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Introduction 1
Time after time, embedded systems are increasing their presence in our daily life. From
mobile phones to aviation, kitchen appliances to medical equipments and toy cars to
space shuttles, we depend upon embedded systems to lead our daily life properly. Their
application areas range from simple consumer applications to safety critical applications,
in which malfunctioning may result in severe consequences, such as loss of life. To prevent
mishaps from happening, devices are vigorously tested before putting them to actual use.
As verification is part of the design cycle, it increases the time-to-market and introduces
more expenses. Embedded systems in mission critical application domains enjoy the
luxury of a huge budget to spend on testing and longer design cycle. In consumer
electronics, in contrast, reducing time-to-market and design cost is determinant to the
success of a product. Some trends in embedded systems design and market, however,
tend to increase the complexity of system verification, thereby, raising verification effort,
design cost and time-to-market.

We start this chapter by highlighting some trends in System-on-Chip (SoC) that
are important to our work in Section 1.1. In section 1.2, statement of the problem is
presented. Section 1.3 explains the context in which this work has been done. This
introduction section is concluded with Section 1.4, where requirements from the solution
are pointed out.

1.1 Trends in Embedded Systems

1.1.1 Embedded System Market

Due to the fast growth of the consumer electronics, the Embedded System market has
attracted the attention of many manufacturers. A lot of them compete fiercely to man-
ufacture devices that have good value in the market. This puts a lot of pressure on each
manufacturer to be successful. The first key issue is coping with the dynamic market
and being able to satisfy user demand that continues to rise day by day [15]. Equally
important is a short time-to-market in releasing a product. Shorter time-to-market not
only reduces design cost, but also gives the products good price in the market. Thus it
is necessary for every manufacturer to reduce the design time of products.

1.1.2 Multiple functions per device

Driven by market convergence [19], between Telecom, Consumer Electronics and Com-
puters , it has become a common practice to incorporate multiple functionalities into a
single device. A white paper from the Economist Intelligence Unit [20], mentions iPhone
as a successful converged device.

1



2 CHAPTER 1. INTRODUCTION

... game-changing iPhone, which neatly combines a mobile phone, handheld
computer and a music player in one converged device.

This practice, for one thing, adds more portability to the devices, and then it makes
it possible to share some of the device components, such as processors and memories,
among different applications thereby reducing the total cost.

In a device with multiple applications, the set of applications that are active changes
from time to time. Each envisaged combination of applications that run simultaneously
on a device is called a use-case. The number of use-cases grows exponentially with the
number of applications included in the device. As each use-case must be verified, the
verification complexity also grows exponentially with number of applications.

1.1.3 Real-time requirements

As new applications continue to enhance the capability of embedded systems, many of
them are emerging with different real-time requirements. Based on their real-time re-
quirements, applications are categorized into Non Real-time and Real-time applications.
An application is said to be real-time if the usefulness of operations that comprise it
depends not only upon its logical correctness, but also upon the time in which it is per-
formed. In non real-time application, on the other hand, timing is not of concern as long
as the operations are logically correct.

Real-time Applications are further categorized into Soft Real-time and Hard Real-
time. In hard real-time applications, timing requirements are so strict that an operation
is useless, or may even have negative consequences, if it is not completed within the
deadline. Missing deadlines in hard real-time systems may lead to failure of the applica-
tion and, even, damage the surrounding. One example of hard real-time applications is
Fly-by-wire flight control, which uses electronic signals to measure a pilots input and to
control the aircraft [7]. The flight control must receive the pilot’s inputs and transmit ac-
tuation signals at a predetermined frequency. If it fails to meet the timing requirements,
the aircraft can become instable and lead to a crash.

Soft real-time applications also have timing requirements. However, occasional dead-
line misses are tolerated with impact on the quality of application only. For instance,
deadline misses in Video Decoder application lead to missing frames in display. But, the
consequence is limited to degradation in application quality.

Timing requirements in real-time applications , obviously, add another dimension to
system verification. Such systems require verification of timing behavior on top of the
trivial functional verification and, hence, lead to higher verification effort.

1.1.4 Modular IP Design and IP Reuse

One of the emerging methodologies in a System-on-chip (SoC) design is combining pre-
designed and pre-verified blocks - often called intellectual property (IP) blocks - on a chip
to increase design productivity [15]. An IP block can be software or hardware component
that is obtained from internal sources, or even from external vendors, in reusable form.
With this design approach, an SoC is built from small blocks that have well-defined
function and approach. The role of an SoC designer is, then, to integrate IP blocks on
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to a chip to implement a complex function. This design paradigm has benefit for IP
vendors as well as users. For IP vendors, it gives the opportunity to design components
that can be used by more clients so that the design cost is amortized. IP users, on the
other hand, benefit from reduced design cost and short time-to-market.

Although reuse is a viable approach to tackle the unprecedented complexity of current
SoCs, the associated verification problem is in some respects harder [15]. As mentioned
in the International Technology Road map for Semiconductors (ITRS) [8], while design
sizes have grown exponentially over time [16], theoretical verification complexity has
been growing double exponentially [15]. If the entire SoC were to be tested at once
without exploiting the structure of the building blocks, all possible verification states
would have to be considered and the complexity would be tremendous. The solution
is incremental verification, in which individual cores are verified once in isolation and
then the integrated system is verified under the assumption that each core is correct. By
doing so, the verification effort for each core is made reusable.

1.1.5 Resource Sharing

A SoC, usually, contains one or more IPs that can be used for multiple applications.
In such occasions, sharing resources becomes the economical approach. Memory units
and I/O devices are among resources that are often shared. Resource sharing is not,
however, without problems. This implicit interaction between applications alters their
temporal behaviors. In verifying real-time applications, it is necessary to conform that
the interference due to resource sharing does not lead to violation of timing requirements.
This, obviously, adds to verification complexity unless a mechanism is put in place to
share resources between applications in an interference-free way.

1.2 Problem Statement

Each of the trends discussed in the Section 1.1 relate to the verification effort in SoC
design. The market dynamics pushes manufacturers for new products and new features
more often than ever. With the remaining trends tending to increase complexity of
system verification, it becomes a big challenge to verify all requirements within reason-
able time frame and budget. However challenging it might be, system verification is
mandatory to ensure reliability of products and hence to sustain in the market.

The objective of this work is reducing system verification effort by removing implicit
dependencies between applications that arise due to resource sharing. When applications
do not have implicit dependence among them, they can be verified independently and
integrated later without requiring re-verification.

Consider a system composed of n applications, with the ith application having some
measure of verification complexity (e.g., number of reachable states, number of functional
coverage points) of vi. If the integration leads to interference among the applications, it
becomes necessary to consider the cross product [15] of all possible verification states.
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This results in a verification complexity of

n∏
i=1

vi (1.1)

which is exponential in n. The goal of this work is a resource sharing mechanism that
shields applications from interference from other applications so that individual appli-
cations are verified once in isolation and only system-level verification is required after
integration. The system-level verification is carried out under the assumption that each
application behaves correctly as was verified independently. This leads to a lower overall
verification complexity which amounts to

vsys +
n∑

i=1

vi (1.2)

where vsys represents the system-level verification effort. As can be seen in Equation
(1.2), the total verification effort grows only linearly as the number of applications is
increased. Another benefit of this design approach is incremental verification. The
verification process can be started earlier with the available applications without having
to wait for the whole application set.

1.3 Context

The context of this thesis is a SoC with multiple IP blocks interconnected with an on-
chip interconnect. Some of the IPs are processing elements, such as a DSP or general
purpose processor while others are resources; such as memory or VGA display that are
to be used by applications. Communication between two IPs is carried out via requests
and responses. One of the IPs (the master) generates request and the other IP (the
slave) responds by sending back responses. A request contains the command component
of a transaction and the data to be written (payload data) in case the request is a write
operation. Critical elements such as request address, request size and request type are

Master Slave

valid

accept

valid

accept

request

response

Figure 1.1: Components of a Transaction and Flow-Control

included in the command component. The response sent by the slave can be read data
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for read requests or information about the completion of a write operation for write
requests. The components of a transaction and the direction of signals involved are
shown in Figure 1.1. When a master sends a request, it informs the slave about the
validity of the request by setting the valid flag high. The slave then acknowledges by
setting the accept flag high if it is able to accept the request or indicates otherwise if
it is unable. Similarly, when the slave returns responses, it sets the valid signal in the
response path high. The master, then, indicates whether or not it is able to accept
the response. These handshakes between two communicating parties represent the flow-
control mechanism. The DTL protocol, which uses such flow-control mechanism and
used in our implementation is discussed in detail in Section 5.1.1.

When there are multiple links between the master and the slave, the communication
involves link-level flow-control at each hop. Figure 1.2 illustrates the link-level flow-

SlaveMaster

requ
est

resp
ons
e

Figure 1.2: Link-level Flow-Control

control involved as a master and a slave communicate with multiple hops in between.
As the number of IP blocks in a single SoC increases, it becomes difficult, if not

impossible, to satisfy the communication needs using ad-hoc means. Interconnect in-
frastructures such as busses, switches and network on chips (NoCs) provide an elegant
communication platform in a SoC [3]. Communicating IPs use the shared infrastruc-
ture to send request and responses. A virtual path in the interconnect that is used for
communication between a master IP and a slave IP is referred to as a connection.

Figure 1.3 illustrates an example SoC with three processing IPS (ARM, DSP0 and,
DSP1) and two resources (Memory and V GA). The example also demonstrates that the
memory is used by the three processing elements and hence represents a shared resource.
When there is a shared resource in the system, a resource sharing front-end is required
to arbitrate/ schedule access to the resource and that is the central issue in this thesis.

One or more applications, such as JPEG decoder or Audio Filter run on the system
to bring about the required functionality. When an application is loaded, the tasks that
comprise it, such as color conversion in JPEG decoder are mapped on to hardware IPs
in the system.

Mapping of two applications, a JPEG Decoder Application and an Audio Filter Ap-
plication, on to the system in Figure 1.3 is presented in Figure 1.4 as an example. The
JPEG decoder application is comprised of three tasks [5] - Variable Length DecodingVLD,
Inverse Discrete Cosine Transform (IDCT) and Color Conversion (CC). Similarly, the
Audio Decoder application has three tasks - Analog-to-Digital Converter (ADC) Filter
and Digital-to-Analog Converter (DAC). Communication between tasks of an application
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ARM

DSP
1
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Resource 
Sharing 

Front-end

request
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request
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Figure 1.3: A System-on-Chip

is carried out through connections between IP blocks.

VLD IDCT CC

JPEG Decoder Application

ARM DSP0 DSP1

Memory VGA

ADC Filter DAC

Audio Filter Application

Interconnect

Resources

Connections 

Tasks

Figure 1.4: Mapping of an Application on to an SOC

A connection that terminates at a target port of a resource is refered to as a requestors.
Each resource has a set of requestors, which correspond to a request path from different
IPs. For instance, the Memory port in Figure 1.4 has three requestors that emanate from
ARM, DSP0 and DSP1. The focus of this work is the elimination of implicit dependence
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between applications caused by interference while sharing a resource.

1.4 Requirements

The major requirement in the solution is isolating applications so that they can be
verified independently. In addition, the design has to feature state-of-the-art design
requirements, such as programmability and modular design. These requirements are
briefly discussed next one by one.

1.4.1 Composability

A system is said to be composable if both the functional and temporal behaviors of every
application are independent of how other applications behave. In a composable system
dependence between applications is eliminated both in time and value domains [2]. This
isolation is important because it enables incremental design and reduces complexity of
system integration and verification [9]. Composability simplifies the verification process
for the following three reasons [2].

• As applications are independent of each other, they can be designed, tested and
verified in isolation. This reduces system simulation time and makes the verification
process linear and non-circular.

• The verification process can be done incrementally and, can, hence be started even
before the complete application set is ready.

• Moreover, composability contributes to IP protection. Since verification of IPs can
be done in isolation, before the final integration, vendors do not have to share their
IP.

In a situation where a resource is shared, availability of the resource for one applica-
tion may depend on the behavior of other applications that use the same resource. If an
entire system is to be composable, resource sharing also has to be composable.

1.4.2 Programmability

When applications are started and stopped at run time, they create different use-cases.
Whenever there is use-case transition, requirements from applications are added to or
removed from the system. To effectively satisfy such changing demands, the system has
to be flexible. Flexibility is achieved by having some programmable parameters in the
system that can be changed at run time.

1.4.3 Modular Design

Instead of realizing a solution as a monolith, building it out of smaller functional modules
has benefits. First of all, the modules can be designed and modified independently
without affecting other modules. Hence parts of the system can be changed while keeping
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the rest intact. Another benefit is reusability, which reduces design time and time-to-
market. By creating individual blocks with specific functions, reusability of the design is
maximized. To facilitate reusability modules should be created with standard interfaces
to connect with other modules.

1.5 Contributions

The result of this thesis is a hardware block (resource sharing front-end) that eliminates
interference between applications as they share a resource. The following mechanisms
have been implemented to realize this function.

1. Mechanism to chop transactions into fixed size (Atomizer).

2. Mechanism to delay transactions and release them at a predefined time (Delay
Block).

3. Hardware Implementation of the Credit-Controlled Static-Priority (CCSP) Arbiter
[2].

4. Representation of time with circular cycle counter and associated mechanism to
compare time stamps.

5. Synthesis and testing of the resulting hardware for FPGA and ASIC (only Synthe-
sis).

The hardware overhead and the operating frequency of the resulting hardware has been
assessed, too.

1.6 Organization of The Thesis

The rest of the thesis is organized into nine chapters. We start by looking at related
works in Chapter 2. Then, in Chapter 3, we propose a solution to address the problem
stated. Our approach towards the solution and the proposed system architecture are
outlined there. The design of all architectural elements based on our proposed solution
is presented in Chapter 4 followed by implementation details in chapter 5. Experiments
and test results are presented in Chapter 6 followed by synthesis results in Chapter 7.
Analysis on hardware cost and operating frequency of our design is made there. The
thesis ends with conclusions in Chapter 8 and direction to future work in Chapter 9.
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A lot of work has been done with the aim of reducing system verification effort while
building complex systems. In [10], worst-case resource allocation is enforced to each
application during verification in order to account for maximal interference from oth-
ers. If a given user-level performance goal is satisfied with the enforcement, then the
system is considered to be able to perform equally well, or even better, during actual
use with the enforcement removed. This approach can guarantee better performance,
during deployment, only if the applications considered execute on the platform in a per-
formance monotonic manner i.e. if applications are known to perform better with more
service. However, in many cases, earlier service availability or higher service amount
than the guaranteed value does not necessarily result in better system performance [4].
For instance, timing anomalies are observed in multi-processor systems with out-of-order
processing [11]. Cases have been demonstrated in which a system performs better with
cache miss than with cache hit. Hence a system verified with enforcement is not guar-
anteed to meet requirements during deployment, when service may be available earlier
and/or with higher amount. Thus system verification requires system level simulation
which can take tremendous effort when many applications are integrated to the system.

Composability has been proposed in many works to reduce system verification cost.
In the automotive industry, for instance, the traditional way to achieve composability is
by not sharing resources between applications. With this approach, systems are designed
with federated architectures, where every function is served by a dedicated Electronic
Control Unit (ECU) [12]. As the units are not shared between applications, obviously,
there is no interference and hence the resulting system is composable. The cost of
systems without resource sharing, however, is prohibitively high for consumer electronics.
To circumvent the cost problem, integrated architectures are in use in the consumer
electronics domain, and even in the automotive industry [14]. To ensure composability
in integrated architectures, where resources are shared among applications, the resulting
interference has to be eliminated.

Despite difference in approach, the works in [9, 6, 2] propose composable system to
reduce verification cost in an integrated system. The Time-Triggered Architecture in [9]
proposes a two-phased design methodology to achieve composability. During architecture
design phase, components are specified in value and temporal domain. Communication
at the interfaces of the shared resource is statically scheduled. After validating the
constraints, the resulting components are used to build a composable system. As the
individual components are pre-validated, the resulting system incurs less verification
effort. This approach requires global notion of time and is limited to applications that
can be scheduled statically.

The CoMPSoC platform proposed in [6] employs local Time Division Multiplexing
(TDM) to bring about composability in a multi-processor SoC. With TDM, every ap-

9



10 CHAPTER 2. RELATED WORKS

plication is guaranteed access to resources during allocated slots of time and hence is
shielded from interference. With this approach, however, latency and bandwidth are cou-
pled. As a result, applications with low bandwidth requirement cannot be guaranteed
with low latency without overallocation of bandwidth. Many resources such as SDRAM
are scarce and have to be shared efficiently.

The composable resource sharing presented in [2], which is implemented in this work,
is based on latency-rate (LR) servers. By using different arbiters in the class of (LR)
servers, it makes it possible to provide greater service differentiation than in TDM [2].
For instance, an arbiter in this class that decouples latency and bandwidth can be chosen
to efficiently satisfy tight latency requirements. As this approach is the base for the work
in this thesis, it will be discussed in more depth in Section 3.
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3.1 Approach

When requestors share a resource, interference arises between them due to two major
reasons - Arbitration for service and effect on resource state.

• Arbitration: When multiple requestors seek service from the same resource, ar-
bitration is required to sequentialize the requesters. The result of the arbitration
depends on the set of requests waiting to be served and the scheduling policy. With
static-priority scheduling, for instance, the lowest priority requestor is deprived of
service as long as there are other requestors with higher priority.

• State of resource: Once a request has been admitted to the shared resource,
the actual service that it gets may depend on the state of the resource at the
moment. We can consider a case with a Synchronous Dynamic RAM (SDRAM)
to demonstrate such a dependence. Depending on the request served previously,
the SDRAM may have to go through read/write switch, write/read switch or no
switching at all. It may even require to refresh before serving the request at hand.
That means the waiting time for a request depends on the nature of requests served
previously. As there is a possibility for the previous request to be from another
requestor, this situation entails interference between requestors.

The effect of interference is reflected on the timing of responses and flow-control infor-
mation sent to each requestor. Figure 3.1 illustrates these paths of interference for two
requestors sharing a resource. First of all, the time at which a response becomes ready

Requester 0

request

response
Flow control

Requester 1
request

response
Flow control

Resource

Arbiter

Flow control

Flow control

Figure 3.1: Paths of Interference During Resource Sharing

depends on the time when the corresponding request is admitted to the resource. Then,
it matters how fast the request is processed. The time of admission is determined by

11
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the scheduling decision, which is made considering requests from other requestors, as
well. As a result, access to the resource is affected by the behavior of others. The state
of the resource, which, among others, is affected by the nature of requests served pre-
viously, determines the time at which responses are made available. The other path of
interference is through the flow-control mechanism. As shown in Figure 1.1, flow-control
signals represent critical information about acceptance of requests and availability of
resources. Requestors change their behavior in accordance with flow-control information
about state of the system.

In summary, resource sharing creates implicit dependence between requestors and
the resulting interference is reflected on the timing of responses and flow-control signals.
If resource sharing is to be composable, the amount of interference that each requestor
faces should not be affected by the behavior of other requestors.

We propose a resource sharing front-end based on the approach in [2] to eliminate
fluctuation in the timing of the two events - release of responses and generation of flow-
control information. Regardless of the actual time when responses are made available,
they are always delayed and released at a later time that emulates maximum interference
from other requestors, i.e., whether other applications are present or not and regardless
of their actual behavior, our solution always emulates their worst-case interference. Sim-
ilarly, flow-control signals are sent at a time that reflects maximum interference.

Arrival time
Actual scheduling

 Time
Actual Finishing

Time

Worst-Case
 Scheduling  Time

Worst-Case 
Finishing Time,

Time
(cycles)

tFWt SW

t ft st a

Delay in generation
of flow-control information

Delay in releasing 
responses

Figure 3.2: Timing of Events in the Resource Sharing Front-end

Figure 3.2 shows arrival time(ta), actual scheduling time(ts), worst-case scheduling
time(tSW ), actual finishing time(tf ) and worst-case finishing time(tFW ) for a request.
The worst-case values (tSW and tFW ) are computed considering the worst-case inter-
ference from all other requestors. From the figure, it can be seen that the request is
scheduled before the worst-case scheduling time (tSW ) and the responses are made avail-
able at tf , which is earlier than the worst-case finishing time (tFW ). However, in order
to absorb any fluctuation caused by change in behavior of other requestors, generation
of flow-control signals and release of responses is delayed until the worst-case scheduling
time(tSW ) and the worst-case finishing time(tFW ), respectively. The interval between
(ts) and (tSW ) represents delay in generation of flow-control information introduced by
the resource sharing front-end to absorb fluctuation caused by changing behavior of
other requestors. Similarly, the interval between (tf ) and (tFW ) represents the delay in
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releasing responses that is introduced by the front-end.
Since the generation of flow-control information and release of responses is always

delayed until a predefined time, each requestor obtains service that does not fluctuate
with the actual behavior of other requestors. This makes the system composable on the
level of requestors, which is sufficient to be composable on the level of applications [2].
With this approach, requestors are prohibited from using any slack (unused capacity)
that results from change in behavior of other requestors. It seems like waste not to utilize
slack, but being able to shield applications from interference while providing a guaranteed
service (both in time and value domains) pays off by reducing system verification cost.

Predictable Service
Our approach to bring about composability requires the resource to be predictable. A

resource is said to be predictable when the service that it provides can be bounded by
a known finite value. Arbiters in the class of latency rate (LR) servers [17] are used to
give guarantees on the service provided to each requestor.

With the LR model, service provided to each requestor is expressed in terms of two
values - service latency and service rate. Service latency refers to the amount of time
that a request has to wait in front of the resource before it is scheduled for service. Even
though the actual time of scheduling for a request fluctuates depending on the availability
of requests from other requestors, the state of the resource and the scheduling policy, LR
servers provide an upper bound on this waiting time, which is Maximum Service Latency
(Θ). The service rate, on the other hand, stands for the rate, such as the throughput of
a memory, at which a request is served after admission to the resource. Once more, the
actual service rate provided to a requestor can fluctuate depending on the momentary
state of the resource. However, with LR servers, the amount is lower bounded with the
Allocated Service Rate (ρ′) which is the minimum service rate that is always reserved for
a requestor [17].

The service curve in Figure 3.3 shows requested service along with provided service
and composable service. As can be seen from the curves, requests are served at an earlier
time that the worst-case scheduling time and at a rate higher than the allocated service
rate. But the composable service, which is represented by the bounds (Θ) and (ρ′), is
what every requestor obtains in our approach.
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Figure 3.3: Service Curve with latency-rate (LR) model

As mentioned above, predictability of the resource is a pre-requisite, in our approach,
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to achieve composability. Given a predictable resource, there are additional requirements
in order to ensure service guarantees. Either requests should have a known maximum
size or preemption should be allowed after a certain time. Restricting the size of requests
limits robustness of the solution. Such a restriction has implication on the domain of
applications that can be supported. The later approach, on the other hand, either limits
the solution to preemptive schedulers such as TDM or complicates the arbiter. Our
solution employs a third way that allows usage of any arbiter in the class of LR servers
while maintaining robustness [2]. Requests can be of varying size but they are split into
smaller pieces before they are scheduled.

3.2 Architecture

The front-end in our design, which is to be placed in front of the shared resource, is
presented in Figure 3.4. It comprises four major functional blocks - Arbiter, Request Bus,

Atomizer Delay Block

Arbiter

Atomizer Delay Block

Atomizer Delay Block

Resource Sharing
Bus

Predictable
Resource

Requestor0

Requestor1

Requestorn

valid

request

command
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Read data
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command
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Read data
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command

Write data
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Figure 3.4: The Proposed Resource Sharing Front-end.

Delay Block and Atomizer. The link between blocks is composed of request, response
and flow-control components. One of the links is shown in detail to make the request
and response components visible. Requests contain command component and data to
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be written and responses contain the data read. In each direction a pair of valid and
accept signals is used for flow-control.

As mentioned in Section 3.1, composability is achieved, in our solution, by delaying
responses and flow-control signals to emulate worst-case interference at all times. There-
fore, a hardware block, called Delay Block is dedicated to each requestor for the purpose.
Another important unit of the front-end is the Atomizer. It is responsible for chopping
requests into fixed size so that a variety of arbiters in the class of LR servers can be
used without imposing restriction on the size of request.

In the following chapters, the design (Chapter 4) and implementation (Chapter 5) of
the entire frontend are presented.
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In this chapter, the design of the entire front-end is presented. The design of the Atomizer
is presented in Section 4.1 and that of the Delay Block in Section 4.2. The design of
the arbiter and the Resource Sharing Bus, which contains the arbiter, is presented in
Sections 4.3 and 4.4, respectively. Finally, the configuration mechanism for the front-end
is presented in Section 4.5.

4.1 Atomizer

The function of the Atomizer is to homogenize requests before they enter the rest of the
front-end. It chops requests into smaller pieces called atoms. The Atomizer has the size
of atoms as a generic parameter to be chosen based on the resource. It is determined
by the access granularity of the shared resource. For instance, with a 32-bit static RAM
(SRAM), the size of an atom is chosen to be a word (4 bytes).

Chopping requests brings additional benefits to the design. Since all requests are
made to have similar size as they leave the atomizer, subsequent units of the front-end
(Delay Block, Resource Sharing Bus and Arbiter) can be simpler and more efficient. The
major operations in the Atomizer are discussed in Section 4.1.1, and then the architecture
is presented in Section 4.1.2.

4.1.1 Functions of the Atomizer

Chopping Requests:
This process is responsible for chopping requests and feeding them to the Delay Block.

Whenever the Atomizer receives a valid request and the Delay Block is ready to accept
requests, this process starts chopping incoming requests. The chopped requests are, then,
sent to the Delay Block one after the other. Requests contain command component and
data to be written in case of a write request. The command component holds crucial
information about size and address of the request. Hence, chopping a request involves
attaching new request size and appropriate start address to the command component of
each atom. The first atom has its start address the same as that of the original request.
The start address of subsequent atoms is, then, offset from that of their predecessor
by an amount proportional to the Chopped Request Size. In case of a write request, a
portion of the payload data is sent with each chopped request. Figure 4.1 illustrates a
request as it enters the Atomizer and the corresponding atoms produced after chopping.

If the request being chopped is expected to produce response, the size is recorded in
Request Size Buffer to be used later in the process of merging responses. For instance,
a read request is turned into a series of atomic read requests and the atomizer expects

17
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Figure 4.1: Requests Chopped by the Atomizer

responses corresponding to each atom to arrive one after the other. Hence, the request
size recorded here is required to count responses and identify the ones that belong to
each request.

Merging Response:
Since requests delivered to the resource are chopped, the resulting responses are also

chopped alike. The requestors, however, expect responses in accordance with the original
requests sent. Hence, responses are merged before leaving the front-end. This process
of the Atomizer is responsible for merging responses so that they match the size of the
original request. The original request sizes recorded in Request Size Buffer are used to
count and merge responses that belong to the same request. Merging read responses,
for instance, is equivalent to removing markers (indicators of the last response) from the
individual pieces and generating one for the whole group of responses that belong to
the same request. Figure 4.2 demonstrates an example in which responses of size 4 are
merged in to responses of size 8, 12, 1, ..., according do request sizes recorded by the
chopping process.
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Figure 4.2: Merging of Responses in the Atomizer

4.1.2 Architecture

As shown in Figure 4.3, the Atomizer comprises two major processes - one that chops
requests and another that merges responses. FIFOs are used for buffering requests to be
chopped.

Chop
Request

Merge
Responses

Request size Buffer

original
requests

Atomic responses

Atoms
(chopped requests)

merged
response

original
request
size

Figure 4.3: Architecture of the Atomizer
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4.2 Delay Block

The Delay Block is the core unit of our approach to bring about composability. It
absorbs fluctuations in the service provided to each requestor (latency and bandwidth).
As pointed out in Section 3.1, interference between requestors is reflected on the timing
of the following two events:

1. Time at which flow-control signals are sent when requests are accepted by the
resource.

2. Time, after acceptance of a request, at which the corresponding responses are sent
back to the requestor.

The time at which a request is accepted by the resource fluctuates depending on activity
of other requestors and the state of the resource. This determines generation of flow-
control signals. The time when responses become available depends not only on the time
of scheduling but also on the actual service rate offered by the resource.

To hide the fluctuation in timing of the two events, the Delay Block always delays
responses until the worst-case finishing time of requests, which reflects worst-case inter-
ference from other requestors. Similarly, flow-control information about acceptance of
requests is generated based on the worst-case scheduling time. Figure 4.4 illustrates the
delay processes along the response and flow-control paths. Computation of time stamps

Requester 0

Resource

Arbiter

∆
∆

Delay Block

Delayed 
flow control

Delayed 
response

flow control

response

Figure 4.4: Delay Processes in the Response and flow-control Paths.

that are used in the timing of these events is presented in detail in Section 4.2.2.
In summary, the Delay Block ensures that the scheduling time of a request and release

time of the corresponding response are not affected by interference from other requestors,
which is required in composable resource sharing.

4.2.1 Parameters

Before describing the operation of the Delay Block, it is important to define two crucial
parameters used in the timing of events - Service Latency (Θ) and Completion Latency
(λ). The value of these parameters is determined by the service guarantees provided by
the LR servers.
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1. Service Latency (Θ): This represents the worst-case amount of time that a
request waits in front of the resource before it is scheduled for service [2]. The
bound depends on the priority that the source requestor has at the shared resource.

2. Completion Latency (λ): This the worst-case amount of time that the resource
needs to serve a unit-sized request. The value depends on the service rate allocated
to each requestor, viz. λ = 1/ρ′ [2].

4.2.2 Timing of Events

In this section, the timing of some interesting events in the front-end is discussed. The
time line in Figure 4.5 illustrates the most outstanding points in time as a request passes
through the front-end to get service from a predictable resource.
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Figure 4.5: Important Events in serving a request

• Arrival Time (tka): is the time when the kth request has, fully, arrived in the
Delay Block and can be scheduled. This requires two conditions to be fulfilled.

– The request, along with the associated payload data, if any, should be buffered
in the Delay Block.

– The Delay Block should have enough space for responses, if any, corresponding
to the request at hand.

When these conditions are fulfilled, the time stamp is recorded as Arrival Time for
the request at hand.

• Actual Scheduling Time (tks): Once a request has fully arrived in front of the
resource, the time when it is admitted depends on the actual state of the resource
and , possibly, arbitration among other contending requests. This time stamp
represents the actual time when a request is accepted by the resource for service.

• Worst-case Scheduling Time (tkSW ): This refers to the worst-case time when
the kth request is accepted by the resource. The actual scheduling time depends on
state of the resource and availability of other requests. This time stamp, however,
is computed based on Θ and the arrival time. To bring about composability, this
worst-case time is recorded as scheduling time for requests and is used for timing
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of flow-control information. The value of this time stamp is computed according
to Equation (4.1) in Section 4.2.3. Note that it depends on the worst-case, and not
actual, behavior of other requestors.

• Actual Finishing Time (tkf): This is the time at which the resource finishes
serving the kth request and returns the corresponding responses, if any. The fin-
ishing time depends on actual scheduling time of a request and the actual service
rate. Hence, the actual behavior of other requestors and the state of the resource
affects its value.

• Worst-case Finishing Time (tkFW ): This time stamp represents worst-case fin-
ishing time for a request. Actual finishing time of a request depends on the actual
time when it has been admitted to the resource and the actual rate at which it
is served. To absorb fluctuations in actual values, this finishing time is computed
based on the worst-case scheduling time and the allocated service rate. Despite the
actual finishing time of a request, responses are, always, released at this worst-case
finishing time. Hence, this time stamp can also be referred to as Response Release
Time. The time stamp is computed according to Equation (4.2) in Section 4.2.3.

4.2.3 Computation of Time Stamps

The arrival of a request is validated when it has fully arrived in the Delay Block and
space has been reserved in the response buffer for the corresponding responses, if any.
This is the time that is taken as arrival time (ta) for the request. (The reason behind
reserving space for responses upon the arrival of requests is explained in Section 3.2.)
The worst-case scheduling time (tSW ) and worst-case finishing time (tFW ) are, then,
computed based on this arrival time. The worst-case scheduling time for a request is
either Service Latency (Θ) cycles after its arrival time or at the worst-case finishing time
of its predecessor, whichever is later [2].

tkSW = MAX(tka + Θ, t(k−1)
FW ) (4.1)

The second term in the MAX equation (Equation (4.1)) is the result of self-interference
because the scheduling time, in this case, is determined by the worst-case finishing time
of a previous request from the same requestor.

The worst-case finishing time for responses is always computed as λ cycles after the
worst-case scheduling time of the corresponding request [2].

tkFW = tkSW + λ (4.2)

4.2.4 Flow-Control

In addition to its effect on the time when responses become available, interference be-
tween requestors leads to fluctuation in the timing of flow-control signals. The flow-
control signals refer to acceptance of requests and responses into the Delay Block. A
new request can be admitted into the Delay Block if there is space in the request buffer.
Space is freed up in the request buffer when a request is accepted by the resource.
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Therefore, the flow-control signal, which tells availability of space in the request buffer
depends on the actual scheduling process and hence on other requestors. To eliminate
such interference, flow-control signals, in our approach, are generated based on worst-
case scheduling. Figure 4.6 compares generation of the actual flow-control signal and
that of the composable flow-control signal.

Request FIFO Accept request
(actual)

FIFO not full

Free up spaceRequest can be accepted

(a) Actual flow-control signal

waiting requests count Schedule request
(worst-case)

Count less than limit

Free up spaceRequest can be accepted

(b) Composable flow-control signal

Figure 4.6: Generation of flow-control signal (a),(b)

The front-end is also responsible for preventing a misbehaving requestor from stalling
the resource, so that it does not affect the service provided to the remaining requestors.
The resource is stalled when a requestor sends many requests to the resource and then
does not accept the responses. To prevent this, the front-end performs validation of
requests before presenting them to the resource. A request is validated when it has fully
arrived in the Delay Block, including associated payload, and if there is guarantee that
responses will be accepted when they are made available by the resource. The guarantee
is made by reserving space, in the response buffer, for potential response, before sending
the request to the resource. If there is no space in the response buffer, the request is
not validated and forwarded to the resource until a previous response leaves the Delay
Block and space is freed up. Since each request is validated after reserving space for its
responses, it is always guaranteed that responses are always accepted to the Delay Block
as soon as they are made available by the resource.

4.2.5 Architecture

The architecture in Figure 4.7 shows major processes and buffers that comprise the Delay
Block. The Delay Block has four concurrent processes that are responsible for receiv-
ing requests, sending requests, receiving responses and sending responses to and from
connected blocks. It has additional processes that manage timing of events and record
relevant time stamps. One of the processes, Compute Time Stamps, is responsible for
the computation of worst-case scheduling time and worst-case finishing time of requests
based on the service bounds. Another process generates flow-control information based
on worst-case scheduling of requests. The Schedule Request process, shown in Figure 4.7,
takes care of the scheduling event that takes place at the worst-case scheduling time of
requests. Similarly, the Release Response process handles releasing of responses at the
worst-case finishing time.

The Delay Block contains four buffers. The Request Buffer, as the name indicates,
holds requests in the Delay Block until they are scheduled and sent to the resource.
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Figure 4.7: Architecture of the Delay Block

The Response Buffer, on the other hand, holds responses until their release time is due
and they leave the Delay Block. The remaining two buffers - Scheduling Time Buffer
and Release Time Buffer hold time stamps to be used for the timing of Scheduling and
Releasing events, respectively. Each of the units and their implementation are detailed
in Section 5.2.2.
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4.3 Arbiter

In the proposed resource sharing front-end, any arbiter in the class of LR servers can be
used. One such arbiter is the Credit-Controlled Static-Priority Arbiter (CCSP) [1]. One
difference is that the arbiter is now the resource sharing front-end and hence can be used
with any predictable resource. A few changes have also been made in the implementation.
This will be explained while discuss the implementation in Section 5.2.3. The design of
the CCSP arbiter has been revised with an approach different from the one used in a
previous implementation [18]. , here, so that it fits well in the resouce sharing bus. The
CCSP arbiter combines rate regulation and priorities to decouple guarantee on latency
and rate. This is required, because some applications are latency sensitive and others are
latency tolerant. By decoupling the two requirements, the CCSP arbiter allows providing
low-latency service to low-bandwidth requests without overallocation. The parameters,
mechanism and architecture of CCSP are presented in Sections 4.3.1, 4.3.2 and 4.3.3,
respectively.

4.3.1 CCSP Parameters

The arbitration process in CCSP relies on three crucial parameters. These are the
Allocated Service Rate (ρ′) required for rate regulation, Priority for the static-priority
scheduling and Allocated Burstiness (σ′) to control burst of service.

• Priority (p): of a requestor, as the name implies, indicates the priority given to
a requestor when it is in contention with other requestors for a resource. Every
requestor is given a unique priority value.

• Allocated Service Rate (ρ′): represents the amount of service that a requestor
is entitled for every service cycle. Every service cycle, its budget is upgraded by
this amount. The allocated service rate is expressed as fraction of the resource
capacity allocated to a requestor. Hence, it always has value between 0 and 1.

• Allocated Burstiness (σ′): represents the maximum burst of service that each
requestor can get, i.e. the maximum number of times that a requestor can be
served in succession without having to upgrade its budget. The initial budget that
each requestor obtains at start up is based on this parameter.

4.3.2 Mechanism

CCSP maintains a budget per requestor in order to regulate service provided to each
one. This protects low priority requestors from starvation. Because of the regulation,
requestors are always guaranteed that they can get their allocated service amount. Every
service cycle, all requestors are entitled for service that amounts to their allocated rate.
This is reflected by an upgrade to their budget value. Each requestor, then, pays from
its budget for every service it gets i.e. whenever it is scheduled. Requestors that do
not have enough budget have to wait and accumulate enough budget to be eligible for
service.
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After identifying requestors that have enough budget to be considered for service,
one of them is selected based on priority. The scheduling is based on static priority and
the requestor that has the highest priority is scheduled. After every scheduling event,
the budget of all requestors is updated in accordance with the scheduling result.

4.3.3 Architecture

The architecture in Figure 4.8 shows the three major functional units of the CCSP arbiter
- Rate Regulation, static-priority scheduling and Budget Management.

Credits

Static-Priority
Scheduling

Rate
Regulation

request vector

eligible  
requestors

make schedule 

grant vector

Schedule valid

new credits Budget
Management

Update
credit

Figure 4.8: Architecture of CCSP Arbiter

4.3.3.1 Rate Regulation

The CCSP arbiter regulates service by watching the budget status of each requestor.
This stage of the arbiter identifies requestors that are eligible for service based on their
budget status and passes them to the next arbitration stage. To be eligible, requestors
are required to have budget amount that exceeds a certain threshold. The threshold is
also determined based on the service rate allocated to each requestor. The pseudocode
of Algorithm 4.1 shows the simple process of identifying eligible requestors.

Algorithm 4.1 Eligibility Check in the CCSP Arbiter
GIVEN: R requestors with corresponding budget amount
OUTPUT: Eligibility Mask of requestors.
for each requestor r do

if budget[r] > Budget Threshold[r] then
Eligibility (r) ← TRUE ;

else
Eligibility (r) ← FALSE ;

end if
end for

4.3.3.2 Static-Priority Scheduling

This stage of the CCSP carries out static-priority scheduling on those requestors that
have been identified by the previous state as eligible. The result of the scheduling,



4.3. ARBITER 27

schedule mask is sent to request multiplexer so that the scheduled request is handed
over to the resource. Static-priority scheduling is a simple process of selecting the highest
priority requestor.

Algorithm 4.2 Static-Priority Scheduling in the CCSP Arbiter
GIVEN: R requestors with corresponding priority values PRIORITY.
OUTPUT: Scheduled Mask which indicates the requestor that has been scheduled.
VARIABLE scheduled← FALSE ;
for each requestor r in decreasing order of priority do

if Eligibility(r) = ’1’ and scheduled = FALSE then
schedule mask(r) ← ’1’ ; scheduled← TRUE;

else
schedulemask(r)←′ 0′;

end if
end for

4.3.3.3 Budget Management

The budget for each requestor is updated according to the result of the scheduling.
After each scheduling event, which takes place every service cycle, the budget manager
upgrades the budget of each requestor by an amount equal to the allocated service rate.
And for the requestor that is scheduled, if any, budget value is deducted by 1 because it
has to pay for the service it has obtained. There is, however, a limit on the maximum
budget that can be accumulated by requestors when they do not have valid request and
that limit is equal to the initial budget. This is enforced in order to limit the burstiness
of requestors to their allocated amount (σ′).

Algorithm 4.3 Budget Management in the CCSP Arbiter
GIVEN: Current Budget of Each Requestor, Result of the Scheduling Decision.
OUTPUT: New Budget for Each Requestor.
Every Service Cycle
for each requestor r do

Budget[r] ← Budget[r] + Allocated Rate [r];
if schedule mask (r) = TRUE then

Budget[r] ← Budget[r] - 1;
else

if requestor r has no request pending then
//reset budget to initial amount
Budget[r] ← Initial Budget[r];

end if
end if

end for
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4.4 Resource Sharing Bus

This bus contains a timer, an arbiter and another unit that is responsible for multiplexing
requests and demultiplexing responses. Among requests that are waiting for service, the
request multiplexer sends one to the resource based on the scheduling decision made
by the arbiter. A new scheduling decision is produced periodically provided that the
resource is available for service. When responses are ready, the response demultiplexer
in this bus returns them to the correct requestor.

The major units inside the resource sharing bus are shown in Figure 4.9.

ArbiterTimer

request
vector

grant
vector

make schedule

resource state

Requester 0
Requester 1

Requester n

Resource

Figure 4.9: Architecture of Resource Sharing Bus

4.4.1 Timer

The timer controls the time at which new scheduling decision is made. It counts cycles
up to a value called Service Cycle and initiates new scheduling decision. Service Cycle
is the minimum number of cycles required to serve an atom. Making the scheduling
decision at a later time may cause the resource to sit idle in case the previous request
was served faster. A scheduling decision made earlier, on the other hand, does not
reflect an up-to-date decision as higher priority requests may arrive in the meantime.
Therefore, making the scheduling decision at this moment ensures effective utilization
of the resource while keeping the scheduling decision as up-to-date as possible. In fact,
a new request is scheduled only if the previously scheduled request has been accepted
and the resource is ready for another one. Upon scheduling a request, the timer restarts

Cycle count make new schedule
initiates the arbiter to make new schedule

resource state
flag from request multiplexer that indicates
whether the resource is ready for new requests

Figure 4.10: Service Timer

counting for the next scheduling event.
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4.4.2 Request Multiplexer and Response Demultiplexer

The resource sharing bus has a request multiplexer and a response demultiplexer. Decou-
pling the request and response phases makes it possible to pipeline requests and utilize
the resource 100When a scheduling decision is made by the arbiter, the request multi-
plexer selects a request accordingly and presents it to the resource. In the meantime,
the resource state is indicated as busy and the timer is prevented from initiating new
scheduling decision. New schedule can be made only when the request at hand has been
fully accepted by the resource. The bus has a parallel function that takes care of re-
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Request 0
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Scheduled
request

Request
Multiplexer

Response
Demultiplexer

Scheduling
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Figure 4.11: Multiplexing Requests and Demultiplexing Responses

sponses. When the resource finishes serving a request, it is the responsibility of this unit
to return the resulting responses to the correct requestor. To serve this purpose, the
request multiplexer records scheduling history, which is the order in which requestors
are scheduled. Responses are expected in the same order in which the corresponding
requests are sent. Hence request reordering by the resource is not supported.
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4.5 Configuration

The proposed front-end is comprised of stand alone functional blocks connected with
each other using standard communication protocol. This makes it possible to eliminate
a block from the design when the associated feature is not required. Once a block
is included in the front-end, it can be instantiated with proper settings so that it fits
well with the requirements. This represents design time configuration of the individual
functional blocks. The third phase of configuration is at run time. In a SoC with multiple
functionalities, the set of applications that are active simultaneously changes from time
to time. This change of use case results in variable service requirements. To satisfy
such dynamic requirements, some parameters in the front-end are made configurable at
runtime. The three phases of configuration - Feature selection, design time configuration
and Run time Configuration - are discussed in Sections 4.5.1, 4.5.2 and 4.5.3, respectively.

4.5.1 Front-end Feature Selection

Depending on the features required in the design, some of the components of the front-
end can be eliminated in order to save hardware.

4.5.1.1 Atomizer:

As mentioned above, the role of the Atomizer is to chop big requests in to unit size
before they enter the Delay Block. If a requestor is known, at design time, to produce
requests not larger than an atom, chopping requests becomes unnecessary and hence the
Atomizer can be removed for that requestor.

4.5.1.2 Delay Block:

The Delay Block is required only when composable service is required. There is a situa-
tion where some requestors in the design require composable service while others do not.
In such situations, Delay Block should be added only to those requestors that need com-
posability. There is also a possibility that a requestor needs composability under some
use cases and does not in others. In such cases the Delay Block is kept and whenever
composability is not required, it is disabled by setting its delay parameters to zero. With
delay parameters set to zero, the Delay Block releases flow-control signals and responses
at the actual time when they are produced.

4.5.1.3 Arbiter:

The arbiter that resides in the Resource Sharing Bus can be anything in the class of LR−
servers. Hence, the most suitable arbiter that satisfies the needs is chosen at design time.

4.5.2 Design Time Configuration (Block Customization):

Once a decision has been made on which features to include in the front-end, the re-
quired blocks are instantiated with appropriate design parameters. These parameters
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are determined by the layout of the system, the resource attached and the communica-
tion protocol used between system components. The following are some of the front-end
parameters that are configurable during instantiation.

4.5.2.1 Number of requestors:

When layout of the system and communication requirements are identified, the number of
requestors to a given resource can be known. This determines then number of target ports
that the Resource Sharing Bus should have. The arbiter is also instantiated properly
according to number of requestors sharing the resource.

4.5.2.2 Chopped Request Size

This is the preferred size of requests that enter the resource. For instance, efficiency of
read/write operations in an SDRAM can be maximized by choosing an optimal request
size. This parameter is required in the Atomizer. As the resource is known at design
time, this parameter is used while instantiating the Atomizer and the bus.

4.5.2.3 Service Cycle

Service cycle, according to the definition in Section 4.4.1, depends on the resource at-
tached and the size of requests that enter the resource. Thus, as soon as properties of
the resource and size of chopped requests are known, the service cycle can be set in the
Resource Sharing Bus.

4.5.2.4 Communication parameters

Blocks in the front-end are connected to each other via standard communication proto-
cols, such as Device Transaction Level (DTL) Protocol [13]. The width of each signal,
such as data width and address width, are set at design time.

4.5.2.5 Buffer Sizes

Generally, big buffers help to achieve more throughput amid a bursty traffic. To save cost,
however, all buffers are sized to a minimal value that can satisfy application requirements.
The size of buffers inside each block of the front-end are generic parameters that can
be set during instantiation of the blocks. The values are automatically computed using
data flow models based on the service requirements of each requestor.

4.5.3 Run-time Configuration

The CCSP arbiter and the Delay Block are programmable components of the front-end.
Each of these has parameters that can be set at run time and each unit starts functioning
only after all parameters have been programmed. The CCSP Arbiter requires three
parameters to be set for each requestor - Priority (p), Allocated Service Rate (ρ′) and
Allocated Burstiness (σ′). Similarly, each Delay Block has two programmable parameters
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-Service Latency (Θ) and Completion Latency (λ) - that need to be set before starting
operation.

4.5.3.1 Configuration Infrastructure

We use the configuration infrastructure presented in [5], pages 60-62 for run time con-
figuration of our front-end. The configuration values are sent by an IP, usually called
the host, that is responsible for controlling the SoC. A bus with fixed-address decoding,
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Figure 4.12: Configuration Infrastructure

configuration bus, takes the responsibility of delivering configuration data to the intended
component. The configuration port of each programmable IP has unique address known
by the controlling IP at design time. Thus configuring a unit done transparently as a
write operation to the address corresponding to the required configuration port. Fig-
ure 4.12 shows how programmable components of the front-end are connected to the
configuration bus.
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In this chapter, we discuss the implementation of the resource sharing front-end based
on the design presented in Section 4. Discussion is made on mechanisms employed
to realize the aforementioned design in hardware. We begin with Section 5.1, where
preliminary implementation issues are discussed. In Section 5.2, the implementation of
each functional block in the front-end is discussed. Then, in Section 5.3, implementation
of the configuration mechanism is presented. The chapter is concluded by showing how
our design is integrated to the Æthereal Design Flow to automate the design process.

5.1 Preliminaries

5.1.1 Communication Protocol

To make the individual blocks of the front-end reusable, each one is implemented with
standard interfaces for communication with other blocks. The DTL Protocol [13] has
been used in this implementation of the front-end.

DTL is a point-to-point protocol that connects an initiator port of an IP to the target
port of another IP. Initiator is the device that initiates transactions. The initiator drives
commands and associated data, if any, to be written to the target. The initiator may
receive read data as response from the target. The target is connected to the other end
of a DTL connection. It receives command and potential write data from the initiator.
For read transactions, it responds by sending back read data to the initiator. DTL is a
synchronous protocol with all signal transitions synchronized to rising edge of the clock.

In the complete specification of the DTL protocol, the signals are categorized in
to five groups - System Group, Command Group, Write Group, Read Group, Write
Buffer Management Group and Error Abort Group. For our implementation, the features
provided by the first four groups are sufficient and only these signals have been used.
Table 5.1 defines the DTL signals that have been used in our implementation.

Figure 5.1 shows the direction of all the signals during communication between an
initiator and a target. Grouping of the signals in to command, payload and response
is also shown. Transaction is started when the initiator sets the value of signals in the
command group. Validity of the command is indicated by the dtl cmd valid signal. The
transfer of command is completed when the target accepts it by setting the dtl cmd accept
signal. If it is a write request, transfer of the associated payload data follows. In the
same manner as with command group, validity of signals in this group is indicated
by the dtl wr valid signal. A data word is transferred at every clock cycle when both
dtl wr valid and dtl wr accept are asserted. The transfer of payload data, and hence the
command, is completed when the last word of the payload data (indicated by dtl wr last)
is transferred. Signals in the Command group and Write group constitute a request.

33
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Table 5.1: Definition of Relevant Signals in the DTL Protocol
Name Driver Description
System Group
clk Input to initiator

and target
This is the main clock for communication. All other
signals are synchronized to this clock signal.

rst n Input to initiator
and target

This active low signal is used to initialize the DTL
interface.

Command Group
cmd valid Initiator Com-

mand Valid
This signal is used to indicate that the signals in the
DTL Command group are valid. This is driven high
to transfer a new command from the initiator to the
target.

cmd accept Target Command
Accept

This signal is used to indicate that the signals in the
DTL Command group have been accepted by a target.
Command transfer is completed when cmd valid and
cmd accept are high simultaneously .

cmd addr Command Ad-
dress

This represents the byte address associated to the ac-
tive command.

cmd read Initiator Com-
mand Read
Operation

This signal is used to indicate whether the active
transaction is a read or write operation. When high, it
indicates read operation otherwise a write operation.

cmd block size Command Block
Size

Indicates the number of elements to be transferred
over the wr data or rd data lines.

Write Group
wr valid Write Valid This signal is used to indicate that the signals in the

DTL Write group are valid. This is driven high to
transfer new write data (and a mask) from the initia-
tor to the target.

wr accept Target Write Ac-
cept

This signal is used to indicate that the data and con-
trol signals in the Write group have been accepted by
a target. Transfer of a data element is completed when
wr valid and wr accept are high simultaneously .

wr data Write Data These bits represent the actual data sent to the target.
wr mask Write Data Byte

Mask
The bits are used to indicate which bytes should be
written during a write data transfer. Each bit corre-
sponds to a byte in wr data group and only those bytes
that have the corresponding bit high are written.

wr last Write Data Last Indicates that the current data transferred on the
wr data lines is the last of the current transaction.

Read Group
rd valid Read Data Valid This signal indicates that the signals in the DTL Read

group are valid. This signal is driven high to transfer
new data read from the target.

rd accept Initiator Read
Accept

This signal is used to indicate that the data and status
signals in the DTL Read group have been accepted by
an initiator. Read data is transferred when rd valid
and rd accept are high simultaneously .

rd data Read Data These lines hold the data read from the target.
rd last Read Last Indicates that the current data is the last one read

from the target.
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Figure 5.1: Direction and Grouping of DTL Signals

The Read group represents data read from the resource, which is response for a read
request. The target presents read data to the initiator by setting signals in the read
group. The read data is valid when the signal dtl rd valid is set. The initiator, then,
accepts the response by setting the signal dtl wr accept. The last word of a response is
indicated by dtl wr last.

The DTL protocol supports default accept for command, write and read groups. If
the target is able to accept any command, it sets the dtl cmd accept signal high even
before the command is presented to it. The dtl wr accept signal can also be set before
the data arrives if the target is able to accept the payload. Similarly, if the initiator is
able to accept read data, it sets dtl rd accept even before receiving the data. This feature
is required to achieve 100implementation.

5.1.2 Representation of Time

Time, in the Delay Block, is represented as count of clock cycles. The cycle count
is global within the Delay Block and is used by all units. When a request arrives,
the corresponding time stamps are computed in cycles and recorded. Then, events like
scheduling of requests and releasing of responses are fired up when the cycle count reaches
the corresponding time stamp.

With real hardware implementation, however, there is a limit on the number of
bits that can be used for counting and hence the cycle count can not be incremented
indefinitely. One solution is using a circular counter that wraps around to zero after
reaching the maximum allowable value. Wrapping, however, makes it difficult to compare
two time values. For instance, with N bits, the cycle counter can count from 0 to (2N -1)
and back to 0 producing the sequence (0, 1, 2,..., 2N -1, 0, 1,...). In this sequence, it is
difficult to say whether 2N -1 is before or after 0. 2N -1 can be considered as a time value
that is 2N -1 cycles later than 0 or it can be considered to be 1 cycle earlier than 0. An
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extra bit is used in our implementation to avoid this ambiguity, viz. MOD-2N+1 circular
counter, with N+1 bits, is required to handle time range of [0, 2N -1].

.
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Figure 5.2: MOD-2M Circular Counter, where M=2N

The maximum span between two time values that can be handled by this counter
is M = 2N -1. With this constraint in mind, the order between any two points in time
is determined by the shortest clock-wise arrow between them. The time value at the
arrow tip is considered to be later than the one at the other tip. Figure 5.2 illustrates
counting in a circular counter and comparison between time values. For example, the
three arrows indicate that t0 is earlier than t1 but later than t2.

It should be emphasized that for this representation of time to be valid, the time gap
between any two related events should not exceed 2N . For instance, in the Delay Block
the actual cycle count between arrival of request and the release of the corresponding
response should be within this limit. Thus the number of bits required to represent cycle
count is determined by the longest possible interval between two related events.

Comparison is done by taking the signed difference between two time values and
checking the two most significant bits of the result. For instance, to check is a certain
time is due we compare the time stamp with the current time. Consider two time values
x and y. With our representation either of them can have value in the range [0, 2M-1].
Hence, the difference (x-y) lies in the range [-2M+1, 2M-1]. This range can be broken
down to four disjoint sub-ranges - [-2M+1, -M-1], [-M, -1], [0, M-1] and [M, 2M-1]. Then
the range where (x-y) lies tells which of the two time values is earlier. The meaning and
implication of these four sub ranges is explained in Table 5.2. To find out the sub range
in which x-y lies, we look at the two most significant bits (MSB) of the difference. With
2’s complement notation for signed numbers, the mapping between the values of the two
MSBs and the sub ranges is shown in Table 5.3.
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Table 5.2: Comparison of Two Time Values x and y based on their difference (x-y)
Range for (x− y) Position of x and y Result of Comparison

[-2M+1, -M-1] x lies in the right hemisphere
and y in left hemisphere

x is later than y

[M+1, 2M-1] x lies in the left hemisphere
and y in the right hemisphere

x is earlier than y

[-M+1, -1] Multiple cases possible x is earlier than y
[1, M-1]a Multiple cases possible x is later than y

aObviously, x-y = 0 implies that x and y are equal.

Table 5.3: Identifying the sub range for (x-y)
The two MSB’s of (x-y) sub range

”10” [-2M+1, -M-1]
”01” [M, 2M-1]
”11” [-M, -1]
”00” [1, M-1]

5.2 Functional Blocks

As outlined in Chapter 4, the front-end has four major functional blocks. Based on the
design presented there, the actual implementation is presented next. For each block, the
representation of parameters and realization of functions are detailed. Among others,
algorithms and Finite State Machines (FSMs) that are used in the various processes are
explained.

5.2.1 Atomizer

5.2.1.1 Units of the Atomizer

As outlined in the design, Section 4.1, the Atomizer has two major tasks - Chopping
requests and Merging responses. The implementation of the two units that carry out
these task is discussed next.

Unit: Request Chopper
The FSM in Figure 5.3 shows the states through which the chopper advances while

chopping and sending requests. The Chopper starts from WAITING state and stays
there until it receives a request to be chopped. Depending on the request received, it can
move to either CHOP READ REQUEST state or CHOP WRITE REQUEST. Chopping
a read request involves sending commands with new headers (Header implies signals in
the command group). Whereas in chopping write requests, part of the payload is sent
following each chopped command. The chopper enters the SEND PAYLOAD state to
send part of the payload data that belongs to each chopped command.
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Figure 5.3: FSM for Chopping Requests

Request Size Buffer: Whenever the atomizer chops a request, it records the
original size of requests so that it can be used for identifying responses later. With
the DTL protocol, which we used in this implementation, the size corresponds to the
dtl cmd block size signal. Hence the width of the buffer is determined by the dtl speci-
fication. We used 5-bits to represent request sizes and hence the width of Request Size
Buffer is 5 bits.

Unit: Response Merger
As described in the specification the DTL protocol, a group of read responses that

correspond to the same request are identified by by a marker (dtl rd last) to the last
response in the group. Merging multiple read responses is, thus, done by removing the
last marker from all responses but the last one in the merged group. The following
pseudocode represents the merging process.

Algorithm 5.1 Merging Responses in the Atomizer
GIVEN : Atomic Responses from the Delay Block.
OUTPUT : Merged Response.
-count ← 0 ;
while (TRUE) do

- Read request size at the front of Request Size Buffer
if valid response is received then

- Remove Last marker, if there is any.
- count ← count + atomic size
if count = request size then

- Add Last marker to the response at hand.
- count ← 0;

end if
- Send the response.

end if
end while
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5.2.2 Delay Block

5.2.2.1 Representation of Delay Block Parameters

Both Service Latency and Completion Latency are represented with cycle counts. How-
ever, these two values are not integer numbers. For instance, completion latency is
derived from the allocated service rate (ρ′), viz. λ = 1/ρ′. As the resulting value is a
rational number, representation in cycles requires rounding of 1/ρ′ to the nearest integer
value. Such approximation errors, however, accumulate and affect the service provided.
As explained in [2], rounding up (d1/ρ′e) leads to a worst-case finishing time that is too
pessimistic and leads to a service rate that is less than ρ′. Rounding down (b1/ρ′c), on
the other hand, leads to a worst-case finishing time that is earlier than the correct value.
As this error accumulates, it can reach a point where responses are unavailable at the
computed worst-case finishing time. This leads to a non-composable behavior and needs
to be solved. Figure 5.4 shows the consequence of approximating the completion latency.
The two dotted lines (d1/ρ′e and b1/ρ′c) represent the service curves that result from
rounding up and rounding down 1/ρ′ respectively.

Figure 5.4: Accumulation of Error due to Approximation of λ

The approach we used to solve this problem is by representing the completion latency
as a formal rational number.

λ = λI
λn

λd
(5.1)

where λI stands for integer part of λ and λn and λd represent numerator and denominator
of the fractional part, respectively. The error that results from approximating service
latency (Θ), however, does not accumulate (Equation (4.1)). Hence, it can be rounded
up to the next integer. The mechanism that we used to approximate λ is listed as
Algorithm 5.4 in Section 5.2.2.4.

In the end,we require four integer values to represent the two Delay Block param-
eters : Θ, λI , λn and λd. Hereafter, the symbol λ is used to refer to the value of the
completion latency as a whole and its components are referred using λI , λn and λd, ac-
cordingly. With the new representation of completion latency as formal rational number,
the accuracy is determined by the number of bits used for each value.

• Service Latency (Θ): The value of service latency for each requestor is calcu-
lated based on the total number of requestors that share the resource, priority
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of the requestor, and its service requirement (bandwidth and burstiness). Hence,
the number of bits required to represent Θ is decided at design time when these
characteristics are known.

• Completion Latency Integer Part (λI): As explained in the design section,
completion latency stands for the maximum amount of time, in cycles, that a
resource takes to serve a unit-sized request considering service at the allocated
rate (ρ′). The number of bits required to represent this parameter is determined
at design time, when properties of the resource are known.

• Completion Latency Denominator Part (λd): With the formal representation
of λd, accuracy of the fractional part is determined by the number of bits used to
represent the denominator and the numerator. With D-bits used to represent the
denominator, the precision that we can have is 1

2D .

• Completion Latency Numerator Part (λn): Since λ is represented as a formal
rational number, the range of values that λn can have is [0, λd-1). Hence, the
number of bits required is the same as that for λd i.e. D-bits.

The number of bits required to represent the above parameters are generic parameters
in our design. Hence they can be set at design time when the required information
regarding requestors and the resource are known.

The accuracy (number of bits required to represent λn and λd) is crucial not only for
the sake of hardware cost but also for its impact on operating frequency of the Delay
Block. As the critical path of our design is through the process that computes time
stamps, shown in Figure 7.2, the number of bits used here affects the performance of our
design. Hence the number of bits is chosen for optimal precision and operating frequency.

5.2.2.2 Buffers

FIFOs have been used to store requests, responses and time stamps in sequence. Requests
are buffered as they enter the Delay Block and responses are buffered until they are
released. Two time stamps are tracked in our design - worst-case scheduling time and
worst-case finishing time. All buffers are implemented as synchronous FIFOs. The
implementation of each one is detailed next.

Request Buffer
With the DTL protocol, as explained in Section 5.1.1, a request is composed of com-

mand component and payload component. The Delay Block requires both the command
and the payload, if any, components of a request to arrive before considering it as valid
(Section 4.2.3). Hence both components need to be buffered in the Delay Block as they
arrive. Storing both command and payload in a single wide buffer results in wastage of
storage space. Because when requests without payload are buffered, the portion corre-
sponding to payload is unused and hence unused. Moreover, the command portion is
used only for the header of each request. Otherwise it is wasted (Figure 5.5(a)). To
solve this problem we use two separate FIFO buffers in parallel - one for the command
component and another for the payload. Figure 5.5(b), illustrates the benefit of this
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Figure 5.5: Request Buffer (a),(b)

approach. Command and Payload portions are used only as needed and hence no space
is wasted. The depth of the buffers is determined based on throughput requirements of
requests.

Response Buffer
This is a buffer that holds responses until they are released and leave the Delay Block.

Responses for read requests correspond to signals in the Read Data group of the DTL
protocol. For write requests, signal about the completion of a request is considered
as response. Hence the response buffer provides space for both read data and write
responses. While the width of this FIFO buffer depends on the DTL specification, the
depth is chosen in such a way that throughput requirements are met.

Scheduling Time Buffer
Time stamp for scheduling event is recorded for each request that is received and

validated in the Delay Block. Entries are removed from this FIFO buffer whenever the
worst-case scheduling time that they represent is due. As a result the status of this buffer
emulates worst-case scheduling of requests. As explained in Section 5.1.2, time stamps



42 CHAPTER 5. IMPLEMENTATION

represent cycle count. The width of this buffer is hence equal to the number of bits
chosen to represent cycle count. The depth is, once more, chosen based on throughput
requirements.

Finishing Time Buffer
Entries in this FIFO represent time stamps at which responses should be released.

Hence this FIFO buffer has the same width as that of Scheduling Time Buffer.

5.2.2.3 Counters

The Delay Block maintains a few counters to track the status of requests in the Delay
Block.

1. Full requests count (nfull requests): represents the actual number of requests
that have been fully received by the Delay Block. For read request, acceptance of
the header (command part) suffices. For a write request, all the associated payload
data has to be received as well. In other words, this counter represents the number
of requests that are validated and are waiting to be scheduled for service.

2. Waiting requests count (nrequests waiting): is count of requests that would have
been waiting in the Delay Block, if every request were to be accepted at the worst-
case scheduling time. The actual number of requests that are waiting, in the Delay
Block, to be scheduled is less as most requests are scheduled before the worst-case
time. This counter reflects the worst-case filling of the Request Buffers.

3. Released responses count (nreleased): represents the number of responses that
have their release time due but have not left the Delay Block. For instance, con-
gestion in the communication path can cause responses to stay in the Delay Block
after the worst-case finishing time.

4. Free response space (nresponse space): represents free space available in the re-
sponse buffer. For every request that produces response, space is reserved in the
response buffer its arrival is validated. And space is freed up as responses leave
the Delay Block.

In addition to the above counters, the following two have been included to be used in
assertion statements, explained later in Section 5.2.2.5.

1. Accepted requests count (naccepted): counts requests that have left the Delay
Block before their worst-case scheduling time. A request belongs to this group
during the time between actual scheduling and worst-case scheduling.

2. Waiting responses count (nwaiting responses): represents the number of re-
sponses that are waiting to be released.These are responses that are withheld by
the Delay Block until their worst-case finishing time is due.

The management of these counters is explained during the discussion of the various
processes in Section 5.2.2.4. Later on, in Figure 5.10, the counters and their managing
processes are illustrated.
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5.2.2.4 Units of the Delay Block

The implementation of each unit of the Delay Block, shown in Figure 4.7, is discussed
next.

Unit: Receive Requests
This process is responsible for getting requests into the Delay Block. Whenever there

is a valid request and the Delay Block has space to accommodate it, this process stores
the request and the associated payload data, to the request buffer. After the full request
arrives, it has to be validated before getting service. Figure 5.6 illustrates the FSM used
to receive and validate requests.

WAITING

PAYLOAD
PHASE

FULL
REQUEST

Read request
Received

OR
Write request
With single 

Payload received

Write request received
AND
Waiting for payload

Last payload
received Request validated 

AND
No other request

Request validated 
AND
Another request received

Request validated 
AND
Waiting for payload
of another request

Figure 5.6: FSM for Receiving and Validating Requests

Arrival of a request is validated when two conditions are fulfilled :

1. The request along with all its payload, if it has any, should be in the Delay Block.

2. There should be enough space to be reserved in the response buffer for all responses
that the request produces.

Upon validating a request, computation of the corresponding time stamps is initiated
and the counters nfull requests and nrequests waiting are incremented. Figure 5.7 shows
the conditions required to validate arrival of a request and the operations performed
upon validation. The check for response space is done by looking at the value of the
counter nresponse space. If there is enough free space, reservation is made by deducting
the required amount from the counter.

The pseudocode in Algorithm 5.2 lists down operations performed when a request is
validated. The time at which a request is validated is recorded as its arrival time (tka).
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Figure 5.7: Validating Arrival of Requests in the Delay Block

Algorithm 5.2 Validating Arrival of a Request in the Delay Block
while (TRUE) do

if a request arrives in the Delay Block AND
nrequests waiting < Depth of Request Buffer then

if It is a READ request then
if nresponse space ≥ request size then

// There is free space for responses
nfull requests ← nfull requests + 1 ;
nrequests waiting ← nrequests waiting + 1 ;
compute time stamps←′ 1′ ;
nresponse space ← nresponse space - request size ;
tka ← current time ;

end if
else

if Last Payload is received then
nfull requests ← nfull requests + 1 ;
nrequests waiting ← nrequests waiting + 1 ;
compute time stamps←′ 1′ ;
tka ← current time ;

end if
end if

end if
end while

Unit: Compute Time Stamps
When computation of time stamps is initiated by the request validator, worst-case

scheduling time (tkSW ) is computed for the request at hand. The computation is based
on arrival time of the request(tka), service latency (Θ) and the worst-case finishing time of
the previous request (tk−1

FW ). The other time stamp, worst-case finishing time, is computed
by adding λ to the corresponding worst-case scheduling time. The computation of the
worst-case scheduling time is described by the pseudocode of Algorithm 5.3. At the end
of the computation, tkSW is recorded in the Scheduling Time Buffer, as illustrated in
Figure 5.8.

In Figure 5.8, two different types of adders are shown. The first one, which computes
tka + Θ, is a simple integer adder because tka is integer and the rounded up value of
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Algorithm 5.3 Compute Worst-case Scheduling Time for a Request
When the kth request is validated
if (tka + Θ) > tk−1

FW then
tkSW = tka + Θ;

else
tkSW = tk−1

FW

end if
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Figure 5.8: Computation of Worst-Case Scheduling Time

service latency (Θ) is used. The second adder, which computes tk−1
SW + λ, on the other

hand, performs the addition using the approximation mechanism in Algorithm 5.4 The
mechanism uses a credit counter, cr, to switch between using rounded up and rounded
down values of the completion latency (λ). When requests arrive before the worst-case

Algorithm 5.4 Compute Worst-case Finishing Time for a Request
When the kth request is validated
if (tka + Θ) > tk−1

FW then
cr ← 0;

end if
if (cr < λd − λn) then

// Use the rounded up value of λ i.e. d1/ρ′e
cr ← cr + λn;
tkFW ←MAX((tka + Θ), tk−1

FW ) + d1/ρ′e
else

// Use the rounded down value of λ i.e. b1/ρ′c
cr ← cr + λn − λd;
tkFW ←MAX((tka + Θ), tk−1

FW ) + b1/ρ′c
end if

finishing time of their predecessor, it represents a busy period. During a busy period,
the worst-case scheduling and finishing time stamps are determined by the worst-case
finishing time of their predecessor. With this approximation mechanism, the credit
counter (cr) is set to zero at the start of a busy period. Then, as long as it is a busy
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period, the mechanism alternates between the rounded up and rounded down value of λ
for use in computing the worst-case finishing time. Whenever the value of the counter cr
is above (λd−λn), the rounded down value of λ is used; otherwise the rounded up value
is used. The resulting approximation is conservative and guarantees that the deviation
from the exact value is always less than a clock cycle.

Although the value of the worst-case finishing time (tkFW ) is known upon arrival of the
request, it is not recorded to the Finishing Time Buffer until the worst case scheduling
time is due. This helps to reduce the size of the finishing time buffer. It is shown
in 5.9 when the worst-case finishing time of requests is recorded. When the worst-case
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Figure 5.9: Computation of Worst-Case Finishing Time

scheduling time of a request is due, the worst-case finishing time is recomputed by adding
λ and recorded to the Finishing Time Buffer.

Unit: Send Requests
Whenever there is a validated request residing in the Request Buffer, the Send Request

process presents it to the arbiter and waits until it is scheduled for service. When the
command is accepted, the entry is removed from the Request buffer and sending payload
data, if the request has any, follows. For every request that leaves the Delay Block,
the counter naccepted is incremented by one. naccepted is decremented only when the
corresponding worst-case scheduling time is due.

Unit: Handle Scheduling Event
This process encompasses all operations to be executed during a scheduling event.

The process watches the Scheduling Time buffer and when the cycle count reaches the
time stamp at the front, it invokes the operations listed by the pseudocode in Algorithm
5.5. At every scheduling event, the counter naccepted, which represents the number of re-
quests scheduled before the worst-case scheduling time, is decremented. nrequests waiting,
worst-case count of requests waiting in the request buffer of the Delay Block , is also
decremented at each scheduling event. If the request scheduled is expected to produce
response, this process computes the worst-case finishing time and records the time stamp
in the Finishing Time Buffer.

Unit: Receive Responses
When the resource finishes serving a request, it returns the resulting responses, if there

are any. This process is responsible for storing responses to the Response Buffer, where
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Algorithm 5.5 Operations During a Scheduling Event
while (TRUE) do

if current time = tkSW then
- Remove the time stamp tkSW ;
naccepted ← naccepted − 1;
nrequests waiting ← nrequests waiting − 1;
if tkSW corresponds to a READ request then
tkFW ← tkSW + λ;
- Record tkFW to Finishing Time Buffer ;

end if
end if

end while

they stay until they are released. In our design, space is reserved for responses right at
the arrival of the corresponding requests. As a result, responses are always guaranteed
to be accepted by the Delay Block. Whenever a response is received, nwaiting responses

(the number of responses waiting to be released) is incremented.

Unit: Release Responses
Like the scheduling event, the process of releasing responses is started when the cy-

cle count reaches the time stamp at the front of the Finishing Time Buffer. During
each release event, a response in the Response Buffer is marked as released. The mark-
ing is performed by incrementing nreleased, which is the count of responses that have
their release time due and are waiting to leave the Delay Block. At the same time,
nwaiting responses is decremented.

Unit: Send Responses
Responses in the Delay Block that have their release time due, are bound to be sent

to the requestor as soon as it is possible. Whenever there is a released response waiting
in Response Buffer and the requestor is able to accept , the response is sent by this
process. For every response sent, response space is freed up for upcoming requests by
incrementing the counter nresponse space. The counter nreleased, which represents the
number of responses waiting to leave the Delay Block, is also decremented.

The various counters maintained in the Delay Block and those processes that manage
the counters are shown in Figure 5.10. Each counter has two sides, labeled ’+’ and ’-’.
The side labeled ’+’ is connected to the process that increments its value. Similarly, the
side labeled ’-’ is connected to the process that decrements its value.

5.2.2.5 Assertions

In order for the Delay Block to bring about composability, predictable service should be
offered at all times. As long as the service is predictable, the following two assertions
should be valid. Namely,
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1. During a scheduling event, naccepted should be greater than zero. Since
a scheduling event takes place at the worst-case scheduling time of a request, the
corresponding request must have been scheduled by that time.

2. During a release event, nwaiting responses should be greater than zero. Re-
lease event is started at the worst-case finishing time of requests, which determines
the release time for responses. Hence, the response must be available in the Delay
Block to be released at this time.

5.2.2.6 Flow-Control

The Delay Block uses the counter nrequestswaiting to emulate the filling of request buffer
under worst-case scheduling. This counter is incremented when a request is received by
the Delay Block, however, decrementing is done at the worst-case scheduling time of the
request, independent of the actual scheduling event (which should be earlier than the
worst-case scheduling time).

The flow-control signal in the response path can also create interference unless it
is properly handled. If a requestor is allowed to send requests to the resource without
accepting the corresponding responses, it can stall the resource and affect the service
provided to other requestors. In our approach, as explained in Section 3.2, space is
reserved for every response right at validation of the corresponding request. If space
cannot be reserved, the request is not validated for service and hence not presented to the
resource. This is similar to assuming worst-case filling of the response buffer. Therefore,
every request that has been scheduled for service is guaranteed that its responses are
accepted by the Delay Block as soon as they are available. This ensures that the resource
never stalls due to a requestor that does not accept responses when it should.
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5.2.3 CCSP Arbiter

As presented in Section 4.3, the scheduling process in the CCSP arbiter is comprised of
three major units. The implementation of the units that are responsible for each of the
operations are discussed next. We begin by presenting how each parameter of the CCSP
is represented.

5.2.3.1 Representation of CCSP Parameters

The Priority of the individual requestors can be represented by an integer value. The
budget management is implemented based on the credit mechanism proposed in [1]. The
budget that each requestor has is represented with an integer value called credit. The
credit value of a requestor is incremented when its budget is upgraded and decremented
when it pays for service. The amount by which the credit value of a requestor is incre-
mented, during upgrade, and decremented, during service, depends on allocated service
rate (ρ′) of the requestor. With the credit mechanism, ρ′ is represented as a formal
fraction using two integer values, as in Equation 5.2

ρ′ =
numerator(n)
denominator(d)

. (5.2)

With this representation, the credit of each requestor is incremented by numerator (n)
every Service Cycle and each service costs a credit amount of denominator (d).

The other parameter, allocated burstiness (σ′) is represented by the initial amount
of credit given to each requestor. This leaves the CCSP with four discrete parameters
per requestor - priority, numerator, denominator and initial credit.

The four parameters of the CCSP arbiter are listed next.

• Priority (pi): The priority of each requestor is represented as an integer value
ranging from 0 to R-1 ; where R is the number of requestors to be arbitrated. 0
corresponds to the highest priority value and R-1 to the lowest.

• Denominator (di): is an integer value that corresponds to the denominator when
the allocated service rate (ρ′) is represented as formal fraction. See Equation (5.2).

• Numerator (ni): is again an integer value that corresponds to the numerator
when ρ′ is represented as formal fraction. See Equation (5.2). The value of ni

ranges from 0 to di-1.

• Initial Credit (cri): The amount of credit that each request gets at start up is
determined by its allocated burstiness (σ′i) and denominator (di). The initial credit
represents a credit amount that is enough for a requestor to pay for σ′i successive
services. Since di is the amount paid for each service, the initial credit value is
computed as the product of σ′i and di.

cri = dσ′i ∗ die (5.3)
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5.2.3.2 Rate Regulation

Rate regulation is performed by preventing those requestors that do not have enough
credit from getting service [1]. Based on the representation of ρ′ as in Section 5.2.3.1,
a requestor is eligible for service only if it is able to pay a credit amount of di up on
scheduling. Considering the credit amount of ni that each requestor gets every service
cycle, the credit threshold for eligibility becomes di − ni.

An array of flags, eligibility mask[R], is used to indicate eligibility of requestors. An
entry of ’1’ in the array indicates that the corresponding requestor has enough credits
to pay and is eligible for service; An entry of ’0’ indicates otherwise. The pseudocode in
Algorithm 5.6 how eligibility of requestors is checked.

Algorithm 5.6 Check Eligibility of Requestors in the CCSP Arbiter
for each requestor r do

if credit [r ] ≥ (di − ni) then
eligibility mask[r] ← ’1’;

else
eligibility mask[r] ← ’0’;

end if
end for

5.2.3.3 Static-Priority Scheduling

At this stage, one of the eligible requestors is selected based on priority. A requestor
is scheduled iff it has the highest priority among all eligible requestors that have valid
request. The scheduler uses an R×R square matrix to indicate, for each requestor,
whether there is a request from any other requestor that is eligible and has higher
priority.

In a previous implementation [18] of the CCSP arbiter, comparison between priority
of requestors was done at every scheduling decision, increasing the complexity of the
arbitration process. However, since the priority relationship between requestors does
not change after configuration, the computation can be done once during configuration
and stored. Then after the scheduler reads priority relationship as a bit value from
the matrix and combine it with the eligibility mask (Algorithm 5.6) to make scheduling
decision.

Given a pair of requestors - requestori and requestorj , the cell HPi,j in the matrix
is set to ’1’ iff requestorj has higher priority than requestori and is waiting for service.
Figure 5.11 shows an example matrix of priority relationship between six requestors. For
example, by looking at the row HP[2], it can be seen that requestor4 and requestor5
have higher priority than requestor2 and both are waiting for service.

The pseudocode in Algorithm 5.7 illustrates how the priority matrix is computed for
R requestors.

When a row in the priority matrix is filled with all 0’s, it indicates that every other
requestor with higher priority either does not have valid request or has run out of credit.
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0 1 2 3 4 5

0 0 0 1 0 1 1
1 1 0 1 1 1 1
2 0 0 0 0 1 1
3 1 0 1 0 1 1
4 0 0 0 0 0 0
5 0 0 0 0 1 0

Requester j

Requester i

HP[6][6]

Figure 5.11: An Example Priority Matrix for 6 requestors.

Algorithm 5.7 Priority Relationship Among requestors
for requestor i in 0 TO R-1 do

for requestor j in 0 TO R-1 do
if priorityj > priorityi AND valid request[j]=’1’ AND eligibility mask[j]=’1’
then

HP[i][j] ← ’1’;
else

HP[i][j] ← ’0’;
end if

end for
end for

The scheduler, then, makes scheduling decision by combining this priority matrix
with the request vector. For a given requestor to be scheduled, it is required to have
a valid request and the row in HP that corresponds to it should be filled with all 0’s.
The output of the scheduler is the grant vector that indicates the requestor that has
been scheduled for service. It is the requestor that corresponds to an entry in the grant
vector with value ’1’, if any, that gets scheduled for service. Algorithm 5.8 shows how
scheduling decision is made for a given set of requests. Scheduling is triggered by a signal
(make schedule) from the service timer in the resource sharing bus. (See Section 4.4.1.)

5.2.3.4 Credit Management

Every service cycle, the credit value of each requestor has to be updated based on the
scheduling decision made. Every requestor gains credit amount of ni and the one that
has been scheduled pays credit amount of di. To protect low priority requestors from
starvation, requestors without valid requests are forbidden from accumulating more than
the initial credit value [1]. The pseudocode in Algorithm 5.9 describes the credit updating
process, which is triggered by update credit signal every service cycle.

5.2.4 Resource Sharing Bus

Three major operations are performed in the Resource Sharing Bus.

1. Making a scheduling decision to identify the request that should be served next,
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Algorithm 5.8 Static-Priority Scheduling in the CCSP Arbiter
GIVEN: Priority Matrix HP[R][R], request vector request[R]
OUTPUT: Scheduling Result grant[R]
done ← ’0’ ;
while TRUE do

if make schedule = ’1’ then
for requestors i in TO R-1 do

if HP[i]= 0 AND request[i]=’1’ and done=’0’ then
grant[i] ← ’1’;
done ← ’1’ ;

else
grant[i] ← ’0’;

end if
end for
return grant ;
update credit ← ’1’;

end if
end while

Algorithm 5.9 Credit Management in the CCSP Arbiter
GIVEN: Previous credit value of each requestor credit[R],
request vector request[R],
grant vector grant[R]
OUTPUT: Updated Credit of each requestor (credit[R])
if update credit = ’1’ then

for requestors i in 0 TO R-1 do
if grant[i]= ’1’ then

credit[i] ← credit[i] + ni - di;
else

credit[i] ← credit[i] + ni;
if request[i]= ’0’ AND credit[i] > initial credit[i] then

credit[i] ← initial credit[i] ;
end if

end if
end for

end if

2. Sending the scheduled request to the resource, and

3. Returning responses to the correct requestor when they are ready.

The whole operation is started when the Service Timer sends a signal to the arbiter
requesting new scheduling decision. The Service Timer is implemented as a saturating
counter that counts up to Service Cycle (See Sec. 4.4.1). The counter is reset to zero
after every scheduling decision. The pseudocode in Algorithm 5.10 shows the counting
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mechanism of the timer. Both the cycle count and Service Cycle are represented as

Algorithm 5.10 Service Timer in the Resource Sharing Bus
while TRUE do

if cycle count < SERVICE CYCLE then
cycle count ← cycle count + 1;

else
if resource is ready then

- Schedule new request;
- cycle count ← 0;

end if
end if

end while

integers. The number of bits required to represent them is determined at design time,
based on the minimum time that the resource takes to serve an atom.

5.2.4.1 Request Multiplexer

Figure 4.11 shows the major units in the Resource Sharing Bus that are responsible for
sending requests to the resource and returning responses to the respective requestor. The
Request Multiplexer applies scheduling decision made by the arbiter to select one of the
requests that are waiting for access to the resource. Whenever the multiplexer receives a
valid schedule, i.e. a non-zero grant vector, it takes a request from the selected requestor
and presents it to the resource. The request multiplexer is also responsible for notifying
state of the resource to the timer. Operation of the request multiplexer is based on the
FSM in Figure 5.12.

IDLE

COMMAND

PAYLAD
DATA

new request has 
been scheduled

request has payload
yet to be sent.

command completed 
AND 
another request 
has been scheduled
OR
previous command 
not yet accepted.

command completed 
AND
no other request has
been scheduled

all payload from previous 
command has been sent 
AND
another request 
has  been scheduled

all payload from previous
command has been sent 
AND 
no other request has 
been scheduled

there is payload
yet to be sent.

Figure 5.12: FSM for multiplexing requests
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IDLE state is the initial state of the multiplexer. The FSM enters to the IDLE
state when the multiplexer has finished sending the previously scheduled request and
has not received another valid schedule. While in IDLE state, the multiplexer simply
waits for a valid scheduling decision to come from the arbiter. With the DTL protocol,
which is used in our implementation, a request is comprised of command component
and payload component. Thus a request is said to be accepted completely when both
the command component and the payload data have been sent to the resource. The
multiplexer stays in COMMAND state until command part of the request at hand is
received by the resource. For every read request sent, the multiplexer records the source
requestor in a FIFO (Scheduling History) for later use to decide destination of responses.
In case of a write request, the multiplexer has to go to PAYLOAD state and send the
payload data before considering further requests. When the multiplexer finishes sending
the request at hand and receives new scheduling decision fromt the arbiter, it progresses
to the COMMAND state and starts sending.

5.2.4.2 Response Demultiplexer

Upon serving read requests, the resource produces read data as response. The Response
Demultiplexer unit, then returns the response received to the requestor that made the
request. This unit uses entries recorded in the Scheduling History FIFO to identify the
source requestor. All segments of the response are then sent to the same requestor until
a marker indicates the last segment. With the DTL protocol, the last segment of a read
response is indicated by the signal dtl rd last, see Table 5.1. Operation of the response
demultiplexer can be described by the pseudocode in Algorithm 5.11.

Algorithm 5.11 Demultiplexing Responses in the Resource Sharing Bus
while TRUE do

if new response is received then
- Read the entry at the front of the Scheduling History FIFO and determine the
source requestor, requestori;
repeat

- Receive segment of the response;
- Send it to requestori;

until Last segment is received
end if

end while
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5.3 Configuration

As mentioned in Section 4.5, our resource sharing front end is configurable in three phases
- Feature Selection, Design Time Configuration and Run time Configuration. Sections
5.3.1, 5.3.2 and 5.3.3 explain the implementation of each, in order.

5.3.1 Feature Selection

Figure 3.4 in Section 3.2 (Proposed Solution) shows the complete front-end with all
blocks in place. A Delay Block and an Atomizer are included per requestor in the
front-end. Occasionally, the blocks become unnecessary for some of the requestors. For
instance, Atomizer is not required for a requestor that always generates unit-sized re-
quests. Similarly, Delay Block is not necessary for a requestor that does not require
composable service. Hence, some hardware can be saved by eliminating unnecessary
blocks. Another choice that can be made at design time is the arbiter to be included in
the Resource Sharing Bus. For instance, CCSP Arbiter can be included if tight resource
allocation is required.

Figure 5.13 illustrates an example instance of the front-end for four requestors with
different requirements. In this example, Requestor0 requires both Atomizer and De-

Atomizer Delay Block

CCSP
Arbiter

Delay Block

Resource Sharing
Bus

Requestor0

Resource
Atomizer

Requestor1

Requestor2

Requestor3

Figure 5.13: An Example Instance of The Front-end

lay Block. Requestor1 produces unit-sized requests and hence does not require Atom-
izer. Requestor2 does not need composable service and hence requires no Delay Block.
Requestor3 requires neither the Delay Block nor the Atomizer because it produces unit-
sized requests and does not require composable service.

5.3.2 Design Time Configuration

Each functional block in the front-end has generic parameters that makes it customizable.
Buffer sizes and width of communication links are among the parameters that can be
set during instantiation of the blocks. All blocks have the width of the various DTL
signals as configurable at design time. Data Width and Address Width, which specify
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the number of bits used for data and address communication, respectively, are among
values that are set during instantiation of the front-end. Additional generic parameters
that are specific to each block are listed below.

5.3.2.1 Atomizer

The Size of Chopped Requests is a generic parameter for the Atomizer. It represents
the size into which requests are chopped. The size of the resulting atoms (chopped
requests) is chosen based on the resource attached. For a memory resource, for instance,
unit size corresponds to the access granularity.

5.3.2.2 Delay Block

• Width of Time Stamps: This specifies the number of bits used to represent
time. As explained in Section 5.1.2, time is represented as count of clock cycles.
The number of bits required to represent time is determined by the longest interval
expected between arrival of a request and release of the corresponding response.
This number is set at design time to a value that is appropriate for each requestor.

• Depth of Buffers: The Delay Block has four major buffers that are used to
store requests, responses and time stamps. The depth of each of these buffers is
computed, based on latency and bandwidth requirements of the requestor, and
set at design time. These buffers are Request Buffer, Response Buffer, Scheduling
Time Buffer and Finishing Time Buffer.

5.3.2.3 Arbiter

The first parameter that is set during the instantiation of the arbiter is the number of
requestors to be arbitrated. The arbiter is dimensioned accordingly. The number of bits
required to represent the following programmable parameters of CCSP arbiter are also
set during design instantiation.

• Priority: The number of bits used to represent priority depends on the maximum
number of requestors that are expected to share the same resource. In a system
with R requestors, P=log2R bits are required. In our system a maximum of 16
requestors is envisaged per resource and hence pi is 4-bits wide.

• Denominator: The number of bits required to represent denominator depends
on the granularity needed in service allocation. If D bits are used to represent
denominator), the minimum granularity of service allocation becomes 1/2D. In
our system , a service granularity of 1

64 has been chosen and hence denominator
is 6-bits wide.

• Numerator: Since the value of numerator ranges from 0 to R-1, the number of
bits required to represent numerator and denominator is the same.

• Initial Credit: As explained in Section 5.2.3.1, initialcredit is computed as the
product of allocated burstiness (σ′) and denominator. Hence, the number of bits
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required for its representation is the sum of bits used for the two values. We used
10 bits to represent credits in our design.

5.3.2.4 Resource Sharing Bus

This bus is also dimensioned according to the number of requestors, which is known at
design time. In addition, the bus has the following two as design time parameters.

• Service Cycle: After knowing the resource, the minimum number of cycles re-
quired to serve a unit-sized request is determined at design time.

• Width of Cycle Count: The service timer in side the bus counts cycles, for
proper timing of scheduling decisions. The number of bits required to represent
cycle counts is set at design time based on the value of Service Cycle.

• Arbiter Type: As shown in the architecture of the front-end, the Resource Shar-
ing Bus contains an arbiter inside. The type of arbiter, to be instantiated is a
generic parameter for the bus.

5.3.3 Run Time Configuration

The Delay Block and the Arbiter are the programmable components of the front-end.
The configuration values for these blocks are computed based on the service requirements
of each of the requestors. Given a resource with net bandwidth of Bandwidthnet, the
allocated service rate for each requestor (ρ′i) is computed as the fraction of the total
bandwidth that is allocated to each one. The burstiness (σ′i) allocated to each requestor
is also needed for the computation.

ρ′i =
Bandwidthi

Bandwidthnet
(5.4)

5.3.3.1 Computation of Configuration Parameters

Arbiter
The configuration values for the arbiter are computed based on the service allocated

to each requestor. For CCSP, four parameters (priority, numerator, denominator and
initial credit) are computed using Equations (5.5) and (5.6) and (5.7).

numeratori
denominatori

= ρ′i (5.5)

initial credit(cri) = σ′i ∗ denominatori (5.6)

priority(pi) = priority of requestor ri (5.7)



58 CHAPTER 5. IMPLEMENTATION

Delay Block The value of service latency (Θ) for each requestor is computed based
on the priority, allocated service rate and allocated burstiness of requestors. With CCSP
arbiter, service latency (Θ) is computed for each requestor according to Equation (5.8),
as presented in [2];

Θccsp
i =

⌈ ∑
∀rj∈R+

ri
ρ′j

1−
∑
∀rj∈R+

ri
ρ′j

⌉
(5.8)

R+
ri

denotes the set of requestors with higher priority than requestor ri. The completion
latency (λ) is computed simply as the reciprocal of the allocated rate (ρ′) for each
requestor. In fact, as mentioned in Section 5.2.2.1, λ is a rational number and has
integer part (λI) as well as fractional part (λn/λd).

λ′i =
1
ρ′i

(5.9)

From equations (5.8) and (5.9), the four programmable parameters of the Delay Block
are obtained.

5.3.3.2 Address Mapping

The configuration infrastructure presented in Section 4.5.3.1 is used to send configuration
values to the right unit. After configuration data reaches a programmable unit, the value
has to be assigned to the correct parameter. The intended parameter is identified based
on the configuration address. The address mapping used to identify parameters in the
Delay Block and the CCSP is presented next.

Delay Block
The four parameters, Θ, λI , λn and λd, are sent to each Delay Block one by one. Two

bits in the configuration address (3rd and 4th bits) are used to identify which parameter
the value corresponds to. The address mapping for configuration of the Delay Block is
shown in Figure 5.14.

Configuration address
W-1                                                 3  2  1  0

0  0 
0  1
1  0
1  1

Service Latency 
Completion Latency
Completion Latency numerator
Completion Latency denominator

Figure 5.14: Address Mapping for Configuration of the Delay Block

5.3.3.3 CCSP Arbiter

The CCSP arbiter has four programmable parameters for each requestor that is arbi-
trated. Unlike the Delay Block, however, all four parameters that belong to the same
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requestor are packed in a single word and received at once. Thus, when the CCSP
receives a configuration data, it checks the configuration address to identify which re-
questor the values are intended for. In our system, a maximum of sixteen requestors is
envisaged per resource. Therefore four bits in the configuration address are required to
choose among requestors. Bit-7 through bit-4 are used here.

After identifying the intended requestor, the value of each parameter is extracted
from the configuration data received. The first four bits represent priority value for the
selected requestor. The remaining bits are allocated as 10-bits for initial credit, 6-bits
for numerator and 6-bits for denominator. Figure 5.15 shows how the four parameters
are extracted from the configuration data received.

D-bits N-bits B-bits P-bits
denominator numerator Initial credit Priority

Configuration data
(32 bits)

041420
Unused

2031

Figure 5.15: Mapping of Configuration Data to CCSP Parameters

The pseudocode in Algorithm 5.12 describes how the CCSP parameters are extracted
for a requestor.

Algorithm 5.12 Configuration of CCSP Parameters
GIVEN: Configuration Data (Data[]) and Configuration Address (Address[])
while TRUE do

if configuration command is received then
r ← f(Address(7 downto 4)); //identify the intended requestor
. Priority(r)← Data(3 downto 0);
. numerator(r)← Data(13 downto 4);
. denominator(r)← Data(19 downto 14);
. initial credit(r)← Data(25 downto 20);

end if
end while
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5.4 Design Flow and Automation

To automate, instantiation of the front-end, our design, is integrated into the Æthereal
Design Flow, which is used at NXP Semiconductors. The design flow is presented in
depth in [5]. With the Æthereal Design Flow, the topology and communication of IPs is
specified using two xml files : architecture.xml and communication.xml.

5.4.1 Architecture Specification

In architecture.xml, all IPs in the architecture are listed. For each IP, name, type and
ports are specified. The name of each IP has to be unique within the architecture. The
type, for instance Memory, indicates what type of IP to be instantiated by the design
flow. The individual ports also have a unique name within the IP. Each port can be
either an initiator or a target and has additional parameters such as address range and
protocol.

Our front-end is attached to the target port of an IP, which represents the shared
resource. Hence, whether the resource sharing front-end is to be instantiated for a target
port or not is specified in the architecture specification. When the parameter delay is
set to ”1” in the specification of an IP target port, the front-end is instantiated for that
port of the shared resource. The type of arbiter to be used in the front-end is also
specified as a parameter to the target port of the shared resource. The following lines
from architecture.xml, for instance, indicate that a front-end should be instantiated to
the target port.

...
<ip id=”IPB” type=”Memory” >

< port id=”port1” type=”target” protocol=”MMIO DTL” >
<parameter ... other parameters ... >
<parameter id=”delay” type=”string” value=”1”>
<parameter id=”arbiter” type=”string” value=”CCSP”>

</port>
</ip>

The complete architecture specification for an example system is shown in Appendix
A.1.

5.4.2 Specification of Communication Requirements

After specifying the architecture, the communication between IPs is specified in the other
xml file : communication.xml. In the communication specification, connections between
ports of communicating IPs are specified. Each connection has an initiator and a target
port, which represent its end points. A connection can be used for write and/or read
operation for which bandwidth and latency requirements are specified.

If, in the architecture specification, a target port of an IP is specified with the param-
eter delay set to ”1”, then all connections that terminate at that port will be connected
through the resource sharing front-end. As mentioned in Section 4.5.1.2, however, the
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Delay Block in the front-end is activated only if composability is required for that con-
nection (requestor). During instantiation, the Delay Block is activated by setting the
parameter delay to ”1” for all connections that need composability. The following lines,
taken from communication.xml, specify a connection from port0 of IPA to port1 of IPB.
Since the parameter delay is set to ”1” for the connection, the Delay Block on that path
is activated.

...
<connection id=0 >
<initiator ip=’IPA’ port=port0 >
<target ip=’IPB’ port=port1 >
<read bw=100 latency=500 >
<parameter id=”delay” type=”string” value=”1”>

</port>

The complete xml file, where communication requirements of an example system are
specified, is found in Appendix A.2.
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Experiments and Results 6
As pointed out in Section 1.4, the major requirement for this front-end is to bring about
composable resource sharing between requestors when it is placed in front of a predictable
resource. To verify this requirement, two test platforms have been devised - one for
simulation and another one for FPGA. In Section 6.1 the testbench used for simulation
and the test results are presented. In Section 6.2, the test on FPGA is discussed.

6.1 Simulation

6.1.1 Testbench

The system in Figure 6.1 was used to test composability in resource sharing using the
front-end designed. The whole system is 100The system contains four traffic generators
(Core 0, Core 1, Core 2 and Core 3 ) that share a resource. There is additional traffic
generator, Configurator, that is responsible for configuring the entire front-end. The
Configurator is connected to each programmable component of the front-end, namely,
Delay Blocks and the CCSP arbiter via a configuration bus. The shared resource is an
SRAM with 32 bits data width that offers a net bandwidth of 800 MB/s.

Core 1

Core 2

Configurator

Atomizer 1

Arbiter

Atomizer 2

Atomizer 3

Delay Block 1

Delay Block 2
SRAM

Front End
Predictable 

Memory
(SRAM)

Time log

Core 0
Atomizer 0 Delay Block 0

Delay Block 3

Core 3

Interconnect

Figure 6.1: Testbench For The Resource Sharing Front-end

Before any operation, the Configurator sends configuration data to each block to
set all programmable parameters. After configuring the entire front-end, the cores start
sending requests. The traffic generated by each core can be adjusted to the required
data rate and request size.

To help in analyzing the timing behavior of transactions, a process in the Delay Block

63
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writes relevant time stamps into a text file for offline analysis. The five time stamps
mentioned in Section 4.2.2, are recorded for every request. These are Request Arrival
Time (ta), Actual Scheduling Time (ts), Worst-case Scheduling Time (tSW ), Actual
Finishing Time (tf ) and Worst-case Finishing Time (tFW ). The log created for each
requestor looks like the one in Table 6.1. All time stamps are in clock cycles. According

Table 6.1: Time Stamp for Requests From Core 0
Request ID (k) tka tks tkSW tkf tkFW

...
4 523 524 529 527 590
5 524 588 590 589 653
6 525 639 653 652 716
7 526 712 716 715 779
...

to the log, the arrival of the sixth request (k=6) to the Delay Block is validated at cycle
525. This represents the time when the request has been fully buffered in the Delay Block
and free space is reserved for the corresponding responses. The request is then accepted
by the resource at cycle 639, however, flow-control information is generated based on
the worst-case scheduling time (cycle 653 ). Similarly, the reource finishes serving the
request at cycle 652 and responses will be available at that time. However, the Delay
Block withholds them until cycle 716, its worst-case finishing time, is due.

The test procedure is started with a given set of requestors and the service require-
ment for each described in terms of (Bandwidth and latency). Based on the requirements,
the values of all programmable parameters in the front-end are computed. These are four
programmable parameters (Service Latency (Θi) and Completion Latency (λI , λn, λd)i)
for each Delay Block and four parameters (priority (pi), numerator (ni), denominator
(di) and initial credit (cri)), per requestor, for the CCSP Arbiter. See Section 5.2.2.1 and
5.2.3.1 for description of the parameters. The configurator then sends these parameters
to each of the programmable blocks. After configuring the front-end the cores are turned
on and they start sending requests. Time log is recorded for each of the requestors for
offline analysis.

6.1.2 Use Case

We considered a use case comprised of four requestors - r0, r1, r2 and r3 that correspond
to Core 0, Core 1, Core 2 and Core 3 in Figure 6.1. The service requirement for each
requestor is shown in Table 6.2.

The service requirements for each of the requestors, expressed in terms of resource
accesses, and the corresponding requestor parameters are shown in Table 6.3. Equations
(5.4), (5.8) and (5.9), presented in [1], were used for the computation. Since we are using
atomizers, all requests are of unit size when they reach the arbiter hence the value of
burstiness (σ′) will be 1 for all requestors. Regarding priority, all requestors are assigned
priority in descending order - the highest priority (priority=0 ) for Core 0 and lowest
priority (priority=3) for Core 3.
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Table 6.2: Service requirements of the four requestors in the use case
Requestor Read/ Write Bandwidth (MB/s) Request Size (Bytes) latency

r0 Read 1 32 0
r1 Read 100 4 0
r2 Read 200 8 0
r3 Write 40 4 0

Table 6.3: Service requirements of the four requestors and configuration parameters
Requestor priority (pi) σ′ ρ′ Θ 1/rho′

r0 0 1 0.00125 4 63
r1 1 1 0.125 5 8
r2 2 1 0.25 6 4
r3 3 1 0.05 8 20

The corresponding discrete parameters to be used for configuring each of the Delay
Blocks and the CCSP Arbiter are given in Table 6.4 Each of these parameters are sent

Table 6.4: Configuration Values for the Front-end
Requestor Delay Block CCSP Arbiter Parameters

Θi λi priority
(pi)

numerator
(ni)

denominator
(di)

Initial
Credit (cri)

r0 4 63 0 1 63 63
r1 5 8 1 7 56 56
r2 6 4 2 15 60 60
r3 8 20 3 3 60 60

to the respective blocks by the configurator and then the cores start sending requests.

6.1.3 Predictability Test

With our approach, predictability of the resource is a pre-requisite to bring about com-
posable resource sharing. Hence, predictability test has been carried out to verify that
the service bounds always hold. As mentioned in Section 3.1, service offered to a re-
questor is said to be predictable iff the service latency can be upper bounded and the
service rate can be lower bounded by finite values. The time stamps ts and tf reflect the
actual service that is provided to a requestor. The time stamps tSW and tFW , on the
other hand, are based on the service bounds (Θ and ρ′) and hence reflect the worst-case
service provided to a requestor.

With a predictable service, every request is expected to be scheduled before its worst-
case scheduling time and responses, if any, are expected to be ready before the worst-case
finishing time of the corresponding request. In this test, the values of time stamps arrival
time (ta), actual scheduling time (ts), worst-case scheduling time (tSW ), actual finishing
time (tf ) and worst-case finishing time (tFW ) are logged for each requestor. According
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to the definition of a predictable resource, requests should be scheduled before thier
worst-case scheduling time and should be finished before their worst-case finishing time.
Hence, for every reqest, the time stamps ts and tf are expected to be earlier than tSW

and tFW , respectively.
The plot in Figure 6.2, shows the timing of events for the first 20 requests from

requestor r2. From the plot, it can be seen that the curve for tSW always lies above
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Figure 6.2: Timing of Events

the curve for ts and the curve for tFW always lies above the corresponding curve for
tf . Similar results have been obtained for all the remaining requestor. Hence, it can
be concluded that the service provided to each requestor is bounded by the worst-case
amounts computed based on Θ and λ.

6.1.4 Composability Test

As mentioned in Section 3.1, our approach to bring about composability is eliminating
the dependence, on other requestors, of the time when responses and flow-control signals
are released. With shared resource, the actual values of scheduling and finishing times
depend on the requests made by others. With our approach, we disregard the actual
timing of these events and consider the worst-case values to release responses and flow-
control signals. More precisely, flow-control signals about acceptance of requests are
generated based on the worst-case scheduling time (tkSW ) and responses are released at
the worst-case finishing time (tkFW ). By doing so, requestors are always made to observe
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the same latency and rate in service, which is not affected by the actual behavior of
other requestors.

6.1.4.1 Test Procedure

The test for composability is done by checking whether the service that a requestor
obtains is affected by traffic from other requestors. With this test, we compare the
service that a requestor gets when it is activated alone with what it gets when other
requestors are also added. In the test, we measure the end-to-end latency, throughput,
status of buffers in the front-end and the aforementioned time stamps to quantify the
service that each requestor obtains.

i. End-to-end latency: The time between issuing a request and getting the corre-
sponding response.

ii. Throughput: The actual data rate at which a requestor writes to or reads from
the resource.

iii. Status of buffers in the front-end: The flow-control signal that determines
whether new requests can be accepted from a requestor is generated based on the
number of pending requests in the front-end (in the Request Buffer of the Delay
Block) and availablity of space in the response buffer. The value of the two counters
(nrequests waiting and nresponse space) by the time each request reaches the Delay Block
is recorded for each requestor.

iv. Time stamps: For every request, the Delay Block records Arrival Time (ta), Actual
Scheduling Time (ts), Worst-case Scheduling Time (tSW ), Actual Finishing Time
(tf ) and Worst-case Finishing Time (tFW ). These values show the timing of events
for each request in detail.

For each requestor, the measurements were made under the following two situations.

1. Isolated: The requestor is activated alone to use the resource. All other requests
that share the resource are turned off. The measurements obtained here indi-
cate the service that each requestor obtains without any interference from other
requestors.

2. Composed: All requestors are activated together and they all make requests to
the resource. The measurements obtained under this situation indicate the service
provided to each requestor when it is sharing the resource with others.

By comparing measurements obtained under the above two situations, it can be checked
whether the service that a requestor gets is affected by the activity of other requestors
that share the same resource. The test results are presented next for each requestor
followed by conclusion from each result.
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6.1.4.2 Test Result - Average Throughput and End-to-End Latency

Table 6.5 shows the throughput and the end-to-end latency of each requestor under the
two situations - isolated and composed.

Table 6.5: Comparison of Service offered to requestors - Isolated Vs. Composed
Requestor Throughput (MB/s) End-to-End Latency (Cycles)

Isolated Composed Isolated Composed
r0 1 1 565 565
r1 98.7 98.7 185 185
r2 197.4 197.4 184 184
r3 37.9 37.9 23 23

Conclusion: The result of the bandwidth test, which is shown in Table 6.5, indicates
that the net bandwidth offered to each requestor is the same under the two situations.
Similarly, end-to-end latency of a requestor is not affected by activity of other requestors.
This implies each requestor obtains the same service regardless of the traffic from other
requestors and hence the resource sharing is composable.

6.1.4.3 Test Result - Detailed Timing of Events

Interference to a requestor is reflected on the time at which its requests are accepted
by the resource and the time it takes to get back the responses. When a requestor is
not shielded from interference, it observes fluctuation in the timing of the two events
(release of responses and flow-control signals) as other requestors change their behavior.
If the resource sharing is to be composable, the two time stamps (tkSW and tkFW ) of every
requestor should be indifferent of the traffic from other requestors. The test here shows
which of the time stamps recorded for a request are affected by interference.

Figure 6.3(e), for instance, shows the timing of events for the first 20 requests from
requestor r2, when it is the only requestor sending requests to the shared resource. For
each request, the time stamps ta, ts, tf , tSW and tFW are plotted. To make the plot
easier to visualize, tka is taken as reference for the other events. Hence, the curve for tka
overlaps with the horizontal axis and the remaining time stamps represent the number
of cycles after tka. Figure 6.3(f) shows the timing of events for the first 20 requests from
the same requestor, but this time composed with the other three requestors. In the
same manner, the remaining pairs of figures (Figures 6.3(a) and 6.3(b)), (Figures 6.3(c)
and 6.3(d)), and (Figures 6.3(g) and 6.3(h)) show the timing of events for the respective
requestors when tested in isolation and when composed with others, respectively.

Conclusion:
When we compare the pair of time stamps for a requestor under the two situation, we

observe that some of the time stamps change due to addition of other requestors. The
difference between the pair of graphs is not obvious for the high priority requestors (r0
and r1), but it is fairly visible for the low priority requestors (r2 and r3). This is due to
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Figure 6.3: Timing of Events for Each Requestor
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the simple fact that low priority requestors are affected most while sharing resources. In
Figure 6.4, the difference between the time stamps under the two situations is plotted for
requestor r3. For instance, ts represents the scheduling times of requests from requestor
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Figure 6.4: Comparison

r3 when tested alone minus what they will have when other requestors are added. It
can be seen from Figure 6.4 that the difference is zero for all time stamps except actual
scheduling time and actual finishinging time. By comparing the pair of plots for each
requestor, the following observations are made

• When other requestors start sharing the resource, the actual scheduling time (ts)
and actual finishing time (tf ) values of a requestor are affected.

• The time stamps tSW , which is used to generate flow-control signals, and tFW ,
which determines the time when responses are released remain the same irrespective
of whether other requestors are activated.

In the plots above, only the time stamps for the first twenty requestors are shown. But
the comparison has been made for all requests generated in the test and the results are
the same.

As explained in Section 3.1, interference from other requestors, if any, is manifested
by variation in timing of flow-control signals and responses. Since the time stamps tSW

and tFW are the same under the two situations, we can conclude that the latency and
rate of service that each requestor gets is not affected by the behavior of other requestors.

6.1.4.4 Test Result - Flow-Control

Another check to be made while testing composability is on the timing of flow-control
signals. Flow-control signals indicate whether a request can enter the front-end and
advance to the resource. As mentioned in Section 5.2.2.6, the Delay Block generates
flow-control signal to accept requests only if there is space left in the request buffer for
additional requests and space can be reserved in the response buffer for its responses.
Thus, the timing of flow-control signals can be derived from the value of the counters
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nrequests waiting and nresponse space. To see if traffic from other requestors affects flow-
control to each requestor, we compare the values of the two counters (nrequests waiting

and nresponse space) under the two situations.
Figure 6.5(a) indicates the status of the two buffers (Request Buffer and Response

Buffer) when requestor r0 is tested in isolation and Figure 6.5(b) indicates the status
when all requestors are activated. In a similar manner, the remaining pairs of plots
(Figures 6.5(c) and 6.5(d), 6.5(e)and 6.5(f), 6.5(g) and 6.5(h) correspond to requestors
r1, r2 and r3, respectively.

Conclusion:
For each requestor, the filling of buffers does not change with traffic from other re-

questors. Hence, each requestor observes the same flow-control whether or not other
requestors are added.
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Figure 6.5: Buffer State of Requestors
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6.1.5 Impact on Performance

Since the front-end delays every response to the worst-case finishing time, it is expected
to increase the average end-to-end latency. Moreover, the front-end has four pipeline
stages in the request path and two pipeline stages in the response path which add to the
end-to-end latency. As can be seen in Table 6.6, all requestors have longer end-to-end
latency with our front-end in comparison with what they would have without it.

Its effect on throughput, however, can be eliminated by including larger buffers for
requests and responses in the Delay Block. Table 6.6 shows the average end-to-end
latency for each requestor both with and without the front-end. In this experiment,
both the request and the response buffers in the Delay Block have depth of 16 and it
can be seen that the throughput of requestors is not affected.

Table 6.6: Impact of the Resource Sharing Front-end on Performance
Requestor Without Front-end With Front-end

Throughput
(MB/s)

Average End-
to-End Latency
(Cycles)

Throughput
(MB/s)

Average End-
to-End Latency
(Cycles)

r0 1 115 1 565
r1 98.71 136 98.72 185
r2 197.44 123 197.43 184
r3 37.90 19 37.90 23
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6.2 Test on FPGA

The system used for test on FPGA contains three microblaze [21] processors and on-chip
memory interconnected with Æthereal Network-on-Chip. The system is shown in Figure
6.6. The first processor, MB host is responsible for configuring the network as well as
our front-end.

MB 0

MB 1

MB host

MemoryInterconnect

MicroBlaze
Processors

AEthereal 
Network-on-Chip Front End

On-chip
Memory

Time 
Measurement

Figure 6.6: System on FPGA To Test The Resource Sharing Front-end

The on-chip memory, which is used as shared resource in our test, is a single cycle
memory with 32 bit data width. For the test, the FPGA was run at 50MHz. We
considered the usecase in Table 6.7 with three requestors.

Table 6.7: Service requirements of the three requestors
Requestor Request Size (bytes) Bandwidth (MB/s) Latency

r0 4 2 0
r1 64 16 0
r2 128 16 0

The service requirements, when expressed in resource accesses, are as shown in Table
6.8. The corresponding discrete parameters to be used for configuring each of the Delay

Table 6.8: Service requirements of the three requestors in resource accesses
Requestor Request Size (bytes) priority (pi) σ′ ρ′ Θ 1/rho′

r0 4 0 1 0.03125 4 32
r1 64 1 1 0.25 5 4
r2 128 2 1 0.25 7 4

Blocks and the CCSP Arbiter are given in Table 6.9

Result of Composability Test
The test carried out on FPGA was measuring the end-to-end latency of requestor r2

in reading 128 byte data from the on-chip memory. The measurement was made twice
first with the requestor r1 turned off, i.e. generating no traffic and the second time with
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Table 6.9: Configuration Values for the Front-end
Requestor Delay Block CCSP Arbiter Parameters

Θi λi priority
(pi)

numerator
(ni)

denominator
(di)

Initial
Credit (cri)

r0 4 63 0 1 63 63
r1 5 4 1 15 60 60
r2 7 4 2 15 60 60

r1 turned on. In both cases the end-to-end latency for requests from r2 was found to be
544 cycles showing that requestor r2 is shielded by the resource sharing front end from
interference. The measurement was repeated eight times each time reading 128 Byte
data and the same result was obtained. From the result, conclusion has been made that
front-end has resulted in a composable resource sharing.
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Synthesis Results 7
To estimate hardware cost and operating frequency, the resource sharing front-end has
been synthesized with different settings. The settings are based on the number of re-
questors sharing the resource, the depth of request and response buffers in the Delay
Block and the number of bits used to represent fractions in the CCSP arbiter as well
as in the Delay Block. The design has been synthesized both for FPGA and ASIC. In
Section 7.1, the results of FPGA synthesis are presented followed by the results of ASIC
synthesis in Section 7.2.

7.1 Synthesis FPGA

The FPGA synthesis was done for Virtex4, XC4VLX160 Device from Xilinix with speed
grade -10. The result on device utilization and operating frequency for each block in the
front-end is presented next.

7.1.1 Atomizer

Since an atomizer is instantiated per requestor, the size and operating frequency of
instances do not depend on the number of requestors. The basic Atomizer without any
buffering for requests runs at 210 MHz and consumes only 87 slices on the FPGA.

7.1.2 Delay Block

Delay Block is also instantiated per requestor. Hence the number of requestors that
share the resource does not affect synthesis results for the Delay Block. The size of the
Delay Block is dominated by buffers for requests and responses. Synthesis results for
the Delay Block with different buffer depths are plotted in Figure 7.1. A Delay Block
with all buffers set to a depth of 1 consumes 292 slices and can operate at 160 MHz.
As the depth of the buffers is increased, however, the device utilization increases. The
frequency also drops slightly at distinct points, namely as the depth changes from 4 to
6 and from 8 to 10. Thus, the number of bits before the transitions, such as 4 and 8 are
good choices for buffer sizes.

The speed of the Delay Block is determined by the critical path shown in Figure
7.2. It is due to the computation of the worst-case scheduling time stamp (tkSW ) for
requests. Since the credit approximation mechanism, described in Algorithm 5.3, is used
in the computation of time stamps, the number of bits used to represent λn and λd

determines the operating frequency of the Delay Block. The operating frequency and
device utilization of the Delay Block for different precisions are plotted in Figures 7.3(a)
and 7.3(b), respectively.

77
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7.1.3 CCSP Arbiter

Since the CCSP arbiter is dimensioned according to the number of requestors that share
the resource, its device utilization and operating frequency depend on their count. Fig-
ures 7.4(a) and 7.4(b) show how device utilization and operating frequency of the CCSP
arbiter change with increasing number of requestors. The results indicate that as the
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Figure 7.4: Synthesis Result for the CCSP Arbiter - for Different Number of Requestors
(a),(b)

number of requestors arbitrated by the CCSP arbiter increases, device utilization in-
creases and operating frequency drops.

While synthesizing the CCSP arbiter, it has been found that the critical path passes
through the unit that performs credit management (See 5.2.3.4). The complexity of
this operation depends on the precision used in credit representation and hence on the
number of bits used to represent numerator and denominator values of the allocated
service rate (ρ). To estimate the cost of increasing precision in the credit calculation
used by the CCSP arbiter, synthesis has been carried out considering different number
of bits to represent numerator and denominator values (See Section 5.2.3.1). Operating
frequency and Device utilization of the CCSP Arbiter for different precisions are shown
in Figures 7.5(a) and 7.5(b), respectively. As can be seen from the result in Figure
7.5(a), the operating frequency drops from 170 MHz to 160 MHz as the number of bits
is increased from 6 to 12. The device utilization also increases proportionally with the
number of bits used.
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Figure 7.5: Synthesis Result for CCSP Arbiter - for Different Precisions (a),(b)

7.1.4 Resource Sharing Bus

The resource sharing bus is also dimensioned according to the number of requestors that
share the resource. The operating frequency and device utilization of the bus, with CCSP
arbiter inside, are plotted for different number of requestors in Figures 7.6(a) and 7.6(b),
respectively. The results, in Figure 7.6 show that with more number of requestors, the
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Figure 7.6: Synthesis Result for The Resource Sharing Bus

operating frequency of the bus drops and its device utilization increases. Once more, the
operating frequency of the resource sharing bus, is determined by the credit calculation
in the arbiter. This critical path, which starts from the CCSP arbiter and ends at the
request multiplexer in the bus is shown in Figure 7.7.
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7.2 Synthesis ASIC

The front-end has been synthesized for ASIC targeting 90nm CMOS Technology with
area optimization for different target frequency values. The synthesis was done using the
CMOS090LP Core Library corelib 3.0.1 with 1.2V core signaling. With four requestors
and a buffer of depth 1 in the Delay Block, the entire front-end can operate at up to
425 MHz and its total area is estimated to be 12210 cells, equivalent to 0.120mm2. The
size of the blocks in the front-end is shown with pie chart in Figure 7.8. The areas
shown correspond to four Delay Blocks, four Atomizers, an arbiter dimensioned for four
requestors and a resource sharing bus for four requestors. Hereafter, cell count is used
to estimate the area of units. The area of a cell is, on average, 10−5mm2.

The critical path in the front-end is the one through the Delay Block, shown in
Figure 7.2, where time stamps are computed. As the number of requestors is increased,
however, the operating frequency of the front-end drops and the critical path becomes
the one in the CCSP arbiter (and the resource sharing bus). The critical path in the
CCSP Arbiter is shown in Figure 7.7.

The individual blocks in the front-end have been synthesized with different settings.
The CCSP arbiter has been synthesized for different number of requestors and different
precision values. Similarly, the Delay Block has been synthesized with different buffer
sizes and different precisions for the representation of completion latency (λn and λd).
The synthesis result for each block is presented next. Unless explicit mention is made,
the number of requestors is considered to be 4 and 6-bits are used to represent numerator
and denominator in the CCSP arbiter.
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7.2.1 Synthesis Results for Atomizer

The Atomizer is the fastest of all the blocks in the front-end. With optimization for
speed, it can run up to 475 MHz and consumes 1223 cells. An Atomizer is instantiated
per requestor and, hence, synthesis results do not change with number of requestors.

7.2.2 Synthesis Results for Delay Block

Like Atomizers, a Delay Block is instantiated per requestor. Thus, the size and perfor-
mance of individual Delay Blocks does not depend on the number of requestors. The
size of a Delay Block is determined by the depth of request and response buffers. With
buffers of depth 1, a Delay Block consumes 1442 cells. As the depth is increased, the
area also increases proportionally. Figure 7.9 shows how its size grows with increasing
buffer size.

Another setting of the Delay Block which affects its operating frequency is the number
of bits used to represent numerator and denominator parts of the completion latency
(λ). As can be seen from the plots in Figure 7.10, operating frequency of the Delay
Block drops with increasing precision (number of bits). When 6-bits are used, the Delay
Block can operate at 425 MHz. When the number of bits is increased to 20, however, its
operating frequency will be limited to 275 MHz.
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7.2.3 Synthesis Results for CCSP Arbiter

The operating frequency and size of the CCSP Arbiter are determined by the number
of requestors connected to the front-end and the precision used for credit management.
Figure 7.11 shows how the operating frequency of the CCSP arbiter drops with increas-
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ing number of requestors. Considering 6-bits for the representation of numerator and
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Figure 7.11: Operating Frequency of the CCSP Arbiter for Different Number of Re-
questors

denominator, the arbiter becomes the bottleneck of the entire front-end when the num-
ber of requestors exceeds 6. With 8 requestors, for instance, the operating frequency of
the CCSP Arbiter stands at 325 MHz whereas the Delay Block and the Atomizer are
able to run above 400 MHz.

The CCSP Arbiter has been synthesized for different number of requestors (n = 4, 6,
8 and 10) at different target frequencies (f = 200, 250, 300 and 350). With 10 requestors,
however, operating frequency of 300 MHz and 350 MHz could not be achieved due to
negative slack in the CCSP Arbiter. The result shows area (number of cells) required to
achieve a certain operating frequency for a given number of requestors. As can be seen
from the plots in Figure 7.12, the size of the CCSP arbiter becomes larger with higher
target frequency due to lower possibility of optimization.

Another factor that determines the operating frequency of the CCSP Arbiter is the
number of bits used in the credit computation. Figure 7.13 shows the maximum operating
frequency of the CCSP arbiter for different number of bits used to represent numerator
and denominator.
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Figure 7.12: Size of the CCSP Arbiter for Different Number of Requestors
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Figure 7.13: Operating Frequency of the CCSP Arbiter for Different Precision Values

7.2.4 Synthesis Results for Resource Sharing Bus

Since the Resource Sharing Bus contains the CCSP arbiter, its frequency is determined
by the critical path of the arbiter. Hence its operating frequency is similar to that of
the CCSP Arbiter. Since the bus has Request Multiplexer and Response Demultiplexer,
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in addition to the Arbiter, its size grows with the number of requestors attached to it.
Figure 7.14 shows the size of the bus for different number of requestors, synthesized with
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Figure 7.14: Size of the Resource Sharing Bus for Different Number of Requestors

a target frequency of 300 MHz. For 10 requestors, 300 MHz could not be achieved due
to the critical path in the CCSP Arbiter.
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With the growing trend of integrating multiple applications on a single chip, the com-
plexity of system verification has become tremendous. In such systems, applications are
started and stopped at run time resulting in multiple use cases. As the various applica-
tions share the available resources, the performance of one application is affected by the
behavior of other applications that share the same resources. Thus, in verifying such a
system, the interference due to resource sharing should be put in to consideration.

Traditionally, the entire system is verified as a whole considering each use case. How-
ever, the number of use cases grows exponentially with the number of applications and,
hence, the associated verification effort grows in the same manner. Composable Systems
are proposed to mitigate the complexity of system verification and integration. In a com-
posable system, interference between applications is eliminated and hence applications
can be verified independently by simulation.

In this work, a front-end for composable resource sharing, using LR servers, has been
designed and implemented. The front-end enables resource sharing among applications,
in which the service provided to one application does not depend on how others behave.
With this approach, maximum interference is emulated for each application thereby
shielding interference from others. Applications are prevented from using any slack
(unused resource capacity) that results from change in behavior of others.

The front-end has been tested by simulation using an SRAM as a shared resource.
It has also been synthesized and tested on FPGA. It has been demonstrated that the
service that each requestor gets is not affected by the activity of other requestors. Since
the system is composable at the level of requestors, we can conclude that it will be
composable on the level of applications too [2].

The front-end is required in the system to bring about composable resource sharing
and, hence, reduce verification and integration effort. However, its inclusion in the system
also has impact both on system performance and cost. Since the entire front-end has four
pipeline stages, it increases the average end-to-end latency of requests. The front-end
also lowers the throughput of the resource with small buffers in the Delay Blocks. By
using larger buffers, however, it has been shown that it is possible to eliminate the effect
on throughput.

From the results of synthesis (both on FPGA and ASIC), the following conclusions
are made.

• The front-end incurs area overhead that grows with the number of requestors that
share the same resource.

• With up to six requestors sharing a resource, the critical path of the design lies
in the Delay Block due to the computation of time stamps. For larger number
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of requestors, however, the CCSP arbiter the bottleneck due to the computations
involved in credit management.

• The number of bits used to represent the numerator and denominator parts of
the allocated rate have significant effect on performance. When more number of
bits are used, the operating frequency drops. Increasing the number of bits also
increases the size.

• As can be seen from the graphs in Figure 7.8 and 7.9, the size of the front-end
is dominated by the Delay Blocks, specially with larger buffers for requests and
responses. Hence, the buffers in each Delay Block should be sized to an optimal
depth which is enough to satisfy throughput requirement of the requestor.
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Although the design has been tested and has conformed to the requirements set, there
are more things to be done in order to make it more robust and efficient. The following
are recommended for consideration in the future :

• The role of the Atomizer is, currently, just chopping requests into a fixed size with
the assumption that all requests are aligned. To lift this restriction on the type of
requests, aligning functionality can be added to the atomizer.

• The critical path in the Delay Block is due to the computation of time stamps which
involves the approximation mechanism based on credit counter (See Algorithm
5.4). Pipelining the computation can, thus, shorten the critical path and improve
performance of the Delay Block.

• All the tests in this work have been carried out using an SRAM, which takes a
cycle to serve requests, as a resource. The front-end has to be tested with other
types of predictable resources.
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Specification in the Æthereal
Design Flow A
A.1 Architecture Specification

< architecture id=”architecture name”>
< parameter id=”clk” type=”int” value=”400” />
< parameter id=”slotsize” type=”int” value=”3” />
< parameter id=”wordsize” type=”int” value=”4” />
< parameter id=”pckhdr” type=”int” value=”1” />
< parameter id=”cmdsize” type=”int” value=”2” />
< parameter id=”maxfc” type=”int” value=”31” />
< parameter id=”maxpcklen” type=”int” value=”8” />
< parameter id=”riqueue” type=”int” value=”8” />
< parameter id=”niiqueue” type=”int” value=”16” />
< parameter id=”nioqueue” type=”int” value=”16” />
< parameter id=”link pipeline stages” type=”int” value=”0” />

<ip id=”mb0” type=”IP”>
<port id=”i1” type=”Initiator” protocol=”MMIO DTL”>
< parameter id=”width” type=”int” value=”32” />
< parameter id=”blocksize” type=”int” value=”32” />

< /port>
< /ip>
< ip id=”mb1” type=”IP”>
< port id=”i1” type=”Initiator” protocol=”MMIO DTL”>
< parameter id=”width” type=”int” value=”32” />
< parameter id=”blocksize” type=”int” value=”32” />

< /port>
< /ip>
< ip id=”mb2” type=”IP”>
< port id=”i1” type=”Initiator” protocol=”MMIO DTL”>
< parameter id=”width” type=”int” value=”32” />
< parameter id=”blocksize” type=”int” value=”32” />

< /port>
< /ip>
< ip id=”mb3” type=”IP”>
< port id=”i1” type=”Initiator” protocol=”MMIO DTL”>
< parameter id=”width” type=”int” value=”32” />
< parameter id=”blocksize” type=”int” value=”32” />
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< /port>
< /ip>
< ip id=”memory” type=”IP”>
< port id=”t1” type=”Target” protocol=”MMIO DTL”>
< parameter id=”width” type=”int” value=”32” />
< parameter id=”delay” type=”string” value=”1” />
< parameter id=”arbiter” type=”string” value=”CCSP” />

< /port>
< /ip>
< /architecture>
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A.2 Specification of Communication Requirements

<communication>
<application id=”application0”>
<connection id=”0” qos=”GT”>
< initiator ip=”mb0” port=”i1” />
< target ip=”memory” port=”t1” />
< read bw=”1” burstsize=”32” latency=”0” />
< parameter id=”delay” type=”string” value=”1” />

< /connection>
< connection id=”1” qos=”GT”>
< initiator ip=”mb1” port=”i1” />
< target ip=”memory” port=”t1” />
< read bw=”100” burstsize=”4” latency=”0” />
< parameter id=”delay” type=”string” value=”1” />

< /connection>
< connection id=”2” qos=”GT”>
< initiator ip=”mb2” port=”i1” />
< target ip=”memory” port=”t1” />
< read bw=”200” burstsize=”8” latency=”0” />
< parameter id=”delay” type=”string” value=”1” />

< /connection>
< connection id=”3” qos=”GT”>
< initiator ip=”mb3” port=”i1” />
< target ip=”memory” port=”t1” />
< write bw=”40” burstsize=”4” latency=”0” />
< parameter id=”delay” type=”string” value=”1” />

< /connection>
< /application>

< /communication>
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