
Gazebo Simulation Fidelity
for the Turtlebot3 Burger

Louis van Zutphen

Layout: typeset by the author using LATEX.
Cover Photographer: Mirka Schoute

Gazebo Simulation Fidelity
for the Turtlebot3 Burger

Louis van Zutphen
11851910

Bachelor thesis
Credits: 18 EC

Bachelor Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisors
dhr. prof. dr. K.B. Akesson MSc and dhr. ing. E.H. Steffens

Informatics Institute
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

Jun 26th, 2020

Abstract
Simulation software allows programmers to test their code without the need for the physical robot.
As a result, a group of people can share a single robot, while working efficiently on individual
projects. One requisite for this to work is for the simulation software to accurately replicate the
real world, so that proceeding from the simulation environment to the physical world poses as few
problems as possible.
This thesis examines the fidelity of the Turtlebot3 Burger bot in the simulation software called
Gazebo in order to determine how efficiently the robot can be shared. This is done by conducting
experiments in both Gazebo with the virtual robot and the real world with the physical robot.
The experiments are designed to both test the fidelity of the individual sensors and actuators as
well as to examine how this sensor fidelity affects the fidelity of more complex applications that
use them. The results of these experiments show that there are several substantial differences,
such as the implementation of too much sensor noise in Gazebo. These differences should be taken
into account when testing applications in Gazebo in order to minimise the time required to move
from the simulation to the real world. Solutions are suggested for the infidelities. One solution for
the implementation of too much sensor noise is to reconfigure the noise in Gazebo to more closely
resemble that of the real robot.

1

Contents
Section 1: Introduction 3

Section 2: Previous Work 4

Section 3: Background Information 5
The Robot Operating System . 5
Simulation Software . 6
Robot Description . 6

Section 4: Method 7
The LiDAR . 7
The Actuators and Odometry . 9
The Gyroscope . 10
Wall Following Application . 11

Section 5: Results 11
LiDAR Detection Range . 11
LiDAR Noise Distributions . 12
LiDAR Surface Influence . 16
Odometry . 18
Gyroscope . 19
Wall Following Application . 19

Section 6: Discussion 23
LiDAR . 23
Actuators and Odometry . 24
Gyroscope . 24
Wall Following Application . 24

Section 7: Conclusion 25
Future Work . 25

2

Section 1: Introduction
The Embedded Software and Systems1 course of the University of Amsterdam (UvA) includes a
project wherein a LEGO Mindstorm EV3 robot is programmed to follow a line using a colour
sensor. The LEGO robot has fairly unsophisticated sensors that require a lot of fine-tuning and
testing to properly work. This process was time consuming for the students following the course
and should not be their main focus. Every group of students had one robot, this made it difficult
for the students to work efficiently as only one student could use the robot at a time. Additionally,
there was a bonus assignment which required two LEGO robots. This made it even more compli-
cated for the students to work efficiently, as an even larger group of people now had to share two
robots. Because of these shortcomings of the LEGO robot, the UvA is considering to replace the
LEGO robot with a new robot called the Turtlebot3 Burger bot2. This robot is more expensive
than the previously mentioned LEGO robot. Therefore, there will be less robots available overall
as the budget for the course is limited. As a results, it must be possible to share the Turtlebot3
Burger bot efficiently between groups of students.

The robot must be evaluated in order to determine how efficiently students can work with a
single robot simultaneously. The Turtlebot3 Burger bot uses simulation software which allows pro-
grammers to develop code without needing the physical robot. One aspect that determines how
well the robot can be shared is fidelity of this simulation software. The fidelity signifies how well
the simulation software represents the real world and how well the behaviour of the robot in an
application in the simulation will resemble that of the robot in the same application in the real
world. Determining the fidelity of the robot simulation is the goal of the thesis. It is important
for the course to know how much time and work is required for code, that works in the simulation
software, to function with the physical robot. The fidelity of the simulation dictates how much effort
will be required to adjust the code to the real world. Knowing the fidelity will help determine how
many students can work with a single robot efficiently and, as a consequence, how many physical
robots will be necessary for the course. The simulation fidelity is examined by creating and running
a number of tests in the simulations and on the real robot. The results of these are then compared.
The tests are kept simple at first in order to examine how accurately the individual sensors and
actuators of the robot are emulated in the simulations. Once this accuracy is established, a more
complex and higher-level application is assessed.

The Turtlebot3 Burger mainly uses the simulation software called Gazebo3. The second section
of this thesis examines previous research that has been conducted on the fidelity of Gazebo as
well as the fidelity of the models for different robots in Gazebo. The third section covers the
background information for the Turtlebot3 Burger bot. This includes the default operating system
of the Turtlebot3, the simulation software and the general description of the robot. In the fourth
section, the test methods are explained and substantiated. The results of these tests are shown in
the fifth section and discussed in the sixth section. The seventh section contains the conclusion of
the simulation fidelity derived from the previously discussed results as well as the implications for

1https://datanose.nl/Course/Manual/71473/Embedded%20Software%20and%20Systems/2018
2http://www.robotis.us/turtlebot-3-burger-us/
3http://gazebosim.org/

3

how the robot can be shared. In addition, potential future work is described in this section as well.

Section 2: Previous Work
Several papers have been written about similar work. Most of these papers look into the fidelity
of Gazebo in some way. As of the time of writing, no paper has been published on the fidelity of
the Turtlebot3 Burger bot for Gazebo specifically. Papers have been written on Gazebo simulation
fidelity for Quadrotor UAVs and custom robots. This section contains information on previous work
that relates to this thesis as well as an explanation of how they differ.

Mobile Robot Performance in Robotics Challenges: Analyzing a Simu-
lated Indoor Scenario and its Translation to Real-World[1]
This paper looks into the issues that must be taken into account when moving from simulation to
the real world. It also looks into common mistakes that researchers make during this transition.
A custom robot is implemented in Gazebo and tested on several aspects, such as execution time,
which is also examined in this thesis, and CPU usage. One notable result of the paper is that the
execution time in Gazebo turned out to be shorter than in the real world. This is the opposite
of what was discovered for the execution time of the Turtlebot3 Burger in Gazebo, which turned
out to be slightly longer. This most likely has to do with inaccuracies in the implementation of
the robot model. The Turtlebot3 Burger bot used for this thesis is a popular open-source robot
that has an official model implemented in Gazebo. Therefore, it can be expected that the Gazebo
implementation has a higher fidelity than the model of a custom robot. The paper is similar to the
thesis as it also evaluated Gazebo on fidelity. However, it looks mostly at different aspects and uses
a custom robot as well.

A High Fidelity Simulator for a Quadrotor UAV using ROS and Gazebo[7]
This paper compares the differences in performance between Gazebo and the real world by running
an obstacle course with a Quadrotor UAV. The paper concludes that one of the causes of the
difference between these two environments is that the simulation assumes an ideal system. In
reality, a substantial amount of noise is introduced. The performance is measured for high-level
algorithms such as SLAM, FastSLAM and GraphSLAM. In contrast, mostly low-level applications
will be used in this thesis. The paper also uses a flying robot whereas the robot used in this thesis
only drives on the ground.

Comprehensive Simulation of Quadrotor UAVs using ROS and Gazebo[2]
This paper implements a dynamic model for Quadrotor UAVs in Gazebo and validates it with
a trajectory containing transitions between different velocities. This trajectory is then compared
between the real world and the simulated Gazebo world. The dynamic model introduced in the
paper implements configurable noise. The paper states that the default method used by Gazebo
for simulating a camera is of limited fidelity, as it does not exhibit effects such as motion blur.
The robot in this thesis uses the default noise implemented by Gazebo and is not equipped with a
camera. The lack of fidelity for the camera can therefore be neglected for this thesis.

4

Simulation Environment for Mobile Robots Testing Using ROS and Gazebo[6]
This paper claims that, after properly creating a robot model in Gazebo, the code developed for
the simulation process can be directly implemented in the real robot without modifications. The
paper also propose an effective method for creating precise 3D maps using a combination of ROS
packages. The paper assumes that, based on previous research on implementation of robots in
Gazebo, the fidelity of this simulation software is high enough to transition from simulation to the
real world directly. The paper does not examine the fidelity of Gazebo directly, while this thesis
mainly contains experiments showing this fidelity.

Section 3: Background Information
This section will explain the background information required for understanding the simulation
fidelity of Gazebo. This section contains several subsections explaining: the operating system of
the robot, the simulation software that is assessed, and a description of the relevant components of
the robot.

The Robot Operating System
The Robot Operating System (ROS)4 is the default system used for operating the Turtlebot3 Burger
bot. ROS is a powerful open-source framework for creating robot applications. ROS provides a
structured communication network in the form of nodes, topics, messages and services. A node is
an independent process capable of peer-to-peer communication with other nodes. These nodes are
connected to other nodes based on topics. A node can send information over a topic by publishing
to it, while other nodes can receive the information that is published on a topic by subscribing to
it. Any number of nodes can publish or subscribe to the same topic, and a single node may publish
or subscribe to any number of topics. Nodes communicate in the form of messages, which are sent
over topics. All messages that are sent over a single topic have a strictly typed data structure. This
means that all messages sent over a certain topic must contain the exact same data structure. This
strictly typed structure can contain a standard primitive type, such as an integer or a float, or it
can be an array containing multiple different primitive types and constants. Such a ROS network
can be visualised using a graph. A default ROS network can be seen in Figure 1. The nodes in the
graph are also the nodes in the ROS network, the edges between these nodes are the topics and
the information that is transferred over these edges are the messages. Apart from topics, nodes can
also communicate in the form of services and clients. A node can provide a service that accepts
messages in the form of a strictly defined request and response. A client node can call a service
node with a request and will then wait for a response from the service node.

The network system employed by ROS provides a number of benefits. It allows for easier single-
node debugging due to the independence between the nodes. Because nodes can run independently
of other nodes, a single node can be debugged while the rest of the network is left running. This is
beneficial for the students following the course as it allows them to test their applications without
the need to restart the entire network. Logged sensor data can be used in a controlled environment
and logged message data can be played back similarly. The re-usage of data allows for multiple tests
to compare different system implementations without the need for more measurements. Networks

4ros.org

5

Figure 1: ROS network when only running the robot bring up and the visualisation tool (rqt).

and network configurations can be stored in packages allowing for easier deployment and sharing of
work. As previously mentioned, the networks can be visualised using graphs. These graphs make
the process of debugging an entire network straightforward.

The latest long-term support version, called ROS2 Dashing Diademata, is used in this thesis.
ROS2 was opted for as it will be relevant for a longer time in the future when the course is given
at the university. The main differences between ROS 1 and 2 is that the newer version does not
use a master node to manage the other nodes and it utilises the Data Distribution Service (DDS)5.
ROS2 is also available on platforms other than Ubuntu.

Simulation Software
ROS2 has two default simulation environments: Fake Node and Gazebo. Fake Node is used for
testing robot models and movement. However, it does not support using sensor data and is therefore
not suitable for this thesis. The other simulation software, Gazebo, is used instead. Gazebo is a
free open-source simulation software that claims to have a physics engine with a high fidelity. It has
competed in multiple competitions, such as the DARPA robotics challenge [3]. Gazebo is considered
an overall capable simulation software that has a wide variety of features while maintaining a simple
interface [4].

Robot Description
The robot that is used for the course is called the Turtlebot3 Burger bot. The relevant sensors
for this robot will be described in this section. Refer to the official documentation of the robot
for a description of the other sensors6. The robot is equipped with a 360 LiDAR laser distance
sensor LDS-01, two differential wheels and Inertial Measurement Units (IMU). The LiDAR is ca-
pable of accurately measuring distances between a distance of roughly 120 and 3500 mm. This
sensor measures the distance to the object, as well as the intensity of the surface. The LiDAR spins
roughly 5 times per second, which allows it to measure distances at the full 360-degrees around

5https://www.dds-foundation.org/
6https://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/

6

the robot roughly every 2.1 seconds. The robot can achieve a maximum translational speed of 0.22
metres per second and a maximum rotational speed of 2.84 radians per second (162.72 degrees per
second). The IMU of the robot consist of a gyroscope, a magnetometer and an accelerometer. The
magnetometer and the accelerometer are too noisy in both Gazebo and the real world, with values
fluctuating inconsistently. These sensors are therefore not tested in this thesis.

The gyroscope gives the orientation of the robot in the form of a quaternion. This notation is
converted to Euler in the gyroscope experiments, as this notation is straightforward to use. The
quaternion notation is more relevant for a robot that moves in three dimensions, such as a Quadrotor
UAV robot. This is not as applicable to the Turtlebot3, as it can only move on a horizontal plane.
The quaternion notation would be more useful than the Euler notation, in case the robot drove on
a slope.

Section 4: Method
The fidelity of Gazebo is first tested on a primitive level. This is done with simple experiments
where individual or pairs of sensors or actuators are tested. The LiDAR, the actuators, and the
gyroscope are tested. Getting a better understanding of the fidelity at a lower level helps when
inspecting higher-level applications that are constructed using these primitive parts. One such
higher-level experiment is done in this thesis on a wall following application. This section explains
what is tested and how the experiments are carried out. All the experiments are done in the Robo-
lab at the UvA. This is a controlled environment, which allows the limiting of many factors. Some
of these factors are: a consistent light level throughout all the experiments, the robot is initialised
in the same environment, and the robot uses the same ground and wall surfaces for most tests.

The LiDAR
The package that was used for the LiDAR experiments is called "LiDAR_Test" and the code for
this package can be found in "LiDAR_Test.py" on the GitHub repository7. This package logs
the LiDAR measurements to a file in the logs folder with the name format: laser_log_[time].txt
where [time] is the time of day when the data was logged. The code first queries the user for the
number of measurements that should be logged. The measured LiDAR distances for 0, 90, 180 and
270-degrees and the measured intensity at 0-degrees are then written to the log file roughly every
0.1 seconds until the desired amount of measurements is reached.

The LiDAR sensor will be tested using three different experiments: the detection range, the
noise at different distances and the intensity on different surfaces. These experiments test the dif-
ferent aspects of the LiDAR sensor that will be important in the classroom environment.

The detection range of the LiDAR given in the description is specified as being roughly between
120 millimetres and 3.5 metres. This range is an estimation and can differ between robots. The
detection range of the LiDAR will be tested by moving the robot towards a cardboard object from a

7https://github.com/LvZut/Turtlebot3_Gazebo_Fidelity

7

Figure 2: Setup for measuring the noise at different distances in the real world

distance of 4.5 metres to 5 centimetres while logging the LiDAR measurements at a 0-degree angle.
The highest and lowest measured values contained within the logged data show the detection range
of the robot. The robot will drive at a speed of 0.01 metres per second towards the cardboard
object. The logged data will be visualised in the results as a graph showing the measured distance
over time as the robot was moved closer to the object.

The noise of the LiDAR will be tested at different distances. During this experiment, the accu-
racy of the LiDAR is also tested as the measured distances will be compared to the real distance.
The distances used will be within the detection range of the LiDAR and more noise tests will be
done for shorter distances, as these are more relevant for a classroom environment. Measurement
data will be acquired by placing an object with a cardboard surface in front of the robot at the
specified distance and logging the LiDAR distance measurements of the robot at 0-degrees. Once
the data has been collected, frequency histograms will be created with the distance measurements
which show the noise distribution of the LiDAR at set distances. The robot is placed at different
measured distances facing a flat cardboard surface. This is shown in Figure 2. A similar experiment
will take place in Gazebo. The robot will be placed in front of a cube at varying distances. The set
up for the experiment in Gazebo can be seen in Figure 3.

The last aspect of the LiDAR that will be tested is the intensity and the effect of different
surfaces measured. The intensity measurement is partly based on the reflectivity of the surface
struck by the laser. Intensity can be used to recognise certain surfaces. This makes it possible to
place landmarks that the robot can more easily recognise. By default, the intensity values are set to
1 in Gazebo and do not change depending on the distance, even when a higher intensity is assigned
to an object. This contrasts with how the intensity behaves for the real robot, as this value decreases
when the robot is further away from the object. This substantial difference is further noticed with
the wall following application. Intensity values first have to be measured with the robot in the
real world before implementing them in Gazebo. The noise test uses a cardboard surface for the
measurements. Apart from the cardboard surface, reflective tape and aluminium foil surfaces will
be tested at a set distance of 0.5 metres to inspect the effect of these three different surfaces on the
intensity measurements of the LiDAR. In addition to the intensity distributions, the noise of the

8

Figure 3: Setup for measuring the noise at different distances in Gazebo

Figure 4: Setup for measuring the intensity on reflective tape at a distance of 50 centimetres

distance measured on these different surfaces will be compared. The set up for this experiment for
reflective tape can be seen in Figure 4.

The Actuators and Odometry
The Package that was used for the actuators and odometry experiment is called "Odom_Test".
The code for this package can be found in "Odom_Test.py" on the GitHub repository8. This pack-
age drives the robot in a straight line after receiving a distance to drive and a maximum driving
speed. This package uses the odometry of the robot to measure the driven distance and addition-
ally measures the distance in front of the robot at the start and at the end of the drive and logs
the absolute difference between the two. The LiDAR measurement serves as verification of the
odometry, the reliability of which is determined in the previously described experiment. The test
accelerates the robot at the start and decelerates at the end in order to minimise the slip caused by
sudden significant changes in translational velocity. The odometry of the robot was logged using
the package called Odom_Log.py.

8https://github.com/LvZut/Turtlebot3_Gazebo_Fidelity

9

The actuators and odometry will first be tested by driving the robot in a straight line at a speed
of 0.18 metres per second. The odometry of the robot will be compared to the LiDAR measure-
ments. This distance comparison will then be compared between the real world and the simulated
world. Additionally, the execution time between Gazebo and the real world will be compared. The
distances driven are between 0.3m and 1.5m. The distances were chosen based on their relevance
for applications in a classroom environment. There are more tests for shorter distances, as these
are more important in a classroom.

The effect of different maximum driving speeds will be examined in a similar manner. The
maximum speed will be varied from 0.1 metres per second up to the maximum driving speed of
the robot at 0.22 metres per second. All the experiments with different driving speeds will be done
over a distance of 1 metre. The odometry will be logged in order to visualise the trajectory of the
robot in both the real world and Gazebo. These trajectories will then be visualised in the results.

The Gyroscope
The package used for testing the gyroscope is called "Gyro_Test". The code for this package can
be found in "Gyro_Test.py" on the GitHub repository9. This package turns the robot a given angle
between -180 and 180-degrees and stops within a given threshold. The gyroscope of the robot is
then used to check if the robot is within 0.05π of the desired rotation. This is executed on a 0.005
seconds timer, which is the interval at which it checks if the robot is within the threshold of the
desired rotation.

The last primitive test will consist of turning the robot at a speed of 2 radians per second to a
given rotation using the gyroscope. This will be verified with the use of markings on the ground
and measuring the amount of degrees turned. A circle is used in the real world in order to ascertain
the rotation angle in the real world. The situation in the real world can be seen in Figure 5. The
process of verification in Gazebo is more precise as there already is an orientation attribute present
for the robot model in Gazebo..

9https://github.com/LvZut/Turtlebot3_Gazebo_Fidelity

10

Figure 5: Setup for measuring the rotation of the robot in the real world.

Wall Following Application
The high-level application is a wall following application. The goal is for the robot to stop at the end
of the wall with the use of reflective tape. The robot has to follow the wall at a distance of roughly
30 centimetres. In addition to following the wall and stopping at the end, the robot additionally has
to avoid an obstacle and count two pieces of reflective tape (called gems in the application) along
the wall. For a more detailed description of this application, refer to the thesis by Mirka Schoute [5].

This application will be tested on four different aspects:

1. The execution time of the application from start to finish

2. The number of gems counted by the robot

3. If the robot managed to avoid the obstacle

4. If the robot stopped at the end of the wall

Section 5: Results
This section shows the results acquired from the experiments described in the previous section.
First. the results of the three individual sensors are shown. In the last part of this section, the
results of the wall following application are shown.

LiDAR Detection Range
Figure 6a shows the detection range of the LiDAR on the real robot. The figure shows the detected
LiDAR distance at the front of the robot, while it was moving towards a wall at a speed of 0.1
metres per second. A steadily decreasing line can be seen with regularly occurring measurements
of 0 metres. 9.81% (438 out of 4463) of the values were 0. The highest and lowest measured values
were 4.200 metres and 0.091 metres, respectively. Figure 6b shows the same experiment in Gazebo.

11

(a) LiDAR detection range in real world (b) LiDAR detection range in Gazebo

Figure 6: LiDAR detection range of both the real world and Gazebo. The data was acquired moving
the robot from outside the LiDAR detection range towards an object at a speed of 0.1 metres per
second. The horizontal axis shows the time, while the vertical axis shows the distance measured by
the LiDAR.

The figure shows a steadily decreasing line without 0 measurements throughout. The highest and
lowest measured values were 3.5 metres and 0.12 metres, respectively. The measurements below
the LiDAR detection range, the last 92 values, show noisy data with a mean of 1.087 metres.
Additionally, it should be noted that, in the real world, the LiDAR measures 0 when the distance
is above the detection range, while the LiDAR in Gazebo will measure inf .

LiDAR Noise Distributions
Figures 7a - 9c show the comparison of the noise distributions between the real world and Gazebo
at 15, 20, 30, 40, 50, 75, 100, 150, 200 and 300 centimetres, respectively. For the distances below 75
centimetres, the LiDAR measurements in the real world show little noise except for the occasional
zero measurement. At and above 75 centimetres, noise becomes visible and the amount of zero
measurements decreases. The mean and deviation for the figures can be seen in Table 1. The
mean and deviation shown in this table were calculated without using the 0 measurements of the
data. In this table, it can be seen that the deviation in the real world overall increased as the
distance increases. The standard deviation is roughly 0.09% of the mean at 15 centimetres and
increases up to roughly 0.4% of the mean at 300 centimetres. The noise distributions of Gazebo
shows a consistent noise distribution across all distances and no zero measurements. The deviation
for Gazebo in table 1 agrees with this as the deviations are roughly the same for all distances. The
noise present in Gazebo is the most similar to the noise at 300 centimetres in the real world.

12

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Distributions of the LiDAR noise at a distance of 15, 20, 30, and 40 centimetres. The left
column shows the real world distributions and the right columns the Gazebo distributions. Measured
on a flat cardboard surface in the real world. The horizontal axis shows the distance measured by
the LiDAR while the vertical axis shows how often the corresponding value was measured. The
zero measurements are filtered out for the real world distributions.

13

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Distributions of the LiDAR noise at a distance of 50, 75, 100, and 150 centimetres. The
left column shows the real world distributions and the right columns the Gazebo distributions.
Measured on a flat cardboard surface in the real world. The horizontal axis shows the distance
measured by the LiDAR while the vertical axis shows how often the corresponding value was
measured. The zero measurements are filtered out for the real world distributions.

14

(a) (b)

(c) (d)

Figure 9: Distributions of the LiDAR noise at a distance of 200 and 300 centimetres. The left column
shows the real world distributions and the right columns the Gazebo distributions. Measured on a
flat cardboard surface in the real world. The horizontal axis shows the distance measured by the
LiDAR while the vertical axis shows how often the corresponding value was measured. The zero
measurements are filtered out for the real world distributions.

15

Table 1: Mean and σ for Figures 7 - 9. Distance measurements of 0 centimetres were filtered out
before the calculations. The second and third column show the mean and σ for the real world. The
fourth column shows the amount of zero measurements in the real world. The last two columns
show the mean and σ for Gazebo. There were no zero measurements in Gazebo

Mean and σ of noise distributions

Distance (cm) Real world Gazebo
Mean (m) σ (m) Zeros Mean (m) σ (m)

15 0.147 0.000126 11 0.145 0.0105
20 0.195 0.000243 23 0.197 0.0100
30 0.296 0.000263 15 0.297 0.0099
40 0.398 0.000445 12 0.397 0.0105
50 0.502 0.000548 15 0.494 0.0106
75 0.732 0.00759 31 0.747 0.0100
100 1.002 0.00691 24 0.996 0.0101
150 1.479 0.00767 24 1.494 0.0106
200 1.991 0.00864 20 1.993 0.0115
300 3.053 0.0122 0 2.995 0.0103

LiDAR Surface Influence
The LiDAR intensity and noise distributions at a distance of 50 centimetres for aluminium, card-
board and reflective tape can be seen in Figure 10. Figure 10a shows the intensity distribution
for aluminium foil. From this figure, it can be seen that the intensity fluctuates between 3000 and
10000 W/m2. The noise distribution is visible in Figure 10b. This figure shows that an aluminium
foil surface at 50 centimetres distance results in more noise and more zero measurements than a
cardboard surface. Figure 10c shows the intensity distribution for cardboard. For this surface it
can be seen that the intensity fluctuates between 3200 and 4200 W/m2. The noise distribution
is visible in Figure 10d. This figure is equivalent to Figure 8a. Figure 10e shows the intensity
distribution for reflective tape. From this figure it can be seen that the intensity fluctuates between
roughly 9500 and 11750 W/m2. The noise distribution is visible in Figure 10f. This figure shows
that there is more noise on reflective tape at a distance of 50 centimetres than on cardboard but
less noise than aluminium foil. In addition, there are more zero measurements on reflective tape
at this distance than on cardboard. It can be speculated that zero measurements are caused by
the surface not being entirely flat which causes the LiDAR laser to not reflect straight back. In
addition, this explains why more zero measurements occur on reflective surfaces, as the laser is less
likely to be reflected back at the LiDAR.

16

(a) (b)

(c) (d)

(e) (f)

Figure 10: The intensity distributions and corresponding noise distributions of the LiDAR mea-
surements on aluminium foil, cardboard and reflective tape at a set distance of 0.5 metres. The
horizontal axis of Figure 10e shows the measured intensity and the vertical axis shows how often
each intensity was measured. The horizontal axis of Figure 10f shows the measured distance and
the vertical axis shows how often each distance was measured.

17

Figure 11: Difference of the measured odometry distance and measured LiDAR distance when
driving different distances at a speed of 0.18 metres per second. These values are compared between
Gazebo and the real world. The horizontal axis shows the distance driven while the vertical axis
shows the average difference between the odometry and the LiDAR.

Odometry
Figure 11 shows the comparison between the real world and Gazebo by examining the difference
between the odometry and the LiDAR. This figure shows that the odometry and LiDAR disagreed
roughly the same amount when driving a distance of 100 centimetres or less. For a distance of 150
centimetres, there was a big difference between odometry and LiDAR in the real world, but not
in Gazebo. This inconsistency was caused by the drift of the robot. The odometry measures the
distance from the starting position, while the LiDAR measures the distance remaining to the wall
in front of the robot.
Figure 12 shows the time it took for the robot to drive a given distance. The execution times for
the real world were overall slightly lower than in Gazebo except for the two shortest distances, 30
and 40 centimetres.

Figures 13 and 14 show the trajectories of the robot when driving one metre at different driving
speeds. The trajectories in Gazebo all follow a straight line where the robot did not deviate
significantly. In contrast, the robot did deviate substantially when driving at higher speeds. At
speeds above 0.15 metres per second the robot started to deviate noticeably in the real world.
Additionally, this deviation does not follow the same pattern every trial and the trajectory deviation
varies more when driving faster. Finally, there seems to be a substantial increase in deviation
between 0.2 m/s and 0.22 m/s.

18

Figure 12: Comparison of the execution times between Gazebo and the real world when driving
different distances at a speed of 0.18 metres per second. The horizontal axis shows the driven
distance while the vertical axis shows how many seconds the robot drove.

Gyroscope
The results for the Gyroscope experiment are shown in Table 2. This table shows the average
turning error in degrees for both the real world and Gazebo. The robot turned too far in all cases.
In the real world, the error was overall larger when rotating counter-clockwise. In Gazebo, the error
was overall larger when rotating clockwise. The error was larger on average for the physical robot.
This suggests some sort of slight imperfection in the wheels of the physical robot.

Wall Following Application
Tables 3 and 4 show the results for the wall following application in the real world and in Gazebo,
respectively. The application worked perfectly in the real world, as the robot always counted the
exact amount of gems, stopped at the end, and avoided the obstacle. In Gazebo, the robot counted
2 gems 50% of the time and 3 gems 50% of the time. In addition, the robot managed to stop at
the end of the wall half of the time. The average execution time of the wall following application
was 326 seconds and 389 seconds in the real world and in Gazebo, respectively. The robot always
managed to avoid the obstacle.

19

(a) (b)

(c) (d)

(e) (f)

Figure 13: Visualisation of five trajectories of the robot for each driving speed. The figures show
trajectories that cover a distance of one metre at a speed of 0.1, 0.15 and 0.18 metres per second. All
trials are visualised relative to their own starting position. The x and y axes show their respective
relative coordinates of the robot.

20

(a) (b)

(c) (d)

Figure 14: Visualisation of five trajectories of the robot for each driving speed. The figures show
trajectories that cover a distance of one metre at a speed of 0.2 and 0.22 metres per second, with
0.22 metres per second being the maximum driving speed of the robot. All trials are visualised
relative to their own starting position. The x and y axes show their respective relative coordinates
of the robot.

Table 2: Average error in degrees for the different turning angles of the gyroscope test in the real
world and in Gazebo. Positive errors signifies that the robot turned too far. Each angle was tested
5 times for both situations.

Turning angle error

Angle Error real world
(degrees)

Error Gazebo
(degrees)

-180 10.35 1.2
-90 5.4 5.4
90 6.3 5.8
180 4.05 8

21

Table 3: Results for the wall following application in the real world. The first column shows the
execution time in seconds. The second column shows how many gems the robot counted. The third
and fourth column show if the robot stopped at the end of the wall and if the robot avoided the
obstacle respectively.

Results for the wall following application in the real world
Time (seconds) Gems Stopped Obstacle
312.03 2 True True
340.86 2 True True
324.03 2 True True
322.72 2 True True
323.75 2 True True
340.01 2 True True
329.93 2 True True
317.68 2 True True

Table 4: Results for the wall following application in Gazebo. The first column shows the execution
time in seconds. The second column shows how many gems the robot counted. The third and
fourth column show if the robot stopped at the end of the wall and if the robot avoided the obstacle
respectively.

Results for the wall following application in Gazebo
Time (seconds) Gems Stopped Obstacle
360.69 2 True True
392.94 3 False True
450.49 3 True True
375.45 2 True True
371.27 2 False True
362.95 2 True True
432.07 3 False True
368.50 3 False True

22

Section 6: Discussion
The results of the previous section are discussed in this section. The discussion includes the differ-
ences in fidelity as well as some solutions for the problems that arise. Each subsection within this
section discusses the results of one of the sensors and the final section discusses the wall following
application.

LiDAR
The results of the LiDAR detection range already show several substantial differences between the
LiDAR sensor in Gazebo and the real world. The first of which is that the LiDAR in Gazebo never
measures zero values. This means that LiDAR measurements in the real world are not as reliable
as in Gazebo. Another substantial difference for the detection range of the LiDAR are the actual
measurable minimum and maximum value. These differ slightly between these two situations: The
maximum range is 4.2 metres in the real world and only 3.5 metres in Gazebo. The minimum range
is 0.091 metres in the real world and 0.12 metres in Gazebo. It is a possibility that the detection
range varies between robots. As a consequence, the specifications of the robot have to be on the
lower end of this variance in order to ensure that all manufactured robots at the very least meet the
specifications. This advocates the testing of additional robots if they are bought for the course in
order to more precisely know the individual specifications. The next substantial difference is how
measurements outside the detection range are handled. These values are measured as 0 in the real
world, but as infinite in Gazebo. Lastly, distances below the detection range are recorded as 0 in
the real world, but are recorded as noisy data in Gazebo. This difference with values outside of the
detection range is fairly small and the solutions to solve it are mostly straightforward. However,
problems can occur when the programmer of the application is not aware of this difference between
the real world and Gazebo.

One solution for dealing with values outside of the detection range is to look at the values
recorded before and after. If the LiDAR measures a distance that is near one of the edges of the
detection range and the next measured value is 0, it is safe to assume that the robot measured a
distance outside the detection range.

When looking at the noise distributions, it is clear that Gazebo always follows the same distri-
bution, regardless of distance. However, the real robot shows an increasing amount of noise when
the distance to the object increases. Furthermore, the noise at lower distances is much smaller
than the constant noise in Gazebo. In the case of a classroom, this is mostly beneficial as lower
distances are more relevant. An application that works in Gazebo with the excessive amount of
noise at shorter distances will definitely work in the real world with less noise.

The results for the intensity experiments shows that the intensity of an object can reliably be
used to distinguish cardboard surfaces and reflective tape, when these are the only two surfaces
present. The intensity values for cardboard surfaces fall roughly between 3200 and 4200 W / m2,
while the intensity values for reflective tape fall roughly between 9500 and 11750 W / m2. This
makes it possible to classify a measured intensity value as one of these two surfaces at a distance of
50 centimetres if it falls within one of these two ranges. The intensity of an aluminium foil surface
fluctuates excessively which makes classifying it unreliable.

23

Actuators and Odometry
The first experiment shows that there is only a very small difference between the odometry in the
real world and in Gazebo. The substantial difference at 1.5 metres was most likely caused by the
skewed trajectory of the robot, which is only present in the real world. The skewing can be caused
by a number of factors. Some of these factors are: the driving speed of the robot, the material of
the floor the robot is driving on, the slope of the floor, or even a marginal difference between the
manufacturing of the two differential wheels. Only the effect of driving speed is further examined
in this thesis. Other causes for the skewing of the trajectory can potentially be further looked at
in future work.
The execution times show that a driving application executes slightly longer in Gazebo when driving
longer distances, but slightly shorter when driving very short distances. This suggests that the
actual speed that the robot achieves is higher while the acceleration is lower in Gazebo.
The trajectories of the robot at different speeds visualise the difference in skewing between the real
world and Gazebo. The trajectory of the real robot is skewed substantially, while the trajectory in
Gazebo follows a straight line. There is a slight difference at low driving speeds albeit significantly
smaller than at higher speeds. Therefore, it is important for the programmer of an application to
drive at low speeds when trajectory fidelity is important. The application used for this test did
not take into account the possible skewing of the robot. One solution to counteract the trajectory
skewing in the real world would be to continuously monitor the odometry of the robot and to correct
any deviations in the heading of the robot as soon as they occur.

Gyroscope
The turning angle error is noticeable in both situations: the robot consistently turns too far both
in the real world and in Gazebo. This indicates that the gyroscope is somewhat unreliable. Due
to the fact that the error occurs in both cases, the gyroscope should not cause unexpected results
when moving from simulation to the real world. The odometry could potentially be used in order
to help determine the current rotation of the robot. This could result in a more accurate rotation.

Wall Following Application
The results for the wall following application show that the robot performed a considerable amount
better in the real world than in Gazebo. The robot ran the application perfectly in the real world
every time, while only successfully achieving this perfectly twice in Gazebo. One cause for the
difference in executing time could be explained by looking at the execution times when driving in
a straight line. When the robot drives a short distance, the execution time in the real world is
considerably lower than in Gazebo. In the wall following application, the robot constantly drives
short distances. A possible cause for difference in gems counted is that the intensity is implemented
poorly in Gazebo. The measured intensity values do not change depending on the distance of the
object. This makes it likely for the robot to detect a single gem multiple times as it will recognise a
gem from a longer distance. This is not a problem in the real world, as the intensity values decrease
with distance. The robot will only recognise a gem when it is close to the robot.
At first, the programmer of this application was not fully aware of the differences between the real
world and Gazebo. This meant that the application had to be adjusted accordingly before it worked
with the actual robot.
The values above the detection range were treated as being below the detection range instead as

24

these values are set to 0 in the real world. As a consequence, the robot recognised empty space as
a wall that was too close to the robot to detect.
Furthermore, the detection of reflective tape using intensity had to be fine-tuned. This process was
time consuming and resulted in needing the physical robot for a longer time than was originally
expected.

Section 7: Conclusion
Overall, there are numerous differences between the real world and Gazebo that affect the fidelity.
Most of these differences are trivial and can be dealt with individually as long as the programmer
is aware of them. This process can nonetheless be time consuming and makes it harder to share
the robot efficiently. However, once this knowledge is acquired, methods can be implemented that
allow for the overall fidelity to be retained across applications, which can, in turn, greatly reduce
the amount of time required with the physical robot. Once the trivial infidelities of Gazebo are
ironed out, the programmers can focus on the actual task of designing and creating the application.
This makes the size and complexity of the application the main bottleneck when sharing the robot.
This is more in line with the intentions of the Embedded Software and Systems course as students
are occupied with finding solutions for the assignments instead of tuning or testing sensors.
Sharing the robot can be done efficiently due to the structure of the Robot Operating System.
The independent nodes of the ROS networks allow the efficient sharing of the robot. Students can
connect simultaneously and run their packages sequentially without the need to restart or reinitialise
the robot. Furthermore, the deployment of code is facilitated due to the robot being connected to
the Internet and using Ubuntu. Additionally, the reliable fidelity of Gazebo indicates that students
will require only a small amount of time with the robot as most work can be done in simulations.
All in all, the biggest limiting factor when sharing the robot will be the assignment itself. If the
testing of the assignment only takes a small amount of time, a large group of students will be
able to work with a single robot. If the testing takes a longer time, it is recommended to invest
in more robots and reduce the size of the groups so more students can test their implementations
simultaneously.

Future Work
Due to the restricted amount of time for this project, choices had to be made for the direction of
the research. There are several potential fields that could be explored in future work.
Multiple robots could be compared in order to examine the difference in their LiDAR, actuators
and other characteristics. Only a single physical robot was available for this research. Therefore,
it was not possible to inspect the differences between individual robots.
A proper implementation for laser intensity in Gazebo is potential work for the future. The current
implementation is lacking and is one of the main reasons why the high-level application performed
poorly in the simulation. A proper implementation would involve the implementation of variable
noise depending on the surface and an intensity value that depends on the distance to the object.
This would also make it more relevant to research the intensity on more surfaces, as well as the
exact correlation between intensity and distance.
One aspect of the actuators that was not touched upon in this thesis was the impact of driving
backwards. Due to the layout of the wheels and the weight distribution of the robot, it can be
hypothesised that there is some kind of difference. The trajectory of the robot at different speeds

25

can be expanded upon. The trajectory would be more clearly visible if the robot drove a longer
distance than one metre. An implementation of drift in Gazebo could also be added.
The turning of the robot with the use of the gyroscope was only done on a single rotation speed
and with a small amount of trials. The effect of different speeds could be examined. In addition,
the centre of the robot moved while rotating, the exact behaviour of the robot could be tested.
Lastly, the actual amount of students that can use a single robot could not be concluded theoreti-
cally. An accurate amount could be determined with the participation of multiple students.

References
[1] Francisco Rodrıeguez Lera et al. “Mobile robot performance in robotics challenges: Analyz-

ing a simulated indoor scenario and its translation to real-world”. In: 2014 2nd International
Conference on Artificial Intelligence, Modelling and Simulation. IEEE. 2014, pp. 149–154.

[2] Johannes Meyer et al. “Comprehensive simulation of quadrotor uavs using ros and gazebo”.
In: International conference on simulation, modeling, and programming for autonomous robots.
Springer. 2012, pp. 400–411.

[3] Umit Ozguner et al. “Simulation and testing environments for the darpa urban challenge”.
In: 2008 IEEE International Conference on Vehicular Electronics and Safety. IEEE. 2008,
pp. 222–226.

[4] Lenka Pitonakova et al. “Feature and performance comparison of the V-REP, Gazebo and AR-
GoS robot simulators”. In: Annual Conference Towards Autonomous Robotic Systems. Springer.
2018, pp. 357–368.

[5] Mirka Schoute. “Application programming for an embedded system in education on TurtleBot3
using statecharts”. B.S. Thesis. Netherlands: University of Amsterdam, May 2020.

[6] Kenta Takaya et al. “Simulation environment for mobile robots testing using ROS and Gazebo”.
In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC).
IEEE. 2016, pp. 96–101.

[7] Mengmi Zhang et al. “A high fidelity simulator for a quadrotor UAV using ROS and Gazebo”.
In: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society. IEEE.
2015, pp. 002846–002851.

26

