Hardware Dimensioning for Microservice Applications in
Cyber-Physical Systems: Current Directions and Challenges

Marijn Vollaard
Universiteit van Amsterdam (UvA), The Netherlands
Vrije Universiteit Amsterdam (VU), The Netherlands
m.j.vollaard@student.vu.nl

ABSTRACT

With the rise of large-scale web applications, microservices were in-
troduced as an alternative to monolithic systems. Microservices pro-
vide scalability, agile development, and customization in the deploy-
ment of microservices. For these reasons, microservices have not
only been adopted in a web environment but also in cyber-physical
systems (CPS). With this development, a new problem arose. There
is little predictability of the performance of microservice-based
applications, because of their complex structure. In a cloud con-
text, performance prediction for a given hardware configuration
is not essential, since typical cloud applications do not have rigid
real-time requirements and applications can be elastically scaled.
However, applications for CPSs generally cannot be scaled dynami-
cally, as a complete product has to be delivered to a customer, and
an estimate has to be made on the necessary hardware to satisfy
rigid performance requirements within the application. Thus, a
structured method of hardware dimensioning, assigning hardware
to an application, becomes necessary.

This literature study investigates state-of-the-art hardware di-
mensioning by discussing various application profiling and system
profiling methods, performance prediction models, and design space
exploration methods in the context of microservice-based appli-
cations. It then discusses the applicability of the state-of-the-art
in the context of CPSs and explains the method of leveraging the
concepts for offline hardware dimensioning. It concludes that future
work has to be conducted in profiling, performance prediction, and
design space exploration to investigate whether the methods used
in cloud environments are also applicable in the cyber-physical
space.

KEYWORDS

Microservice Applications, Cyber-Physical Systems, Hardware Di-
mensioning, Application Profiling, System Profiling, Performance
Prediction, Performance Modeling, Design Space Exploration, Lit-
erature Review

1 INTRODUCTION

In the past 20 years, large-scale web services have had an increas-
ing need for scalability in their applications [31]. Big monolithic
applications that run on multiple servers could not cope with the
heavy load that was requested with the increasing user base of
the applications. To solve this problem, microservice architectures
were introduced [18, 28]. Microservices provide scalability, agile de-
velopment, and more customization in the deployment of services
of an application [31].

Microservices are adopted, not only in the field of large-scale web
services, but also in applications in the cyber-physical space [25].
A cyber-physical system (CPS) is a system with both computa-
tional and physical components [32, 34]. In such a system, it is
not primarily the scalability that is advantageous, but the agile
characteristics of a microservice architecture. A CPS is often an
instance of a product, and it can go through various iterations of
development. Based on the demands of the users and stakehold-
ers of the product, it may need various features and capabilities,
which can influence performance and latency requirements. Thus,
a product can have variability per product instance. A microservice
architecture is advantageous in this context since services can be
used and deployed according to the needs of the customer and
a system is therefore more customizable [45]. Additionally, some
literature provides evidence that microservice architectures do not
necessarily degrade performance and may improve performance in
various contexts 7, 12, 47].

The variability per instance of a product causes problems in
terms of performance guarantees. It is often the case that building
a full CPS is very costly, so there is a need for a way to predict the
performance of a system before it is built for different configura-
tions. This is made more critical by the fact that the performance
of a system can be influenced by the amount of hardware as well
as the quality of hardware. To guarantee the satisfaction of perfor-
mance requirements, sufficient hardware needs to be provided. This
process of assigning hardware to an application is called hardware
dimensioning. In the cloud, this problem is generally solved by
deploying randomly and adapting to the needs of the application
while it is running [20, 42]. For a cyber-physical system, this is not
an option, since a product is often presented in full, including the
hardware it runs on, and it may not be possible to add hardware
after the fact due to limited energy supply or available space. Typ-
ically, not all hardware of a system is available, except for some
testing infrastructure. Guaranteeing performance beforehand there-
fore requires some prediction of the performance of an application
given a hardware configuration.

This literature study gives an overview of the current methods
of hardware dimensioning, discusses their uses and shortcomings
in the context of cyber-physical systems and microservice systems,
and looks at future directions in the field. The remainder of this
literature study is structured as follows: Section 2 provides the
background knowledge required to understand the concept in the
rest of the study. Section 3 provides an overview of the related
work in the area of hardware dimensioning, Section 4 discusses
the related work and how it applies to the hardware dimensioning

Literature Study, XM_0131, VU/UvA

problem in the context of cyber-physical systems and Section 5
reviews and concludes the findings of this study.

2 BACKGROUND

This background section aims to give an understanding of the
fundamental concepts of the material discussed in the sections that
follow it. Section 2.1 describes cyber-physical systems and explains
their characteristics, Section 2.2 explains what microservices are
and why they are increasingly used, Section 2.3 explains the concept
of Design Space Exploration (DSE), and Section 2.4 will explain the
concept of hardware dimensioning, and what it aims to do.

2.1 Cyber-Physical Systems

Cyber-physical systems are systems that consist of computational
and physical components. Usually in such systems, feedback loops
are employed, where physical processes affect computation, and
computation affects physical processes [9]. CPSs are generally
held to a higher standard of reliability and predictability than
general-purpose applications [32] and most industrial CPSs will
have mission-critical functionalities, or functions, that need to work
correctly, while satisfying performance requirements, to do their
job correctly. This means that a CPS will often be held to rigid re-
source utilization and latency requirements. At the same time, the
real world is not always predictable, and physical components can
behave unexpectedly. Unexpected behavior in physical components
can influence computational components negatively, which makes
claims regarding performance and latency requirements harder
to guarantee. The combination of higher reliability standards and
unexpected behavior makes predicting the performance of a CPS
different from general application performance prediction.

Often multiple instances of a Cyber-Physical System are devel-
oped. Each instance is tailored to the needs of the stakeholders
involved. Due to this variability in a product, microservices are
increasingly used in such systems, because of their flexibility in
development, deployment, and placement on hardware [25].

2.2 Microservices

When monolithic applications started growing, scaling of the appli-
cation became more difficult. Microservices architectures came up
as a solution for this scalability issue. A microservice is a small, in-
dependent, loosely coupled service that has a specific functionality
within a system [28, 40]. It communicates and exchanges data with
other services so that the services together make up an application
or microservice architecture. Because of their independent charac-
teristics, microservices can be developed, deployed, and scaled up
without needing to fully redeploy the whole system of services.

Additionally, microservices in an application can be deployed in
heterogeneous environments, meaning a microservice can be de-
ployed on different hardware, as well as be developed with different
software. The only environment variable that has to be agreed upon
is the communication method. A few of the most used methods
are RESTful services [52], gRPC [2], or publish/subscribe chan-
nels [6]. This communication can be synchronous or asynchronous,
depending on the application.

The distribution of services and functionalities of a system also
has disadvantages. With an increase in microservices in systems

Marijn Vollaard

} Unique ID — {SpanContext}

[e

_Servicc B

{SpanContext) {SpanContext}

Service B ‘ Service E Trace
;s,mc(,my N,,amw
g 9 Service E
’ Service C ‘ Service D ‘

(a) Trace Topology (b) Trace and Span

Figure 1: Example of trace spans for a simple microservice
architecture [33]

running in heterogeneous environments, ensuring the maintainabil-
ity, availability, security, performance, and testability of a system
becomes more challenging [18, 27]. Both the independent nature
and the broad deployment potential of microservices make it an at-
tractive software architecture to use in the context of cyber-physical
systems. However, this high potential for customization may bring
with it a lack of predictability of the performance of a microservice
system, which forms a problem in this context.

To get insight into the performance of a microservice system,
there is a need for observability [33]. Observability is a measure
of how well the state of a service can be known from external
outputs [21]. These external outputs consist of the three pillars of
observability. They are (i) traces, (ii) logging, and (iii) metrics. A
Trace is a record of activities or interactions that occur within a
service or application that processes requests or performs tasks.
Figure la shows the trace topology for a simple microservice ar-
chitecture. Logs are records of events, actions, or messages within
a service or application. Metrics are measurements that quantify
the behavior and performance of a service or application, such as
CPU and memory usage, over time. Of these three pillars, gathering
useful traces for microservice architectures proves more complex
than for monolithic architectures. Mostly due to the complexity of
dependencies between microservices [33]. A trace is often made
up of various subtraces that originate in other microservices as is
shown in Figure 1.

A directed acyclic graph (DAG) can be used as an overview
of the dependencies within a microservice-based application and
represents all its possible traces. A DAG consists of edges and
vertices, where the edges point towards one of its vertices. The
path through a DAG is never cyclic. Figure 1a is an example of a
DAG.

2.3 Design Space Exploration

"Design Space Exploration (DSE) is the process of discovering one
or many design solutions that best satisfy defined design objectives
given a space of tentative solutions called design points" [26]. It is
used to solve an optimization problem. In the context of hardware
dimensioning, model-driven DSE can be used to find an optimal, or
near-optimal, deployment of microservices over available hardware
[49]. By finding a good deployment configuration of an application,
the amount of hardware that is needed to satisfy performance

Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems: Current Directions and Challenges

Discovery

= ¥

= -

=) Description

=

= v

¥ Abstraction Mapping

Design : Design Space
. —_— L)
Choices :,..p Construction

(Pre-Exploration) 4T

Static Pruning

b) Design Space

v

Search Strategy

' Pick
¢ Design Point

Evaluate
: Design Point :

Dynamic
Pruning

c) Exploration

(Performance)
Result

Validation Feedback Decision

d) Results

Figure 2: General DSE workflow by Herget et al. [26]

requirements may be reduced. A general DSE workflow is shown
in Figure 2. The workflow is split into four main steps. In Step 1
models, and Step 2, design space, shown in Figure 2a and Figure 2b
respectively, the construction of design points is defined and the
design space is identified. The design points and design space are
determined by the context and goal of the design space exploration.

To find an optimal design point in the design space, it needs to
be evaluated. The evaluation is represented by Step 3, exploration,
shown in Figure 2c. Then, a search strategy is needed to traverse
the design space to find the next design point. A search strategy
determines the next design point to be evaluated. The method of
picking the next design point is what defines the search strategy.
DSE moves towards an optimal, nearly optimal, or acceptable design
point, which is then the result of the optimization problem. This
is the last step, results, shown in Figure 2d. The evaluation of a
design point can be done by the performance prediction methods
discussed in Section 3.2. A prediction, thus, maps a design point to
performance.

Literature Study, XM_0131, VU/UvA

2.4 Hardware Dimensioning in Cyber-Physical
Systems

As mentioned in Section 2.1, cyber-physical systems are often devel-
oped for multiple instances of one product. Each instance may have
different stakeholders, functionalities, and, therefore, performance
requirements. To ensure the performance of a product, sufficient
hardware needs to be provided to the application. The process of
assigning hardware to an application is called hardware dimension-
ing. It is an important part of the development of cyber-physical
systems and is often done without much scientific backing. A prod-
uct can have multiple different instances that each have vastly
different functionalities. This means that the hardware assigned to
each instance may differ as well. When a product has had many
iterations, experts in the system can assign hardware based on
previous experience. However, with new products, or instances
that have very different functionalities, this experience does not
exist yet. It is often the case that a full hardware system is not yet
available in the development stage of a product, except for some
testing infrastructure. Then, a prediction of the performance of the
system needs to be made based on this.

In a system with a monolithic application, this is also a prob-
lem [10]. Measurements can be done on the testing infrastructure,
but a prediction needs to be made on the effect of upscaling more
servers with the same piece of software on it. With the introduction
of microservices, performance satisfaction may be achieved differ-
ently: by varying the placement of microservices over nodes. The
flexibility of a microservice system brings with it the possibility for
optimization by deployment. On the other hand, it raises questions
regarding what services should be run on what hardware, and how
they should be configured. Combining certain microservices, or
splitting them over various nodes may improve the performance
of an application. Additionally, hardware can be heterogeneous, so
services may run differently on different nodes. To fully leverage
the flexibility and apply it for hardware dimensioning, there needs
to be a thorough insight into the performance of the application
and the impact of deployment and placement of microservices over
the hardware.

The reason for hardware dimensioning is mainly economic. The
goal is often to satisfy performance requirements with as few re-
sources as possible, to reduce costs. The use of too much hard-
ware, or over-dimensioning, causes unnecessary costs. Of course,
providing too little hardware may result in unmet performance
requirements.

Thus, there is a need to predict the performance of an applica-
tion given certain hardware and a configuration of microservices
over nodes in the context of cyber-physical systems that employ
a microservice architecture. Section 3 will further discuss current
findings and related work in this area.

3 RELATED WORK

In this section, related work will be laid out. The process of hard-
ware dimensioning has been split into three topics: Profiling, per-
formance prediction, and design space exploration. These together
can be used to achieve hardware dimensioning, with a focus on op-
timizing microservice placement. The scope of the related work is
not limited to cyber-physical systems, since knowledge from other

Literature Study, XM_0131, VU/UvA

systems and fields can be used to apply hardware dimensioning for
CPSs. Section 3.1 is about application profiling as well as system
profiling. Section 3.2 describes work on the performance prediction
of applications, in various environments. Section 3.3 showcases
ways to leverage a performance prediction to perform design space
exploration with various purposes. The goal of this section is not
to judge the various methods on their applicability to hardware
dimensioning in CPSs, but rather to give an outline of the current
state-of-the-art in these areas.

3.1 Profiling

Profiling is the process of monitoring and characterizing behavior,
performance, and resource utilization. It can have various purposes
and is generally used to gain insights into how an application or
system is functioning. It can also be used to identify areas where
improvements can be made. There is a distinction between appli-
cation profiling and profiling of the system the application runs
on. Application profiling can be based on the design knowledge of
the applications or their components. For example, Do et al. [17]
consider application-specific metrics, such as HT TP requests pro-
cessed per second, for Apache, or the number of frames processed
per second, for X264, a video encoding program. Metrics may also
be more general. Han et al. [24] use metrics like CPU and memory
usage to profile various applications. These metrics would not only
be useful for a specific application, but can be used to profile any
general application.

System profiling may include available resources in hardware,
or resource utilization. For example, Bao et al. [11] define system
specifications such as the number of cores per CPU, available RAM,
and storage as indicators of a system’s profile. It, thus, becomes
clear that profiling can be done with many different metrics in mind,
depending on the purpose of the profiling, the stage of development,
and the target hardware and infrastructure [50].

A profiling and prediction categorization of the related work is
shown in Table 1, Table 2, and Table 3 to give an overview of the
distinctions between the literature described in Section 3.

Some of the literature performs methods of offline profiling [6,
16, 30]. Offline profiling is done in the development stage of an
application, where the application can run on early available hard-
ware, without the need for the full context in which the application
will finally be used and run. There are also methods of online pro-
filing [19, 23, 35]. Online profiling is done while an application or
component is running and being used. Generally, it leverages the
fact that much data can be gathered while an application is being
used and deployment optimization can be done on the fly. While
the quantity of data is often higher, the type of data is the same.
Most work includes memory, CPU, and network utilization in both
application profiling, as well as system profiling. An example of a
system profile is various metrics per available nodes in a cluster
of nodes [30]. The purpose of online profiling is generally similar
to that of offline profiling: to optimize resource usage or predict
QoS satisfaction. However, online profiling can adapt to changing
situations in an environment, while offline cannot.

On the other hand, an advantage of offline profiling over online
profiling is that it can be done in various stages of the develop-
ment of an application. For example, Aksakalli et al. [6] describe

Marijn Vollaard

10 100
2
0.8 80
@ =
6 o 60
e ©
s <
é(“ 8
£ =
80.2 20
©
o

0020 40 6 8 100 O 0 10 o0 s 100

Sol Intensity (%) Sol Intensity (%)
(a) (b)

Figure 3: The mfc application performance from SPEC-
CPU2006 [1] benchmark suite, influenced by increasing in-
tensity of an LLC-Sol (Last Level Cache Source of Interfer-
ence). 3a shows the normalized performance of mfc with
increasing intensity of the LLC-Sol. 3b shows the LLC miss
rate of mfc with increasing intensity of the LLC-Sol

early profiling by analyzing design-level aspects of an application,
while considering hardware and the system it will run on. They
leverage application characteristics in the early design phase of an
application to develop a systematic approach to service placement
over nodes in the deployment phase. The idea is that it requires
a lot of expertise in an application to place services over nodes
in an efficient way. This task becomes increasingly difficult with
the number of services and possible combinations of services over
nodes. Finding a systematic approach can alleviate this problem.
Additionally, generating deployment configurations early on may
aid in the development of services and avoid re-work of detailed de-
sign, development, or testing [6]. The profile is made up of a service
data exchange metamodel, which specifies types and object sizes of
communication between services. Moreover, it uses a communica-
tion model that displays communication type and frequency among
services. These models are then used to estimate the communica-
tion load for each service in a system. Lastly, the profile includes
the expected resource utilization of services on a node, of which
examples are CPU utilization and memory usage. The profiling is
then used to predict whether there will be a suitable deployment
configuration that satisfies performance expectations, like Quality
of Service (QoS) requirements or Server Level Objectives (SLOs).

As with bottleneck analyses, profiling can be used to improve
an application in the design and implementation phase [6], but it
is also often used in predicting the behavior of an application or
system in a certain context.

For example, Delimitrou et al. [16] create an application profile
based on interference workloads. It deploys a contention bench-
mark suite, that includes 15 Sources of Interference (Sol), that can
highlight interference of co-scheduled applications in data centers,
or applications that run concurrently on the same server. Data
centers are facilities that provide hosting and managing services
of servers for cloud computing, storage, and a wide range of ap-
plications. An example of the use of an Sol is shown in Figure 3.
The LLC-Sol (Last Level Cache Source of Interference) is a small
application that can be used from 0% to 100% intensity. For this
Sol, 0% intensity means that the small application occupies 0% of
the LLC, and 100% means it occupies 100% of the LLC. As shown

Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems: Current Directions and Challenges

< 4,30 > 8 < 3,10 >
Mo M
1
.
3
M3 M,
< 3,24 > < 5,14 >

Figure 4: Undirected doubly weighted interaction graph, for
a toy application with four microservices [30]

in Figure 3a, the performance of the mfc application from SPEC-
CPU2006 [1] degrades with higher occupancy of the LLC by the Sol.
Furthermore, the LLC miss rate of mfc goes up with the intensity
of the Sol. This performance degradation indicates a sensitivity to
LLC interference for the mfc application. An application is profiled
based on all Sols that influence the performance of an application.
In this example, the profile has an emphasis on the behavior of an
application under certain specific conditions or under specific in-
terference. This profile can then be used to schedule an application
on a server, where applications with similar profiles will not be
scheduled together to minimize performance degradation due to
interference.

Adeppady et al. [4] also use the idea of identifying interference
patterns, where microservices of an application are run separately
and then together in pairs of two on a node. When both microser-
vices compete for resources, the performance of both goes down
relative to the performance of the same microservices that are run
in isolation. This difference will then be part of a profile of a mi-
croservice in the form of a contentiousness vector. Each value in
the contentiousness vector stands for a pair of microservices and
all vectors together form the profile of the application.

Profiling is often done per component in an application. Joseph
et al. [30] aims to improve upon the random placement of microser-
vices over resources by Kubernetes [3]. It does so by building IntMA,
which is a profile represented by an interaction graph. The graph
includes the amount of communication between nodes, as shown
on the weight of the edges of the graph in Figure 4. The weight
indicates the amount of communication between the two vertices,
or microservices. Each microservice has its own weighted vertex,
where the processing and memory requirements of a microservice
are stored. The profile of an application is then used to find an opti-
mal deployment configuration of microservices over nodes, while
trying to minimize the interaction between services.

3.2 Performance Prediction

Based on profiling of an application and system, a performance
prediction for an application can be made. The prediction method
depends on its purpose and how the performance is defined. As
with profiling, performance prediction can be done for vastly dif-
ferent purposes and can be done both online and offline. This is
shown in Table 1. Generally, a performance model is used for the
prediction. Various studies create an analytical model to predict the
performance of an application.

Literature Study, XM_0131, VU/UvA

Both Chen et al. [14] and Bao et al. [11] use a similar analytical
model to predict the response time per component of an application.
Although the purpose and environment of the works are different,
the performance definition is very similar for both works. It is de-
fined as the response time or end-to-end latency of an application.
The prediction is made by analyzing the response time of the com-
ponents in an application and some form of the sum of the response
times is then used as the application response time.

Chen et al. [14] perform offline prediction of component-based
applications in large-scale systems with an analytical model. It tries
to predict the response time per component of an application, based
on a profile of each component and the number of threads used by
the application. The goal is to assign the optimal amount of threads
to a component, minimizing the response time. The profile includes
the overhead ratio per concurrent request to access the container,
the average processing time for a single thread, and the processing
time on the back-end resources, like databases. Prediction is done
with a simple analytical model, based on the number of concurrent
requests, x, and the number of threads used by the application,
y. The model is shown in Equation (1), where T is the expected
response time, a is the overhead ratio per concurrent request to
access the container, b is the average processing time for a single
thread and c is the processing time on the back-end resources. With
this model, the response time of a component can be calculated
for different amounts of threads. By varying the thread count and
comparing the results, an optimal number of threads can be found
for a component.

bx
T=ax+—+cy (1)
y

Bao et al. [11] also aims to predict response time, but in the
context of microservices in a cloud environment. Its purpose is
to minimize costs for an application that has to be scheduled in
a public cloud. Costs are assigned to VMs that are deployed with
one or more microservices. It tries to both predict the execution
time of microservices, as well as the monetary costs of running the
microservice on a VM in the public cloud infrastructure. Microser-
vices are deployed and scheduled on demand, as to minimize costs.
The execution time of microservice i at time t is split up as shown
in Equation (2), where ET;(¢) is the execution time of microservice
iat time t, IT;(¢) denotes the initialization time of microservice i on
the cloud infrastructure, PT;(t) denotes the processing time in mi-
croservice i, depending on the concurrent microservices running in
its VM and node, and RT;(t) denotes the time it takes microservice
i to transfer its output data to all succeeding microservices.

ETi(2) = ITy(¢) + PT;(t) + RT; (1))

For the prediction of the overall application end-to-end latency,
the latencies of each microservice on the critical path [39] are added
together. It will also predict the monetary costs of one or more
requests to the application in the cloud based on the processing
time of microservices and the costs per second to run a VM in
the cloud environment. Thus, with this model, a prediction can
be made on the expected costs of an application, and an optimal
configuration of microservices over VMs and nodes can be found
to minimize the costs of a full application. The goal is to find an
optimal point where both the number of VMs is low, as well as

Literature Study, XM_0131, VU/UvA

the end-to-end latency of requests for the application, so that the
performance is sufficient, while the costs are kept low.

While the details for the prediction of response time per com-
ponent differ for both analytical models, the predictions show sim-
ilarities. For example, both models sum the response time of the
application components to come to a full application response
time prediction. They use the sum of individual characteristics as
a prediction for the characteristics of the application as a whole.
Moreover, the models are linear, in the sense that they are additions
of execution times of different processes within the components of
an application.

Adeppady et al. [4] show a prediction model that does not predict
the response time of an application, but rather the throughput per
microservice. As described in Section 3.1, Adeppady et al. [4] builds
a profile of an application based on the contentiousness of each
microservice. Its prediction model consists of two components: An
offline component and an online component. The offline component
leverages the contentiousness of microservices. This contentious-
ness is computed by running microservices isolated and then in
pairs, where the contentiousness is calculated from the difference
in performance between those two setups, with increasing load
for the microservices. The contentiousness of each microservice is
represented by a vector, where each value in the vector represents
the interference of each pair of microservices. An offline prediction
of the interference for microservice a, running concurrently with
b and ¢, between three microservices can then be made based on
the profile of the contentiousness of microservices. The aggregate
contentiousness vector of a and b is shown in Equation (3).

Voe =Vp+ Ve (3

Here, V}, and V; are the contentiousness vectors of b and c, and
Vpc represents the expected interference of the microservices com-
bined. The second component of the prediction model is based on
the expected interference, or contention, for microservice a. The
throughput of a can be predicted based on the contentiousness vec-
tor of microservices b and ¢ with an online regression model [51].
The full prediction model is then used for dynamic microservice
placement over nodes in the cloud, where minimizing the through-
put of each microservice is the goal.

Various works use machine learning in performance predic-
tion [22, 23, 35, 36] to dynamically improve the performance of
an application in a cloud environment. Both Rahman et al. [40]
and Zhang et al. [53] fall under this category. They aim to make an
online prediction of the end-to-end tail latency of an application
in a cloud environment, without needing much knowledge of the
mechanics and structure of an application.

Rahman et al. make a prediction based on CPU utilization of
both VMs and pods in which the microservices run, a directed
acyclic graph (DAG) of the application, and usage of last-level cache.
These form the input for a machine learning model. The output
of the model is the expected end-to-end tail latency of requests
for the application. Various machine learning methods are applied,
including linear regression [51], support vector regression [43], a
decision tree model [38], and a deep neural network [41]. In this
experiment, the linear regression has the lowest prediction accuracy,
and the deep neural network the highest. Based on the prediction

Marijn Vollaard

and the SLOs set for the application, a recommendation can be made
for upscaling of number of instances per microservice. The goal is,
thus, to satisfy SLOs, and dynamically predict when upscaling of
resources is needed in the short term, while minimizing resource
utilization.

Zhang et al.[53] also dynamically predict the end-to-end tail
latency in the short term with a deep neural network. The input
of the model is the number of requests per second, CPU, memory,
and network usage. However, they additionally employ a decision
tree model to try to predict whether the QoS target will be met in
the long term. The results of these models can then be combined
and used as input by an online scheduler, that maps microservice
instances to nodes.

3.3 Design Space Exploration

As discussed in Section 2.3, the workflow of DSE can be split up
into four main steps. The works in this section are structured along
them. In Step 1 and Step 2 of Figure 2, the design space and design
space points that make up the design space are identified. Both are
heavily influenced by the purpose and environment in which the
DSE takes place.

For example, Delimitrou et al. [16] try to optimize the schedul-
ing of applications over available servers. The design space points
are abstracted to the mapping, or placement, of applications on
servers. The design space is every distribution of applications over
the available servers, which grows exponentially with the number
of applications. Similarly, Joseph et al. [30] define the initial distri-
bution of microservices over available servers as design points. The
distribution of services over nodes may also be considered in an
iterative sense, where an initial distribution is made, after which
a redistribution of services can be made based on monitoring of
performance data [19, 46].

Rahman et al. [40] and Grohmann et al. [23] define an opti-
mization problem of minimizing instances per microservice, and
therefore, resource usage, while satisfying performance require-
ments. A design point is made up of a list of the number of instances
per microservice. The design space is in theory infinite, since the
number of instances per microservice can scale to infinity, although
in practice, there will be a limit. Since optimization is done toward
resource efficiency, design points with increasingly large instances
per microservice will not be considered.

Somashekar et al. [44] aim to optimize performance in terms
of end-to-end latency of applications by optimizing the configu-
ration parameters of individual microservices that make up the
application. Each design point represents a list of values for the
considered parameters per microservice. Since the number of mi-
croservices in an application can be very large, and the number of
configuration parameters grows exponentially with the number
of microservices [44], the design space may become very large. A
dimensionality reduction, or design space reduction, is therefore
explored in three different ways: (i) Only microservices on the crit-
ical path are considered, where the critical path is retrieved based
on current practice on critical path identification [39], (ii) Only
microservices with high variability in performance are considered,
(iii) Only the microservices identified by prior work as bottlenecks

Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems: Current Directions and Challenges

are considered. Reducing the design space in such a way may aid
in finding an optimal design point more quickly.

To find an optimal design point in the design space, multiple
design points need to be evaluated. This is represented by Step 3. A
design point can, for example, be defined as a placement of services
over nodes [4], characteristics of applications [6], or parameter
configuration per microservice [44]. The performance is defined
as one or more metrics, like predicted end-to-end latency [11] or
expected throughput of a service [4]. Then, a search strategy is
needed to traverse the design space to find the next design point.

For example, Han et al. [24] use a greedy heuristic to pick a suit-
able cluster of nodes for a microservice-based application, where
it chooses between multiple different clusters in a cloud environ-
ment. Since the evaluation, with the performance prediction, is
done offline, the DSE can also be done offline. The microservices of
the application are ranked in decreasing order by interaction rate,
explained in Section 3.1 and Joseph et al. [30]. Then they are placed
on nodes that are also ranked in decreasing order by the node’s
CPU utilization capacity. If an application does not fit on a cluster,
the next cluster will be tried out, until a cluster is found on which
the application fits. In this sense, the DSE is not necessarily looking
for an optimal deployment, but rather the first acceptable option.

Somashekar et al. [44] aim to optimize configuration parame-
ters for individual microservices in an application and consider
6 different black-box search strategies to come to a near-optimal
configuration. Dynamically Dimensioned Search (DDS) [48] arrives
at the highest performance in terms of performance, measured in
end-to-end tail latency of requests in an application, while taking
to least time to arrive at the result. The algorithm starts with an
initial parameter configuration and then perturbs the values of the
parameters based on a perturbation factor [48]. The most impor-
tant characteristic of the search strategy is that it moves quickly
from a global search to a local search, where it will arrive at a local
optimum.

Several studies [13, 29, 35] use reinforcement learning [37] to
redistribute microservices over a deployment environment. The
idea is that both the environment in which the microservices are
running and the arrival pattern and number of requests can change,
which may limit the efficiency of offline methods. Reinforcement
learning uses objective functions as models, which function as the
evaluation for a given configuration of microservices. For reinforce-
ment learning, this is called a reward. The reinforcement learning
tries to get the highest rewards, which it retrieves based on the
prediction model for a configuration of microservices and arrives at
optimal configuration by iteratively changing it. The evaluation and
DSE are inherently done online for these works, since it depends
on the changing environment and incoming requests.

Maetal. [36] use and improve upon an evolutionary algorithm [8],
NSGA-III [15], to come to an optimal initial distribution of mi-
croservices over nodes. An evolutionary algorithm works with a
population of individuals, where each individual is a design point.
Mutation and crossover are used to create new individuals for the
population. The fittest individuals will be selected and go on to the
next generation, or iteration of the evolution, where they will, again,
mutate and crossover to create a new generation. This process is
continued until a stop condition is met. The stop condition can be

Literature Study, XM_0131, VU/UvA

defined in different ways. For example, it can stop after a speci-
fied number of generations, after a suitable solution is found, or
when the improvement per generation is very minimal, indicating
that either a local or global optimum is found. The best individ-
ual of the last generation then represents an acceptable placement
configuration of microservices over available nodes.

Fu et al. [19] consider both the initial distribution of microser-
vices in the cloud-edge continuum and the redistribution of mi-
croservices over available nodes and edge devices. An initial dis-
tribution is made according to expected communication overhead
among services, based on graph interaction between them. The
redistribution of microservices is done based on an evaluation of I0-
sensitive microservices and load-dynamic sensitive microservices.
The search strategy is not random, like various works discussed
here [36, 44], but it is steered by run-time data collection and online
performance prediction. In this case, the performance prediction is
not only used as an evaluation in the DSE, but also as part of the
search strategy.

4 DISCUSSION

In this section, the related work from Section 3 is put in the context
of hardware dimensioning in microservice-based cyber-physical
systems. Section 4.1 discusses the applicability of the related work
in a microservice architecture, Section 4.2 explores the relevance of
the related work in the context of CPSs, and Section 4.3 examines
how the related work can be leveraged in hardware dimensioning
in this context.

4.1 Microservice Architecture

Microservices-based applications consist of smaller, more granular,
loosely coupled services. An application can vary from a few to
hundreds of microservices. The related work discusses both meth-
ods of profiling with application-specific metrics [17], as well as
more general metrics [24]. Application-specific and microservice-
specific metrics can be useful for a more detailed profile, but the
method of profiling may not scale well with the number of mi-
croservices in an application. Additionally, comparisons between
different microservices are harder to make when the metrics for
each microservice differ. For this reason, most profiling methods dis-
cuss general metrics, like CPU usage and memory usage, to profile
larger-scale applications. These metrics apply to any microservice,
regardless of their structure or function.

The related work of Section 3.1 indicates a need to both in-
clude communication between microservices as a factor of expected
performance [30], as well as the contention, or interference, mi-
croservices may inflict on each other when they run on the same
node [4, 16]. This highlights an optimization trade-off in the optimal
deployment of microservices over nodes: To minimize communica-
tion, microservices should be deployed on the same node as much
as possible. To minimize interference, microservices should each
be spread out. This indicates an optimization problem, where the
optimum will be somewhere in between all microservices on one
node, and each microservice being deployed on a separate node.

As shown in Table 1, most methods are performed in the context
of microservices-based applications. Microservice-specific methods
are shown to be useful, such as IntMA [30]. However, aspects of

Literature Study, XM_0131, VU/UvA

application profiling can be taken from other contexts as well. Pro-
files for applications in data centers are made as a basis to predict
the interference of applications on each other. An Sol suite is built
by Delimitrou et al. [16] and may be adapted to the context of mi-
croservices, where the interference of each individual microservice
is profiled. Adepaddy et al. adapted the idea of interference in a sim-
ilar way, creating a contentiousness profile for each microservice
in an application.

The same is true for prediction models. Chen et al. [14] predict
the response time of a component-based application by predicting
the response time of each individual component, using a linear
analytical model. Bao et al. extend this idea into the context of
VMs and microservices. An analytical model is made, where the
details of the model are different, but the linear computation of
response time is very similar. An important characteristic of these
models is that they use the sum of individual components to come
to the overall performance of an application. In the context of
microservice-based applications, this may be used to individually
profile each microservice and then use the sum of the profiles to
come to a full application profile.

4.2 The Cyber-Physical Systems Context

A CPS application is often held to rigid performance requirements.
The performance requirements are generally made up of resource
usage requirements, as well as latency requirements. This means
that both profiling and performance prediction will likely need to
include both resource utilization of microservices, as well as some
way to identify traces of requests through the application. These
traces represent paths through the application that represent la-
tency requirements. Both Chen et al. [14] and Bao et al. [11] discuss
profiles for models that try to predict the end-to-end tail latency of
requests through an application, by analyzing the processing time
of an application. The focus of these methods lies on the end-to-end
latencies of requests. However, it is useful to analyze subtraces
within a CPS if a latency requirement is defined within a system.
Various works also discuss resource utilization. CPU and memory
utilization metrics for both applications, as well as systems, are
processed by most works that perform profiling or performance
prediction, as shown in Table 2.

The literature displayed in this literature review has a focus on
profiling, performance prediction, and design space exploration in
cloud environments. This is the case because most work in this area
is done within this context. Research into performance prediction
for CPSs is lacking in this area as well. The expectation is that the
work shown in the concepts for the cloud environment can be at
least partially used in the context of CPSs. This is supported by
Section 4.1, where profiling and prediction between applications
in data centers is discussed and where is shown that it applies to
microservices in the cloud as well. Nonetheless, the nature and
strictness of performance requirements of CPSs may differ from
those of applications in the cloud, and CPSs may be subject to
unexpected behavior caused by real-world components. Therefore,
further research is needed in this area.

Another distinction may be in the run-time environment of
CPSs. Section 3.3 describes that several studies use reinforcement
learning to redistribute microservices based on cloud environment

Marijn Vollaard

changes and request arrival pattern changes for an application. The
expectation in cyber-physical systems is that, while request arrival
patterns may change, the environment is not as fluid. Therefore,
the redistribution of microservices may not be as essential as in
cloud environments, where change is much more common.

It should be noted that a CPS can be a complex distributed sys-
tem featuring a variety of compute nodes [5]. They range from big
Intel machines to small embedded boards designed for real-time
control applications. A challenge within the context of CPSs can be
that the compute nodes, such as the embedded boards, are resource-
constrained and must operate within short deadlines of micro- or
milliseconds. These parts of the system typically require static anal-
ysis of timing and schedulability rather than measurement-based
performance prediction as discussed in the literature shown here.
These compute nodes may be the cause of the more strict latency re-
quirements of a CPS. This highlights that the related work discussed
in this literature study does not necessarily apply to all aspects of a
CPS, but only to the software-dominated components. These spe-
cial hardware components fall out of the scope of this work, but
should be taken into consideration when hardware dimensioning
in the context of CPSs is performed.

4.3 Hardware Dimensioning

From the literature, a method of hardware dimensioning can be
derived that can be split up into four steps:

(1) Make a profile of an application and system.

(2) Develop amodel that maps the deployment of microservices
over a cluster of nodes to the performance of a microservice-
based application. Input of the prediction is the application
profile and the system profile.

(3) Use the performance prediction to explore the design space
for optimal, near-optimal, or acceptable deployment of mi-
croservices over nodes.

(4) Choose the number of servers for which the discovered
solution is sufficient.

The first two steps of hardware dimensioning, profiling and per-
formance prediction, have to be done offline. The goal is to predict
the amount of hardware necessary to run an application while sat-
istying performance requirements, and, therefore, the system is not
yet available. However, aspects of online profiling and performance
prediction can still be used in offline profiling. As shown in Table 1
and Table 2, the purpose and metrics of both online and offline
methods can be similar, and ideas of online profiling are also used
in offline profiling. For example, both Lv et al. [35] and Han et
al. [24] build a profile based on communication overhead within
an application with the purpose of optimizing its resource usage.
The former builds an online profile, and the latter an offline profile.
The method through which the profile is then leveraged differs, as
the resource assignment is done dynamically [35], or before the
application is deployed [24].

The current literature does not consider profiling in the context
of CPSs, as shown in Table 1. Although it could be the case that
the profiling methods used in the context of applications and mi-
croservices in the cloud can be applied directly in the CPS context,
no experiments have yet been performed to verify this is the case.

Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems: Current Directions and Challenges

Similarly, performance prediction is explored thoroughly in the
literature, but only in a cloud or data center environment.

Machine learning models are generally not suitable for offline
performance prediction. The literature that performs online pre-
diction often uses machine learning models, because there is much
data available in a specific system context. A characteristic of per-
formance prediction in hardware dimensioning is that there is not
much historical data available yet, and therefore it will likely not
be a useful model type in this context. Additionally, black box ma-
chine learning models do not give insight into the workings of
an application, but predict its performance without a method of
how. Analytical models are likely more useful in this context, since
they require less data, and can give better insight into the char-
acteristics of an application. While that is not the main goal of
hardware dimensioning, it can still aid in the development process
of an application.

A performance prediction in hardware dimensioning does not
need to be precise. The goal is to give a scientifically backed sup-
porting structure for hardware dimensioning. Therefore, the profile
and model can stay simple, to keep the process simple as well. A
20% accuracy may be reasonable, although it will depend on the pre-
dictability of the behavior of an application, as well as the system
that it runs on. With increased unexpected behavior, the prediction
accuracy may go down significantly. As the performance model may
stay simple, the linear analytical models that are common [11, 14]
could be a good approach to hardware dimensioning in this context.

The third step of hardware dimensioning includes finding an
optimal deployment of microservices over a set of nodes. The lit-
erature provides various works that look into this optimization
problem [16, 19, 30, 46] and find optimal methods for specific opti-
mization problems. Research in this area is relatively mature and
various search strategies have been tried, like greedy heuristic
algorithms, reinforcement learning methods, and evolutionary al-
gorithms. The optimal method is dependent on the type of model
and predicted metrics.

There is no structured approach yet for hardware dimension-
ing in the context of microservice-based applications in the cyber-
physical space. Further research is necessary in this area to verify
that the four steps of hardware dimensioning identified in this
literature study can be applied in that specific context. Further-
more, none of the related work discusses hardware dimensioning
as a purpose of profiling and performance prediction. Therefore,
further research can be conducted into profiling and performance
prediction as a basis for hardware dimensioning.

5 CONCLUSION

This literature study looks at the current state-of-the-art and re-
search directions in hardware dimensioning for microservice ap-
plications in cyber-physical systems. This study splits hardware
dimensioning into (i) application and system profiling, (ii) per-
formance prediction for microservice-based applications, and (iii)
design space exploration in the initial distribution of microservices
over a set of nodes. It then discusses the findings for each area and
explains the process in which they can be used to perform hardware
dimensioning in the context of microservice-based applications in
cyber-physical systems.

Literature Study, XM_0131, VU/UvA

To perform hardware dimensioning, both an application profile
and a system profile should be made to form the input for a predic-
tion model. Various analytical performance prediction models use
the sum of the performance of different components of an appli-
cation as a viable performance prediction for the full application.
This indicates that the sum of the performance of microservices
can be suitable as a performance prediction of the full application.
For example, a prediction of the CPU usage of a node may be made
based on the sum of the CPU usage of each microservice that runs
on it.

Additionally, an application profile often consists of communica-
tion overhead between services and contention between services.
These two characteristics highlight an optimization trade-off in
the optimal deployment of microservices over nodes: To minimize
communication, microservices should be deployed on the same
node as much as possible. To minimize interference, microservices
should each be spread out. This indicates an optimization problem
that can be solved with design space exploration. The optimum will
be somewhere in between all microservices on one node, and each
microservice being deployed on a separate node.

Although this literature study identifies four steps in the hard-
ware dimensioning of microservice-based applications in the cyber-
physical space, no work showcases a structured approach to hard-
ware dimensioning a microservice-based application. Additionally,
current literature does not discuss profiling and performance pre-
diction in the context of cyber-physical systems. Future work has to
be conducted to definitively conclude that the various methods of
profiling, performance prediction, and design space exploration that
are shown in this literature study are also applicable in the context
of microservice-based applications in Cyber-Physical Systems.

The area of Design Space Exploration in the context of microser-
vice deployment over a set of nodes is done extensively and is fairly
mature in a cloud environment. However, all research is done in
the cloud, and future research may be done on the applicability of
DSE methods in cyber-physical systems.

ACKNOWLEDGMENTS

This literature study was produced as part of the XM_0131 course
at the Vrije Universiteit Amsterdam in cooperation with the Univer-
sity of Amsterdam. It was supervised by Prof. Dr. Benny Akesson,
professor by Special Appointment with the University of Ams-
terdam & Senior Researcher at TNO-ESI, and Ben Pronk, System
Architect at TNO-ESI.

REFERENCES

[1] 2006. SPEC CPU. Accessed: Oct. 2, 2023 [Online]. Available:
http://www.spec.org/cpu2006/index.html.

[2] 2019. gRPC. Accessed: Aug. 14, 2023 [Online]. Available: https://grpc.io/.

[3] 2023. Production-Grade Container Orchestration. Accessed: Oct. 4, 2023

[Online]. Available: https://kubernetes.io/.

[4] Madhura Adeppady, Paolo Giaccone, Holger Karl, and Carla Fabiana Chiasserini.
2023. Reducing microservices interference and deployment time in resource-
constrained cloud systems. IEEE Transactions on Network and Service Management
(2023).

[5] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I
Davis. 2022. A comprehensive survey of industry practice in real-time systems.
Real-Time Systems 58, 3 (2022), 358-398.

[6] Isil Karabey Aksakalli, Turgay Celik, Ahmet Burak Can, and Bedir Tekinerdogan.
2021. Systematic approach for generation of feasible deployment alternatives
for microservices. IEEE Access 9 (2021), 29505-29529.

Literature Study, XM_0131, VU/UVA

~

]

8]

(9]

[10

[11]

[12]

[13

[14]

[15]

[16

[17

(18]

[19]

[20

[21]

[22]

[23]

[24]

[25

[26]

[27]

[28

[29

Omar Al-Debagy and Peter Martinek. 2018. A comparative review of microser-
vices and monolithic architectures. In 2018 IEEE 18th International Symposium
on Computational Intelligence and Informatics (CINTI). IEEE, 000149-000154.
Thomas Bick and Hans-Paul Schwefel. 1993. An overview of evolutionary
algorithms for parameter optimization. Evolutionary computation 1, 1 (1993),
1-23.

Radhakisan Baheti and Helen Gill. 2011. Cyber-physical systems. The impact of
control technology 12, 1 (2011), 161-166.

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
2004. Model-based performance prediction in software development: A survey.
IEEE Transactions on Software Engineering 30, 5 (2004), 295-310.

Liang Bao, Chase Wu, Xiaoxuan Bu, Nana Ren, and Mengqing Shen. 2019. Per-
formance modeling and workflow scheduling of microservice-based applications
in clouds. IEEE Transactions on Parallel and Distributed Systems 30, 9 (2019),
2114-2129.

Grzegorz Blinowski, Anna Ojdowska, and Adam Przybylek. 2022. Monolithic
vs. microservice architecture: A performance and scalability evaluation. IEEE
Access 10 (2022), 20357-20374.

L Chen, Y Xu, Z Lu,] Wu, K Gai, PCK Hung, and M Qiu. 2020. IoT microservice
deployment in edge-cloud hybrid environment using reinforcement learning.
IEEE Internet Things J. 8 (16), 12610-12622 (2021).

Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. 2005. Performance prediction
of component-based applications. Journal of Systems and Software 74, 1 (2005),
35-43.

Kalyanmoy Deb and Himanshu Jain. 2013. An evolutionary many-objective opti-
mization algorithm using reference-point-based nondominated sorting approach,
part I: solving problems with box constraints. IEEE transactions on evolutionary
computation 18, 4 (2013), 577-601.

Christina Delimitrou and Christos Kozyrakis. 2013. ibench: Quantifying inter-
ference for datacenter applications. In 2013 IEEE international symposium on
workload characterization (ISWC). IEEE, 23-33.

Anh Vu Do, Junliang Chen, Chen Wang, Young Choon Lee, Albert Y Zomaya,
and Bing Bing Zhou. 2011. Profiling applications for virtual machine placement
in clouds. In 2011 IEEE 4th international conference on cloud computing. IEEE,
660-667.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yes-
terday, today, and tomorrow. Present and ulterior software engineering (2017),
195-216.

Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, and Minyi Guo. 2021. Adaptive
resource efficient microservice deployment in cloud-edge continuum. IEEE
Transactions on Parallel and Distributed Systems 33, 8 (2021), 1825-1840.
Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, Xin Peng, Wenli Zheng, and
Minyi Guo. 2021. Qos-aware and resource efficient microservice deployment
in cloud-edge continuum. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 932-941.

Shivakumar R Goniwada and Shivakumar R Goniwada. 2022. Observability.
Cloud Native Architecture and Design: A Handbook for Modern Day Architecture
and Design with Enterprise-Grade Examples (2022), 661-676.

Johannes Grohmann, Patrick K Nicholson, Jesus Omana Iglesias, Samuel Kounev,
and Diego Lugones. 2019. Monitorless: Predicting performance degradation in
cloud applications with machine learning. In Proceedings of the 20th international
middleware conference. 149-162.

Johannes Grohmann, Martin Straesser, Avi Chalbani, Simon Eismann, Yair Arian,
Nikolas Herbst, Noam Peretz, and Samuel Kounev. 2021. Suanming: Explainable
prediction of performance degradations in microservice applications. In Pro-
ceedings of the ACM/SPEC International Conference on Performance Engineering.
165-176.

Jungsu Han, Yujin Hong, and Jongwon Kim. 2020. Refining microservices place-
ment employing workload profiling over multiple kubernetes clusters. IEEE
access 8 (2020), 192543-192556.

Robert Harrison, Daniel Vera, and Bilal Ahmad. 2016. Engineering methods and
tools for cyber—-physical automation systems. Proc. IEEE 104, 5 (2016), 973-985.
Marius Herget, Faezeh Sadat Saadatmand, Martin Bor, Ignacio Gonzélez Alonso,
Todor Stefanov, Benny Akesson, and Andy D Pimentel. 2022. Design Space
Exploration for Distributed Cyber-Physical Systems: State-of-the-art, Challenges,
and Directions. In 2022 25th Euromicro Conference on Digital System Design (DSD).
IEEE, 632-640.

Marcus Hilbrich and Fabian Lehmann. 2022. Discussing Microservices: Defi-
nitions, Pitfalls, and their Relations. In 2022 IEEE International Conference on
Services Computing (SCC). IEEE, 39-44.

Pooyan Jamshidi, Claus Pahl, Nabor C Mendonga, James Lewis, and Stefan Tilkov.
2018. Microservices: The journey so far and challenges ahead. IEEE Software 35,
3(2018), 24-35.

Zhaolong Jian, Xueshuo Xie, Yaozheng Fang, Yibing Jiang, Tao Li, and Ye Lu.
2023. DRS: A Deep Reinforcement Learning enhanced Kubernetes Scheduler for
Microservice-based System. (2023).

10

[30

[31]

[32

[34

(35]

(36]

(37]

'@
&

[39

[40]

[41

[42

[44]

[45

[46]

[48

[49]

[50

S
L

[53

Marijn Vollaard

Christina Terese Joseph and K Chandrasekaran. 2020. IntMA: Dynamic
interaction-aware resource allocation for containerized microservices in cloud
environments. Journal of Systems Architecture 111 (2020), 101785.

Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd Pfleiger,
Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, et al. 2018.
Service fabric: a distributed platform for building microservices in the cloud. In
Proceedings of the thirteenth EuroSys conference. 1-15.

Edward A Lee. 2008. Cyber physical systems: Design challenges. In 2008 11th IEEE
international symposium on object and component-oriented real-time distributed
computing (ISORC). IEEE, 363-369.

Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao Xie, Jun Sun, and Xuanzhe
Liu. 2022. Enjoy your observability: an industrial survey of microservice tracing
and analysis. Empirical Software Engineering 27 (2022), 1-28.

Carolina Villarreal Lozano and Kavin Kathiresh Vijayan. 2020. Literature review
on cyber physical systems design. Procedia manufacturing 45 (2020), 295-300.
Wenkai Lv, Quan Wang, Pengfei Yang, Yunqing Ding, Bijie Yi, Zhenyi Wang,
and Chengmin Lin. 2022. Microservice deployment in edge computing based
on deep Q learning. IEEE Transactions on Parallel and Distributed Systems 33, 11
(2022), 2968-2978.

Wubin Ma, Rui Wang, Yuanlin Gu, Qinggang Meng, Hongbin Huang, Su Deng,
and Yahui Wu. 2021. Multi-objective microservice deployment optimization via
a knowledge-driven evolutionary algorithm. Complex & Intelligent Systems 7
(2021), 1153-1171.

P Read Montague. 1999. Reinforcement learning: an introduction, by Sutton, RS
and Barto, AG. Trends in cognitive sciences 3, 9 (1999), 360.

Anthony J Myles, Robert N Feudale, Yang Liu, Nathaniel A Woody, and Steven D
Brown. 2004. An introduction to decision tree modeling. Journal of Chemometrics:
A Journal of the Chemometrics Society 18, 6 (2004), 275-285.

Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Ravis-
hankar K Iyer. 2020. {FIRM}: An intelligent fine-grained resource management
framework for {SLO-Oriented} microservices. In 14th USENIX symposium on
operating systems design and implementation (OSDI 20). 805-825.

Joy Rahman and Palden Lama. 2019. Predicting the end-to-end tail latency of
containerized microservices in the cloud. In 2019 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, 200-210.

Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J An-
ders, and Klaus-Robert Miiller. 2021. Explaining deep neural networks and
beyond: A review of methods and applications. Proc. IEEE 109, 3 (2021), 247-278.
Adalberto R Sampaio, Julia Rubin, Ivan Beschastnikh, and Nelson S Rosa. 2019.
Improving microservice-based applications with runtime placement adaptation.
Journal of Internet Services and Applications 10, 1 (2019), 1-30.

Alex J Smola and Bernhard Schélkopf. 2004. A tutorial on support vector regres-
sion. Statistics and computing 14 (2004), 199-222.

Gagan Somashekar and Anshul Gandhi. 2021. Towards optimal configuration
of microservices. In Proceedings of the 1st Workshop on Machine Learning and
Systems. 7-14.

Davide Taibi, Valentina Lenarduzzi, Claus Pahl, and Andrea Janes. 2017. Mi-
croservices in agile software development: a workshop-based study into issues,
advantages, and disadvantages. In Proceedings of the XP2017 Scientific Workshops.
1-5.

Bing Tang, Feiyan Guo, Buqing Cao, Mingdong Tang, and Kuanching Li. 2022.
Cost-aware Deployment of Microservices for IoT Applications in Mobile Edge
Computing Environment. IEEE Transactions on Network and Service Management
(2022).

Freddy Tapia, Miguel Angel Mora, Walter Fuertes, Hernan Aules, Edwin Flores,
and Theofilos Toulkeridis. 2020. From monolithic systems to microservices: A
comparative study of performance. Applied sciences 10, 17 (2020), 5797.

Bryan A Tolson and Christine A Shoemaker. 2007. Dynamically dimensioned
search algorithm for computationally efficient watershed model calibration.
Water Resources Research 43, 1 (2007).

Bram Van der Sanden, Yonghui Li, Joris van den Aker, Benny Akesson, Tjerk
Bijlsma, Martijn Hendriks, Kostas Triantafyllidis, Jacques Verriet, Jeroen Voeten,
and Twan Basten. 2021. Model-driven system-performance engineering for
cyber-physical systems. In Proceedings of the 2021 International Conference on
Embedded Software. 11-22.

Rafael Weingirtner, Gabriel Beims Bréscher, and Carlos Becker Westphall. 2015.
Cloud resource management: A survey on forecasting and profiling models.
Journal of Network and Computer Applications 47 (2015), 99-106.

Sanford Weisberg. 2005. Applied linear regression. Vol. 528. John Wiley & Sons.
E. Wilde and C. Pautasso. 2011. REST API Tutorial. Accessed: Aug. 14, 2023
[Online]. Available: https://restfulapi.net/.

Yangi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Edward Suh, and Christina
Delimitrou. 2021. Sinan: ML-based and QoS-aware resource management for
cloud microservices. In Proceedings of the 26th ACM international conference on
architectural support for programming languages and operating systems. 167-181.

Hardware Dimensioning for Microservice Applications in Cyber-Physical Systems: Current Directions and Challenges Literature Study, XM_0131, VU/UvA

Table 1: A characterization of the profile and prediction methods and context of the related work

Related works Context Profile
Environment Purpose Application/System Profiling
Do et al. [17] VMs in the cloud Optimize resource usage Both
Han et al. [24] MSs in the cloud Optimize resource usage Application
Bao et al. [11] MSs in the cloud Optimize cloud costs Both
Aksakalli et al. [6] MSs in the cloud Predict QoS satisfaction Both
Delimitrou et al. [16] Applications in datacenters Minimize interference Application
Joseph et al. [30] MSs in the cloud Minimize application response time Both
Chen et al. [14] Applications in datacenters Predict QoS satisfaction Both
Adeppady et al. [4] MSs in the cloud Optimize resource usage Both
Ma et al. [36] MSs in distributed resource centers Minimize MS idle rate Both
Lv et al. [35] MSs in edge computing Optimize resource usage Application
Grohmann et al. [23] MSs in the cloud Prevent performance degradation Application
Rahman et al. [40] MSs in the cloud Predict end-to-end latency Both
Zhang et al. [53] MSs in the cloud Predict QoS satisfaction Both
Fu et al. [19] MSs in cloud-edge continuum Optimize resource usage Both

Table 2: A characterization of the profile and prediction methods and context of the related work

Related works Profile Profile metrics
Offline/Online Communication overhead Contention Application specific metrics CPU Memory Network

Do et al. [17] Offline X X X
Han et al. [24] Offline X X X X

Bao et al. [11] Offline X X
Aksakalli et al. [6] Offline X X X X
Delimitrou et al. [16] Offline X X X X
Joseph et al. [30] Offline X X X X

Chen et al. [14] Offline X X

Adeppady et al. [4] Both X X X

Ma et al. [36] Online X X
Lv et al. [35] Online X X X X
Grohmann et al. [23] Online X X X X
Rahman et al. [40] Online X X X
Zhang et al. [53] Online X X X X
Fu et al. [19] Both X X X X X

Table 3: A characterization of the profile and prediction methods and context of the related work

Related works Prediction model
Model type Predicted metric
Do et al. [17] Analytical Performance difference
Han et al. [24] None None
Bao et al. [11] Analytical Processing time/cost
Aksakalli et al. [6] None None
Delimitrou et al. [16] None None
Joseph et al. [30] None None
Chen et al. [14] Analytical Processing time
Adeppady et al. [4] Analytical + ML MS throughput
Ma et al. [36] None MS idle rate
Lv et al. [35] None Application response time/load balance
Grohmann et al. [23] Analytical + ML Performance degradation
Rahman et al. [40] ML Tail latency
Zhang et al. [53] ML QoS satisfaction

Fu et al. [19] ML Latency/throughput

11

	Abstract
	1 Introduction
	2 Background
	2.1 Cyber-Physical Systems
	2.2 Microservices
	2.3 Design Space Exploration
	2.4 Hardware Dimensioning in Cyber-Physical Systems

	3 Related Work
	3.1 Profiling
	3.2 Performance Prediction
	3.3 Design Space Exploration

	4 Discussion
	4.1 Microservice Architecture
	4.2 The Cyber-Physical Systems Context
	4.3 Hardware Dimensioning

	5 Conclusion
	References

