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ABSTRACT

This thesis examines the possibility of using the TurtleBot3 Burger and YAKINDU
Statechart tools to teach application programming for embedded systems. This is done
by comparing these new tools to the Lego Mindstorm EV3 and Mathworks Stateflow,
which were previously used to teach in this context. Development to test the new tools
is described. In the development, a ROS 2 interface that can be connected to the inter-
face of the generated code from YAKINDU is described. Over development the level
of abstraction that is suitable for using the TurtleBot in education in this context is de-
termined. This together will clarify the possibility of use of the Burger and YAKINDU
Statechart tools for education in application programming for embedded systems.
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Chapter 1

Introduction

In recent years, robotics has gained considerable attention for numerous applications.
As such, there is also an increased interest in education for robotics [7]. Currently, there
are several robotic platforms that can be used in education. This research focuses on
two of these robots, the Lego Mindstorm EV3 and mainly the TurtleBot3.

The EV3 is a platform designed for hands on education1. It is a commercial robot
and comes with visual programming software. Additionally, it can also be programmed
with programming languages. A main feature of the robot is that it is modular. The
EV3 can be edited to any configuration necessary for the type of education. The main
target audience of the EV3 would be children in primary or secondary school. On the
contrary, the TurtleBot32 is an open source robot that can be programmed using the
Robot Operating System (ROS)[9]. It has a focus group of high-school and up. Lastly,
the TurtleBot3 is also modular and can thus also be edeited to different configurations.
[7]

A course at the University of Amsterdam (UvA), Embedded software and systems3

(ESS), currently uses the Lego Mindstorm EV3 for one of the assignments in the course.
However, students ran into inaccurate sensors on the EV3. Therefore, students needed
to spend time refining parameters, which was not part of the intended learning outcomes
of the course. The goal of the assignment was to work together in a team to develop soft-
ware that satisfies its requirements on a given embedded platform. Thus, a replacement
was necessary, such that the students could focus on the core contents of the course.
TurtleBot3 may be the solution here.

The development of this assignment was done using statecharts[3]. Statecharts are a
visual formalism that can be used to represent how a complex system works. (In Chap-
ter 2.3 the technical details will be explained.) In the case of the assignment in the ESS

1https://education.lego.com/en-us/products/lego-mindstorms-education-ev3-core-set/5003400
2http://www.robotis.us/turtlebot-3/
3https://studiegids.uva.nl/xmlpages/page/2019-2020-en/search-course/course/73512
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course, Mathworks Stateflow4 was used. However, ROS is not usually programmed
using Matlab, the programming language Mathworks is based on. There is a package
for Matlab that enables ROS support. But, students had some problems with the Math-
works software. Thus, YAKINDU Statechart Tools (SCT)5 is used instead to enable
the TurtleBot3 to be used as a replacement. SCT does not have ROS support in the
base product. However contrary to Stateflow, there is a code generator for Python. This
generated code can be used to interact with ROS. Additionally, SCT’s code generator
can be customised or a new one can be developed by the user, if necessary. ROS does
have a package called SMACH that can be used to develop hierarchical state machines.
However, this does not support the statecharts formalism.

The TurtleBot3 needs to be tested if it can be used for education in this manner.
Therefore, the primary research question of this thesis will be : Can TurtleBot3 be used
to teach application programming for embedded systems using Statecharts? To be able
to answer this, three sub questions are used:

Q1: Can the new tools, TurtleBot3 and SCT, serve the same educational purpose as
the previous tools for the assignment in the ESS course?

Q2: Can problems with the previous assignment be solved by using the new tools?

Q3: What is a suitable level of abstraction for education using the TurtleBot3?

The first sub question, Q1, is the baseline of what needs to be achieved for the Turtle-
Bot3 to be used in this context. This will automatically fail if it turns out a statechart
tool cannot be connected to the TurtleBot3. Ideally Q2 is also true as the TurtleBot3 is
not just meant as a replacement, but also as an improvement. Q3 is catered towards the
technical details. To teach application programming for embedded systems, a suitable
level of abstraction needs to be used to enable students to focus on the materials of the
course. Students should not have to spend much time with things that are not part of the
course.

This thesis starts with a background to the assignment in the ESS course and all
the tools mentioned up until now. Then, in Chapter 2.3 there is a basic explanation
of the formalism of statecharts. Next, the applications of the TurtleBot3 in research is
discussed in Chapter 3 followed by the robot’s use in education. Afterwards, in Chapter
4, a method is proposed to give answer to all the questions previously stated. Then,
the development of all necessary tools to prove the questions is discussed in Chapter 5.
next, the results is discussed in Chapter 6, followed by the conclusion to the questions
in Chapter 7. Lastly, in Chapter 8, some future work is proposed.

4https://nl.mathworks.com/products/stateflow.html
5https://www.itemis.com/en/yakindu/state-machine/



Chapter 2

Background

In this chapter, the previous assignment is outlined as well as the tools used for it. Then,
the new tools are established. Lastly, an introduction will be given to the formalism of
statecharts.

2.1 The previous assignment: Traal-Rover
As the previous assignment is used as the base criteria, it is important to know what
tools were used and what the assignment consisted of. The tools for this assignment
were the Lego EV3 Mindstorm and Mathworks Stateflow. Firstly, the configuration of
the EV3, that can be seen in figure 2.1a, was as follows. in terms of sensors, it had 2
touch sensors facing up for manual control, a color sensor facing downwards, and an
ultrasonic sensor facing forward. For movement, it had a motor for the left and the right
wheel, and a motor to raise a flag. These motors also have sensors to measure their
rotation. Secondly, Mathworks Stateflow was used as the visual interface to develop
statecharts in. It would directly control the EV3 using Simulink. Further details of the
tools will not be used for comparison and are thus not important.

The previous assignment is used as a base for a new assignment that the TurtleBot3
is supposed to complete. The previous assignment was called Traal-Rover, in which
students had to make an embedded application using statecharts for the EV3 to explore
the planet Traal by following a path and logging what it encounters. Furthermore stu-
dents had to work in groups, as the goal of the assignment was to work together in a
team to develop software that satisfies its requirements on a given embedded platform.
Additionally, it was used to teach statecharts and how to work with them in a practical
manner. These were the main educational purposes and the TurtleBot3 burger should at
least serve this purpose to be used in the course.
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(a) The EV3 Configuration
(b) The physical model

Figure 2.1: Picture of the test setup for the Traal-Rover assignment for Embedded software and
systems 2019/2020 academic year

The Traal-Rover assignment consisted of 6 steps, which needed to be completed by
five components. The course that needs to be completed can be seen in figure 2.1b. The
first component is manual control. This component makes use of buttons and timing to
control the robot’s movement. It is meant to complete Step 1, which is driving manually
to an indicated area. Additionally, if the EV3 fails any step, manual control can be used
to bring the robot to the next step. After the Traal-Rover is driven to the indicated area,
Step 2 is to autonomously drive forward until it encounters a line on the ground, also
known as the path. It needs to turn in the correct direction and align with the path. Then,
it should follow the line. This is Step 3, which will mostly be completed by the second
component. This is the line following component, it makes use of the color sensor to
determine where the line is. These two components complete the base program of the
robot.

Furthermore, the next three components add additional functionality and each have
their own step. The third component is obstacle avoidance. Whenever there is an ob-
stacle on the path, the robot should avoid it along its left side. An obstacle can be
detected using the ultrasonic sensor in the front. The amount of obstacles also needs to
be counted. For the next component, further use is made of the ultrasonic sensor. The
tree counting component is used to count trees that are situated on the right side of the
path. These trees in the form of cups are always in a range of 30 cm from the line. The
last component, as well as the final step, is parking. When the Traal-Rover reaches the
end of the line, marked by walls on the left, right and front, it should stand still. When
the robot is stopped, it has to display the amount of obstacles and trees encountered on
the screen of the EV3. Lastly, it has to beep for one second and raise a flag.



This assignment was done by students in the first semester of the 2019/2020 aca-
demic year. After courses at the UvA, students get the possibility to deliver feedback on
a course and its individual parts. For each assignment in the course, the students rated
it on whether the assignment helped understanding the subject matter of the course, as
well as some other criteria. The rating for this is on a 5 step scale from strongly disagree
to strongly agree. This rating can be used as an indication of the instructive and thus
educative quality of the assignment. In this criterion, it is still rated positively with an
3.6/5, but it has the lowest of the assignments in the ESS course. Which is unfortunate,
because it is the most time-consuming assignment. This lower score is further elabo-
rated on in the open question at the end of the form. Students and teacher raised the
following problems with the Traal-rover assignment1:

• The Traal-rover assignment does not parallelize well. This results in that groups
often split up, some people working on the Traal-rover assignment, while others
are working on other parts of the course.

• Students spent much of their time optimizing sensor settings, instead of designing
logic. This happened due to the quality of the sensors for the EV3 being lower
than desired.

• Matlab/Mathworks Stateflow had crashed for students, both on Debian and ma-
cOS. Additionally, Matlab is not often used as the main programming language
of a course at the UvA.

These problems are not implicitly negative. For example, optimizing settings reflects
realistic challenges in the embedded domain, but at a certain point there is nothing
more to learn from this. Thus, if it is possible to replace this aspect of the project with
something more challenging or rewarding for the students, they can get more value out
of the time they spend on the course. Additionally for Mathworks Stateflow, because
it crashes and students do not often work with Matlab at the UvA, it is not the best
solution for this course. However, Mathworks Simulink and Stateflow is still the most
commonly used modeling software and thus would give students appropriate experience
for the domain [4].

2.2 The new tools
The new tools are meant to solve the problems with the previous assignment and im-
prove its educational quality. However the new tools should at least serve the same
educational purpose as the EV3 and Mathworks Stateflow did. The new tools are the

1According to the 2019/2020 academic year student feedback document and the teachers of the course
Embedded Software and Systems



TurtleBot3 Burger and YAKINDU Statechart Tools (YST). With the TurtleBot3, extra
tools are included. The operating system is the Robot Operating System (ROS), a set of
software libraries and tools for building robot applications, and a simulation model for
the TurtleBot is provided that can be used in Gazebo2.

The TurtleBot3 comes in three forms, the burger, waffle and waffle pi. As cost is a
consideration in education, the cheapest of the three was chosen. This is the TurtleBot3
burger, which has a Laser Distance Sensor(LDS) and an Inertial Measurement Unit
(IMU) as sensors. The burger version does not have a camera, but the waffle versions
do. As motors it has two actuators for the wheels and these can give information about
odometry.3 The last main feature is that TurtleBot is a ROS [9] standard platform.
ROS is a middleware based on a publisher/subscriber mechanism. Communication is
done through a network of nodes. These nodes publish or subscribe to topics, where
publishers publish a message and subscribers read that message using callbacks4. This
mechanism can be seen in figure 2.2. It also provides the first level of abstraction for
Q3, as there is no direct interaction with the TurtleBot3’s actuators. The interaction here
is with the message data types ROS uses for topics. For example speed and rotation are
set by sending a Twist message to the ROS velocity node and not by controlling each
actuator separately. Thus this is the lowest level of abstraction that can be achieved
using the TrutleBot3.

Figure 2.2: ROS nodes and topics

In the case of TurtleBot3, different versions of ROS, ROS 1 and ROS 2, are sup-
ported. The versions are slightly different in structure, as can be seen in Figure 2.3.
Thus, a decision needs to be made which one to use. ROS 2 is a new version of ROS
with the goal of adapting to changes in the robotics community, while still leveraging
what is great about ROS 1. However, currently ROS 1 is still used the most, as can be

2http://gazebosim.org/
3https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications
4https://index.ros.org/doc/ros2/Concepts/#conceptshome



Figure 2.3: ROS and ROS2 architecture overview [5]

seen in Figure 2.4. As of the time of writing both ROS 1 and ROS 2 are supported, but
development will slowly go more towards ROS 2. This means that using ROS 2 is more
future proof as education should use the newest versions of industry standard programs
as much as possible. However, there is less reference material available for ROS 2, thus
students might have trouble solving problems they encounter. However, this can also be
used to increase the amount of reference material by students asking questions on fora.
Lastly, ROS 2 seems more promising for use in real-time embedded systems than ROS
1 according to Yuya Maruyama et al [5]. Thus, it is better for the type of application
development the TurtleBot3 will be used for in this thesis. In conclusion, ROS 2 was
chosen for this project as it is best to educate students on this platform for embedded
systems.

ROS 2, contrary to ROS 1, does not have a master node, thus removing the sin-
gle point of failure. ROS 2 does not specify a threading model for an application.
Instead, publishing and callbacks for subscribers is done by spinning a node. Spin-
ning can be done in three ways in Python. Firstly the spin() function, which con-
tinues until the node is shutdown and breaks program flow fully. The second option
is spin_until_future_complete(), which executes until a provided future object is com-
pleted. Lastly, there is the spin_once() function, which will execute one callback, unless
a timeout expires before a callback is received5. In the case of this thesis, spin_once()
will be used to line up the execution of ROS and the statecharts. ROS 2 is all-together
difficult to master, so for education for embedded systems using statecharts, this will
need to be further abstracted for students to work with.

The simulation tools that will be used for ease of development, when there is little
time available with the physical robot, is Gazebo. Gazebo provides a 3D simulation

5http://docs.ros2.org/latest/api/rclpy/api/init_shutdown.html
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environment in which models can be added. For the TurtleBot3, this model is available
online and can be used in Gazebo with ROS fully working for all sensors. During the
time of this project Louis van Zutphen was testing the fidelity of this simulation at the
UvA. Any assumption about the fidelity in this report were based on results he gathered
[10]. Gazebo also has the option to import models made in other modelling tools. For
this project Blender6 will be used to create the complex models.

The last of the new tools is YAKINDU Statechart Tools (SCT), an Eclipse based
open source visual interface to develop statecharts. This tool was chosen because it has
a code generation tool that can generate Python and C++ code, which are the supported
programming languages for ROS. Additionally, Eclipse based tools are the second most
used modelling software in the embedded domain [4]. Thus, it is still useful experience
in this domain, just as Mathworks Stateflow and Simulink. YAKINDU is currently in
the beta of SCT 4.0. where the Python code generator is a standard part of the product,
whereas it was previously a YAKINDU LABS7 feature. Because Python will be used to
connect with ROS, SCT 4.0 beta was used for this project. While SCT can automatically
generate Python code, it does not have automatic code generation for ROS. Thus, extra
code will have to be written to pass data between the statecharts and the robot.

2.3 Statecharts
Statecharts are a visual formalism for complex systems that describes states and tran-
sitions in a modular fashion. Contrary to other modelling formalisms, statecharts are
meant to be part of a system and not just a visual representation. The visual formalism
of statecharts is meant enable clustering, orthogonality and refinement [3]. In Figure
2.5, a statechart for two traffic lights can be seen. The set up for these traffic lights
is one road with a crosswalk. The traffic lights are meant to provide save crossing for
pedestrians. This section will give information about the components of statecharts and
then do a walkthrough of the traffic light statechart.

The Traffic light statechart is a YAKINDU example and it displays the ability of
statecharts to ’zoom’ in to different layers of abstraction. For example, the most abstract
layer in this example is whether the traffic light is on or off. However, in a less abstracted
layers, it is depicted what actions need to be taken when pedestrian is waiting to cross
the road. Additionally, the details of what lights need to be on are in a less abstracted
layer.

6https://www.blender.org/
7https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/lab_projects



Figure 2.5: The statechart to control a traffic light from YAKINDU SCT examples

The flow in this example is based on timed transitions and event based transitions.
Transitions are displayed using arrows, and the type is displayed using the text along
the arrows. In this statechart, there are two events that can trigger transitions: onOff and
pedestrianRequest. On top off timed transitions and event transitions, statecharts can
also use conditional transitions. For example, instead of just an event, the pedestrian-
Request can be a button that records the length of time it is pressed. If it is not released
for longer than one second, beeps would start so blind people know if the light is on
green.

The light changes in this statechart happen upon entry or exit of certain states. This
is done by using the entry and exit actions of a state. States are represented by the



blue rectangles. The two types of states used in this example are normal states and
composite states. Composite states are states that contain different states in an area
inside them, such as the on and the off state. The last possible state, which is not used
in this example, is an orthogonal state. This is a composite state where more than one
internal statechart exist in different areas. It is used to compactly represent a state space
by allowing multiple statecharts to be active at the same time. It can be seen in Figure
2.6. In this statechart, a state in area A (C or D) as well as a state in area B (E, F or G)
are active at the same time.

Every area contains an entry point, which signifies where the internal statechart
starts. This is represented by a black dot with a transition to the starting state. If the
start is not the same for every entry, conditional transitions or histories can be used to
choose what state to start in. The history can be used to go to the last state that was
active at the level or lower levels of the entry. A history used to go to the last active state
before deactivation on the same level as the history is a shallow history. Additionally
a history that can go to lower levels as well is called a deep history. In Figure 2.7a
an example is given with a shallow history. When this composite state is entered, the
shallow history activates either state A or state B, because these are on the same level.
This is dependant on which of these states was the last to be active. However, if this
history would be a deep history, of which the icon can be seen in Figure 2.7b, there is
a difference. Instead of deciding between A and B to be active, the history takes lower
levels into account. Thus, the history activates either state C, D, E or F, as these are the
lowest level states. Say that before deactivation the composite state B was active, in B’s
area E was the last active state. If a shallow history is used upon the next entry, B will
be activated, which will activate F. However, if a deep history is used, instead of F, E
will be activated.

Knowing these formalisms, the flow of the statecharts in Figure 2.5 can now be
followed. The main entry is above the off state, when the program is executed the
off state will thus be entered. When the off state is entered, the program will switch
between the YellowOn and YellowOff state every 500 ms using a timed transition. This
will cause the yellow light of the traffic light to flicker. If the onOff event is triggered,
the state off will be deactivated and the state on will be activated, using an event based
transition. Upon entry in the composite state on, first all traffic lights will be red. Then
the traffic light for vehicles will have the yellow light on as well, followed by only the
green light being on. The statecharts will remain in this state until a pedestrian comes up
and pushes a button to cause the pedestrianRequest event. At which point the statecharts
will follow the cycle from the PedWaiting composite state, until it comes back to the
state second from the top, the StreetPrepare state. Then the cycle will restart and the
pedestrian light will be red, and the vehicle traffic light will be green again. If the onOff
event is triggered again the on state and all its sub-states will deactivate. Then the off
state is once again activated.



Figure 2.6: An orthogonal state in YAKINDU SCT

(a) A state containing a shallow history

(b) The symbols that can be
used for histories

Figure 2.7: Histories in YAKINDU SCT



Chapter 3

Prior Work

In this chapter, research using and research on the TurtleBot3 will be discussed. In
the first section, applications of the TurtleBot3 in research will be discussed. This will
sketch a picture whether the sensors are fit for the application of this thesis, as is nec-
essary to solve one of the problems. Additionally, it shows the area of research the
TurtleBot3 is normally used in. Then, previous research on using the TurtleBot3 for
education will be discussed.

3.1 TurtleBot3 in research
The TurtleBot3 was released in May 2017, since then it has seen some use in research.
The main area of research it is used in is autonomous vehicle navigation. It is, for ex-
ample, used by researchers to compare different types of navigation [8]. Additionally,
it can be used for Simultaneous Localization and Mapping to map a ventilation system
[6]. This shows that the TurtleBot3 is considered by researchers to have sufficient qual-
ity to be used for their research. Thus, the quality of the sensors and actuators should
also be sufficient to use in education in the context of autonomous navigation. Addi-
tionally, ROBOTIS has videos online that display the autonomous navigation qualities
using ROS packages and more1, such as the modularity of the TurtleBot3. In the con-
text of this thesis, the TurtleBot3 will be used for autonomous navigation. As this is the
focus within research using the robot, it also fits well in the application the TurtleBot3
is used for in this research.

1https://www.youtube.com/playlist?list=PLRG6WP3c31_XI3wlvHlx2Mp8BYqgqDURU
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3.2 TurtleBot3 in education
The TurtleBot3 has previously been tested on educational quality by researchers at the
KU Leuven [1]. Their motivation was to have hands on learning for a particular course,
and the TurtleBot3 stood out from the other options. In their case, students also did not
directly interact with ROS, just as the assignment in this research will be. However,
instead of working with statecharts, they worked with MATLAB code. A custom class
was created to abstract messages from ROS that the students could interact with. For
a course on embedded systems, students used this to create a PID controller. Students
that followed this course gave positive feedback, thus the TurtleBot3 proved to work
well for this setting. However, the project was more challenging than estimated, mainly
in the design. For this project, the extra abstraction layer Statecharts provide might be
able to take away some of the challenging aspects of the design. Thus, students could
then focus more on the application development.

The new tools are further advantageous in education because they are all open
source. The experience of working with open source tools is inherently beneficial. Open
source tools used in the industry give useful experience for students. It teaches them to
work with large and complex software. However, in contrary to purpose made tools by
teachers or familiar programming languages, there is a downside. Teaching staff will
need to provide adequate support to learn these tools as students are often unfamiliar
with them. [2]



Chapter 4

Method and Approach

To start testing the TurtleBot3, three steps of development need to be completed. The
first is to conceptually redesign the Traal-rover assignment to work with the new tools.
Secondly, a ROS2 interface is implemented. Thirdly, a statechart solution is created for
the assignment with the new tools.

The redesign of the previous assignment is used to establish if the new tools can
serve the same educational purpose, as required by Q1. As there are different sensors
and different development tools to work with, the assignment will need to have a dif-
ferent test setup. However, it should maintain the goals of the Traal-rover assignment.
Thus, if the TurtleBot3 is able to complete the Traal-rover assignment using a state-
chart solution, the new tools can serve the same educational purpose, as long as the
capabilities of the robot and the statechart tools are the same or better.

To have the tools work together a ROS2 interface needs to be developed and im-
plemented. This interface should be connected to the generated interface from SCT,
a visual representation of this can be seen in Figure 4.1. With this, there will be two
new layers of abstraction, that of the ROS 2 interface and that of what data is passed to
the SCT. The data that is passed to SCT determines what level of abstraction the stu-
dents are usually working on. Additionally, the ROS2 interface determines what level
of abstraction students could work with if they would look at the code. This step should
determine if a statechart tool can be connected to ROS 2, which is the minimum needed
to start testing for all questions. Additionally developing this should give insight on
what the minimum level of abstraction is at each layer.

18



Figure 4.1: This displays the connection the interface will establish

Lastly, the statechart solution for the new Traal-rover assignment will be made. This
will be done at the level of abstraction determined by what data is passed to SCT. By
completing this and working with the new tools as a student would, it can be determined
if the new tools solve the problems of the previous assignment. While developing this,
the level of abstraction will be further refined, such that students can get all data they
need. This will help answer Q3.

During these stages of development the tools can be further analysed by using them.
This should give further insight in the capabilities of the robot. Additionally solutions to
the problems with the previous assignment will be searched during development, thus
answering Q2. By working together on the robot with Louis van Zutphen while he is
testing the fidelity of the simulation [10], further information can be gathered about how
to work with the new tools as a group. Then, to complete answers to all sub questions,
the robot will be tested if it can complete the assignment. This will give the final answer
to if TurtleBot3 and YAKINDU SCT can be used for education of embedded systems in
the context of statecharts.



Chapter 5

Development

This chapter will describe the steps proposed in the method. It will start with the re-
design of the Traal-rover assignment. Then, the use of Gazebo for development will
be elaborated. Afterwards, the programs connecting ROS 2 and SCT will be discussed.
Lastly, an overview will be given of the statecharts used to complete the new assign-
ment.

5.1 The new Traal-rover assignment
The first step of development was to recreate the Traal-rover assignment. The main
focus was to retain the same challenges, but with the new tools. The largest hurdle here
is the difference in sensors on the robot. The TurtleBot3 Burger has just one sensor that
can relay information about the world around it, while the configuration of the EV3 had
several. Thus, all the capabilities of the sensors from the EV3 need to be handled by a
single sensor, or other solutions the new tools bring. To do this, as much data from the
laser sensor as possible needs to be used. The laser sensor mainly gives data for two
things: The distance to and the intensity of a surface. The distance will still be used
in the same manner as the ultrasonic on the EV3, however now at all 360 angles. The
intensity values will be used as a replacement of the color sensor. Using the intensities
the robot can differentiate between materials such as reflective tape and cardboard [10].
However, the intensity is also affected by the angle the laser hits the surface in, thus the
new setup needs walls that are perpendicular to the ground to use the intensity values in
this manner.

Knowing what the robot can do, the following will be the replacement for the 6 steps
previously mentioned in Section 2.1, while still retaining the five components and their
respective challenges. The first component is still manual control. However, because
the Burger has no buttons on the robot, the way of interacting needed to be changed. To
work on the TurtleBot3, secure shell is used to connect remotely. Thus, the terminal to
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execute code can also be run remotely. This enables the use of the keyboard to manually
control the robot. Therefore, instead of buttons, the robot will now be controlled using
the keyboard. The statechart implementation for this should have different behaviors
based on what keystroke is used. This will still complete Step 1, driving manually to
an indicated area. Additionally, it can still be used to manually drive if the robot fails a
step.

From Step 2 onwards, the test setup will be changed. After all, following a line is no
longer possible without a color sensor. Hence, the robot will no longer be following a
line, it will follow a wall instead. The robot will need to stay equidistant from this wall
at 30 cm. This will be the new way to define the path, which will be 30 cm left of the
wall. This means that Step 2 will still be driving forward until the path is encountered,
then turning in the correct direction to align with the path. Because of this change, the
second component used for Step 3 will no longer be line following. From now on it will
be called wall following. Nevertheless Step 3 will remain the same, as it is to follow the
path. This can then be achieved by using the distance sensor to continuously stay at the
same distance of the wall. This will again complete the base program of the robot.

The third component will once again be obstacle avoidance. Previously this was
done by checking with the ultrasonic sensor if something was on the path using distance.
However, if only distance is used, the TurtleBot3 will be incapable of distinguishing
between an obstacle and a wall. Obstacles will thus have to be marked in an additional
way. This is were reflective tape can be used to differentiate an obstacle from the wall
using intensity values. The rest of this component will remain the same. Obstacles still
need to be counted and need to be avoided on the left side. Avoiding the object on the
left side is even more important in this setup, as the rover would crash into the wall if it
tried to go right.

For the fourth component, intensity values will continue to be used. The tree count-
ing component can no longer happen in the way it previously did. After all, the right side
of the path now has a wall standing in the place where the trees would previously be. So
instead this component will be gem counting. Pieces of reflective tape will be affixed
to the wall. These will represent the gems and need to be counted. This makes further
use of the higher intensity values of reflective tape. The last component, the parking
component, at first glance seems to not need much change to the physical model. How-
ever, in testing, the floor area the model needs is larger than the EV3 because of the new
definition of the path. Thus, to save space, the last step now reads as follows: When
the robot is surrounded on the right and front with reflective tape, stop and display the
number of trees and obstacles. Instead of raising a flag and displaying on the screen
of the EV3, for the TurtleBot3 this will be printed in the terminal used to execute the
program. In Figure 6.4 the new model can be seen.



5.2 The use of Gazebo during development
During development, there was no continuous access to the TurtleBot3 Burger or a
room of sufficient size to have a physical model. Thus, Gazebo was used for most of
the following stages of development. The largest challenge here was how to correctly
handle the intensity values as Gazebo handles these different than the real robot [10].
In Gazebo the intensity is just set to one value per object and does not change based on
distance. In the real world intensity varies a more, because it changes based on distance
and has noise. Hence, as realistic intensity values as possible were given to the objects
to have as high simulation fidelity as possible. For these tests, several models were
created, two of which can be seen in Figure 5.1 and Figure 5.2. The white parts will
have an intensity value of 5000 W/m2 and are considered the wall, all other objects are
green. These have an intensity value of 11000 W/m2.

Figure 5.1: A Gazebo model used for development



Figure 5.2: Another Gazebo model used for development

5.3 The ROS 2 interface and connecting to SCT
The ROS2 interface is made by making a node class that can communicate in the ROS
2 network. This node will contain the subscriptions for the sensors, and the publisher
for the velocity and rotation. This node will filter ROS messages to only the basic
data. From the IMU this node contains data about the orientation in quaternions. This
node also has the lists of 360 values for the distance and intensity from the LDS. The
odometry is not used in this project, as the gyroscope gives all the information necessary
about location. Velocity can be published through this node in the x, y and z direction,
as well as rotation in all planes. In practice, however, only movement in the x axis
and rotation around the z axis will be used, because the robot moves in a horizontal
plane and does not have omnidirectional movement. The node is the second layer of
abstraction, which is kept as close to the layer of abstraction provided by ROS 2, such
that most data can be accessed. However, some data is still lost by reducing the ROS
message to only the basic data.

Next to the node class, there is a second class that will connect the TurtleBot node
and the SCT generated interface. For SCT complex data types such as lists are not used
often. Thus all the data that was in lists will need to be abstracted. For the imu, this
means that the quaternions will be made into Euler angles. Hence, for the statecharts
the pitch, roll and yaw can be used as data. The laser data will be abstracted in three
different manners. Firstly, the interface will contain the data from the lasers at the
0◦, 90◦, 180◦and 270◦angles. Secondly, there will be the minimum (min), mean and
maximum (max) values of all angles, as well as in what direction the min and max
are. Thirdly, the min, mean and max in a range around the 0◦(front) and 270◦(wall)
angles will be available to use for the statecharts. This class will also do some data-
preprocessing. For example, zero values from the LDS will be filtered out of the lists,



because it, for example, gives zero value when there is no surface within its working
range.

To publish the velocity from SCT to the TurtleBot, the statechart interface will con-
tain a speed and rotation value. These will continuously publish to the Burger as velocity
in the x direction and rotation around the z axis respectively. Additionally, this class will
also keep track of the keyboard controls for the manual control. When this class is exe-
cuted, it will continuously access data from both the ROS 2 interface and the statechart
interface. It also controls the cycles for both interfaces, every time the ROS node is
spun by spin_once(), the statecharts will run a cycle by using YAKINDU’s event driven
statecharts.

5.4 The statechart solution to the assignment
In Figure 5.3 an overview of the solution to the statecharts can be seen. It is color coded
by what step is completed with it. Red is the manual control, yellow is Step 2: driving
to the path, green is wall following, purple is obstacle avoidance, pink is gem counting,
and lastly grey is parking.

The manual control is made using an orthogonal state with five areas for when w,
a, s, d or x are pressed. It switches to autonomous driving when the m key is pressed.
These key presses are all event transitions. It goes through the yellow start procedure
only the first time a switch is made between manual and autonomous mode.

The autonomous state is once again an orthogonal state, one area for movement and
one area for non-movement. In the non-movement area, there is a small statechart that
keeps track of the gems. In the movement area, there are two main composite states.
The first composite state completes wall following by driving forward and constantly
realigning with the wall. The second composite state handles obstacle avoidance and
parking. For obstacle avoidance, it is a given that any obstacle is a rectangular cuboid.
Thus, moving around an obstacle can be done by turning 90 degrees and then driving
past the object several times, until the path is encountered again. Parking is done by
moving close to any surface with high intensity. Then, if there is a high intensity on the
wall on the TurtleBot3’s right it stops and finishes the program.

For more detailed pictures of the singular components, see Appendix A.
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Chapter 6

Results

6.1 Capabilities of the new statechart tools
Working in Stateflow and working in SCT is quite different. Both have access to all
states and transitions mentioned in Section 2.3, however the layout of the program and
representation of the states is different. The first difference is how the interface works,
that programs from outside the statechart and the statechart itself can interact with. In
Stateflow, this is represented by a table. However, in YAKINDU this is represented by
a code interface. This can be seen in Figure 6.1. In this code interface it is necessary
to give the variable type, such as integer, any time a variable is added. The reason the
difference in interfaces exists is probably because Stateflow is part of Simulink, which
will often be the only program interacting with the statecharts. In contrast SCT is based
around generating code for the user to connect to and use in a program. This is further
confirmed by that YAKINDU SCT can be directly launched, but to launch Stateflow,
first Matlab and Simulink need to be launched.
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(a) SCT
(b) Stateflow

Figure 6.1: Variables interface of SCT and Stateflow

The second difference between the two programs is the way states are represented
and added. In Simulink all states automatically become a composite state by just placing
another state into the state. However, in SCT states can not just be placed within each
other. To create a composite state an area in which states can be placed needs to be
added to a state first. Thus, the difference between a normal and composite state can
be easier identified than in Stateflow. Additionally, in SCT an orthogonal state can
be made by adding another area to a composite state. Adding an orthogonal state can
also be done directly from the quick menu. An orthogonal state in SCT can be seen in
Figure 2.6. In Simulink, creating an orthogonal state is done by going into the top menu
to change a state’s properties. The properties that switch a state between composite and
orthogonal are exclusive and parallel respectively. This changes the visual outline of
states within an orthogonal state to have gaps, while states within composite states have
continuous lines. These states within the orthogonal states serve the same purpose as an
area in SCT. In Figure 6.2 an orthogonal state can be seen. This statechart has the same
functionality as the statechart in Figure 2.6.

The last main difference is the way the histories work. In YAKINDU there are two
histories, a shallow and a deep history. Stateflow only has functionality for the first of
the two, a shallow history. In Figure 6.3 an example of a composite state using a history
is shown. This statechart has the same functionality as the statechart that can be seen in
Figure 2.7a.



Figure 6.2: Example of an orthogonal states Stateflow

Figure 6.3: Example of a shallow history in Stateflow

Continuing on with YAKINDU SCT in particular. During all development, the tools
have not crashed. The visual interface contains all statechart tools that are necessary
to complete the assignment, and has more tools if necessary. The code interface that is
generated by the Python code generator worked well. Apart from the fact that a relative



import was generated where it should not be used, as the document imported was in the
same folder. This resulted in the code not running in a terminal unless the dot of the
relative import was removed from the import. However, as the version used is still in
beta this will most likely be fixed in the final release. Because ROS was used for the
program, the normal Ubuntu terminal was used instead of the inbuilt terminal of SCT. It
was easier to keep track of both ROS and the statecharts by doing this. This is possible,
because code that could be run in a terminal is generated by SCT.

As mentioned in Chapter 5, SCT did require abstraction of lists. However, because
statecharts are used to program the assignment, this is not detrimental to the develop-
ment of code. Additionally, by having access to the code and the ROS 2 interface,
students can always create new variables and different levels of abstraction if that fits
their needs.

6.2 The final performance
The TurtleBot3 was tested several times to complete the assignment with the current
statecharts on both a physical model and a Gazebo model. In Figure 6.4 the physical
model and in figure 6.5 the Gazebo model are displayed. The Gazebo model has the
same intensity values for surfaces as the test models used to develop the ROS 2 interface
mentioned in Section 5.2. The model contains one object at the start of the path and two
gems on the walls, one between the two turns and one between the last turn and the end.
The area of the model has a length of 4.5 meters and a width of 2.5 meters.

Figure 6.4: The real world model used for testing



Figure 6.5: The Gazebo model equivalent to the real world model

The TurtleBot3 completed this course several times reliably in the real world, while
in Gazebo it had some trouble. In the real world, it consistently completed the course in
around 5 minutes and 20 seconds, counted all obstacles and gems correctly and stopped
at the parking spot. In Gazebo, however, it could take from 6 minutes to 7 minutes.
However, as mentioned before, the Gazebo model was not completely accurate. The
TurtleBot3’s sensor are quite accurate on shorter distances, while in Gazebo there is a
lot of noise [10]. This means that for the TurtleBot3 little fine tuning of threshold values
was necessary. However, in Gazebo more fine tuning will be necessary. Figures 6.6 to
6.8 display some of the stages of the robot executing the application.

While testing the new tools, Gazebo had some further troubles. When entering
the model editor while the TurtleBot3 model was active, it would fully crash the ROS
connected to the model. However, this could be fixed by a restart of the program. It
is also important to not use too complex models, as they can get CPU intensive, thus
slowing down simulation. In the real world however the application would still have
some problems with ROS. Sometimes no data from the IMU would be received by in
the first spin and the program would crash. However this can be solved by making a
separate node per subscription and waiting for information from all nodes before using
the data. This also reduces the risk of data from different sensors that do not belong
together used in the same cycle. For example the data from the IMU and the LDS
should be from around the same timestamp.

When comparing the statecharts for the new assignment, with the statecharts for the
old assignment, the outer levels retain a similar level of abstraction. But when ’zooming’
in on the statecharts, the solutions become different for the different tools. However,
they solve the same challenges. All levels of abstraction passed to SCT, mentioned in
the development, are used in the final statecharts in different situation where they were
appropriate.

The main difference between the TurtleBot3 and the EV3 is the level of abstraction



the sensors set on the program. The sensors for the EV3 are all specific for one purpose
and give a higher level of abstraction. The sensors of the Burger are used for multiple
purposes. This gives the robot less context, making it more general. Therefore the use
of certain abstractions given by more sensors is prevented.

As for working with several people on this assignment, during testing two people
worked together on the TurtleBot3. This worked well as multiple laptops can remotely
connect to the same robot. Additionally, the SCT statecharts can be easily shared across
devices by using a cloud code sharing application, such as GitHub1 and importing and
exporting the statecharts.

(a) Start in indicated area of the robot (b) Allignment with the path

Figure 6.6: The second step of the program

Figure 6.7: Avoiding an obstacle

1https://github.com/



(a) Counting gems at the tape

(b) The final parking position of the TurtleBot3

Figure 6.8: Counting gems and parking



Chapter 7

Conclusion and Discussion

To conclude, all sub questions need to be answered. However the basic question needs
to be answered first: Is it possible to work in a statechart context using the TurtleBot3?
The simple answer here is yes, but abstraction is necessary to complete it. This allows
us to test for the 3 sub questions set out to answer the main question.

7.1 Q1
First Q1 is answered. This is the base question to prove whether the TurtleBot3 and
SCT can be used to teach application programming for embedded systems using stat-
echarts. The first sub question is if the new tools serve the same educational purpose
as the previous tools for the Traal-rover assignment. The educational purpose of this
assignment is to develop software that satisfies requirements on a given embedded plat-
form in a group. The robot can complete the Traal-assignment in a similar manner as
the EV3, with statecharts of similar complexity and the same features solving the same
challenges. This addresses the part about developing software that satisfies require-
ments. Additionally, the assignment needs to be done in a group. As mentioned before,
the TurtleBot3 and YAKINDU both allow for sharing between several people. Thus,
this satisfies the second part of the educational purpose. This means that the new tools
serve the same educational purpose as the previous tools.

7.2 Q2
Q2 was if the new tools could solve problems students and teachers had with the pre-
vious assignment. The first problem was that the assignment does not parallelize well,
thus groups often split up. It is unclear if the new tools can solve this problem as this
remains to be seen when students work on the revised Traal-rover assignment. While
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the new tools do allow for collaborating, statecharts can be difficult to simultaneously
design in a university setting with larger group without real-time sharing capabilities.
Neither Stateflow nor SCT has this capability. If development is only done while there is
access to the robot, having real-time sharing would be a requirement for parallelisation.
However, as development for the TurtleBot3 can be done in simulation, simultaneously
working on the statecharts might not be necessary. Thus, it reduces the problems with
parallelisation.

The second problem was that students spent much of their time optimising sensor
settings instead of designing logic. This problem can be solved by having more accurate
sensors, which the TurtleBot3 has. Additionally the TurtleBot3 has less sensors, thus,
requiring less mastering of sensors. Furthermore, the materials of the test setup were
chosen in a manner that the intensity values have the least amount of overlap possible.
This will be able to limit the amount of adjustments needed to intensity threshold values
used to differentiate surfaces.

The last problem was that Stateflow would crash for several students. The new tools
did crash from time to time, as mentioned in Section 5. This was mostly in specific cases
that can be avoided, such as entering the model editor in gazebo while the TurtleBot3
model was active. Thus, crashes should happen less regularly than students had in
the previous assignment. Additionally, if crashes do happen, there is enough reference
material to solve problems, as all the tools are open source. So while the new tools
might not necessarily solve all problems, they are a step in the right direction.

7.3 Q3
Q3 was focused on the technical details of what is available within ROS 2, the developed
interface and mainly the SCT interface. The question was: what is a suitable level of
abstraction for education using TurtleBot3? In the SCT interface the level of abstraction
contains the min, max and mean of all laser data, a range of front facing laser and a range
of lasers pointed at the wall, as well as the roll, pitch and yaw. Lastly, the speed and
rotation can be controlled. This level of abstraction gives a clear goal for what students
should use and does not overcomplicate the assignment. Because the statecharts can be
made in a similar manner as with the EV3. Additionally the new tools grant access to
the code where the data is abstracted. Thus, even if the students need a different level
of abstraction, this can be created.

7.4 Additional Information
The TurtleBot3 brings additional improvements next to what was necessary to answer
the questions. First of all, SCT has more features for designing statecharts, while State-



flow had more general modelling features because it is part of Simulink. These new
features of SCT enable a more in depth use of statecharts. For example, a deep history
allows for more complex systems than a shallow history. The second improvement is
that everything is open source. As mentioned before, working with open source tools
is inherently beneficial. Additionally, this also allows the students to continue working
with the tools after the course has ended. Lastly, the experience with ROS 2 and an
Eclipse based tool can be used in future work as these are used in industry and research.

7.5 The Main Question
To conclude, the new tools have positively completed all sub questions. One of the
downsides is losing the experience with Stateflow and Simulink. However, SCT still
gives useful experience, as Eclipse based tools are the second most used modelling tools
in the embedded domain. Additionally, there are even more improvements next to what
the sub questions required. So, the TurtleBot3 can be used as a replacement for the EV3
in an assignment to develop an application for an embedded system using statecharts.
Thus, the TurtleBot3 Burger is a suitable platform to teach application programming for
embedded systems using statecharts.



Chapter 8

Future work

To fully test if the TurtleBot3 can be used for education, it is important to let students
use it. Thus to further quantify the results of this report, student feedback will need
to be gathered on the redesigned assignment. Additionally by using the new tools in
education, a more precise level of abstraction can be determined by what students need.
Furthermore, another possibility for future work is testing the TurtleBot3 for other edu-
cational purposes. The TurtleBot3 main area of interest is autonomous robot navigation
and it might be able to be used to educate students in applications, such as SLAM.
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Appendix A

Zoom in on the final Statecharts

Figure A.1: The manual component of the statecharts, as well as the second step
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Figure A.3: The object avoidance and parking components of the statecharts



Figure A.4: The gem counting component of the statecharts
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