimal number of allocated slots ù" i for each client.
As a matter of fact, it is useful to bound number of allocated slots not only by bandwidth
requirements, but by service latency requirements as well. Generally, it is impossible to
predict the exact number of slots, necessary to satisfy the latency requirements, since it
depends on the schedule, which is what we are trying to determine. It is possible though to
bound the minimum number by considering equidistant slot allocation. It is easy to show
that the minimum number of slots are used with this allocation strategy.

f!

j =1

xj
i & ù" i = max( ' ö! i áf( ,

$
f

ö! i + 1

%
), i $ P. (4.6)

Since the solution representation allows rotational symmetry, i.e. in the best case there
are f rotated schedules (ones with cyclical left- or right- shifting) that have the same objective
function value, it is crucial to fix allocation of the first slot to the client with the least
number of minimal required slots w = arg min

i " P
ù" i . By fixing a slot to be allocated by the

client with minimal possible number of slots ù" w , we allow less rotationally symmetrical
schedules. It happens because in the fixed position (in our case in the first slot) one can
put each slot that is allocated to the client, so in the end there are maximally ù" w rotational
symmetries. Therefore, choosing minimal ù" w helps us to reduce the rotational symmetry.
Note that generality is not lost, since every client must be allocated by at least one slot.
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Thus, Constraint (4.7) fixes allocation of the first slot to the client with the least minimal
number of required slots to reduce the symmetry.

xw,1 = 1; (4.7)

The next optimization excludes redundant constraints in the set of Constraints (4.4)
and (4.5). One can see in Figure 2.1 that for j % ö! constraints are fulfilled by definition, as
the minimum number of provided service units should be not less than 0, which is satisfied
always since number of provided service units is non-negative by definition. Therefore, it is
enough to generate Constraints (4.4) and (4.5) only for j > ö! .

More interesting, in case the minimum number of allocated slots due to the latency
requirements is not less than required by to the bandwidth requirements (call it latency-
dominated clientsotherwise we name it bandwidth-dominated clients), it is sufficient to check
only the point in time right after the maximum possible gap ö! , i.e. j = ö!+1 . The intuition
behind is that just satisfying latency requirements is enough to provide service guarantees
during the whole gap, i.e. the bandwidth requirements are fulfilled by default. Lemma 1
states that offsets of each subtable of latency dominated clients is non-positive. It implies
that Equation (2.5) always picks the maximum between the local latencies, i.e. the maximum
gap in the table, which proves that we are allowed to use this optimization.

Lemma 1 For latency-dominated clients o!sets" t of each subtablet $ { 1, 2, ..., #} is always
non-positive, " t % 0.

Proof. Four steps are done to prove the lemma. Equation (4.8) substitutes " t from
Equation (2.4). Equation (4.9) then uses the fact that the client is latency dominated, i.e.

ö! áf %
f

ö! + 1
, which means ö! + 1 %

1
ö!

and makes a substitution. Equation (4.10) is obtained

by realizing that ft ! pt is the number of non-allocated slots in the subtable t and it is bounded
as ft ! pt % ö! . The last expression is always not more than 0 as pt & 1 by definition of a
subtable.

" t = ft ! ö! ! 1 ápt (4.8)
% ft ! pt á( ö! + 1) (4.9)
% ö! ! pt áö! % 0 (4.10)

!

Since optimal models with fixed frame size use a loop over frame sizes in the range f...f to
find the frame size with the best allocated rate, two more computational time optimizations
are added. The first one is the criterion value propagation. Each time the solver finds any
better solution # with a new frame size, we save and reuse it with following frame sizes to
cut branching earlier. In the beginning # = 1 + $ with $ > 0. Thus, Constraint (4.11) is
added to ILP1.

#
i " P

#
j " F xj

i

f
% # (4.11)
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Finally, some frame sizes simply do not provide allocation granularity at the required
level, i.e. the discretization of the allocation for a given frame size is always bounded by

1
f
.

The fifth and final optimization prunes frame sizesthat will not result in feasible or better
schedules. The key idea here is to quickly check before starting the solver whether this granu-
larity possibly can improve the solution in terms of criterion value. In case Constraint (4.12)
does not hold, the frame size fk is skipped.

#
i " P

ù" i

fk
% # (4.12)



Chapter 5

Branch-and-Price Approach

The simple ILP model with fixed frame size was previously described in Chapter 4.
However, we are dealing with a problem that is difficult to solve, since the LP relaxation
is bad. Therefore, a column generation approach covered with a branch-and-bound method
seems to be a reasonable way to solve the considered TCP/LR problem optimally. First of
all, background on the branch-and-price algorithm is given. Afterwards, all the necessary
components with details of the algorithm are given.

5.1 Branch-and-Price Algorithm

Branch-and-price [13] is an optimal method to solve integer linear programming prob-
lems, which combines column generation and branch-and-bound approaches. The essence
of the column generation technique is to create partial solutions, columns, with help of a
so called sub-modelthat are combined into a complete solution by a master-model. In case
of the considered TCP/LR problem, columns are TDM schedules for a given client, which
are combined into a complete solution for all clients by the master model. An example of a
column for client P1 related to Figure 2.2 is shown in Figure 5.1.

!
"

!
"

!
" !

"
!

"
!

#
!

#
!

#

$

! "

Figure 5.1: Example of a column for a client P1.
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Figure 5.2: Outline of the branch-and-price algorithm [17].

The overall scheme of the branch-and-price method is shown in Figure 5.2. The master
problem is extracted from the original problem by Dantzig-Wolfe decomposition [13]. Initially
the master problem is considered to be an ILP, but during the column generation procedure
the relaxation of this problem is solved, i.e. all decision variables are considered to be
rational. The decomposition is performed to obtain a problem formulation that gives better
bounds when the relaxation is solved than when the relaxation of the original formulation is
solved.

Next, the notion of a restricted master problem takes place. It is impossible and un-
necessary to have all the columns (typically there are a lot of them) in the master model
column list. It is enough to generate only the promising columns at each iteration and due
to the sub-model construction it is possible to tell whether or not better solution exists. The
promising columns, from the objective function point of view, are those that have the least
possible number of allocated slots and these slots are distributed in a desirable manner, i.e.
the slots are not already assigned to other clients in existing chosen columns. Thus, as the
master model works only with a restricted number of columns, it is called the restricted
master model. To find promising columns and reduce the objective function, a sub-model is
solved. This involves constructing a new column that has a negative reduced cost, which is
influenced by number of allocated slots in the column and by a particular slot assignment.
Formally, reduced cost is the amount by which an objective function coefficient would have to
improve before it would be possible for a corresponding variable to assume a positive value
in the optimal solution. To start the branch-and-price algorithm, initial feasible columns
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that only have to be valid for individual clients should be generated beforehand.
If the sub-model is able to find a column with some negative reduced cost, indicating that

the solution can potentially be improved, the column is added to the master model column
list and the next iteration of the column generation algorithm starts. Otherwise, due to the
properties of the reduced cost value (see [13]), the given solution is optimal for the master
model. Then the obtained solution of the master model is checked on integrality. In case
all the required decision variables are either 0 or 1, it is a candidate for being an optimal
solution to the initial ILP problem (ILP1), and node is closed. If not, branching takes place
and new run of column generation starts after some branching decision, explained later.

Each node in a branching binary tree contains a sequence of branching decisions, made
earlier. In our case, the branching decision is defined by which slot is allocated/not allocated
to a particular client. Thus, there is a partial slot assignment in each node, i.e. which slots
are and are not allocated to which clients. Moreover, in every node an upper bound U on
the criterion is known. In the beginning, it is set to some large value and each time a better
integral solution is found, the upper bound is updated. The upper bound is required for
cutting in nodes. It is done in the following way: each time the column generation procedure
completed in Step 7 of Figure 5.2, the lower bound, which is the resulting optimal value
of the relaxed master model, is compared to the upper bound. In case the lower bound is
greater than the upper bound (in other words the current optimal solution is already worse
than the best found integral solution), it does not make sense to continue with this branch,
since adding new decision in the best case does not change the criterion value, and typically
it becomes worse. Furthermore, every time we branch, it is necessary to somehow exclude
columns that violate the decision just made, i.e. those columns that have not allocated a
required slot to a required client or vice versa in case the decision is negative.

5.2 Master Model Formulation

To formalize the master model of the branch-and-price approach, decision variables in-
dicating whether client i $ P uses a schedule given by column c $ $ , are introduced:

%i,c =

"
1, if client i uses column (schedule) c.

0, otherwise.

In case it would be an ILP model by itself, we would intuitively let %i,c be integral, but as
we are dealing with the branch-and-price technique, it is required to relax this condition and
to have 0 % %i,c % 1, i $ P, c $ $ . Thus, we can interpret this values as the "probabilities"
with which client i uses schedule c.

As it was said earlier, since the restricted master problem in the branch-and-price method
is considered, there is no need to enumerate all of the possible feasible columns for each client.
We start with an initial set of feasible columns and in each iteration new columns are added
to the master model. The way of initial column generation is described in detail later in
Section 5.4.

Minimization of the total allocated rate in case of the branch-and-price method is for-
malized in the objective function:
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Minimize :

#
i " P

#
c" ! vi,c á%i,c

f
+ M $á

!

j " F

yj , (5.1)

where vi,c is the cost (the total allocated rate), associated with schedule c; M $ is some suffi-
ciently large number. Note that index i is put only for unification in vi,c , and is technically
not required here, since the total cost is the same regardless of which client uses the sched-
ule. Variables yj allow initial columns to create schedules, in which more than one client can
be allocated to a single slot if the schedules/columns are combined. We call this situation
overlapping. It is pretty important as it is not always possible to find any feasible solution
in reasonable time. These variables are multiplied by M $ to provide a dominating penalty
for overlapping schedules that ensures that they are weeded out quickly.

The master model comprises only two constraints. The first one, Constraint (5.2), com-
putes how many columns allocate the same slots and reflects it in variable yj . If any yj

is non-zero, the solution is not feasible yet, as there exist at least two clients that share
the same slot. By adding the sum of them to the criterion value, we push each slot to be
allocated by maximally one client, eventually guaranteeing a feasible solution. The variables
aj,c are in essence schedules of the columns in $ . It takes value of 1 in case column c has
allocated slot j and 0 otherwise.

!

i " P

!

c" !

aj,c á%i,c % yj + 1 , j $ F. (5.2)

The second and last Constraint (5.3) forces the solver to choose at least one column for
each client to make sure its requirements are satisfied, or in case of the relaxation the sum
of probabilities of following column c for allocation for each client must be greater than or
equal to 1. Certainly, this sum in the optimal solution of the initial problem is always 1, as
criterion minimization pushes this down. This trick relaxes the search space and results in
a slightly lower computation time, which was proven experimentally.

!

c" !

bi,k á%i,c & 1, i $ P, (5.3)

where

bi,c =

"
1, if column c is created for client i.
0, otherwise.

Note that these variables are necessary in the model, since every client has its own re-
quirements and a schedule (column), created for one client, may not satisfy the requirements
of another one.

5.3 Sub-Model Formulation

As previously explained, the sub-model generates new columns for each client in such a
way that reduced costs of these columns are at least negative in the general case and minimal
in the used version of the approach. Thus, the criterion is the reduced price of the column
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and the constraints are basically the same as in the simple ILP model (ILP1), but omitting
client indices. Since we are searching for a feasible schedule that potentially improves the
solution for one client, there is no use in having i indices.

Firstly, the dual ILP to the master model is created and shadow prices (values of dual
variables) are extracted to use as the criterion in a sub-model. Note that the procedure of
creating a dual problem formulation to an ILP does not contain design decisions, but follows
straight-forwardly from the formulation of the initial ILP [14]. The dual ILP is what allows
one to estimate how far the current solution is from an optimal one, which is one of the
main reasons one knows when to stop even if all possible columns were not generated yet.
Having &j , j $ F as the dual variables for the set of Constraints (5.2) and ' i , i $ P for
Constraints (5.3), the dual problem to the master model is formulated as:

Maximize : !
!

j " F

&j +
!

i " P

' i . (5.4)

with respect to

!
!

j " F

aj,c á&j + bi,c á' i % vi,c , i $ P, c $ $ , (5.5)

&j % 10, j $ F (5.6)

&j & 0, ' j & 0 j $ F (5.7)

Meanwhile, the reduced cost equals to the value given dual solution violates Constraints (5.5)-
(5.7). However, the column generation procedure of the sub-model can influence only Con-
straints (5.5), since the dual variables & are given in advance by the master model. Therefore,
we consider only its violation. Hence, the criterion minimized in the sub-model is formulated
in terms of the master model variables in (5.8):

Minimize :
!

j " F

aj,c á&j + vi,c ! bi,c á' i . (5.8)

Note that aj,c are simply xj from ILP1 for the column we are searching for, for a given
client. Index c does not mean anything in the sub-model as a new column is created. At the
same time vi,c is the cost of a schedule we are looking for, vi,c =

!

i " P

!

j " F

xi,j , i.e. its number

of allocated slots. Values of the dual variables &j and ' i are extracted from the master model
after a run (after Step 4 from Figure 5.2). Finally, bi,c is always 1 in the sub-model, because
the sub-model is always generating columns for the given client. Therefore, the sub-model
has the following criterion:

Minimize :
!

j " F

xj á&j +
!

j " F

xj ! ' i . (5.9)

As a matter of fact, the last term ' i is a constant, it is used only to check whether the
obtained schedule has a negative reduced price. Consequently, the sub-model tends to find
a schedule for a given client, i.e. to find xj , j $ F . The constraints copy constraints of
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ILP1 omitting index i . Constraint (5.10) states that the bandwidth requirement must be
fulfilled, Constraint (5.11) computes points in time of the worst-case provided service line
and Constraint (5.12) guarantees satisfying the service latency requirement for a given client.

f!

j =1

xj & f áö! (5.10)

r j %
(k! j ) mod f!

l= k

xk , k $ F, j $ F (5.11)

r j & ö! á(j ! ö!) , j $ F. (5.12)

Moreover, all optimizations except the first one (4.6) from ILP1 are used for the branch-
and-price method as well. The first optimization, the bound on minimal number of allocated
slots, does not help much, since we are looking for a schedule of a single client.

5.4 Details of the Branch-And-Price Approach

The branch-and-price method requires specification of many details and each of them
may influence computation time a lot. In this section, all the details are explained.

First of all, the important decision is how to choose a variable to branch. Branching on
the master model variables is not effective in this case, since they are not decisive enough
and they are constantly being added to the column list of the master model. We branch on
the slot to be allocated or not to be allocated by the client. Thus, two parameters for the
branching decision must be set, which client allocate to which slot. The procedure looks the
following way:

1. Choose maximal %i,c $ (0, 1). The intuition under choosing the column with the
highest probability is that it should be a good column, therefore it is a reasonable
decision to follow its assignment. Note that it is senseless to pick the column with
%i,c = 1 for the reason that it cannot introduce any new integrality to the solution.
Client i $ and column c$ are chosen.

2. Considering slots from left to right in column c$, i.e. first j = 1 , then j = 2 and so on,
check whether:

(a) column c$ allocates slot j to the client i $ (ai !

j,c ! = 1 );
(b) slot j is not scheduled yet in the branching for any client;

Whenever both conditions hold, slot j $ = j is chosen for branching and then the
procedure stops.

3. In case we are at the end of the TDM table of column c$ and there is no slot to look at
anymore, the column with the second largest value of %i,c $ (0, 1) is considered, then
the third one etc. Finally go to 2.
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Branching uses a depth-first search considering positive decisions earlier, i.e. branching
goes first to the branch where slot j $ is allocated to the client i $ and only then to the branch
where it is not. This branching scheme allows obtaining feasible solutions early, since we go
for assignments with high %i,c .

Furthermore, since an initial solution is allowed to have overlapping columns due to
Constraint (5.2), there is no strict requirements on this initial set of columns. In this work,
the creation of initial solutions is done by calling the sub-model n times. In the beginning,
the shadow prices are set to 0 and a column for the first client is generated by the sub-model.
Then, 1 is added to those shadow prices whose slots are allocated by the first column. For
instance, if the first obtained column allocates the first slot, 1 is added to the corresponding
shadow price. The general rule is given by Equations (5.13) and (5.14):

&1
j = 0 , j $ F (5.13)

&i
j = &i ! 1

j + xi
j , j $ F, i $ P (5.14)

where i indicates the client considered and simultaneously iteration of the initial columns
generation. Therefore, for each client, we are trying to allocate slots that were not allocated
in the previously generated columns yet. This approach has its drawbacks, but it is relatively
fast and sometimes gives feasible solutions even at the beginning.

Thirdly, inside the column generation loop (Steps 3-5, and 9 in Figure 5.2) the sub-model
is launched for each client in a Round Robin manner. This means that it first searches for
a schedule for the first client, then for the second, etc. until a column for the last client is
found and afterwards a new iteration of the column generation starts. In case there are no
columns for any client (since all of them are excluded since they do not have the required
slots allocated/not allocated to the required clients) due to the branching decisions, new
columns are generated by the heuristic for initial column generation that was described
above. Whenever the heuristic is not able to generate new columns (even with positive
reduced price) for some client in the case described above, the chain of branching decisions
cannot offer any feasible solution, which results in closure of this node.

Moreover, for branch-and-bound cutting in nodes more effectively, we use problem-
specific information to set bounding condition to # > U ! 1/ f, where the discretization
step is subtracted as we want a better solution that can take the maximal value of U ! 1/ f.
Note that U is not the same as # #, since the earlier is the best criterion value, obtained
inside the model for some frame size and the latter is the best value between all the frame
sizes run so far.
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Chapter 6

ILP Model with Synthesized Frame
Size

So far the ILP model and branch-and-bound method with a fixed frame size are described.
However, it is reasonable to think that synthesizing a frame size into the model might be
faster than trying all possible frame sizes with ILP1. In this chapter the integer linear
programing model ILP2 with variable frame size is formulated and described.

6.1 Model Formulation

The model is based on a cluster representation of schedules. It means that for each client
i $ P a sequence of clusters Ci = { Ci, 1 )* Ci, 2 )* á á á )*Ci,! i } is introduced, where #i is
the maximal number of clusters belonging to client i . For each cluster, the starting time bi,k

and processing time pi,k , the number of allocated slots in cluster k, both in terms of slots
are defined.

The concept of cluster is described below on an example. In Figure 6.1, one can see a
TDM table of size 10 with the cluster concept for the first client. Meanwhile in Figure 6.2,
the same schedule for two clients is shown with S representation (see Chapter 3 ). There
are two clusters for client one C1 = C1,1 )* C1,2 here. Each cluster is defined by its starting
time (b1,1, b1,2) and by its processing time (p1,1, p1,2). Thus, the starting slot of the first
cluster b1,1 = 4 and it has one slot, p1,1 = 1 . For the second cluster b1,2 = 7 and p1,2 = 4 .
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Figure 6.1: TDM with C representation.
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Figure 6.2: TDM with S representation.

With the defined concept of clusters, the model is formalized. The same objective func-

tion is considered, i.e. to minimize the total rate
#

i " P ! i

f
. However, since f is a decision

variable, the total rate in this model is formulated as
#

i " P
#

Ci,k " Ci
pi,j

f
,

and it is not a linear function. Therefore a new set of variables needs to be introduced.
Variables zq $ { 0, 1} , +q $ { 0, 1, á á á, f ! f} select the frame size f such that:

zq =

"
1, if f = f + q.

0, otherwise.

The optimization problem is defined as follows:

minimize # , (6.1)

where # is defined by Constraints (6.2)-(6.17). The following constraints are satisfied:
Equation (6.2) defines the size of the TDM table. Due to Constraint (6.3), only one

frame size is possible.
f =

!

q"{ 0,1,ááá,f! f}

zq á(f + q), (6.2)

!

q"{ 0,1,ááá,f! f}

zq = 1 . (6.3)

The set of Constraints (6.4) is a "linearization" of our criterion, where M is a sufficiently
large number. The first addend is simply the criterion of ILP1 considering the frame size of
f = f + i . The second addend, (1 ! zi ) áM , makes constraints for all the frame sizes, but the
one it is, invalid by pushing the value on the right side to a very large number. Thus, there
are f ! f +1 Constraints (6.4) and only one of them is valid, as it is given by Constraint (6.3).

# &

#
j " P,k" C pj,k

f + i
! (1 ! zi ) áM, +i = { 0, 1, ..., q} (6.4)

Note that ILP2 is based on the three main sets of variables: bi , pi and oj,l
i,k . Variables bi

and pi were defined in the beginning of this chapter and oj,l
i,k defines the order of clusters of

different clients:

oj,l
i,k =

"
1, if cluster Ci,k is scheduled before cluster Cj,l

0, otherwise,
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i, j $ P : i ,= j ; Ci,l $ Ci ; Cj,k $ Cj

Next, Constraint (6.5) interconnects start time, the number of allocated slots and the frame
size

bi,k + pi,k % f, i $ P, Ci,k $ Ci . (6.5)

Practically, Constraint (6.5) means that a cluster cannot go beyond the end of a TDM table.
Furthermore, another set of binary variables yi,k $ { 0, 1} , i $ P, Ci,k $ Ci is introduced,

indicating whether pi,k = 0 , or in other words whether it is a dummy cluster. This notion is
introduced since it is not possible to predict an exact number of clusters, thus some clusters
are unused in the solution, i.e. they have pi,k = 0 .

yi,k % pi,k % yi,k áM, i $ P, Ci,k $ Ci . (6.6)

Thus, in case pi,k is equal to zero, yi,k must also be 0 and 1 otherwise.
Moreover, within the same client, clusters are required to be scheduled one after each

other. In case of dummy clusters, it is necessary that the starting time of the next cluster is
equal to the completion time of the previous one since their processing time is zero. On the
other hand, in case of a real cluster, free space between two real clusters must be at least
one slot by definition of a cluster. Two clusters without space is one larger cluster.

bi,k + pi,k + yi,k +1 % bi,k +1 , i $ P, Ci,k $ Ci . (6.7)

Constraint (6.8) pushes start time of dummy clusters to the completion time of the
previous cluster.

bi,k +1 % bi,k + pi,k + M áyi,k +1 , i $ P , Ci,k $ Ci . (6.8)

Finally, clusters of different clients are required to be scheduled in a non-overlapping man-
ner as well. Thus, each one must be scheduled before or after another, not simultaneously.
Variables oj,l

i,k help to define the order of scheduling. In the case cluster Cj,l goes before
cluster Ci,k in the TDM table, Constraint (6.9) holds, otherwise Constraints (6.10). Con-
straints (6.9), (6.10) check for each pair of clusters which one is first.

bi,k + pi,k % bj,l + M áoj,l
i,k , i $ P, j $ P : i ,= j ; Ci,k $ Ci , Cj,l $ Cj . (6.9)

bj,l + pj,l % bi,k + M á(1 ! oj,l
i,k ), i $ P, j $ P : i ,= j ; Ci,k $ Ci , Cj,l $ Cj . (6.10)

The bandwidth requirements are handled in the set of Constraints (6.11).
!

Ci,k " Ci

pi,k & ö! i áf, i $ P. (6.11)

The service latency is computed according to the subtables algorithm [5]. We compute the
total number of slots fi,j , allocated and non-allocated, in each subtable and there are two
cases: whether it is the first cluster for a client (6.12) or not (6.13). In case it is the first
subtable in our schedule, it is necessary to compute its fi,j looking at the end of the schedule,
meantime other cases are treated by looking to the previous cluster of the same client.

fi, 1 = f + bi, 1 + pi, 1 ! (bi,! i + pi,! i ), i $ P (6.12)
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fi,k = bi,k + pi,k ! (bi,k ! 1 + pi,k ! 1), i $ P, k = { 2, 3, ..., n} (6.13)

The local latencies and offsets of the subtables, introduced in Equations (2.3) and (2.4),
correspondingly, are computed in Constraints (6.14) and (6.15):

L i,k = 1 + fi,k ! pi,k ! ö! ! 1
i , i $ P, k $ C (6.14)

" i,k = fi,k ! pi,k áö! ! 1
i , i = 1 , ..., n, k $ C (6.15)

Finally, the service latency can be computed according to Equation (6.16). Each equation
for a client i considers a situation, where the start subtable is r and the end subtable is r + j .
Note that for each client there are r áj Constraints (6.16), which provides us with the
maximum value over all starting and ending points.

! i &
r + j ! 1!

t= r

(" i,t mod ! i ) + L i, (r + j ) mod ! i + (ö! ! 1
i ! 1),

i $ P, j $ C, r $ C (6.16)

The service latency requirements must be satisfied by Constraint (6.17):

! i % ö! i , i $ P. (6.17)

6.2 Optimizations of Computation Time

Similarly to the previous model, the optimizations are crucial to improve the computation
time. One of the most important issues in this model is to effectively set the maximum
possible number of clusters#i for each client. The naive solution could be to use #i = f/ 2 for
each i $ P , since there should be at least one empty slot between two non-dummy clusters,
which leaves us f/ 2 possible clusters in the worst case. However, this value could be improved
by considering the minimum possible number of allocated slots for each client ù" i , i $ P :

#i = min( f/ 2, f !
!

j " P

ù" j + ù" i ) (6.18)

Firstly, the maximum number of slots, potentially free to be allocated to a client is computed
by adding the maximum number of potentially free slots to the minimum number of allocated
slots for this client. In case this number is greater than f/ 2 it cannot happen, so the maximum
possible number of clusters is reduced to f/ 2. It is a valid upper bound since by summation
of minimal number of slots that a particular client requires and the maximum number of
potentially non-allocated slots in the table, we compute the maximal possible number of
slots, available for the client. There are no other possible slots for allocation of the client.
Lastly, each slot is assumed to become a cluster of its own and thus the number of clusters
is bounded.

The second optimization is assigning higher priority in the branching scheme in the solver
to more important variable f. Intuitively, in comparison with other variables this one has the
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highest impact on the computation time of the solution - changing number of slots makes
the solver to start from the scratch in comparison with, for instance, changing a starting
time of a cluster.

Since symmetry is an even more significant problem in this model, a simple constraint to
prevent symmetry in dummy clusters allocation is introduced by the set of Constraints (6.19).
There is not only rotational symmetry here, but also every permutation of the dummy
clusters for a given schedule results in an equivalent solution. Recall that variables yi,k

identify whether or not a cluster is dummy, thus the set of Constraint (6.19) pushes all of
the dummy clusters to follow the non-dummy ones, reducing the symmetry.

yi,k & yi,k +1 , i $ P, Ci,k $ Ci (6.19)

Similarly to ILP1, Constraints (6.20) and (6.21) that bound rotational symmetry in slot
allocation are used. Generality is not lost here since an arbitrary number of slots for any
client can be allocated in the end of the TDM table as it is not required for the last cluster
to finish not later than in the slot f ! 1 unlike other non-dummy clusters, that have to be
allocated at least 1 slot ahead. Similarly to ILP1, w is the client with the minimal required
slots to allocate, i.e. the same as in Equation (4.7).

bw,1 = 1; (6.20)

pw,1 = 1; (6.21)

As it was done in ILP1, non-promising frame sizes are discardedby Constraint (6.22).
This time decision variable f is present in both sides of the constraint. If the frame size is less
than the sum of minimum possible required slots over all the clients, then it is not possible
to find any feasible solution with this frame size.

f &
!

i " P

ù" i (6.22)
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Chapter 7

Heuristic Frame Size Filtering

The considered NP-hard TCP/LR problem was formalized earlier along with two optimal
ILP models and the branch-and-price method. Although a significant number of computation
time optimizations were introduced for each of the methods, ILP1 and B&P still require quite
long time to iterate over all the frame sizes, when more clients with larger frame sizes are
considered. In order to deal with this problem, two heuristic approaches are presented below.

The naive approach to find the optimal frame size is to iterate over some range. A more
refined, however not optimal, approach is to choose promising frame sizes and to run the
solver only for them. The main difference between the presented heuristics is how many and
which of the frame sizes are explored.

7.1 K-heuristic

In Algorithm 1, one can see the first heuristic, called the K-heuristic. The algorithm
requires two inputs, the set of frame sizes, F , to be explored and an integer number K that
defines number of frame sizes out of |F | candidates to be tested with the solver on a model.
The output is an ordered set F $ of K selected frame sizes. The goodness, g, of all the frame
sizes in F is evaluated first. As it can be seen from Line 3 of the algorithm, the notion of
goodness is defined as a measure of quality of a given frame size in terms of discretization.
Frankly speaking, goodness for a given frame size is computed as an overallocation due to
bandwidth requirements. Similarly to the computation time optimization in the Chapter 4,
it computes the total amount of overallocation due to discretization. The next step sorts
the set F in ascending order based on the computed goodness, gi , on Line 5 and returns the
ordered set F $, which are the K first elements of the sorted set F .

As it was already said, the K-heuristic does not necessarily provide us with the optimal
solution. The reason is the latency-dominated instances behave unpredictably as they may
need additional slots to satisfy their latency requirements. Thus, it may happen that the
K-heuristic discards optimal frame size(s) to reduce computation time. However, as shown
in the experiments Chapter 8, the loss in terms of criterion value is less than a percent and
the computation time is 85% of the optimal iterating approach on average.
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1: Inputs: F ; K $ N, K % |F |
2: for all fi $ F do
3: gi =

!

j " P

' f áö! j ( / f áö! j

4: end for
5: sort F ascending based on gi

6: F $ = F [1 : K ]
7: Output: F $

Algorithm 1: K-heuristic

7.2 KL-heuristic

The second heuristic aims to reduce the computation time of K-heuristic even more by
preferring small frame sizes with potentially smaller solving time. Algorithm 2 presents the
way the KL-heuristic works. Just like the K-heuristic, the KL-heuristic takes as an input set
of frame sizes F to explore and an integer number K . The difference lies in the L parameter
that plays an important role. Firstly, on Line 2 of the algorithm the K-heuristic is used
to obtain the ordered set F $ of frame sizes with the best discretization. Afterwards the set
F $ is sorted in an ascending order of frame sizes. It continues on Line 4 by taking L first
elements of the set F $ and sending it as an output. This behavior results in that smaller
numbers, providing possibly slightly worse discretization, are preferred over larger numbers
with typically higher computation time. As a matter of fact, computation time grows in
an exponential manner with growing frame sizes. Frequently, preferring smaller frame sizes
results in increasing criterion value, although because of its lower computation time it is
possible to choose how fast the solution should be versus how much one can sacrifice in
terms of criterion value.

1: Inputs: F ; K, L $ N, L % K % |F |
2: F $ = K-heuristic(F, K )
3: sort F $ ascending based on f
4: F $$= F $[1 : L ]
5: Output: F $$

Algorithm 2: KL-heuristic

However, in spite of a substantial speed up of the heuristics due to reduced number of
considered frame sizes, it is not theoretically guaranteed to always solve faster than the opti-
mal approach with iterating. Filtering of frame sizes causes it by not considering some frame
sizes that can be useful in terms of criterion value propagation, introduced as an optimiza-
tion for ILP1 and B&P. Overlooking promising candidates may require larger frame sizes
to be evaluated without a good cutting point, # , to bound the solution space. Nonetheless
experimental results show significant reduction of the computation time with the described
heuristics.



Chapter 8

Experimental Results

This section experimentally evaluates the proposed models ILP1, B&P and ILP2 with
heuristics for solving the considered TCP/LR problem. It begins with the experimental
setup, followed by three experiments.

8.1 Experimental Setup

Two sets of 500 synthetic use-cases, one with bandwidth-dominated use-cases and one
with latency-dominated use-cases, are used for experiments. The reason to provide the
experiments for two completely different types of use-cases is to show the impact of the
requirements on the computation time of the algorithm and at the same time evaluate the
quality of the heuristics, which are focused more on bandwidth-dominated use-cases since
they are based on the quality of the discretization. The process of generation of both latency-
and bandwidth- dominated use-cases is described below.

In order run many use-cases in a reasonable time, the number of clients is set to 4.
Therefore, it remains to generate bandwidth and latency requirements for both sets of use-
cases. Bandwidth requirements are generated such that the total required allocated rate is
distributed uniformly in [0.8, 0.95] for the bandwidth-dominated set of use-cases and [0.35,
0.5] for the latency-dominated set. Particular bandwidth requirements for each client are
distributed uniformly between 5% and 40%, where in case the last client has less than 5%
of the total load, the use-case is discarded and a new one is generated.

As far as the service latency requirements are concerned, they are generated as
1

( á!
,

where for the bandwidth-dominated set ( $ [0.7, 1.0] and latency-dominated use-cases have
( $ [1.5, 3.5]. Moreover, if the minimum possible total load for latency-dominated use-cases
due to the latency requirements is outside the interval [0.7, 0.9], computed with maximal
frame size (f = 64), the latency requirements for this use-case are discarded and new ones
are generated.

Experiments were performed on a computer equipped with AMD Phenom II X4 945 pro-
cessor (3.0 GHz, 4 cores) and 8 GB memory. The ILP1 and ILP2 models were implemented
in IBM ILOG CPLEX Optimization Studio 12.6 and solved with the CPLEX solver. The
B&P model was implemented in Java 7.3.1 using CPLEX concert technology.
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8.2 Experiments

Three experiments are presented in this section. The first experiment evaluates the
trade-off between the criterion value and the computation time for ILP1 with and without
the two heuristic frame-filtering methods. This experiment shows how much computation
time is saved versus how much the criterion value increases with the heuristics. The second
one shows the behavior of the K- and KL- heuristics for different K and L values in order
to provide us with an intuition which values of heuristics parameters are reasonable. In the
last experiment, the results of the heuristics and ILP2, bounded in time, are compared to
demonstrate which approach is better. Bounded time is achieved by setting a time limit in
the solver after which it presents the best solution found so far.

8.2.1 Comparison of optimal solution and heuristics

The first experiment evaluates the trade-off between the computation time and the crite-
rion value of the optimal ILP1 model and the two heuristic filtering algorithms. ILP1 initially
finds the optimal frame size by iterating over all sizes in the range f = { f = 1 , ..., f = 64} .
This range is reasonable in terms of computation time and has a reasonable cost in terms
of hardware implementation. The K-heuristic considers only the best frame size (K = 1 )
and in the KL-heuristic the settings (K = 10, L = 5 ) are used. Other values of K and L
are evaluated in the following experiments. Moreover, the results of these experiments are
compared with the commonly used continuous allocation strategy [2], [3], [4].

The results of experiments on 500 bandwidth-dominated use-cases are shown in Fig-
ure 8.1. The criterion value (blue) and the computation time (red) of the experiments are
presented there. Because the computation time significantly differs for distinct use-cases, the
logarithm of the computation time in milliseconds is shown on the right y-axis. ILP1 iterat-
ing over all frame sizes and with the K-heuristic and KL-heuristic were run on the same set
of use-cases. All three methods successfully solved all 500 use-cases. As expected, the figure
shows that the optimal approach provides the lowest criterion values, it runs approximately
2 hours though for all use-cases. For the heuristic approaches, we see that the K-heuristic
requires less than 34%(around 39 minutes) of the computation time of the optimal approach
and sacrifices just 0.5% of the allocated rate. The KL-heuristic shows the following results:
the median of the criterion value is roughly 3% worse compared to the optimal approach,
while the results are computed in 1.5% (2 minutes) of the total time.

Figure 8.2 shows the results for latency-dominated use-cases. Compared to the bandwidth-
dominated set, the computation time is generally higher in this experiment, requiring ap-
proximately 20 hours for 500 use-cases. A possible explanation of this fact could be that
latency-dominated use-cases are harder to solve, since if the client has higher bandwidth
requirements with relaxed latency requirements, it is quite simple to find a good schedule, so
the nodes in the branch-and-bound algorithm would be cut very efficiently later. In case the
requirements are dominated by service latency requirements, collisions appear repeatedly,
which causes necessity to over-allocate slots for some clients, generally resulting in a more
difficult decision process. The K-heuristic shows a similar distribution of the computation
time as the optimal approach: it loses less than 1.5% of the criterion value, while using ap-
proximately 3% (37 minutes) of the computation time. However, in 1 use-case out of 500 the
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Figure 8.1: Criterion value / computation time trade-off for the bandwidth-dominated use-
cases. ILP1 with and without heuristics.

K-heuristic was not able to find a feasible solution. The KL-heuristic results in a 3% increase
of the criterion value of the optimal approach and it uses only 0.04% of its computation time
(36 seconds). In 6/500 use-cases KL-heuristic failed to find a feasible solution.

Although it is possible to use B&P for this experiment, it requires a lot of improvement
before it starts to have a reasonable computation time. The branch-and-price method was
tested on the first 5 latency-dominated and first 5 bandwidth dominated use-cases from
this experiments. It provides the optimal solution (the same as ILP1 gives), but it runs
significantly longer than ILP1. For bandwidth-dominated use-cases it took more than 2
days to compute it (versus less than a minute with ILP1). For 5 latency-dominated use-
cases even going to frame size f of 64 was extremely long, thus it was bounded to the frame
size f of 50 and it is more than 3 days versus approximately 40 seconds for ILP1. From
the computation time analysis that were done on B&P follows that a possible reason is a
huge amount of nodes in the branch-and-bound algorithm. Hopefully, processing one node
for a longer time with other optimization methods, such as a tabu search, coupled with the
sub-model and solving in the upper nodes not to the optimum, but close to it, will help to
significantly reduce number of nodes in branching tree. Another possible optimization is to
use another branching scheme, i.e. to pick slot and client to branch differently.

From these experiments, we draw the following conclusions: ILP1 finds optimal solutions
by iterating over all the frame sizes, but it takes a relatively long time to do so. In contrast,
the K-heuristics and KL-heuristics provide us with near-optimal results in only a fraction
of the time required to find an optimal solution. The continuous allocation algorithm, in
comparison, only found a solution in 36/500 use-cases for the bandwidth-dominated set and
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Figure 8.2: Criterion value / computation time trade-off for the latency-dominated use-cases.
ILP1 with and without heuristics.

149/500 for the latency-dominated set. Moreover, out of 185 cases where it found solutions,
24/185 instances provide the same allocated rate (equal to 1) as our heuristics and all other
are worse. This suggests that the usefulness of the continuous allocation strategy is limited.

8.2.2 Evaluation of K and L values

While in the first experiment fixed values of K and L were used, it is valuable to see the
difference of particular K and L settings in terms of computation time and criterion value.
For this purpose, the 1000 use-cases from the previous experiments were rerun with different
K and L values and the average criterion value and computation time are compared.

Figure 8.3 shows the results for the K-heuristic. One can see that the computation time
grows linearly with the K value, which is expected due to the nature of the K-heuristic. It
often chooses larger frame sizes in order to get better granularity, resulting in approximately
the same computation time for each new value of K. The criterion value shows a convergence
towards the optimal value (red dotted line), which is guaranteed to finish by K = f. It is
noticeable that smaller values of K provide good results for the small number of clients.
Note, however, that larger number of clients can increase the effect of discretization, making
it worthwhile to consider larger values of K for more clients.

The results of the KL-heuristic are presented in Figure 8.4 with K value fixed to 10 and
L value going from 1 to 10. Unlike the K-heuristic, the computation time seems to grow
exponentially with L value, which can be intuitively explained as the KL-heuristic chooses
L smallest frame sizes out of the K best ones and run them in increasing order. The next
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Figure 8.3: Average criterion value and computation time of K-heuristic for different values
of K .

noticeable detail in the figure is that the criterion value with growing L approaches the
optimal criterion value at a lower pace than in the case of the K-heuristic and convergence
theoretically is only guaranteed for K = L = f. The key advantage of the KL-heuristic that
it gives the solution with reasonable loss in the criterion value faster than the K-heuristic.
For instance, the KL-heuristic with K = 10 and L = 8 provides a better solution than
the K-heuristic with K = 3 , while both require approximately 10 seconds on average per
instance.

8.2.3 Comparison of heuristics and ILP2

Although ILP2 is an optimal approach, it takes significantly longer time to provide an
optimal solution than the optimal approach with ILP1 (hundreds to thousands times longer).
For this reason, we bounded time of each use-case to be less than 100 seconds. This value is
obtained as approximately the maximum (not considering outliers) value for a single instance
to run with the heuristics. The ILP2 is compared to ILP1 with the filtering heuristics since
there is a chance that it finds a reasonable solution quickly but takes long to find an optimal
one.

Figure 8.5 shows the results of experiments on 500 bandwidth-dominated use-cases that
were used in the previous experiments. Basically, the results of the K- and KL- heuristics
are the same as in Figure 8.1, they are just shown to enable comparison with ILP2 in the
same figure. In 13/500 use-cases, ILP2 was not able to find any feasible solution during 100
seconds. The results for unsolved use-cases are not included to the statistics. Figure 8.5
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Figure 8.4: Average criterion value and computation time of KL-heuristic for different values
of L with K = 10.

shows that ILP2 provides approximately the same solution (the median value for both is
0.92) as K-heuristic in terms of the criterion value, however, in a significantly longer time,
97 seconds versus 4 seconds on average for one use-case.

The results for the 500 latency-dominated use-cases can be seen in Figure 8.6. A feasible
solution was not found in 83/500 use-cases during 100 seconds. For this set of use-cases, it is
obvious that ILP2 does not provide lower criterion values even with more computation time.

In conclusion of the experimental evaluation, note that the scalability of the presented
approaches is an important issue. The provided experiments only consider smaller problems
with 4 clients. The reason of choosing this size of instances is that just the first experiments
require a day. It is important to use many instances for the evaluation, since there are large
differences between different instances. However, it is not a scalability problem since one
instance takes less than 83 seconds on average, which is not particularly long for a product
under development.
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Figure 8.5: Criterion value / computation time trade-off for the bandwidth-dominated use-
cases. ILP1 using heuristic frame filtering and ILP2.

Figure 8.6: Criterion value / computation time trade-off for the latency-dominated use-cases.
ILP1 using heuristic frame filtering and ILP2.
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Chapter 9

Related Work

A lot of works, related to the TCP/LR problem have been published in the real-time,
system-on-chip and scheduling communities. We continue by discussing these works with a
focus on non-CPU resources, which is the main focus of this thesis.

Firstly, works from the real-time and system-on-chip communities are reviewed. In [16]
authors propose a TDM configuration methodology that heuristically determines and op-
timizes bus schedules in order to satisfy the response time requirements of task graphs.
Unlike the approach proposed in this thesis, the authors consider coarse-grained schedules,
i.e. those that work with slots of fixed or variable duration that is typically much longer
than a single resource access. Meanwhile, here a slot is just a single resource access and it is
called fine-grained arbitration. The main disadvantage of the coarse-grained arbitration is
that by prolonging the slot in terms of clock cycles, the service latency increases, resulting
in impossibility to create a feasible schedule for some requirements. The second main dif-
ference between [16] and the proposed approach is that they rely on application information
about when requests are delivered, while we provide LR guarantee that is independent of
the application model.

Other methodologies for configuration of TDM arbiters are proposed in [18, 19, 20]. These
works deal with slot allocation in contention-free TDM networks-on-chips. They find a global
TDM schedule for all clients through a network such that each client always has consecutive
TDM slots along the path from source to destination and the schedule satisfies latency and
bandwidth requirements. The key difference is that scheduling along multiple resources is
involved. Besides, it depends on the problem of path finding in the network. Additionally,
similarly to [16] all these approaches are heuristic and the results are not compared to the
corresponding results of optimal approaches.

An optimal configuration technique for multi-channel memory controllers that uses ILP
is presented in [2]. It contains TDM slot allocation to satisfy requirements, but the proposed
approach is limited to continuous slot allocation and assumes a given frame size. However, it
was experimentally proven in Chapter 8 that the continuous allocation strategy in the best
case over-allocates and more often it is not able to provide any feasible schedule.

It was already mentioned in the proof of the complexity theorem in Chapter 3 that the
two most related problems from the scheduling community are the periodic maintenance
scheduling problem (PMSP) [10] and the pinwheel problem [8]. PMSP is just a special
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case of TCP/LR, where the bandwidth requirements, ö! i , are in the following relation with

service latency: ö! i , requirements: ö! i =
1

ö! i + 1
. Moreover, equidistant schedules are always

required, # %
!

i " P

ö! i . Generally, it is not possible to use solutions of PMSP problem for

TCP/LR, since it is not clear how to transform bandwidth and latency requirements for
TCP/LR to service intervals l in PMSP, i.e. because PMSP is a special case of TCP/LR,
not the other way around.

As far as the pinwheel scheduling problem is concerned, although it does not require a
perfectly equidistant schedule, it has a different notion of latency requirements. The pinwheel
scheduling problem expects each client to be allocated at least once for some amount of
time steps. Satisfying the pinwheel conditions do hence not necessarily mean satisfying our
bandwidth and latency requirements.



Chapter 10

Conclusions and Future Work

This master thesis presents three approaches to configure resources shared by Time-
Division Multiplexing (TDM) arbitration. A guarantee on bandwidth and latency require-
ments of real-time clients is provided and at the same time total allocated rate of a TDM
table is minimized to allow non-real-time clients to have as high performance as possible.
The considered problem requires both the size of the TDM table and a slot allocation to
clients to be determined. The problem is formalized and shown to be NP-hard. Further-
more, three optimal models, based on integer linear programming (ILP) are presented to
solve it. Two of them (ILP1 and B&P) consider the frame size to be given, resulting in
iteration over frame sizes in some interval to find the best one, while the other (ILP2) syn-
thesizes the frame size. However, requiring iterations, the presented approaches take long
time to solve the problem optimally for large problem instances. We address this problem
by presenting two frame-filtering heuristic algorithms, the K-heuristic and the KL-heuristic,
to find promising candidate frame sizes that require some sacrifice in total allocated rate,
but reduce computation time.

The experiments show that ILP1 significantly outperforms the commonly used continuous
allocation strategy in terms of utilization and the heuristics provide reduction of computation
time of 20% on average, sacrificing less than 3% of the criterion value. Moreover, comparison
between ILP1 and ILP2 demonstrates a clear advantage of the earlier in terms of computation
time. As far as the heuristics are concerned, the K-heuristic typically results in a smaller
number of candidate frame sizes to perform well, although larger ones to achieve a good
discretization, while the KL-heuristic needs a larger number of explored smaller frame sizes.
As a result the K-heuristic provides a better criterion value in a longer time than the KL-
heuristic, thus providing distinct trade-offs.

Future work involves optimization of the B&P approach. Experiments show that the
number of nodes in the search tree is very large in comparison with other already refined
known versions of B&P method for other problems. Hence, the future possible optimizations
focus on reducing the number of nodes by adding heuristic algorithm(s) inside each one. The
other possibility is to generate more than one good column during each iteration of column
generation algorithm, since we lose a lot of time to find the only column. Combining using
a heuristic and generating more than one column might significantly reduce the number of
nodes in the branching tree. The third possible improvement is to change the branching
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scheme. Good choice of a branching scheme is important and influences computation time
a lot.
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