
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Hardware Dimensioning for
Microservice-based Cyber-Physical

Systems: A Profiling and Performance
Prediction Method

Author: Marijn Vollaard (2726662/13573187)

1st supervisor: Benny Akesson
daily supervisor: Ben Pronk (TNO-ESI)
2nd reader: Ana Oprescu

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

December 18, 2023

Abstract

With the rise of large-scale web applications, microservices emerged as a vi-

able alternative to monolithic systems. Offering scalability, agile development,

and customizable deployment, microservices were adopted not only in a web

environment but also in cyber-physical systems (CPS). However, this adoption

introduced a new challenge: ensuring adequate hardware allocation and mi-

croservice deployment for performance requirement satisfaction in CPSs. When

little is known about application performance upfront, this may involve con-

structing a prototype with all envisioned compute nodes and trying out all

relevant deployment configurations, which becomes a very costly and time-

consuming endeavor. To mitigate these challenges, a need arose for a means to

predict the system performance for varying deployment configurations before

construction. Hence, the development of a structured methodology for hard-

ware dimensioning, which involves determining the required number of compute

nodes to meet performance requirements supported by performance prediction,

becomes imperative.

The goal of this thesis is, therefore, to provide a structured hardware dimension-

ing methodology comprising a profiling method and a performance prediction

method. We do so by introducing four novel contributions: 1) A component-

based profiling method, 2) a performance prediction method, 3) a structured

hardware dimensioning methodology, and 4) validation of the approach, using

a case study that represents a prototype of a CPS. Through this approach, we

have come to two prediction models, for which the predictions differ by at most

20%. Altogether, the proposed methodology provides a solid basis for hardware

dimensioning of microservice-based CPSs.

Contents

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Problem Description . 2

1.1.1 Proposed Approach . 3

1.1.2 Research Questions . 4

1.2 Contributions . 5

1.3 Outline . 5

2 Background 6

2.1 Cyber-Physical Systems (CPS) . 6

2.2 Microservices and Microservice Deployment 7

2.3 Observability in Microservice Applications 8

2.3.1 Time-Series Metrics . 8

2.3.2 Traces, Spans, and System Workflows 8

2.3.3 Tail Latency . 10

2.4 Hardware Dimensioning . 10

3 Related Work 12

3.1 Hardware Dimensioning . 12

3.2 Profiling . 13

3.3 Performance Prediction . 16

4 Case Study 21

4.1 The Meal Delivery Service (MDS) . 21

4.1.1 Request Types . 23

4.1.2 Artificial Load . 23

iii

CONTENTS

4.2 Performance Requirements . 24

4.3 Hardware and Experiments Environment . 27

5 Application Profiling 28

5.1 Profiling Infrastructure . 28

5.1.1 Deployment Configurations . 29

5.1.2 Workload Suite . 30

5.1.3 Data Monitoring and Collection . 31

5.2 Defining Metrics . 32

5.3 Creating a Profile . 32

5.3.1 CPU usage Metrics . 32

5.3.1.1 Microservice CPU Usage 32

5.3.1.2 Overhead . 33

5.3.2 Traces and Latency Metrics . 34

5.3.2.1 Microservice Spans . 35

5.3.2.2 Communication . 35

5.4 Iterative Profiling . 36

5.5 The MDS Profile . 36

5.5.1 Experimental Setup . 36

5.5.2 Profiling Infrastructure . 37

5.5.3 Defining the Metrics and Creating a Profile 41

6 Performance Prediction 47

6.1 CPU Usage Prediction Model . 47

6.1.1 Microservice resource model . 48

6.1.2 Overhead model . 49

6.1.3 MDS Performance Prediction . 50

6.1.4 Model Validation . 51

6.2 Latency Prediction Model . 54

6.2.1 Spans in Microservices . 55

6.2.2 Communication . 55

6.2.3 MDS Performance Prediction . 56

6.2.4 Model Validation . 57

iv

CONTENTS

7 Hardware Dimensioning 63

7.1 A Step By Step Approach . 63

7.1.1 The MDS Context . 64

8 Discussion 67

8.1 The Profiling Approach . 67

8.2 The Performance Prediction Models . 68

8.2.1 CPU Usage Model . 69

8.2.2 Latency Model . 70

8.3 Threats To Validity . 71

8.3.1 Profiling Time . 71

8.3.2 Microservice Interference . 72

8.3.3 The Role of the MDS Case Study . 72

8.3.4 Tools, Tail Latency and CPU Usage Peak 73

8.3.5 Applicability to CPSs . 74

9 Conclusion and Future Work 75

9.1 Conclusion . 75

9.2 Future work . 77

References 80

A The Full MDS Profile 86

A.1 The Full MDS Profile . 86

B Validation Results 90

B.1 CPU Model . 90

B.2 Latency Model . 93

C Experiments, Interference and Heterogeneous Nodes 95

C.1 Idle Overhead Experiments . 95

C.2 Experiment on the Effect of Interference on Latencies 96

C.3 Heterogeneous Nodes . 98

C.3.1 CPU Usage Model . 98

C.3.2 Latency Model . 100

v

List of Figures

1.1 Overview of our proposed hardware dimensioning approach. 3

2.1 Example of a trace that consists of spans for a simple system workflow. . . . 9

2.2 Example of 95% tail latency of a system workflow. 10

3.1 The mfc application performance from SPECCPU2006 benchmark suite, in-

fluenced by increasing intensity of an LLC-SoI (Last Level Cache Source of

Interference). 3.1a shows the normalized performance of mfc with increas-

ing intensity of the LLC-SoI. 3.1b shows the LLC miss rate of mfc with

increasing intensity of the LLC-SoI . 15

4.1 Overview of microservices of the MDS prototype 22

4.2 Sequence diagram of the meal request to delivery-workflow of a meal request

in the MDS. 25

4.3 The workflow of latency requirement 1, LR-1 26

4.4 The workflow of latency requirement 3, LR-3 26

4.5 The workflow of latency requirement 6, LR-6 27

4.6 The workflow of latency requirement 7, LR-7 27

5.1 High-level workflow of automated profiling framework of an application . . . 28

5.2 Form of an isolation deployment configuration 29

5.3 An example of how to retrieve the CPU peak of a microservice in a profiling

experiment. 33

5.4 An example in the MDS context of an isolation deployment configuration

for application profiling. 37

5.5 Deployment configuration for profiling local communication latencies for the

MDS . 38

vi

LIST OF FIGURES

5.6 Metrics extraction pipeline in a Kubernetes cluster. From application to

data processing. 39

5.7 An example of how using two tools with different sample timing can result

in a skewed comparison. 40

5.8 Trace extraction pipeline in a Kubernetes cluster. From application to data

processing. 41

5.9 The CPU usage profile for each microservice in the MDS. The peak CPU

usage is shown against increasing request load 42

5.10 The CPU overhead profile for each microservice in the MDS. The overhead

is shown against increasing request load. 43

5.11 The 90th tail latency of the spans within microservices involved in LR-1. . 44

5.12 Communication profile of messages for LR-1 and LR-7. Both for local and

remote communication. 45

6.1 An example of a deployment configuration of the MDS on the TNO cluster:

EvenSplit 1. 50

6.2 Prediction of the CPU usage model for the EvenSplit 1 deployment config-

uration. 50

6.3 The four additional deployment configurations that will be used in the val-

idation. 51

6.4 The prediction against the validation for both nodes of EvenSplit 1, node B

of TripleSolo 2, and the OneNode deployment configuration. Validation is

done on Transact01 . 53

6.5 The 90th percentile tail latency for a workflow based on LR-1 for local and

remote communication, EvenSplit 1 and EvenSplit 2. 57

6.6 Prediction of 90th percentile tail latency of the system workflow based on

LR-1 compared to its validation for varying load. 58

6.7 Deep dive into the distribution of latencies of 10 meal orders for the full

workflow request that is based on LR-1 of the validation for EvenSplit 1

and EvenSplit 2. 59

6.8 Prediction of 90th percentile tail latency of the system workflow based on

LR-3 compared to its validation for varying load. 60

6.9 Prediction of 90-percentile tail latency of trace based on LR-7 compared to

its validation for varying load. 61

vii

LIST OF FIGURES

7.1 Performance predictions results for hardware dimensioning on one node with

deployment configuration OneNode. 66

A.1 The CPU usage component of the MDS profile. 87

A.3 The 90th percentile latencies of the spans for LR-1, LR-3, LR-6, and

LR-7 in the MDS . 89

A.4 The Communication component of the MDS profile. 89

B.1 The prediction against the validation for the EvenSplit 1, EvenSplit 2,

TripleSolo 1, TripleSolo 2, and OneNode deployment configuration. 92

B.2 Prediction of 90th percentile tail latency of the system workflow based on

LR-1, LR-3, LR-6, and LR-7 compared to its validation for varying load. 94

C.1 Overhead offset results of the CPU usage idle experiment in the MDS context. 96

C.2 Comparison of 90th percentile tail latency of LR-3 for TripleSolo 1 and

OneNode deployment configurations. 97

C.3 Prediction of the CPU usage model for the EvenSplit 2 deployment config-

uration compared to validation on Transact01 and Transact02. 98

C.4 Comparison of 90th percentile tail latency of LR-3 on Transact01 and

Transact02 with the same microservices deployed on them. 100

viii

List of Tables

3.1 A characterization of the profile and prediction methods and context of the

related work . 19

3.2 A characterization of the profile and prediction methods and context of the

related work . 19

3.3 A characterization of the profile and prediction methods and context of the

related work . 20

4.1 Specifications for each node in the TNO cluster 27

5.1 Linear fitting of the overhead for each microservice in the MDS, based on

increasing load. a represents the slope and b the offset of the linear fitting,

which has the form ax+ b. 44

6.1 Overview of the variables in the CPU usage model 48

6.2 Overview of the variables in the latency model 54

A.1 Linear fitting of the overhead for each microservice in the MDS, based on

increasing load. a represents the slope and b the offset of the linear fitting,

which has the form ax+ b. 86

ix

1

Introduction

In recent years, there has been a growing demand for scalability in the context of large-

scale web services. Traditional monolithic applications running across multiple servers

have proven inadequate in handling the escalating workload resulting from an expanding

user base. In response to this challenge, the concept of microservice architectures has

been introduced [1, 2]. Microservices offer a solution by affording scalability, facilitat-

ing agile development, and enabling the customization of service deployment within an

application [3].

Microservices have found widespread adoption not only within the domain of large-scale

web services, but also in applications for cyber-physical systems (CPS) [4]. A CPS is

characterized by the integration of both computational and physical components [5, 6].

In the case of a CPS, scalability remains a valuable feature, but the driving factor be-

hind the adoption of a microservice architecture is the increased possibility of deployment

customization and agile development. A CPS is often an instance of a product, under-

going iterative development cycles in response to varying user and stakeholder demands,

which may entail varying features and capabilities, thus impacting performance and latency

requirements. Consequently, instances of a product may vary heavily. A microservice ar-

chitecture proves advantageous in this context, as it is highly customizable and therefore

allows for the utilization and deployment of microservices tailored to the specific needs of

the customer [7].

The variability among product instances presents challenges in ensuring performance

guarantees. If there is little known upfront about the application performance, a proto-

type needs to be built. Building such a prototype of a CPS is often costly and takes time.

To avoid this, there is a need for a means to predict system performance across different

1

1.1 Problem Description

configurations before construction. This becomes particularly critical because system per-

formance depends on the number of compute nodes and their specification. To ensure that

performance requirements are met, an adequate amount of resources in terms of compute

nodes and network must be allocated. This process of hardware allocation to an application

is referred to as "hardware dimensioning".

In cloud computing environments, the problem of hardware dimensioning is typically

addressed by deploying applications randomly and adapting them to their specific require-

ments while they are operational [8, 9]. However, this approach is not feasible for CPSs,

as these systems are typically presented as fully integrated products, complete with the

hardware on which they run. Adding hardware once the system is operational is often

unfeasible due to constraints like limited energy supply or physical space. In such cases,

guaranteeing performance in advance necessitates the ability to predict how an application

will perform with a given hardware configuration.

1.1 Problem Description

Since different instances of a product may exhibit distinct functionalities, the allocation of

hardware resources to each instance may also differ. In cases where a product has under-

gone numerous iterations, experienced system experts may allocate hardware based on past

knowledge. Proper hardware dimensioning then relies on their availability. Additionally,

when dealing with new products or instances that possess markedly different functionali-

ties, this experience does not exist yet. A structured approach is missing in this context,

as further supported by Chapter 3. Furthermore, a complete hardware system may not

yet be available in the dimensioning stage, except for certain testing infrastructure. Thus,

there is a need for performance prediction based on limited available hardware.

The inherent flexibility of a microservice system presents an opportunity for optimization

through strategic deployment. However, it also gives rise to questions regarding the selec-

tion of services to run on specific hardware and the optimal configuration of these services.

Combining or distributing microservices across various nodes may have a significant impact

on an application’s performance. To fully harness this flexibility for hardware dimension-

ing, a comprehensive understanding of an application’s performance and the implications

of microservice deployment and placement on hardware is necessary.

Thus, there is a need for a structured hardware dimensioning approach that involves the

prediction of the performance of an application given certain hardware and a configuration

of microservices over nodes in the context of CPSs that employ a microservice architecture.

2

1.1 Problem Description

While hardware dimensioning may include both network dimensioning as well as compute

node dimensioning in a CPS, this thesis only considers compute node dimensioning and

assumes there is always sufficient network hardware available.

1.1.1 Proposed Approach

In this thesis, we propose a hardware dimensioning approach that aims to solve the problem

described in the previous section. It includes three steps as shown in Figure 1.1: 1)

Application Profiling, 2) Performance Prediction, and 3) Hardware Dimensioning.

Figure 1.1: Overview of our proposed hardware dimensioning approach.

The application profiling step consists of defining the profiling infrastructure needed to

perform the profiling of an application. The profiling infrastructure comprises 1) defining

profiling deployment configurations, 2) designing a workload suite, and 3) creating data

monitoring and collection infrastructure. Once the profiling infrastructure is defined, the

profile metrics need to be determined, after which the profiling experiments are run to

3

1.1 Problem Description

gather those metrics. In this thesis, we aim to come to a profiling approach that applies

to any general microservice application, is time-efficient, can be performed on a limited

amount of hardware, and forms the basis for performance prediction.

The performance prediction in our approach consists of a latency prediction model and a

CPU usage prediction model, that leverage the application profile and are given a deploy-

ment configuration to predict either the performance in terms of system workflow latencies

or the CPU usage of an application. In this thesis, we will look for a performance predic-

tion approach that balances the accuracy of the model with its simplicity. We consider the

accuracy to be the difference between our predictions and our validations of the model.

With the simplicity of our model, we mean that the model includes as few performance

aspects as possible while it is still complete in its prediction.

Then the performance prediction is used in the last step, hardware dimensioning, which

consists of finding a suitable deployment configuration of microservices for a number of

nodes, based on the performance requirements and performance prediction models. We

repeat the process of finding a suitable deployment configuration with a varying number

of nodes, so that we come to the minimum number of nodes for which we can find such a

deployment configuration. We can then use that minimum number of compute nodes as

the answer to our hardware dimensioning problem.

1.1.2 Research Questions

Based on the problem description and proposed approach, the following research questions

were formulated:

RQ1: What is a suitable profiling method and framework for a microservice-based CPS

for the purpose of hardware dimensioning?

RQ2: What is a suitable performance prediction method that predicts whether the per-

formance requirements of a microservice-based CPS are met, with a given deployment

configuration of microservices over a set of homogeneous nodes and an application profile?

RQ3: How can we use the profiling and performance prediction methods to come to a

structured approach to hardware dimensioning in the context of a microservice-based CPS?

4

1.2 Contributions

1.2 Contributions

In this thesis, we look at how to perform hardware dimensioning in the context of microservice-

based applications in CPSs. The goal is to provide a structured approach to hardware

dimensioning that can be used by practitioners as a tool in assigning compute nodes to a

microservice application in a CPS. We provide the following contributions that are a part

of the hardware dimensioning approach:

1. Automated profiling framework and a profiling method for a microservice application

in a CPS that can be used as the basis for performance prediction models.

2. A performance prediction method, shown with two prediction models, one that pre-

dicts latencies of system workflows and one for the CPU usage of a node. They

consider the profile of a microservice application in a CPS and its deployment con-

figuration.

3. A demonstration of how to leverage the profiling and performance prediction methods

to come to a structured approach to hardware dimensioning in the context of a

microservice-based CPS.

4. A case study that is used 1) to validate both the profiling and performance prediction

methods described in this thesis and 2) as an example of how to perform hardware

dimensioning.

1.3 Outline

The outline of the rest of this thesis is as follows: Chapter 2 explains the background nec-

essary to understand the rest of the thesis. Chapter 3 discusses related work, to put the

thesis into its context. Chapter 4 introduces the Meal Delivery Service (MDS), which is the

case study application by which the methods proposed in this thesis are validated. Chap-

ter 5 and Chapter 6 describe our application profiling method and performance prediction

method respectively. Chapter 7 goes into detail on how those methods are used in our

structured hardware dimensioning approach. Chapter 8 discusses the method and results

of our experiments, and Chapter 9 concludes this thesis, combined with some remarks on

future work.

5

2

Background

This chapter aims to give an understanding of the fundamental concepts of the material

discussed in this thesis. Section 2.1 describes cyber-physical systems and explains their

characteristics, Section 2.2 defines what microservices are and why they are increasingly

used, Section 2.3 explains how observability can be used in microservice applications, and

Section 2.4 discusses the concept of hardware dimensioning.

2.1 Cyber-Physical Systems (CPS)

Cyber-physical systems (CPS) are systems comprising both computational and physical

components. For example, a CPS may be a smart thermostat adjusting room temperature

based on occupancy, or an autonomous drone that uses sensors to navigate and avoid obsta-

cles in real-time. These systems commonly use feedback loops, wherein physical processes

influence computational operations and vice versa [10]. CPSs are generally held to a higher

standard of reliability and predictability than general-purpose applications [6]. Many in-

dustrial CPSs incorporate mission-critical functionalities that must operate correctly while

meeting specific performance requirements.

Consequently, CPSs frequently face rigid resource utilization and latency requirements.

At the same time, the inherent unpredictability of the real world can lead to unexpected

behavior in the physical components of a CPS. For instance, consider an autonomous

drone. The drone relies on a network to communicate with a central control system for

receiving commands. If there is a delay or packet loss in the communication network, the

drone’s control system may receive outdated information or experience delays in executing

commands, which could cause the drone to fly into a moving object, for example. The

unpredictability of outside components, like the moving object, require the system to

6

2.2 Microservices and Microservice Deployment

be more reliable, while dealing with unpredictable outside factors. The combination of

elevated reliability standards and unpredictable physical behavior makes CPS performance

prediction more critical than general-application performance prediction.

Often, multiple instances with different configurations of a CPS are developed. To ad-

dress this variability, microservices are increasingly adopted within these systems. Their

versatility in development, deployment, and hardware placement offers a practical solution

to the intricate demands of a CPS [4]

2.2 Microservices and Microservice Deployment

A microservice is a small, independent, loosely coupled service that has a specific func-

tionality within a system [2, 11]. Microservices in an application work together, engaging

in communication and data exchange to collectively form an application or microservices

architecture. A notable attribute of microservices is their autonomy, enabling independent

development, deployment, and scaling without the need to fully redeploy or rebuild the

whole system of services. Additionally, microservices within an application are generally

not fixed in terms of their deployment over nodes in a system, so they can be deployed on

any suitable node, also at run-time.

Both the independent nature and the broad deployment potential of microservices make

it an attractive software architecture to use in the context of CPSs. However, the high

potential for customization in the deployment and redeployment of microservices neces-

sitates a more thorough insight into the effect of this deployment customization on the

performance of a microservice system. Due to the lack of insight into the effect of various

deployment configurations on the performance of an application, we speak of a lack of

predictability of performance in this context.

Performance variance between deployment configurations is mainly influenced by com-

munication overhead and microservice interference. Generally, a trade-off in deployment

can be found between 1) placing microservices on the same node, which will result in higher

interference, and 2) further distribution, which may lead to a higher communication over-

head [12]. The preferable microservice placement depends on the priorities in terms of

performance requirements, the application, and the CPS in question.

7

2.3 Observability in Microservice Applications

2.3 Observability in Microservice Applications

To get insight into the performance of a microservice system, there is a need for observ-

ability [13]. Observability is a measure of how well the state of a service can be known

from external outputs [14]. Three common external outputs form the three pillars of ob-

servability. They are (i) traces, (ii) logging, and (iii) metrics [15]. A trace is a record of

activities or interactions that occur within a service or application that processes requests

or performs tasks, logs are records of events, actions, or messages within a service or ap-

plication, and metrics are measurements that quantify the behavior and performance of a

service or application over time, such as CPU and memory usage. In this thesis, metrics

and traces are used in our profiling and performance prediction methods and are therefore

discussed in further detail.

2.3.1 Time-Series Metrics

Time-series metrics refer to quantitative measures used for analyzing and interpreting data

that is collected over time [16]. This is crucial in various applications, including system

performance monitoring, network analysis, and cyber security. Time-series metrics enable

the assessment of how computational systems evolve over intervals, offering insights into

trends, patterns, and potential anomalies. Common metrics in this context include average

response times, throughput, error rates, and resource utilization.

The Gartner report [17] gives an overview of many available commercial tools that offer

the collection and analysis of metrics, like Paessler PRTG [18] and OpManager [19]. Addi-

tionally, open-source tools are available, like Prometheus [20], which is currently the most

prominent tool of its kind. Prometheus offers a query language through which resource

utilization metrics can be retrieved.

By leveraging time-series metrics, it is possible to gain a deep understanding of the

dynamics of software and hardware performance. This information is vital for optimiz-

ing system efficiency, predicting resource needs, detecting irregularities, and ensuring the

robustness and reliability of computer systems.

In this thesis, we will use Prometheus to retrieve time-series metrics in the context of

resource utilization, specifically CPU utilization of both compute nodes and microservices.

2.3.2 Traces, Spans, and System Workflows

In microservice architecture, spans and traces are essential concepts for understanding and

monitoring the flow of requests within a complex distributed system. A span represents a

8

2.3 Observability in Microservice Applications

unit of work, typically associated with a specific operation, function, or path through one

microservice, and a set of spans collectively forms a trace, capturing the end-to-end path

of a request as it traverses through various microservices. For example, in Figure 2.1a [13],

a span may represent a path through service E that starts and stops at a specified event,

where the trace it is a part of consists of the paths from service A through E as shown in

Figure 2.1b. Spans provide detailed information about the duration, context, and events

associated with a particular task, while traces offer an interconnected view of the entire

request’s life cycle. This is a crucial insight for diagnosing performance issues, identifying

bottlenecks, and ensuring the reliability of microservice applications. Spans and traces rep-

resent an instance of a system workflow. A system workflow in this context is a specified

path through an application, which a trace may take. An example of a system workflow

in Figure 2.1a may be a path from service A through service B that ends in service C. A

trace may be an instance of a system workflow, if it follows that exact path. By examining

spans and traces, it is possible to gain insights into how requests propagate through the

microservices in a system, aiding in the optimization of response times, troubleshooting

of errors, and overall enhancement of the system’s efficiency and resilience. Traces can be

gathered by monitoring tools, such as those presented in the Gartner report [17]. Addi-

tionally, open-source tools are available, of which Jaeger [21] is currently prominently used.

Jaeger can be deployed to collect and store spans and traces within an application.

In this thesis, the traces for a specified system workflow are gathered with Jaeger after

which their latencies are extracted.

Figure 2.1: Example of a trace that consists of spans for a simple system workflow.

9

2.4 Hardware Dimensioning

2.3.3 Tail Latency

One characteristic of traces and spans is the time, or latency, they take to complete. By

gathering many traces that match one system workflow, a distribution of latencies of that

workflow can be made based on the latency of each trace. Such a distribution may look as

shown in Figure 2.2.

Figure 2.2: Example of 95% tail latency of a system workflow.

A yth percentile tail latency of such a distribution denotes the latency for which y percent

of the latencies are lower. In the figure, the 95% tail latency is denoted by the dotted line.

With the yth percentile tail latency, we claim that y percent of the traces will finish within

a certain time. It can thus be used on latency guarantees of system workflows.

Tail latency aims to represent a worst-case measure while still focusing on relatively

common cases. With lower y values, fewer outliers are considered, but the higher the y is,

the higher the focus lies on the worst-case latencies. Therefore, picking the y in the context

of hardware dimensioning is a matter of making a trade-off between being conservative with

a higher y, when we take into account the latency outliers, resulting in over-dimensioning

and extra costs, and a weaker performance guarantee, with a lower y.

2.4 Hardware Dimensioning

To ensure the performance of a CPS, sufficient hardware needs to be provided for its ap-

plication. This process is called hardware dimensioning. It is an important part of the

development of CPSs, and is often done without much scientific backing. The complexity

arises from the fact that a product may have multiple variants, each characterized by sig-

nificantly diverse functionalities, so a distinct hardware configuration is required for each

10

2.4 Hardware Dimensioning

instance. While experienced professionals may draw on prior iterations for hardware allo-

cation in established products, this knowledge is unavailable for new products or variants

that have very different functionalities.

During the dimensioning stage, the resources for a prototype may not be fully available,

except for limited testing infrastructure. Consequently, the prediction of system perfor-

mance has to be made based on the available resources. In monolithic applications similar

challenges persist [22]. Measurements can be done on the testing infrastructure, but a

prediction needs to be made on the effect of upscaling more servers with the same piece of

software on it.

With the introduction of microservices, performance satisfaction may be achieved dif-

ferently: by varying the placement of microservices over nodes. The inherent flexibility of

microservices allows for performance enhancement through strategic deployment. However,

this flexibility poses questions regarding the optimal assignment of services to hardware.

Combining or distributing microservices across nodes can significantly influence application

performance, particularly in the context of heterogeneous hardware environments.

The primary driving force behind hardware dimensioning is economic efficiency. The

overarching objective is to meet performance requirements with minimal resource utiliza-

tion, thereby mitigating costs. Striking a balance is crucial, as excessive hardware de-

ployment, or over-dimensioning, leads to unwarranted expenses. Conversely, inadequate

resource allocation, or under-dimensioning, risks falling short of performance requirements.

Notably, over-dimensioning is often preferred over under-dimensioning, as adding hardware

once the system is operational is often impractical due to constraints such as limited energy

supply or physical space.

11

3

Related Work

In this chapter, we put this thesis into the context of various state-of-the-art related work.

We start with a discussion on related hardware dimensioning approaches in Section 3.1,

then we look at various profiling practices in Section 3.2, and lastly, we show some perfor-

mance prediction methods in Section 3.3.

The dissection of hardware dimensioning into profiling and performance prediction is

based on a literature study that looks into the current state-of-the-art and research direc-

tions of hardware dimensioning [12].

A comparison of the related work to this thesis is shown in Table 3.1, Table 3.2, and

Table 3.3.

3.1 Hardware Dimensioning

In this section, we introduce two distinct methods of hardware dimensioning in different

fields. Both methods perform online hardware dimensioning, where potential solutions can

be evaluated by running them on complete hardware configurations.

De Filippo et al. [23] aim to satisfy quality-of-life constraints or budgets of AI applica-

tions. The idea is to integrate the domain knowledge of experts with data-driven models

to learn the relationships between hardware resource consumption and AI algorithm per-

formance. The approach involves evaluating various AI algorithms across diverse hardware

resources, and creating data to train machine learning models. Then, optimization tech-

niques are used to identify the optimal hardware configuration that complies with budget,

time, or solution quality requirements. The work differs from this thesis as it solely con-

siders AI applications, and uses machine learning with online hardware dimensioning, as

an AI application is running on various complete hardware configurations. The goal of

12

3.2 Profiling

this thesis, on the other hand, is to determine the required hardware resources and initial

deployment configuration before we have all compute nodes available.

Purnaprajna et al. [24] present a scheme for time and power-efficient embedded system

design for hardware-software partitioning and hardware allocation. They use genetic algo-

rithms to come to an optimal hardware configuration in terms of power usage and execution

time of tasks for embedded system design. An objective function is created that aims to

minimize both aspects. Various hardware configurations are then evaluated by running

the hardware and software components in full. This work considers embedded systems

with hardware and software components, however, it evaluates its hardware configurations

through online performance measurements to come to an optimal solution. This means

that it addresses hardware dimensioning by employing automated design space exploration

and then measuring the results of a fully developed system. In contrast, we perform man-

ual design space exploration by picking a few relevant deployments and then predicting

performance instead of measuring.

As these approaches do not consider hardware dimensioning before application deploy-

ment, nor do they consider microservice-based applications, we need to look further than

the current hardware dimensioning approaches to come closer to solutions for our problem

described in Section 1.1. Thus, we introduce work that regards component-based profiling

and performance prediction approaches, to provide insight into the state-of-the-art in those

areas as well.

3.2 Profiling

Profiling is the process of monitoring and analyzing the behavior, performance, and re-

source utilization of an application or system. It can be used to gain valuable insights into

the functioning of an application or system and may pinpoint areas that can be improved.

It is instrumental for optimizing performance, ensuring efficient resource utilization, and

identifying potential areas for improvement in the overall functionality of the software or

system.

There is a distinction between application profiling and system profiling. Application

profiling relies on design knowledge and can consider specific metrics tailored to the appli-

cation or its components. For instance, Do et al. [25] focus on application-specific metrics

like HTTP requests processed per second for Apache or frames processed per second for

X264. Alternatively, more general metrics, such as CPU and memory usage, can be em-

ployed for profiling various applications, as demonstrated by Han et al. [26]. These broader

13

3.2 Profiling

metrics offer utility beyond individual applications and can be applied to profile any general

application.

System profiling generally encompasses available resources in hardware, or resource uti-

lization. For example, Bao et al. [27] use indicators like CPU cores, RAM, and storage

to define a system’s profile. Profiling metrics may vary broadly based on the purpose,

development stage, and target hardware and infrastructure [28].

The related work is categorized into online and offline profiling. Online profiling [29,

30, 31] is conducted while an application or component is actively in use. Offline profiling

is done before an application fully runs on its target system. The dynamic approach of

online profiling allows real-time data gathering and deployment optimization, resulting in

a higher quantity of available monitoring data. Online profiling, like its offline counterpart,

commonly involves metrics such as memory, CPU, and network utilization, and for both

profiling methods, the goal is generally to optimize resource usage or predict Quality of

Service satisfaction. Unlike offline profiling, online profiling can adapt to changing envi-

ronmental situations. However, it is not applicable for hardware dimensioning, where we

do not have access to the full system for comprehensive data gathering.

Several papers explore offline profiling [32, 33, 34]. This can be performed on early avail-

able hardware without requiring the full context of its final deployment. These approaches

typically focus on key aspects affecting microservice-based application performance in vary-

ing deployment configurations: communication overhead and performance interference.

For example, Joseph et al. [34] look at communication overhead to enhance Kuber-

netes’ [35] random microservices placement by introducing IntMA, a profile represented as

an interaction graph. This graph quantifies communication between microservices through

edge weights. Each microservice is represented by a weighted vertex containing its process-

ing and memory requirements. The application profile is then used to optimize microser-

vices deployment across nodes, minimizing inter-service communication. IntMA differs

from the approach of this thesis as it does not predict performance, but optimizes deploy-

ment of microservices based on a communication overhead profile. The method does not

indicate whether performance requirements are satisfied or how much performance may

increase through the deployment optimization approach, but rather works under the as-

sumption that minimizing communication overhead will increase performance regardless

of the application.

Adeppady et al. [36] employ the concept of identifying interference patterns by running

microservices individually and then in pairs on a node. Performance degradation occurs

when two microservices compete for resources compared to their isolated execution. This

14

3.2 Profiling

variance is incorporated into a microservice’s profile as a contentiousness vector, where each

value represents a pair of microservices. The collective set of vectors forms the application

profile. The profile is then used to predict the request throughput of a microservice for

dynamic redeployment of microservices in the cloud. It differs from this thesis as its main

focus of profiling is on interference, which we do not yet do. Additionally, the profiling

approach and performance model are validated at runtime, as the goal is the optimization

of the deployment configuration through dynamical redeployment, whereas this work solely

considers an initial deployment configuration and the prediction of performance require-

ment satisfaction.

Delimitrou et al. [33] devise an application profile using interference workloads, employing

a contention benchmark suite with 15 Sources of Interference (SoI). These SoIs highlight

interference among co-scheduled applications in data centers or on the same server. Data

centers, central to cloud computing, offer hosting and management services for servers

and diverse applications. An example of an SoI is the LLC-SoI (Last Level Cache Source

of Interference). It ranges from 0% to 100% intensity, affecting the LLC occupancy on

its node. Figure 3.1 demonstrates that the mfc application from SPECCPU2006 [37]

experiences performance degradation with higher LLC occupancy by the SoI. The LLC

miss rate of mfc also increases with SoI intensity, indicating sensitivity to LLC interference.

An application is profiled based on all SoIs that influence the performance of an application.

This profile aids in scheduling applications on servers, avoiding pairing those with similar

profiles to minimize performance degradation from interference.

(a) (b)

Figure 3.1: The mfc application performance from SPECCPU2006 benchmark suite, influ-
enced by increasing intensity of an LLC-SoI (Last Level Cache Source of Interference). 3.1a
shows the normalized performance of mfc with increasing intensity of the LLC-SoI. 3.1b shows
the LLC miss rate of mfc with increasing intensity of the LLC-SoI

15

3.3 Performance Prediction

3.3 Performance Prediction

Based on the profile of an application and system, a performance prediction model of an

application can be constructed. The approach to performance prediction may vary based

on the purpose and the definition of performance.

Some related work uses machine learning [29, 30, 38, 39, 40] to dynamically predict and

improve the performance of an application in a cloud environment. The work of Rahman

et al. [11] also falls under this category. It aims to predict end-to-end tail latency for

microservices based on their CPU utilization in VMs and pods, a directed acyclic graph

(DAG) of the application, and last-level cache usage as inputs for a machine learning model.

The model, a deep neural network approach [41], demonstrates the highest accuracy among

various machine learning methods. The prediction, aligned with application SLOs, informs

recommendations for upscaling the number of instances per microservice. The objective

is to meet SLOs, dynamically predict short-term resource upscaling needs, and minimize

resource utilization. Since the primary goal is the prediction of the need for upscaling in

the short term, a machine learning model is suitable in this context, as much monitoring

data is available for an application. The purpose of the performance prediction model

differs from ours. The method of performance prediction is also heavily based on online

profiling, which is not possible in our hardware dimensioning approach.

Generally, machine learning models appear to be suitable for online performance predic-

tion, where much data can be gathered to fit the model [12]. In cases where not much data

is available, performance prediction is done with an analytical model. Chen et al. [42] and

Bao et al. [27] use similar analytical models to predict the response time per application

component. Although the purpose and environment of the works are different, the per-

formance definition in both works is defined as the response time or end-to-end latency of

an application. The prediction is made by analyzing the response time of the components

in an application and some form of the sum of the response times is then used as the

application response time.

Chen et al. [42] use a model that forecasts the response time per component based on

each component’s profile and the number of threads employed by the application. The

objective is to allocate the optimal number of threads to minimize response time. The

profile encompasses the overhead ratio per concurrent request to access the container, the

average processing time for a single thread, and the processing time on back-end resources

like databases. The analytical model, represented by Equation (3.1), uses the number of

concurrent requests, x, and the number of threads used by the application y. By varying

16

3.3 Performance Prediction

thread counts and comparing results, the model identifies the optimal thread count for a

component. While this work also profiles an application based on its components, it aims to

optimize the number of threads within each component of an application, where the core

method of performance prediction is restricted to components of an application, rather

than the application as a whole. Additionally, deployment configurations of components

of an application are not taken into account in the model. The purpose of the performance

prediction is therefore different, as well as the scope of the model.

T = ax+
bx

y
+ cy (3.1)

Bao et al. [27] focus on predicting response time for microservices in a cloud environment

to minimize costs in public cloud scheduling. VMs, deployed with one or more microser-

vices, incur assigned costs. The model aims to predict both microservices’ execution time

and the associated monetary costs on VMs in a cloud environment, where microservices are

dynamically deployed and upscaled on demand. The execution time of microservice i at

time t is decomposed in Equation (3.2), where ETi(t) is the microservice’s execution time,

ITi(t) represents initialization time on the cloud infrastructure, PTi(t) is the processing

time dependent on concurrent microservices, VM, and node, and RTi(t) indicates the time

for microservice i to transfer output data to succeeding microservices. While this work

also decomposes an application into microservice components and analyzes the behavior of

each microservice, the purpose of this model is different from the prediction model of this

thesis. The performance prediction fuels a decision on deployment or upscaling. Based on

expected user demand, microservices are deployed, and the decisions are based on moni-

tored data in a fully developed cloud environment. In this thesis, we start with the notion

that we do not have a full environment available yet, and we want to predict a suitable

hardware configuration.

ETi(t) = ITi(t) + PTi(t) +RTi(t) (3.2)

Adeppady et al. [36] show a prediction model that does not predict the response time of

an application, but rather the throughput per microservice. As described in Section 3.2,

they build a profile of an application based on the contentiousness of each microservice.

Its prediction model consists of two components: An offline component and an online

component. The offline component leverages the contentiousness of microservices. This

contentiousness is computed by running microservices isolated and then in pairs, where

17

3.3 Performance Prediction

the contentiousness is calculated from the difference in performance between those two se-

tups, with increasing load for the microservices. The contentiousness of each microservice

is represented by a vector, where each value in the vector represents the interference of

each pair of microservices. The second component of the prediction model is based on

the expected interference, or contention, for microservice X. The throughput of X can be

predicted based on the contentiousness vector of microservices Y and Z with an online

regression model [43]. The full prediction model is then used for dynamic microservice

placement over nodes in the cloud, where minimizing the throughput of each microservice

is the goal. The purpose of this model differs from hardware dimensioning, and is fueled

by run-time monitoring. In this sense, it differs from the work in this thesis.

In conclusion, as shown in Table 3.1, no related work provides a method where a

component-based performance prediction model is made to find a suitable initial deploy-

ment configuration for hardware dimensioning. In this thesis, we aim to provide a struc-

tured approach to hardware dimensioning, through an application profiling and perfor-

mance prediction method, that fills this gap in the research.

18

3.3 Performance Prediction

Table 3.1: A characterization of the profile and prediction methods and context of the related
work

Related works Context Profile
Environment Purpose Application/System Profiling

Do et al. [25] VMs in the cloud Optimize resource usage Both
Han et al. [26] MSs in the cloud Optimize resource usage Application
Bao et al. [27] MSs in the cloud Optimize cloud costs Both

Aksakalli et al. [32] MSs in the cloud Predict QoS satisfaction Both
Delimitrou et al. [33] Applications in datacenters Minimize interference Application

Joseph et al. [34] MSs in the cloud Minimize application response time Both
Chen et al. [42] Applications in datacenters Predict QoS satisfaction Both

Adeppady et al. [36] MSs in the cloud Optimize resource usage Both
Ma et al. [39] MSs in distributed resource centers Minimize MS idle rate Both
Lv et al. [30] MSs in edge computing Optimize resource usage Application

Grohmann et al. [29] MSs in the cloud Prevent performance degradation Application
Rahman et al. [11] MSs in the cloud Predict end-to-end latency Both
Zhang et al. [40] MSs in the cloud Predict QoS satisfaction Both

Fu et al. [31] MSs in cloud-edge continuum Optimize resource usage Both
This thesis MSs in CPS Hardware Dimensioning Application

Table 3.2: A characterization of the profile and prediction methods and context of the related
work

Related works Profile Profile metrics
Offline/Online Communication overhead Contention Application-specific metrics CPU Memory Network Trace Latencies

Do et al. [25] Offline X X X
Han et al. [26] Offline X X X X
Bao et al. [27] Offline X X X

Aksakalli et al. [32] Offline X X X X
Delimitrou et al. [33] Offline X X X X

Joseph et al. [34] Offline X X X X
Chen et al. [42] Offline X X X

Adeppady et al. [36] Both X X X
Ma et al. [39] Online X X
Lv et al. [30] Online X X X X

Grohmann et al. [29] Online X X X X
Rahman et al. [11] Online X X X
Zhang et al. [40] Online X X X X

Fu et al. [31] Both X X X X X
This thesis Offline X X X

19

3.3 Performance Prediction

Table 3.3: A characterization of the profile and prediction methods and context of the related
work

Related works Prediction model
Model type Predicted metric

Do et al. [25] Analytical Performance difference
Han et al. [26] None None
Bao et al. [27] Analytical Processing time/cost

Aksakalli et al. [32] None None
Delimitrou et al. [33] None None

Joseph et al. [34] None None
Chen et al. [42] Analytical Processing time

Adeppady et al. [36] Analytical + ML MS throughput
Ma et al. [39] None MS idle rate
Lv et al. [30] None Application response time/load balance

Grohmann et al. [29] Analytical + ML Performance degradation
Rahman et al. [11] ML Tail latency
Zhang et al. [40] ML QoS satisfaction

Fu et al. [31] ML Latency/throughput
This thesis Analytical CPU usage/Tail latency

20

4

Case Study

The profiling and performance prediction methods introduced in this thesis are validated

against an example case study: The Meal Delivery Service (MDS). This chapter presents

that case study, which includes the MDS, its performance requirements, and the TNO

cluster, on which validation experiments are executed.

4.1 The Meal Delivery Service (MDS)

The MDS is an application that is specially created for research into performance of

microservices-based CPSs. It is a prototype that is based on an existing industrial CPS

application.

The application consists of four core microservices and one API gateway. The microser-

vices are: 1) the PlannerService, 2) the MealDispatchingService, 3) the MealDeliveringSer-

vice, and 4) the MealPreparingService. The overview of the interaction between the services

is shown in Figure 4.1. In the following sections, we discuss the purpose of the MDS and

the functionality of each microservice. In this prototype, each microservice implements

one core functionality to keep the microservices small. Generally, this is good practice in

microservice systems [44].

The MDS schedules and delivers meal requests based on their urgency. Every second,

the PlannerService plans the incoming requests to kitchens and bikes, while impatient

customers walk toward the restaurant. The PlannerService schedules the meals so that

each meal is cooked and delivered to the corresponding customer, if such a schedule is

possible. If meals do not arrive on time, the customer will walk towards the restaurant

and complain, and the application has failed.

21

4.1 The Meal Delivery Service (MDS)

Figure 4.1: Overview of microservices of the MDS prototype

DeliveryControlService

The DeliveryControlService is the API gateway of the MDS. It simply forwards the meal

requests it receives to the PlannerService. We will not use this service in our profiling

performance prediction examples, as it simple and does not contribute much to the MDS

case study.

PlannerService

The PlannerService is the service that schedules the incoming meal requests. It is respon-

sible for receiving meal requests and the transformation into the best-fitting schedule. The

schedule is a list of to-be-executed meals, ordered on the delivery time, with the desired

kitchen and bike type. The schedule is recalculated every second based on the current and

newly incoming meal requests and system status, such as the available kitchens and bikes.

MealDispatchingService

The MealDispatchingService is responsible for executing the schedule to the best of its abil-

ities, considering the current status of the system. Given the latest schedule, it dispatches

meals to the MealPreparingService at the scheduled time.

MealPreparingService

The MealPreparingService includes kitchens that can prepare the meals according to the

incoming requests of the MealDispatchingService. It may have multiple kitchens and a

kitchen may prepare multiple meals at the same time. In the experiments done in this

thesis, we assume there are always enough meal preparation slots in kitchens available.

22

4.1 The Meal Delivery Service (MDS)

MealDeliveringService

The MealDeliveringService is responsible for the bikes that may deliver the meals to the

customers. It serves as a resource manager for the available bikes and hands these out to

the MealPreparingService on request, when a meal is prepared.

4.1.1 Request Types

There are three distinct request types for the MDS: Meal Request, Cancel-Meal Request,

and Reset-Meals Request.

Meal Request

The MDS processes meal requests and sends them to customers. They form the basis

for the load on the MDS. Each request has a delivery time, which indicates when a meal

should be delivered, a customer speed, which indicates how fast a customer moves, and

a customer distance, which indicates from where the customer walks. Based on these

variables, a priority ordering can be made, where the most urgent meals are placed at the

front of the list. In our experiments, we keep each of these variables constant, while varying

the number of simultaneous meal requests that are requested to provide varying workloads

to the application, which is further described in Section 5.5.2. Additionally, a distinction

between standard meal requests, and platinum meal requests can be made. Platinum meal

requests will always have priority over standard meal requests.

Cancel-Meal Request

The cancel-meal request can be used to cancel a meal, which indicates that it does not

need to be delivered to a customer anymore.

Reset-Meals Request

A reset-meals request resets the whole application. The schedule is emptied, the customers

disappear, and any meal, that is in the process of being delivered, is canceled.

4.1.2 Artificial Load

As the effect of increasing load on the CPU usage of each microservice turns out to be

fairly low, we have introduced some artificial load in the PlannerService. The artificial load

aims to capture the load expected from a planner with industrial complexity. Additionally,

the goal of this load is to see whether we can predict the artificial trends accurately with

23

4.2 Performance Requirements

our profiling and prediction methods. It is introduced with a function, spendTime, which

increments an integer by one in a while loop for the amount of time, t, in milliseconds,

which is calculated as shown in Equation (4.1). Here, s is the list of incoming meal requests

in the PlannerService, and |s| represents the number of meal requests in the list.

t = 10 · |s| (4.1)

This artificial load introduces extra CPU load in the PlannerService that is linear to

the number of simultaneous requests in the schedule of the PlannerService. In addition,

the latency of each trace that includes this function will be dependent on the number of

simultaneous meal requests in the schedule. For example, if the schedule includes 50 meal

requests, the trace will indicate a latency of at least 500 ms.

4.2 Performance Requirements

Alongside the MDS functionality, performance requirements have been specified. They

have been constructed so that they mimic the performance requirements of the existing

industrial CPS application.

With this, we identify two distinct categories of requirements: 1) Resource requirements,

which state that the application should not use more than x% of an available resource, like

CPU or memory usage, and 2) latency requirements, which define that certain sequences

within an application should take no longer than a specified amount of time. The former

has an identifier of the form RCR-X, and the latter one of the form LR-X.

We specify one resource requirement as follows:

RCR-1: A node should never use more than 60% of the available CPU computational

power over 15 seconds.

We specify the following latency requirements:

LR-1: A new standard meal request is added to the PlannerService queue and offered to

the MealPreparingService < 2000 ms

LR-2: A new platinum meal request is added to the PlannerService queue and offered to

the MealPreparingService < 500 ms

LR-3: The time from meal delivery until the reporting to PlannerService < 100 ms

LR-4: If a user submits a reset-meals request then a reset response should be completed

< 1000 ms

24

4.2 Performance Requirements

LR-5: If a user submits a meal-cancel request then a meal-cancel response should be com-

pleted < 1000 ms

LR-6: The meal request schedule is planned in the PlannerService once requested <

480 ms

LR-7: Once a meal can be dispatched, it is sent to the MealPreparingService and dis-

patched < 2500 ms

LR-8: The preparation status of the MealPreparingService is updated, once requested <

100 ms

LR-9: The delivering status of the MealDeliveringService is updated, once requested <

100 ms

In this thesis, the approach is validated for four latency requirements, because the goal

of the case study in this thesis is not to fully analyze the MDS application, but rather to

illustrate how to profile an application and predict its performance. The requirements that

are taken into account are LR-1, LR-3, LR-6, and LR-7.

The four latency requirements are chosen for the validation, since, they together, span

the four core microservices in the MDS. Additionally, their requirements range from 100

ms to 2500 ms, and the latencies of spans may largely contribute to the latencies in the

system workflow for some, while the communication may play a larger part in others. With

this, we validate whether the model can be applied to a diverse set of latency requirements

spanning any microservice in an application.

The picked requirements are a part of the meal request system workflow, shown in

Figure 4.2. Both the sequence diagram and the spans that make up a latency requirement

have been identified with application knowledge in the design phase of the application.

Figure 4.2: Sequence diagram of the meal request to delivery-workflow of a meal request in
the MDS.

25

4.2 Performance Requirements

The sequence diagram indicates that the meal request starts at the DeliveryControlSer-

vice, which forwards the SubmitOrderRequest message to the PlannerService. Then the

PlannerService sends the schedule with all meal requests to the MealDispatchingService,

through the ScheduleUpdateRequest. It then submits a MealPreparationRequest to the

MealPreparingService to signal that a meal can be prepared. Once that is the case, a

DispatchDeliveryRequest is propagated to the MealDeliveringService to indicate that a

meal can be delivered. Once the meal is delivered, the DeliveryUpdateNotification is sent,

as an acknowledgment to the PlannerService that a meal has been delivered. Note that

the ScheduleUpdateRequest, MealPrepartionRequest, and DispatchDeliveryRequest have

a response variant, which functions as an acknowledgment that the corresponding message

has been delivered and processed correctly.

The system workflow of each latency requirement in the context of this sequence diagram

is shown in Figure 4.3, Figure 4.4, Figure 4.5, and Figure 4.6. The workflows are indicated

by their distinct color.

Figure 4.3: The workflow of latency requirement 1, LR-1

Figure 4.4: The workflow of latency requirement 3, LR-3

26

4.3 Hardware and Experiments Environment

Figure 4.5: The workflow of latency requirement 6, LR-6

Figure 4.6: The workflow of latency requirement 7, LR-7

4.3 Hardware and Experiments Environment

The application profiling experiments and the performance prediction validation exper-

iments are performed in a Kubernetes environment [35]. Each service in the MDS is

deployed in a container in its distinct pod, where each container resembles a virtual ma-

chine with allocated resources. We have not limited the resources a container may use,

except for the specified resources per node.

The containers run on the TNO cluster, which consists of three nodes: A control plane,

Archview01, and two worker nodes, Transact01, and Transact02. The MDS microservices

are only deployed on the worker nodes. Specifications of each node are shown in Table 4.1.

Table 4.1: Specifications for each node in the TNO cluster

Node CPU cores CPU name CPU base frequency (GHz)
Archview01 4 Intel(R) Xeon(R) Gold 5115 2.10
Transact01 16 Intel(R) Xeon(R) Gold 6442Y 2.60
Transact02 16 Intel(R) Xeon(R) Gold 6152 2.40

27

5

Application Profiling

In this chapter, a general method of application profiling is introduced. The profile is used

to calibrate the prediction models introduced in Chapter 6 and forms the basis for our

hardware dimensioning approach for a microservice-based CPS. The profile is based on the

profile of each of its microservices. The method is applied within an automated profiling

framework and alongside an example case study of the MDS as discussed in Chapter 4.

The profiling approach consists of three distinct steps: 1) constructing profiling infras-

tructure by defining deployment configurations, creating a workload suite, and setting up

data monitoring services, 2) defining the profiling metrics, and 3) running profiling exper-

iments, where we repeat the experiment a sufficient number of times. Each step will be

explained in detail in this Chapter.

The high-level workflow of the automated profiling framework consists of 1) automated

deployment, 2) serving requests, 3) data collection, and 4) creating a profile, as shown in

Figure 5.1.

Figure 5.1: High-level workflow of automated profiling framework of an application

5.1 Profiling Infrastructure

In this section, we discuss the infrastructure and preparation needed to run profiling ex-

periments.

28

5.1 Profiling Infrastructure

5.1.1 Deployment Configurations

We use a microservice profile that is as little influenced by other microservices in the appli-

cation as possible. Therefore, each microservice of an application will need to be profiled

in isolation, to avoid interference of other microservices on its profile, and needs its own

deployment configuration, as shown in Figure 5.2. An isolation deployment configuration

separates the profiled microservices, MS A in Figure 5.2, from the other microservices in

an application, MS B through M. Additionally, cluster infrastructure and monitoring ser-

vices should be placed on different nodes from the application microservices, to minimize

any performance interference on the application. An isolation deployment configuration

therefore requires one node on which the isolated microservice is profiled, a set of nodes

that holds the other microservices within the application, and a set of nodes that deploys

any infrastructure and monitoring services.

Figure 5.2: Form of an isolation deployment configuration

The set of nodes that hold the rest of the application microservices can be kept as

small as possible, provided the microservices on a node fit, and those nodes do not need

to match the target system hardware. One arbitrary deployment configuration should be

picked over the minimum number of nodes so that all microservices have sufficient resources

to function and microservices should only be swapped between nodes based on whether

they are profiled or not. The specific deployment configuration of the microservices could

result in some effect on the application profile, and the degree of the effect on the profile is

application and system-specific, so depending on the context it may still need to be taken

into account, but we regard it as outside the scope of this thesis.

The profiling node should be as similar as possible to the hardware of the target sys-

tem, the system on which the application will be used eventually. The more the profiling

hardware differs from the target system, the less we can say about the accuracy of the

29

5.1 Profiling Infrastructure

performance prediction. The assumption in this work is that the target system will con-

sist of homogeneous nodes, or similar nodes, that match the profiled node, therefore only

one node needs to be provided that is similar to the target system. Determining how

similar a profiling node has to be is application-specific and may be determined through

experiments, as shown in Appendix C.3.

When a deployment configuration is created for each microservice, they can be deployed

in turn, ensuring that we profile each microservice one by one. This process should be

automated, so that the profile can be made without any further human intervention. Its

role is displayed in high-level workflow as shown in Figure 5.1.

Aside from the isolation deployment configurations, we need one more set of additional

deployment configurations to retrieve the communication latency of messages within a

node. The goal of these deployment configurations is to measure the latency for local

communication, between microservices within a node. Remote communication is measured

already in the isolation deployment configurations, as each microservice is isolated once.

There are three trivial options to retrieve the local communication metrics:

• If possible, deploy all microservices on the profiled node. This may result in inter-

ference in the communication latencies of the microservices.

• If we have two similar profiling nodes, we can use the communication latencies of the

microservices on the other node in the isolation deployment configuration as a local

communication profile. The advantage is that we only need the isolation deployment

configurations to set up the whole profile.

• Run pairs of microservices on the profiling node that communicate with each other.

The last option could result in many deployment configurations, which is not scalable for

large applications. However, it minimizes interference of other microservices in the results,

which may increase prediction accuracy, and guarantees that the microservices will fit on

the node. The choice of which deployment configurations are used in this context depends

on the available time to profile, the number of microservices in the application, and the

available hardware.

5.1.2 Workload Suite

To determine the behavior and characteristics of an application, a workload suite needs

to be created. It consists of one or more request sets, where a request set is a number

30

5.1 Profiling Infrastructure

of requests to an application. The goal of the workload suite is to measure the effect

of different loads on an application, so that the characteristics of an application can be

profiled. It can be built 1) upon prior knowledge of an application’s behavior, 2) on insight

into what the expected user profiles are, or 3) the load can grow until a certain metric limit

is met, like CPU or memory usage, or if a latency requirement is violated. 4) A workload

suite can also be built based on agreements between various users and stakeholders of

a system on how much load an application should be able to handle. It is thus heavily

application and system-dependent. A suitable workload suite for hardware dimensioning

will show the effect of load applied on the performance requirements that are specified

for an application. Additionally, if specific workflows within an application need to be

included in the performance prediction the workload suite should include requests that are

expected to follow those workflows.

To profile through the automated framework, an automated method of serving requests

needs to be made as well, as shown in Figure 5.1. After a deployment configuration is

employed, the workload suite can be served to the application, representing experiments

from which the application profile can be built.

5.1.3 Data Monitoring and Collection

The data collection for the profile is done by observability tools that can extract resource

usage metrics of individual microservices. Additionally, they should be able to collect the

latencies of all relevant traces, where the relevant traces include all workflows that will be

analyzed in the performance prediction as described in Chapter 6. Observability tools as

described in Section 2.3 can be used in this process.

The choice of tools and their configuration in this approach may drastically influence

profiling results, as monitoring infrastructure may use a significant part of a node’s re-

sources, for example. This could cause a profile to include the interference patterns of a

microservice with the monitoring services, which can cause performance predictions to be

off.

In Section 5.5.2, we provide an example pipeline to extract CPU usage metrics and an

example pipeline to extract latency metrics.

Once the data monitoring and collection are done, we can either use the next deploy-

ment configuration to gather data for the next microservice in the application, or, if the

experiment on each deployment configuration has been completed, we can start creating

the application profile, as shown in Figure 5.1 and explained in Section 5.3.

31

5.2 Defining Metrics

5.2 Defining Metrics

The data that is gathered forms the basis for the application profile. A profile can consist

of various metrics, based on the profiled application and system and its requirements. Most

application performance requirements consist of both resource requirements and latency

requirements. This profiling method therefore considers both resource metrics, in the form

of CPU usage, and traces, from which latencies within an application can be extracted.

Which metrics and traces are extracted depends on the specified performance requirements

and are therefore also application and system-dependent. If a resource requirement sets

a limit to the CPU usage of microservices on a node, then CPU usage metrics should be

extracted as a part of the application profile. The necessary infrastructure to extract the

metrics and traces depends on the type of metrics and traces as well.

5.3 Creating a Profile

Once the required traces and metrics are gathered for all microservices in an application,

the profile can be built. The application profile is split up into resource usage metrics

and latency metrics, according to the two requirement types that are generally regarded

in microservice applications: Resource requirements and latency requirements.

5.3.1 CPU usage Metrics

The resource usage component of the profile consists of two parts: Application CPU usage,

consisting of the CPU usage of each microservice in the application, and the system over-

head. The profile is based on the monitoring data gathered from the automated profiling

framework.

5.3.1.1 Microservice CPU Usage

For each experiment, we use the highest observed CPU usage value of an isolated profiled

microservice for a given request set in the workload suite. We collect the average CPU

usage of the microservice over intervals of T seconds, the peak CPU usage is picked as

shown in Figure 5.3.

In this example, the CPU usage of a microservice in an application is shown against

the time for one experiment. The observed CPU usage data consists of four values: A, B,

C, and D. They represent CPU usage averages over their corresponding interval. For the

32

5.3 Creating a Profile

Figure 5.3: An example of how to retrieve the CPU peak of a microservice in a profiling
experiment.

profile of a microservice, we pick the highest average value, or the peak value of the four

values, which in this example would be C.

We choose to store the peak CPU usage value of an experiment in the profile, because

we aim to catch the worst-case scenario. The profile will form the basis of the perfor-

mance prediction, which will influence the hardware dimensioning. If we take into ac-

count the worst-case situation of a microservice, the profile is kept conservative and the

hardware dimensioning is likely to be on the conservative side as well. This means that

over-dimensioning is more likely than under-dimensioning. As discussed in Section 2.4,

under-dimensioning is generally less harmful than under-dimensioning.

5.3.1.2 Overhead

An important aspect of the performance prediction of the CPU usage of an application is

the overhead that an application may generate. The overhead is heavily dependent on the

system and environment the application runs in. It is calculated for isolated microservice

as the difference between the peak node CPU usage and the peak microservice CPU usage

on that node for each distinct load defined by the workload suite. The overhead thus

encompasses anything that causes extra CPU usage, aside from the microservice’s CPU

usage. This involves application infrastructure, the communication overhead generated by

the application framework, and monitoring services that poll from the application.

We apply fitting to capture the trend of the overhead of each microservice in an applica-

tion for varying load. The form of the fitting is heavily application-specific. In this method,

we discuss a linear fitting as shown in Equation (5.1), so we can include two aspects of

the overhead: 1) b, The overhead offset, which is a constant for each microservice and

33

5.3 Creating a Profile

represents the minimum amount of overhead a microservice, and the node it is running on,

generate, and 2) a, the overhead slope, which is dependent on a microservice and its load.

x represents the load based on the workload suite. The overhead offset likely includes some

load from the system infrastructure and part of the monitoring services on the node, while

the slope includes the communication overhead generated by the application framework.

It is possible that the trend in the overhead is not linear with the load. In that case, a

different fitting may need to be identified and applied based on the application.

ax+ b (5.1)

A separate experiment has to be conducted to calculate the idle offset of each microser-

vice. In this experiment, each isolation deployment configuration is used, but no load is

put on the application. This means that each isolated microservice will be idle, and the

overhead generated represents the overhead offset of a microservice. This experiment can

be conducted for any amount of time, where the longer it is conducted the more conser-

vative the offset values will be. In the examples mentioned in this thesis, a time of 10

minutes is used from which the peak CPU usage of each idle microservice is taken. If the

general minimal overhead of microservices on a system is already known, that can also be

used as value for b. Additionally, if it is known that the overhead offset is fairly similar

for all microservices, it is possible to choose one average value of b for all microservices,

which may simplify the application profile if an application includes many microservices.

If the variability in the overhead of a microservice for varying loads is high, it may be

beneficial for the hardware dimensioning to increase the value for the overhead offset so

that the overhead prediction will stay on the conservative side. A possibility is to increase

b, so that all profiled overhead for each load stays under the fitting. If the variability is so

high that a relation between the load and overhead is barely visible, it might indicate that

there is a need for additional profiling, and the experiments have to be run more often to

gather more data.

5.3.2 Traces and Latency Metrics

The latency profile consists of two parts: The profile of the spans within microservices,

and the communication profile. A profile is made for each relevant system workflow of an

application, rather than for each microservice.

We assume that a latency requirement that represents a system workflow of an applica-

tion generally has the form: "Once started, a system workflow should complete within a

34

5.3 Creating a Profile

certain time frame". Note that we may not want to guarantee that 100% of all instances

of a system workflow are completed within a specified time. Therefore, we can use the

yth percentile tail latency as a representation of y% of instances of a system workflow

completing within the specified time frame.

In this context, y has to be chosen depending on how conservative we want to be in

satisfying timing requirements. The higher the y, the higher the guarantee of requirement

satisfaction, but picking a high y may also result in over-dimensioning, as outliers will

dictate the performance prediction. The percentile tail latency may also differ per require-

ment if the criticality of requirements differs, but cannot differ within a requirement, as

this will complicate the performance prediction. The exact y for the percentile latency to

be profiled should therefore be carefully considered.

5.3.2.1 Microservice Spans

Each system workflow is built up by one or more spans within at least one microservice.

Therefore for the profile, we need to collect the latency of the spans within a microservice.

Just as for the CPU usage profile component, each microservice included in the profile is

isolated on a node when it is profiled. The effect of varying loads is then measured in the

profile as the difference in tail latency between them.

Note that the spans within a microservice related to one system workflow can differ from

the spans within the same microservice for another system workflow. Two aspects can

differ: 1) The events that mark the start and stop of a span within a microservice, and

2) the request type and system workflow may follow different spans within a microservice.

Therefore, the behavior and role of a microservice can differ heavily per system workflow

that it is a part of.

5.3.2.2 Communication

The latency profile not only consists of the spans within microservices, but also includes

the communication between microservices. An important parameter for the prediction of

the latencies of the traces is the difference between the communication latency between

microservices that are running together on a node, "local communication", versus the com-

munication latency between microservices on separate nodes, "remote communication".

The profile should include the latency of both communication types for each message that

is included in the traces for the relevant system workflows.

35

5.4 Iterative Profiling

The communication latency may be heavily influenced by the load on microservices,

for example, if its message queue fills up. If that is the case a profile should gather

the percentile tail latency for each load separately. However, if it is known that the

communication latency is not influenced by load, there is no need to measure the latencies

separately for each message. An average communication latency for each message may

suffice for the profile, which can help simplify the profiling method.

5.4 Iterative Profiling

The profiling method described in this chapter so far discusses one iteration of profiling.

However, it is possible that multiple profile iterations need to be conducted to collect

sufficient data, as is shown by the arrow that creates a loop in Figure 5.1. The results of

multiple iterations should then be aggregated into average values of the profiles. If results

show a lot of noisy behavior, this could be an indication that there is a need to upscale the

number of iterations for the profile. In general, the more iterations a profile has, the more

reliable the performance prediction will be, since it is based on a bigger data pool. Of

course, running a profile experiment may be time-consuming, especially if an application

contains many microservices.

The amount of profiling iterations needed to ensure a reliable performance prediction

is context-specific and depends on the profiled application, the available time, and the

expectations of the stakeholders involved. Thus, for any distinct application, a feeling

should be created for how many times an experiment has to be repeated to ensure that

noise and variations are evened out.

5.5 The MDS Profile

This section displays the MDS case study as an example to show how the profiling frame-

work can be implemented. The full MDS profile is shown in Appendix A.

5.5.1 Experimental Setup

The profiling experiments are performed on the TNO cluster described in Section 4.3.

The measurements will be done on Transact01. The MDS as described in Section 4.1 is

used to show an example of how to use the profiling method, and consists of four dis-

tinct microservices: the PlannerService, MealDispatchingService, MealPreparingService,

36

5.5 The MDS Profile

and MealDeliveringService. All experiments and results shown in this chapter have been

performed in this context.

5.5.2 Profiling Infrastructure

We will first show the profiling infrastructure that is needed to construct the MDS profile.

Deployment Configurations

For the MDS, the number of isolation deployment configurations is four, since it consists

of four microservices. Each service is deployed in isolation on Transact01. The other

three microservices in the MDS are then deployed on node Transact02 and the remaining

infrastructure and monitoring services run on Archview01. An example of a deployment

configuration where the PlannerService is isolated is shown in Figure 5.4.

Figure 5.4: An example in the MDS context of an isolation deployment configuration for
application profiling.

The automated deployment step requires each microservice in the MDS to be automat-

ically deployed on the node that is specified in the deployment configuration. This is

accomplished by dynamically editing the YAML file of each microservice by specifying the

node on which it should be deployed. Then the deployment is performed with a script

that uses Kubectl, a command tool of Kubernetes [35]. There is no need to redeploy the

infrastructure services, since those are always deployed on the same node, Archview01.

For the local communication measurements, we can use one deployment configuration

that places all microservices on one node, since it fits on Transact01. This deployment

configuration is shown in Figure 5.5. We have chosen this configuration, since it simplifies

the data processing for the communication profile, and the expectation is that the difference

37

5.5 The MDS Profile

caused by the contention between microservices is minimal in the MDS context, further

supported by the experiment in Appendix C.2.

Figure 5.5: Deployment configuration for profiling local communication latencies for the
MDS

Workload Suite

In the context of the MDS, the workload suite consists of meal order requests. The ap-

plication will be profiled based on an increasing number of simultaneous requests, so that

the behavior of the application with an increasing load is shown. In this case study, the

number of simultaneous requests served goes from 0 to 100 with incremental steps of 10.

The number of simultaneous requests could be chosen based on the artificial latency pres-

sure in the PlannerService, and the performance requirements that concern that service,

PR-1, PR-3, and PR-6. Since the artificial latency in the PlannerService is 10ms per

order request as discussed in Section 4.1, the order latency is expected to grow with the

number of simultaneous requests. The expectation is then that latency requirement PR-6

will be violated for 50 simultaneous orders and above, as we assume that requests cannot

be processed concurrently in the PlannerService. Although the workload suite could, thus,

be limited to 50 simultaneous orders, this case study will try to push the limits of the

MDS application, and we set the number of simultaneous orders to 100. Any load above

this number proves to be a point of the MDS application where orders show unexpected

behavior, and order requests may not arrive on time. We have automated the process of

serving requests in the MDS.

Each set of requests in the workload suite represents an experiment. At the start and end

of each experiment, timestamps are recorded. These timestamps indicate what experiment

38

5.5 The MDS Profile

ran at what point in time, and can be used for the data processing of the profile later on.

Data Monitoring: CPU usage Pipeline

For the case study, we have constructed a pipeline that extracts CPU usage metrics for an

application in a Kubernetes cluster, as shown in Figure 5.6.

Figure 5.6: Metrics extraction pipeline in a Kubernetes cluster. From application to data
processing.

With this infrastructure, the CPU usage data per microservice may be extracted with

cAdvisor [45]. It collects CPU usage metrics per microservice in a cluster. Node Ex-

porter [46] gathers CPU usage metrics per node in a cluster. The metrics are then deliv-

ered to Prometheus [20], from which the data can be stored in a database or JSON object.

Examples of CPU usage metrics are CPU usage average or minimum over a time interval,

either per CPU on a node or on average per node.

For each microservice in the MDS, the extracted metrics will include its CPU usage for

each workload suite request set. The average CPU usage over an interval is taken per

microservice through cAdvisor. Preferably this interval matches the resource requirement.

Note that we use two distinct infrastructure services to record the CPU usage of con-

tainers and nodes. This is not ideal, since intervals may not match up in the CPU average

interval, causing peaks to be distributed differently over the interval, therefore resulting in

different averages for roughly the same interval. An example is shown in Figure 5.7. Here

the blue line is the node CPU usage and the red line is the CPU usage of a container that

runs on the node.

The example shows that the average container CPU usage over an interval may be

calculated as higher than the average node CPU usage that is measured by a different tool

when sample timing is not synchronized, even though the node CPU usage is always higher

than the container CPU usage. This could especially prove problematic in our calculation

39

5.5 The MDS Profile

Figure 5.7: An example of how using two tools with different sample timing can result in a
skewed comparison.

of overhead, as it requires both tools. In this thesis we still use two tools in this context,

since it is what is available in our infrastructure, however, ideally, infrastructure should be

built so that one tool gathers both the container CPU usage and node CPU usage. We try

to mitigate the problem in this work by creating many profiles and aggregating the results

as discussed in Section 5.4, which is why we feel that this will not influence the results

significantly.

Also, note that both cAdvisor and Node Exporter extract the CPU usage per core on

a node. We take the average over the CPU usage per core to keep the profile simple, but

various other metrics can be extracted to form a profile, including a per-core analysis and

per-core profile.

Data Monitoring: Latencies Pipeline

We have also constructed a pipeline to gather relevant latencies to include profiling for

the system workflows. OpenTelemetry [47] collects all spans from an application, and

forwards them to Jaeger [21], which groups the spans into traces. Jaeger then stores these

traces in a database tool called ElasticSearch [48]. At this point, the traces are ready for

preprocessing for the eventual profile. The pipeline is shown in Figure 5.8. Both pipelines

are used in the MDS context.

40

5.5 The MDS Profile

Figure 5.8: Trace extraction pipeline in a Kubernetes cluster. From application to data
processing.

5.5.3 Defining the Metrics and Creating a Profile

In the MDS case study, we have defined the metrics we extract as the peak CPU usage

of a microservice over 15-second intervals during an experiment, and a 90th percentile tail

latency for all system workflows. We take the 90th percentile tail latency as we feel it

represents a fairly conservative prediction indicator. We have picked the polling interval

through experiments on the case study, although we had some restrictions as discussed in

Section 8.3.4.

CPU Usage Profile

The microservice CPU usage results of the MDS profile are shown in Figure 5.9.

For each microservice, the influence of the increasing load can immediately be seen. The

PlannerService, MealPreparingService, and MealDeliveringService all grow linearly in CPU

usage with the load. The MealDispatchingService in Figure 5.9b shows that the peak CPU

usage goes to 0.5% as soon as there are meal orders to process, but further growth is very

minimal with increasing load.

The peak CPU usage of each microservice stays under 3.5% mainly because each mi-

croservice in the application has very minimal functionality and does not employ very

CPU-intensive structures or algorithms.

The PlannerService does plateau after 70 orders, as shown in Figure 5.9a. Examining

the exact reason for the characteristics of the MDS falls outside the scope of this work and

will not be discussed, although this does bring up that this type of profiling can also help

gain insight into how an application works. It can point out unexpected behavior and even

pinpoint areas of improvement in an application. If a profile shows a lot of unexpected

behavior that can be attributed to noise, it could be an indication that more data needs

to be gathered to form a reliable profile.

41

5.5 The MDS Profile

(a) Profile of the PlannerService (b) Profile of the MealDispatchingService

(c) Profile of the MealPreparingService (d) Profile of the MealDeliveringService

Figure 5.9: The CPU usage profile for each microservice in the MDS. The peak CPU usage
is shown against increasing request load

Overhead

The overhead fitting of each microservice in the MDS case study is shown in Figure 5.10.

First, the overhead ranges from around 0.2% to less than 1.2%. It is also shown that

the overhead per microservice grows to different degrees per microservice with the load,

and is therefore at least to some extent dependent on the microservice. A performance

prediction model should thus also consider this aspect in its prediction. The variability

in the overhead is quite high over different loads. This is especially the case for the

PlannerService overhead, shown in Figure 5.10a, where the overhead for 50 orders is much

higher than that of 60 orders. Two causes can be identified. 1) Since the CPU usage is so

low, and the difference between overhead with 0 orders and 100 orders is only 1%, noise or

42

5.5 The MDS Profile

(a) PlannerService (b) MealDispatchingService

(c) MealPreparingService (d) MealDeliveringService

Figure 5.10: The CPU overhead profile for each microservice in the MDS. The overhead is
shown against increasing request load.

small events may have a large influence on the measurements, and 2) the tool that gathers

the node CPU usage, Node Exporter, and the tool that gathers the microservice CPU

usage, cAdvisor, differ as discussed in Section 5.1.3. This may also be the cause of the dip

in overhead in Figure 5.10d, for 90 orders, although further investigation is necessary to

conclude this definitively.

The results of the overhead offset experiment and the overhead slope of each microservice

in the context of the MDS are shown in Table 5.1. Further details of the idle overhead

experiments in the MDS context, to acquire b, are shown in Appendix C.1.

We should note that while the overhead offset of each microservice is fairly similar, the

slope differs quite a lot between microservices and appears to be microservice-dependent.

43

5.5 The MDS Profile

In the performance prediction, it is therefore likely necessary to include some sum of

the slopes of the overhead of microservices if they are deployed on the same node, while

the offset should stay as some constant value that is similar to the average offset of the

microservices involved.

Table 5.1: Linear fitting of the overhead for each microservice in the MDS, based on increas-
ing load. a represents the slope and b the offset of the linear fitting, which has the form ax+b.

Service a b
PlannerService 0.017 0.217

MealDispatchingService 0.001 0.249
MealPreparingService 0.004 0.287
MealDeliveringService 0.002 0.250

Traces and Latency Metrics

We show an example of the profile of a system workflow through LR-1. It includes both a

span in the PlannerService as well as in the MealDispatchingService. Therefore both are

included in the application profile. The results are shown in Figure 5.11.

(a) The latency within the PlannerService. (b) The latency within the MealDispatchingSer-
vice.

Figure 5.11: The 90th tail latency of the spans within microservices involved in LR-1.

Based on this profile, we can determine that the PlannerService has the highest impact

on latency in this system workflow, overall its latencies are an order of magnitude higher

than the MealDispatchingService.

44

5.5 The MDS Profile

Communication

We show the local and remote communication latencies for both LR-1 and LR-7 in the

MDS context. The results are shown in Figure 5.12. Note that the y-axis scale for both

graphs is different.

(a) 90th percentile tail latency of the Schedule-
UpdateRequest message for increasing load on the
MDS. LR-1

(b) 90th percentile tail latency of the MealPrepa-
rationRequest message for increasing load on the
MDS. LR-7

Figure 5.12: Communication profile of messages for LR-1 and LR-7. Both for local and
remote communication.

The general trend for all messages is that the tail latency of the communication goes

up with the load. This is likely due to increased congestion in the send and receive of

the messages with increased load, or is caused by a higher CPU load because of increased

communication. Figure 5.12a shows expected behavior, where the latency of the Schedule-

UpdateRequest varies from just above 2 ms to just above 4 ms from 10 to 100 simultaneous

order requests. Additionally, the remote latencies are slightly higher than the local laten-

cies. This makes sense, since the communication between different nodes is likely to take

longer than the communication within a node, due to the extra communication overhead.

With these profiling results and Figure 5.11a, we can also show that LR-1 is mainly

determined by the latency of the span in the PlannerService, as the communication has a

latency of at most 5 ms, while the span takes at least 200 ms.

Figure 5.12b shows a growth in communication latency for the MealPreparationRequest

message. The remote messages do not necessarily take longer than the local messages in

these results, which hints that the distance between the microservices does not play a big

role in the unexpected growth in communication latency, but rather the computational

45

5.5 The MDS Profile

time of the sender and receiver encapsulates most of the communication time. Further

research is necessary to definitively conclude this.

Iterative Profiling and Profiling Time

Through experimentation, we have acquired a feeling of how many iterations were necessary

to run the MDS to minimize noise in the profiling results. Ultimately, we came to 50

iterations for the MDS profile. Each iteration takes roughly 30 minutes. With 50 iterations,

the variability in results showed to be fairly minimal. We estimate that it took roughly 25

hours to profile the whole application. We further discuss profiling time in Section 8.3.1.

46

6

Performance Prediction

In this chapter, we discuss performance prediction in the context of hardware dimensioning.

We describe a performance prediction method through two performance prediction models,

for which the profiling method of Chapter 5 forms the input. The method leverages the

idea that a performance prediction for compositions of microservices can be made based

on the individually profiled microservices.

The performance prediction method follows the structure of the profile, where it makes

a distinction between CPU usage requirements and latency requirements. For both types

of requirements, the goal of the prediction is to foretell whether requirements are violated

for a given deployment configuration of microservices over nodes and a given load.

To validate the proposed approach, the models are validated in the MDS context with

five distinct deployment configurations.

6.1 CPU Usage Prediction Model

We first present the CPU utilization prediction model, which aims to predict the CPU

utilization of a node given the microservices that are deployed on it. The prediction

model consists of two components, a microservice component and an overhead component.

These are then added to predict the peak node CPU usage as shown in Equation (6.1).

Here, Rn(x) is the expected peak CPU utilization on a node, n, given the load, x, An(x)

represents the microservice CPU usage component, and On(x) represents the overhead

component. All variable descriptions are displayed in Table 6.1. Note that the load may

be defined in different ways, as described in Section 5.1.2, and a mapping needs to be made

from increasing load to x in the model.

47

6.1 CPU Usage Prediction Model

Rn(x) = An(x) +On(x) (6.1)

This model does not take the effect of microservice interference on a single node into

account, which is further discussed in Section 8.3.2.

Table 6.1: Overview of the variables in the CPU usage model

Variable Description
Rn(x) The expected peak CPU usage on a node, n, given the load, x
An(x) Microservice CPU usage on a node, n, given the load, x
On(x) Overhead CPU usage on a node, n, given the load, x
Mn The set of microservices on a node, n
pix The peak CPU usage of microservice, i, given the load, x
bn The set of overhead offsets for all microservices on Mn

ai The overhead slope of microservice i

6.1.1 Microservice resource model

The microservice component of the CPU usage prediction model includes the CPU usage

profile of each microservice that runs on a node in isolation, as described in Section 5.3.1.1.

This is the basis of the prediction model. The core assumption here is that the resource

usage of an application of a node can be indicated by the sum of the resource usage of

microservices on that node. This component of the prediction model is shown in Equa-

tion 6.2). pix represents the peak CPU usage of microservice i with a given load x, as

described in Section 5.3.1.1. The set Mn represents all microservices that are running on

node n.

An(x) =
∑
i∈Mn

pix (6.2)

The model uses the peak CPU usage to predict the overall application performance

because the prediction is a part of hardware dimensioning, where the goal is not to be as

accurate as possible, but rather to arrive at a conservative estimate. By taking the peak

CPU usage of a microservice for a given load, the expectation is that the microservice

will generally not use more CPU usage than that peak and the prediction is therefore

conservative.

48

6.1 CPU Usage Prediction Model

6.1.2 Overhead model

The overhead component of the CPU usage prediction model represents a missing aspect

in the sum of the CPU usage of isolated microservices. It encapsulates the CPU usage

created by communication overhead, and the infrastructure services. In Section 5.10, we

describe a linear fitting that makes up the overhead of an application. The fitting shown

in that section is an example of a fitting that can be used in this model, but the overhead

model should apply the trend found in the profiling stage. The overhead model is shown

in Equation (6.3), where Mn is the set of microservices that run on node n, bn is the set of

overhead offsets of all microservices in Mn, ai is the overhead slope of microservice i, and

x represents the given load.

On(x) = max(bn) +
∑
i∈Mn

ai · x (6.3)

To keep the prediction conservative, we define the expected overhead offset to be the

highest overhead offset of any microservice in Mn, as we assume, from the profile, that

the offsets of the varying microservices are similar. If this is not the case, we could take

the average offset, or minimum offset, depending on the purpose of the prediction model

as well. We do not sum the offset overhead of each microservice, as it largely includes

the CPU usage of infrastructure and monitoring services, which we have experimentally

determined to remain fairly constant regardless of how many microservices are running on

a node.

Note that the overhead prediction always includes some monitoring services that may not

be running on the target system for which the prediction is made. We do not see this as a

problem, as the expectation is that the monitoring services only form a small factor in the

overhead. Additionally, it would only cause a more conservative performance prediction,

which is preferable in the context of hardware dimensioning. However, the degree to which

monitoring services impact CPU usage is system and application-dependent, which should

be evaluated or tested before using the CPU usage prediction model.

To calculate the expected overhead slope of concurrently running microservices, the

overhead slope of each microservice, running in isolation on a node, is added together.

The overhead on a node is then predicted by multiplying the slope with the load, e.g. the

number of orders in the MDS, together with the overhead offset. The slopes are added in

such a way, since we expect the overhead to grow with the number of services that run on

a node according to their individual slopes.

49

6.1 CPU Usage Prediction Model

6.1.3 MDS Performance Prediction

In this section, we show how to apply the CPU usage prediction model. This example is a

part of the MDS case study introduced in Chapter 4. The MDS case study includes four

microservices and two similar nodes on which the validation will take place. We use the

EvenSplit 1 deployment configuration, as shown in Figure 6.1.

Figure 6.1: An example of a deployment configuration of the MDS on the TNO cluster:
EvenSplit 1.

The predictions of the complete CPU usage model of Equation(6.1), in the context of

the MDS for deployment configuration EvenSplit 1, are shown in Figure 6.2.

(a) The prediction of CPU usage for node A (b) The prediction of CPU usage for node B

Figure 6.2: Prediction of the CPU usage model for the EvenSplit 1 deployment configuration.

The results indicate the expected CPU utilization of the nodes, given the microservices

that run on them for varying loads. The prediction follows the trends that are shown in

the application profile, as it is based on it. In this example, the model predicts that the

CPU usage of each node stays under 7% for any load of up to 100 simultaneous requests.

50

6.1 CPU Usage Prediction Model

Requirement RCR-1 is therefore satisfied for at least up to 100 simultaneous requests

with this given deployment setup, as the CPU usage stays well under 60% for each node.

6.1.4 Model Validation

Now that we have shown how to use the CPU usage prediction model, we will validate

whether the model predicts the CPU usage of a node accurately in the MDS context. It is

validated by computing its results based on the EvenSplit 1 deployment configuration and

four additional deployment configurations. These deployment configurations are shown

in Figure 6.3. The predicted CPU usage is compared to the measured CPU usage on

Transact01.

(a) The deployment configuration of all MDS mi-
croservices on one node: OneNode

(b) A deployment configuration where each node
deploys two MDS microservices, where the Plan-
nerService and MealDispatchingService are placed
together: EvenSplit 2

(c) The deployment configuration where the
MealDeliveringService runs in isolation and the
other three MDS microservices are placed on the
other node: TripleSolo 1

(d) The deployment configuration where the
MealDispatchingService runs in isolation and the
other three MDS microservices are placed on the
other node: TripleSolo 2

Figure 6.3: The four additional deployment configurations that will be used in the validation.

51

6.1 CPU Usage Prediction Model

We feel that these five deployment configurations showcase the variability in the possible

deployment configurations, so we can make a comparison between the various microservice

placement options of the MDS, given the two nodes and four microservices. These config-

urations deploy microservices in two distinct ways in isolation and trios, in two pairs of

two, and include the scenario where all microservices are placed together. The different

deployment configurations show that the latency prediction model applies to, and holds

for, any combination of microservices in the MDS context.

Since the MDS application profile is an aggregation of 50 iterations of a profile, as

discussed in Section 5.4, the validation is also run 50 times, to keep the comparison as

straightforward as possible.

Based on feedback from practitioners, in the context of hardware dimensioning for the

case study of the MDS, we deem the models to be sufficiently accurate if the predictions

only differ by at most 20% to the validation. The prediction preferably has higher CPU

usage values than the validation, as such a prediction prevents under-dimensioning, which is

less desirable than over-dimensioning in the context of hardware dimensioning, as discussed

in Section 2.4.

Note that nodes Transact01 and Transact02 have slightly different specifications. Since

we have only done profiling on Transact01, we omit validation on Transact02 in these

experiments. This means that we run each deployment configuration twice on the TNO

cluster. For example, we deploy EvenSplit 1 and the mirrored version of it, where the

microservices on Transact01 and Transact02 are swapped, so that we can validate both

the prediction for node A, as well as node B. Then, only the measurements on Transact01

are used in the validation. We have an additional experiment on prediction and validation

on Transact02 in Appendix C.3.1.

The validation results for both nodes of EvenSplit 1, node B of TripleSolo 1, and the node

of OneNode are shown in Figure 6.4. The rest of the results can be found in Appendix B.1.

The results show that all predictions fall within 20% of the validation for any deployment

configurations and all amounts of load. Additionally, the biggest difference is shown when

the prediction is higher than the validation, like in Figure 6.4a, which is sufficient for

hardware dimensioning, since our model aims to be conservative in its prediction. The

trend of a linear increase in peak CPU usage for increasing load is reflected in the validation

for any deployment configuration as well.

Just as predicted, the CPU usage of each node falls when the MDS microservices are

more evenly distributed over the nodes. The trend in the prediction is followed by the

52

6.1 CPU Usage Prediction Model

(a) EvenSplit 1, Node A (b) EvenSplit 1, Node B

(c) TripleSolo 1, Node A (d) OneNode, Node A

Figure 6.4: The prediction against the validation for both nodes of EvenSplit 1, node B of
TripleSolo 2, and the OneNode deployment configuration. Validation is done on Transact01

validation. The assumption that we can add the CPU usage of isolated microservices to

retrieve the CPU usage of a node seems to be correct in this context.

Additionally, while some predictions predict a lower CPU usage, as shown in Figure 6.4c

for 40 orders, the model undershoots at most by 6.80% compared to the validation, and

most predictions overshoot their prediction, as is more desirable.

Thus, overall the model predicts the behavior of the application on the system well, with

at most 16.25% overshooting the validation measurements, and only 6.80% undershooting.

53

6.2 Latency Prediction Model

6.2 Latency Prediction Model

The second prediction model aims to predict the latency of system workflows based on

the load on an application and the deployment configuration of microservices over nodes.

The system workflows may be based on the requirements of an application. Chapter 5

discusses the method of extracting these subtraces from an application, and shows the

profiling method that forms the basis for this model.

The model is shown in Equation (6.4), and the variable descriptions are displayed in

Table 6.2. It consists of the combination of the microservice spans and communication

in the system workflows. Here, Lr(x) is the expected yth percentile tail latency for a

given system workflow r and load x, Sr(x) is the latency component of the spans within

microservices, and Cr(x) is the communication component.

Lr(x) = Sr(x) + Cr(x) (6.4)

It leverages the idea that we can use the addition of latencies of spans and messages in

an application to predict the total end-to-end latency of a system workflow.

Note that we assume that each microservice has one span from beginning to end and does

not call any child services. If a microservice calls another microservice during its execution

and waits to finish its execution until it gets a response from its child, the time of both the

child and parent would be added up. This has to be taken into account if it is known that

that occurs in an application, and could also be handled through the profile, by splitting

the span of the parent microservice into two spans. The model can then remain the same.

Table 6.2: Overview of the variables in the latency model

Variable Description
Lr(x) The yth percentile tail latency for a given system workflow, r, and the load, x
Sr(x) Microservice latency of system workflow, r, given the load, x
Cr(x) Communication latency of system workflow, r, given the load, x
Mr The set of microservices within system workflow r
si The yth percentile tail latency of the span in microservice, i
Ir The set of messages included in system workflow r

pm(x) The communication latency of message m in Ir, given the load, x
lm The local communication latency as the yth percentile tail latency
dm The remote communication latency as the yth percentile tail latency

54

6.2 Latency Prediction Model

6.2.1 Spans in Microservices

The first component of the model considers the spans in the microservices involved in a

system workflow. These spans are heavily application-dependent, and may include one to

all microservices, depending on the system workflow. Based on the application profile, we

will use the yth percentile tail latency per span in the performance prediction.

In order to predict the total latency of a system workflow through multiple microservices,

the measured tail latency of the span in each individual microservice, that is included in

the system workflow, is added up. This component of the model is thus defined as in

Equation (6.5). Here, Sr(x) is the latency component of the spans within microservices,

based on the system workflow, r, and load x, Mr is the set of microservices within the

system workflow r, and si is the yth percentile tail latency of the span in microservice i.

Sr(x) =
∑
i∈Mr

si (6.5)

Note that there is no distinction yet in this model between deployment configurations.

Regardless of the microservice placement, the latencies of the spans of the microservices

are added up based on the measurements for isolated microservices. This means that

the effect of contention of microservices on trace latencies, as in the CPU model, is not

considered in this model, as discussed in Section 8.3.2. We assume this still works for

services that use a low percentage of system resources. An additional experiment on the

effect of interference of microservices on latencies in the MDS context to support this is

discussed in Appendix C.2.

6.2.2 Communication

Traces may not only consist of spans in microservices, but also of the communication be-

tween the microservices. Therefore we need to add the latencies of these messages, which

are acquired through the application profile, to the model. This also introduces the depen-

dency of the latencies on the deployment configuration, as a distinction is made between

local and remote communication. By local communication, we mean messages that are sent

between microservices that are running on the same node. By remote communication, we

mean messages that are sent between microservices on separate nodes. We do not make

a distinction between remote communication between nodes that are placed close to each

other, and remote communication between nodes that are far apart in terms of physical

space between them. Additionally, the model is built under the assumption that all nodes

are directly connected, and do not include hops over other nodes.

55

6.2 Latency Prediction Model

We assume that remote communication generally has higher percentile latency results

than local communication for a general application, as it includes a greater travel time.

However, if this is not the case, it will show up in the application profile and the communi-

cation model will still be applicable. The communication model is shown in Equation (6.6)

and Equation (6.7). Here, Cr(x) is the sum of message latencies within system workflow

r for load x, Ir is the set of messages included in system workflow r, and pm(x) is the yth

percentile tail latency of message m. pm(x) either is defined by the local communication

latency, lm(x) or the remote communication latency, dm(x).

Cr(x) =
∑
m∈Ir

pm(x) (6.6)

pm(x) =

{
lm(x), if m is sent over local communication.
dm(x), if m is sent over remote communication.

(6.7)

6.2.3 MDS Performance Prediction

We now show how to use the latency prediction model within the MDS. We predict the

90th percentile tail latency of the system workflow that is based on LR-1. The latency

predictions for a system workflow are split up into a prediction for local communication

and remote communication. Since the system workflow of LR-1 includes the PlannerSer-

vice, MealDispatchingService, and a message between them, we can use EvenSplit 1 and

EvenSplit 2 to represent both a trace flow through two nodes, and within one respectively.

We use the 90th percentile tail latency as explained in Section 5.5.3 on the MDS profile.

The 90th percentile tail latency predictions are shown in Figure 6.5 for both local and

remote communication.

The results give insight into the most significant component in the latency of a system

workflow. For example, LR-1 is mostly defined by the PlannerService span, and the

communication latency is only a small part of the prediction. A consequence is that in this

example, the communication distance does not influence the prediction, which also means

that there is little difference in latency prediction for different deployment configurations:

The predictions for EvenSplit 1 and EvenSplit 2 differ at most by 0.24 ms, which means

the local communication differs at most by 0.02% for this latency requirement.

Additionally, this prediction indicates that the latencies of 10 simultaneous requests

generally lay much lower than those of 20 and up. Any exact reason for trend-breaking

behavior in results may be further investigated, although that is very application-specific,

and falls outside the scope of this thesis.

56

6.2 Latency Prediction Model

(a) EvenSplit 2, local (b) EvenSplit 1, remote

Figure 6.5: The 90th percentile tail latency for a workflow based on LR-1 for local and
remote communication, EvenSplit 1 and EvenSplit 2.

Note also that the prediction shows that the requirement is violated with 100 simulta-

neous order requests, indicated by the dashed line.

6.2.4 Model Validation

Now that we have shown the latency prediction model and we have given an example of

how to use it, we will validate whether it predicts latencies with some accuracy in the MDS

context. We validate the predicted latencies of the model against the measured latencies of

the application running on the TNO cluster. The deployment configurations EvenSplit 1

and EvenSplit 2 are used for the validation, where we compare the predictions of the latency

model to the measured latency of request traces through the MDS application. We use

these two deployment configurations, since these represent both a system workflow within

one node, as well as a system workflow spanning two nodes for the latency requirements

that concern two microservices: LR-1, LR-3, and LR-7. Their specific workflows are

discussed in Section 4.2.

Note that the remote latency predictions are validated partially on Transact02, as we

did not have two identical nodes at our disposal. We do provide a short experiment in

Appendix C.3.2, to show that the validation on the two nodes does not differ much, and

therefore we can still claim these validation results are valid.

The results of LR-6 are shown in Appendix B.2. The prediction only differs by at

most 2% for the EvenSplit 1. This latency requirement is predicted as the most accurate.

Just as the prediction, the validation shows that the latency requirement is violated with

57

6.2 Latency Prediction Model

50 simultaneous orders and up, as expected through the artificial latency described in

Section 4.1.2.

LR-1

The validation of the prediction for LR-1 is shown in Figure 6.6. It is split up into

validation for the PlannerService and MealDispatchingService running concurrently on a

node, and them running on separate nodes according to EvenSplit 1 and EvenSplit 2.

(a) EvenSplit 2, local (b) EvenSplit 1, remote

Figure 6.6: Prediction of 90th percentile tail latency of the system workflow based on LR-1
compared to its validation for varying load.

Overall, the trend of the prediction is shown in the validation results as well. The 90-

percentile tail latency grows linearly with the load. Furthermore, the prediction generally

is more or less than 5% of the validation, which means that we feel that the prediction is

sufficiently accurate, and that the addition assumption of our model holds. The prediction

is higher than the validation in any case, which is desirable. This is likely due to the sum of

percentiles, adding up the 90th percentile latencies for each component in the trace, against

the 90th percentile of all traces. The difference between EvenSplit 1 and EvenSplit 2 is

minimal, indicating that communication only plays a small role in this latency requirement.

The requirement is violated for both cases when 100 simultaneous orders are issued.

There is one outlier. The 90-percentile tail latency for a load of 10 meal orders differs by

1000 ms between the two different validation setups. To explain this difference, a deep dive

is necessary into the tail latency computation of this particular trace. The distribution of

latencies for the workflow request for both validation setups is shown in Figure 6.7.

58

6.2 Latency Prediction Model

(a) EvenSplit 2, local (b) EvenSplit 1, remote

Figure 6.7: Deep dive into the distribution of latencies of 10 meal orders for the full workflow
request that is based on LR-1 of the validation for EvenSplit 1 and EvenSplit 2.

The latencies of the trace are divided into two distinct peaks, one peak is under 200

ms, and the other is above 1000 ms. The different results per the validation setups for

10 meal orders may be explained by these two peaks. It so happens to be that the 90th

percentile tail latency of the validation in Figure 6.6a just falls within the second peak, and

the tail latency of Figure 6.6b falls within the first peak. The 90th percentile tail latency

of the PlannerService in the profile just falls within the first peak as well, so the prediction

indicates a latency of under 250ms. The exact explanation of why these two peaks occur

has to be found in the implementation MDS application and falls outside of the scope of

this thesis. However, this example displays how complex a performance prediction can be

in this context, as it can be influenced by many factors.

A wrong prediction like this could have been indicated beforehand by noting that the

model predicts that the linear trend in latency growth from 20 to 100 simultaneous order

requests does not hold for 10 requests. It could then be looked further into why it is the

case in this specific application, which may result in more accurate predictions, through

an incorporation of the cause of these peaks in the prediction model in some way. It may

therefore be beneficial to look into unexpected behavior in the prediction results, to iron

out potential wrong predictions, although this process could be very application-specific.

59

6.2 Latency Prediction Model

LR-3

The validation of the prediction for LR-3 is shown in Figure 6.8. It is split up into

validation for the MealDeliveringService and PlannerService on one node, as in EvenSplit 1,

and on separate nodes, as in EvenSplit 2.

(a) EvenSplit 1, local (b) EvenSplit 2, remote

Figure 6.8: Prediction of 90th percentile tail latency of the system workflow based on LR-3
compared to its validation for varying load.

The prediction results show that the results fall within the 20% prediction threshold for

50 simultaneous orders and under, as the maximum difference is 18.34%. However, with a

higher load, the prediction overshoots the measured latencies up to 34%. In this example,

the difference could be caused by the process of summing up tail latencies. In the prediction,

we sum up the latency outliers of each separate component, while in the validation, some

longer latencies per component may be canceled out by the other spans and messages in

the same request trace. Note that this is not the case in the other latency requirement

predictions. We therefore believe that this latency requirement is more sensitive to the

conservative nature of adding percentile tail latencies, and more sensitive to noise, because

its values are smaller.

Although the prediction is not always accurate in this instance, in both the prediction

and the validation, the latency requirement, LR-3, is always met, since it is set at 100

ms. It is not shown in the figures since it would not fit on the graph. If the goal of the

prediction is to determine whether that is the case, this prediction still is accurate.

It may be possible to come to a more accurate prediction by analyzing why the latencies

grow from 60 simultaneous orders onwards. If we know what causes it, we could implement

the cause into the model to improve upon it. This is heavily application-dependent.

60

6.2 Latency Prediction Model

LR-7

The validation of the prediction for LR-7 is shown in Figure 6.9. It is split up into

validation for the MealDispatchingService and MealPreparingService for EvenSplit 1, local,

and EvenSplit 2, remote.

(a) EvenSplit 1, local (b) EvenSplit 2, remote

Figure 6.9: Prediction of 90-percentile tail latency of trace based on LR-7 compared to its
validation for varying load.

The prediction model differs by at most 6.68% from both validation setups. Therefore,

we deem the prediction model to be sufficiently accurate for this latency requirement.

The results of LR-7 show a prominent role of the communication aspect in the model.

They indicate that the communication takes up a significant amount of the total latency

of that particular trace. In this case, it may be worth looking into optimizing this partic-

ular message between the MealDispatchingService and MealPreparingService to improve

performance, in addition to loosening the requirement if that is feasible. A further analysis

of the MDS is needed as to why the communication takes up a disproportionate amount

of time of the full trace, which falls outside the scope of this thesis.

With both remote and local communication, the prediction falls within the 20% accuracy

threshold, and the validation follows the trend in terms of varying load of the prediction.

In Figure 6.9b, it is shown that the model predicts a higher latency than is measured for all

loads. However, Figure 6.9a shows that the model predicts below the measured latencies

for local communication. The reason for the difference is in the communication latencies,

since that is the varying factor in these two setups. It is also shown that the latencies for the

local deployment configuration appear to be higher than those of the remote deployment

configuration. The communication for this requirement shows that messages can take up

61

6.2 Latency Prediction Model

to 2 seconds to complete. It could therefore be that the difference in local and remote

communication is negligible for this system workflow, and the communication overhead is

mainly dictated by some error in the message processing of this component of the MDS

application. The prediction model takes this into account through the communication

profile, and is therefore still accurate.

62

7

Hardware Dimensioning

In this chapter, we combine the profiling and performance prediction methods in the con-

text of our proposed hardware dimensioning approach, introduced in Section 1.1.1. We

provide an overview of the necessary profiling steps, indicate the role of performance pre-

diction, and explain how to leverage the proposed methods through manual design space

exploration. An overview of the whole hardware dimensioning approach was previously

shown in Figure 1.1.

7.1 A Step By Step Approach

In the context of hardware dimensioning, profiling forms the basis of the performance pre-

diction, and performance prediction models give insight into how the performance differs

for varying deployment configurations over a varying number of nodes. As shown in the

results of both models, the resource utilization and system workflow latencies of an applica-

tion may be influenced by the deployment configuration of microservices over nodes. Thus

the performance prediction model can be leveraged as an evaluation in the process of design

space exploration [49], to determine the number of nodes and deployment configuration to

use in the target system.

Through manual design space exploration, we can pick the minimum number of compute

nodes for a suitable deployment configuration as follows:

1. Define the performance requirements of an application that need to be satisfied. We

deem a deployment configuration suitable if all relevant performance requirements

are satisfied.

2. Profile an application, as discussed in Chapter 5.

63

7.1 A Step By Step Approach

• Define the necessary profiling deployment configurations, as described in Sec-

tion 5.1.1

• Design a workload suite that creates application workload in some way, as ex-

plained in Section 5.1.2

• Set up data monitoring and collection infrastructure, as laid out in Section 5.1.3

• Define the profiling metrics, as shown in Section 5.2 and Section 5.3.

• Determine how many times a profile needs to run to cancel out potential noise

in the results as described in Section 5.4.

• Run the profiling experiments.

3. Create the performance prediction models as defined by Chapter 6, which require an

application profile and deployment configuration as input.

4. Pick a reasonable number of nodes for the target system.

5. Pick potentially suitable deployment configurations to try out. The exact method of

picking an initial deployment configuration falls outside of the scope of this thesis,

but a good starting point may be to minimize the communication distance within an

application, as described in the related work for IntMA, or as in Nautilus [31, 34].

6. Find a suitable deployment configuration for the specified number of nodes where

all performance requirements are satisfied, by evaluating each relevant deployment

configuration through the proposed performance prediction models. If we can find a

suitable configuration, we can downscale the number of nodes by one, if we cannot,

we upscale.

7. Pick the lowest number of nodes for which there is a suitable deployment configura-

tion.

7.1.1 The MDS Context

To illustrate how to apply the hardware dimensioning approach, we briefly discuss how we

apply it in the context of the MDS. We start by defining how the performance requirements

from Section 4.2 should be satisfied:

• A node should never use more than 60% of the available computational resources

over 15 seconds.

64

7.1 A Step By Step Approach

• Latency requirements LR-1, LR-6, and LR-7 are met under a load of 40 simulta-

neous meal requests.

Since LR-3 is always met in our deployment configuration examples, we do not consider

it here.

In Section 5.5, we have created the MDS profile, following the steps as described in the

manual design space exploration steps. An example of the MDS performance prediction is

shown in Section 6.1.3.

Now, we pick a reasonable number of nodes for the target system. Based on the appli-

cation profile, we chose one node to test our deployment configurations on.

In our example, we pick the only deployment configuration that is possible on one node:

OneNode, as all MDS microservices are placed on it. Through our MDS profile and the

performance prediction models, we come to the results shown in Figure 7.1.

The results indicate that all requirements we have specified are met, and therefore we

have found a suitable deployment configuration on one node. In the case that some re-

quirements were not satisfied, we could upscale to two nodes, and try various deployment

configurations in that context. As one node is the minimum amount of nodes we can use,

that is the optimal number of compute nodes for the MDS.

Note that the definition of a suitable deployment configuration determines how many

compute nodes are sufficient. For example, we can easily satisfy the requirement that a

node should never use more than 60% of its available computational resources. However,

if we change it to 5% of its available computational resources, we would come to an answer

of two nodes, with deployment configuration EvenSplit 1, for example.

65

7.1 A Step By Step Approach

(a) CPU usage (b) LR-1

(c) LR-6 (d) LR-7

Figure 7.1: Performance predictions results for hardware dimensioning on one node with
deployment configuration OneNode.

66

8

Discussion

In this chapter, we discuss the successes and shortcomings of our work, by analyzing the

results of the MDS case study for our profiling approach and performance prediction models

as part of our hardware dimensioning methodology.

8.1 The Profiling Approach

We have constructed a profiling approach that includes the creation of profiling infras-

tructure and a definition of a suitable profile for performance prediction. We consider this

approach to be a suitable profiling approach as it applies to any general microservice appli-

cation, is time-efficient, and can be performed on a limited amount of hardware. We feel,

therefore, that this profiling approach forms a suitable basis for performance prediction.

We have kept the profiling method general to any microservice application by considering

metrics that apply to any application, or by providing a method of deriving application-

specific metrics.

A practical aspect of the approach is that minimal hardware is required to create a pro-

file. This is important, as not all hardware is available at the point of profiling, or even

no hardware is available for the target system, and solely nodes are available that are as

representative as possible to the target system. Therefore, we have limited the necessary

hardware to one node that matches the target system as closely as possible, and one node

that does not need to match it. Additional nodes may be used if an application does

not fit on one node. Furthermore, our aim in the approach has been to keep the num-

ber of deployment configurations that are necessary to build a profile to a minimum, to

avoid exponential growth with the number of microservices, and to minimize the profiling

time. We further discuss profiling time in Section 8.3.1. In our approach, the number of

67

8.2 The Performance Prediction Models

deployment configurations grows linearly with the number of microservices in an applica-

tion, as described in Section 5.1.1. Based on feedback from practitioners, we feel that this

should be reasonable in terms of the time and effort necessary to perform the profiling

proposed in this thesis. Additionally, we show how to construct a profiling workload suite

in Section 5.1.2 and a data gathering and monitoring framework for both traces and time-

series metrics that can be used as a basis for any distributed microservice application in

Section 5.1.3.

Another important aspect of both profiling and validation is the statistical handling of

experiments. Where single experiments may show significant variance in CPU usage peaks

and tail latencies, depending on the sampling frequency, averaging over many experiments

can mediate the results and remove noise. For any application, a few experiments should

be performed to identify the variation in the data and the needed amount of profiling

iterations. Based on this, a trade-off needs to be made that is application-specific, where

too few experiments result in noise negatively influencing the prediction accuracy, while

too many experiments may get in the way of obtaining results in a reasonable time. As

an example, in our case study, we ran each of our experiments 50 times. The number of

experiments may drastically influence the quality of the final results, and should therefore

be carefully considered.

8.2 The Performance Prediction Models

We present two performance prediction models that can be used to gain insight into the

performance of an application before it is deployed on a target system. These models are

built as an aid in hardware dimensioning for microservice-based CPSs in the sense that they

indicate an estimate of how much hardware to assign to an application for performance

requirements to be met. The two performance prediction models leverage the idea that

a performance prediction can be made for compositions of microservices based on the

individually profiled microservices.

The profile of components of an application can be mapped upon the performance of an

application as a whole. We consider both models to be suitable as they portray a trade-off

between: 1) keeping the model simple, so that it may be easily adapted by practitioners

and applied to any general microservice application, and 2) making sure the prediction is

accurate enough to fulfill their purpose in hardware dimensioning.

We regard both models to be simple as they represent a linear addition of two core

performance aspects of microservice-based applications. The CPU usage model considers

68

8.2 The Performance Prediction Models

the microservice CPU usage and their overhead on a node, and the latency model con-

siders the latencies of spans within microservices and their communication overhead. We

have identified the communication overhead as an essential performance aspect in latency

predictions through the related work in Chapter 3.

The results of our case study indicate that our method results in a sufficiently accurate

performance prediction for both the CPU usage model and the latency model, where we

deem a 20% difference in the prediction compared to the validation sufficient, based on the

feedback of practitioners.

An important characteristic of the prediction models is that the performance prediction

is dependent on the deployment configuration of microservices. It is taken into account in

two distinct ways. 1) A CPU usage prediction of a node is made based on the number and

types of microservices that run on it, and 2) a latency prediction for latency requirements

considers whether communication between services is within or between nodes, as the

latency for these cases is different.

Both models include the minimally required parameters that are needed to predict per-

formance, but they may be extended by adding other parameters of a system or application

to the prediction. For example, the effect of interference between microservices on the ap-

plication performance may be a necessary addition, as discussed in Section 8.3.2.

8.2.1 CPU Usage Model

The CPU usage model shows the highest accuracy of the two models, where the predictions

at most overshoot the validation by 16.25%, and undershoot by 6.80%, as shown in Fig-

ure 6.4. Moreover, the model is more often conservative than optimistic in its prediction,

which is desirable in the performance prediction for hardware dimensioning. We can pre-

dict the trend in CPU usage accurately for increasing load for varying types and number of

microservices on a node. Note that for a limited set of results, the prediction undershoots

the validation. The expectation was that the model would overshoot all results, since it

is conservative. One cause of the undershooting could be the lack of interference model-

ing, which may influence particular combinations of microservices. Another cause may be

sampling artifacts, although we mitigate this by running our experiments many times.

While this model aims to predict the peak CPU usage on a node, it may also be possible

to convert such a model into a prediction on other node resources, like memory usage, or

other CPU usage metrics, like average CPU usage. Other related work discusses limiting

memory usage with a sum resource usage of individual components of an application in

similar ways [27, 42].

69

8.2 The Performance Prediction Models

One limitation of the CPU usage model is that the overhead component may not be as

generally applicable to any microservice application. It only considers a linear trend in

overhead with increasing load, but the definition of load may differ per application. We

still feel that the model is broadly applicable, as we have explained how to define the load

and how to identify the overhead trend.

8.2.2 Latency Model

The latency model results show that for the general case, the accuracy of the prediction

model is sufficiently high. Most predictions differ only at most 18.34% from the validation,

and most predictions are conservative. Latency requirements LR-6 and LR-7 have the

most accurate predictions, shown in Figure B.2e and Figure 6.9 respectively. Figure 6.6

show that the predictions for LR-1 also generally fall within the 20% threshold, except

for one outlier. We have explained the cause of this outlier with a deep dive into the

distribution of latencies of one workflow. It indicates how complex a latency performance

prediction may be. The predictions for LR-3, in Figure 6.8, are fairly accurate up until

a load of 50 simultaneous orders. Adapting the latency model to completely avoid such

inaccurate prediction may be complex, if not impossible, as the performance prediction

model will increase in complexity with every edge case that is included. We therefore feel

that we have struck the right balance between model simplicity and accuracy based on the

results shown in the case study.

The inaccurate predictions seem to occur when the application breaks trends in latencies

for increasing load, as shown for LR-1 and LR-3. This could be caused by some resource

restriction, or be related to the application design itself. When such behavior is noticed in

the profiling stage, it could be investigated and may be incorporated into the prediction

model, or be flagged as unexpected behavior to be fixed.

This model cannot only be used to predict requirement satisfaction, but also to generally

predict the tail latency of a system workflow. In the context of requirement satisfaction, it

makes sense to compute the expected percentile tail latency to guarantee that a percentage

of requests will be completed within a certain timeframe, however, it is possible that for

other purposes, different metrics are used to represent the system workflow latency, like

average latency.

It should be noted that in our latency model, we make a distinction between local

and remote communication, but do not distinguish between different distances in remote

communication. It could be that the distance between a pair of nodes is much bigger

than the distance between another. We do not consider this for two main reasons: 1) We

70

8.3 Threats To Validity

assume that the distance between nodes in a CPS is fairly short, and nodes are generally

placed in the same room or area, and 2) we aim to keep the profiling method simple, to

ensure scalability in the approach. This distinction also makes sense if we assume that

communication latency mainly consists of the send-off and reception of a message, and

the time it takes to travel from one node to another is only a small part of the latency,

especially when messages take up a fraction of the bandwidth. This may differ per system

and application, and therefore may need to be reconsidered when using this prediction

model.

8.3 Threats To Validity

The elements that may compromise the validity of our approach comprise profiling time,

microservice interference, the role of the MDS case study, the model variables, and the

applicability of our approach to CPSs in general.

8.3.1 Profiling Time

Profiling time may be an issue for larger applications. While the time it takes to profile

is heavily application, and workload-dependent, there are some techniques to cut down on

that time.

First, the profile of individual microservices does not depend on one another, therefore,

it is possible to optimize the time spent on profiling, as the microservices can be profiled in

parallel. In larger systems especially, it would be beneficial to use multiple compute nodes,

as one additional node could cut the profiling time in half. Do note that, for parallelization,

more compute nodes are needed that match the hardware, which is not always an option.

Moreover, it may be useful to optimize an experiment, as the time it takes to run a

whole profile heavily depends on the time of each experiment with a distinct deployment

configuration and workload. For example, in Section 5.5.3, we explained that the profiling

time for our small case study was roughly 25 hours. However, we did not optimize the

experimental process, where each experiment with a distinct isolated microservice and load

took around 45 seconds, with at least 30 seconds of idle time. This amount of idle time

was due to the lack of feedback on when experiments were done running, so we preferred

to be on the safe side to ensure to not cut off any experimental data. Optimizing this

experiment could include building a feedback system where we could move on to the next

experiment as soon as the previous one was done.

71

8.3 Threats To Validity

Lastly, profiling has to be done once per microservice and a microservice profile can

be transferred from other applications if its profile is made on similar hardware. Also,

once a profile is created, prediction models hardly take time to compute at all, and any

deployment configuration and node can be tried out.

We have further tried to minimize profiling times by minimizing the number of profiling

deployment configurations and iterations in iterative profiling.

Considering these mitigation techniques are available, the profiling has to be done only

once in the development of a CPS, and it can be automated, we deem the profiling method

to have an acceptable time to run the profiling for hardware dimensioning.

8.3.2 Microservice Interference

A key limitation in this work is that while we have identified microservice interference as

a potential factor that influences the performance of microservice-based

applications [33, 36], neither of the performance prediction models takes the effect of

interference on the performance of microservices into account. The models shown in this

thesis are the first step in performance prediction modeling in this context. Additionally,

an investigation into the effect of interference on application performance may represent

a distinct master thesis project. In the validation of the MDS, we have found that the

microservices of the MDS have low resource usage, which indicates that interference plays

only a small role in this application, as further shown in Appendix C.2. Therefore, for

the case study, there is no need to model interference between microservices, and the

performance prediction models proposed in this thesis are sufficient in this context.

We expect that microservice interference may more heavily influence the performance of

other applications. Therefore interference modeling becomes a logical next step in future

research on the performance prediction of microservice-based applications.

8.3.3 The Role of the MDS Case Study

We use the MDS case study as an example of how to perform hardware dimensioning

through application profiling and performance prediction, but also in the validation of our

proposed methods. It plays a large role in this thesis, as we only validate the concepts of

this thesis on the MDS case study, which consists of four microservices that run on at most

two nodes. Additionally, all microservices show fairly low CPU usage for the load generated

by our workload suite as shown in Figure 7.1, and we validate the latency prediction model,

72

8.3 Threats To Validity

with latency requirements that all are part of one system workflow, rather than multiple

workflows through the system.

Additionally, through the communication latencies profile of the MDS, we can see that

the difference in latencies for local and remote communication is not significant on a pre-

diction scale for any of the latency requirements in the MDS context. It seems to have

little influence on the outcome of whether a latency requirement is met for a given load.

This is very application-specific, and may not test the communication model sufficiently.

We have shown that taking the sum of the performance of individual components works

fairly well for a low number of microservices and loads, but it could be that this does not

hold for a much higher number of microservices, for example, due to the conservative nature

of concatenating CPU usage peaks in our CPU usage model, and the complex nature of

summing up tail latencies. Preferably this method is therefore also validated on a variety

of applications with different sizes and hardware.

Thus, with only four microservices, the application is quite small, and tens of microser-

vices may have better represented a general, more complex, CPS, that requires more com-

putation, possibly larger data transfers, and more dynamic behavior.

In general, we feel that the MDS case study, despite these validity threats, is relevant in

the validation of this hardware dimensioning approach, as this thesis aims to form the basis

for a performance prediction method. It serves as an example of how to use the approach in

practice and is a prototype that is based on an existing industrial CPS application. The case

study application should encapsulate the balance between being simple enough to illustrate

a basis for performing profiling, performance prediction, and validation experiments, while

not straying too far from existing industrial CPS applications, which may be much more

complex. The simplicity and the small number of microservices of this prototype proved

to be useful in analyzing the application efficiently, with a focus on the basic principles of

microservice-based applications. Nonetheless, further research and validation are necessary

to investigate the applicability of the performance prediction methods in a broader context.

8.3.4 Tools, Tail Latency and CPU Usage Peak

The quality of profiling and validation results are highly dependent on the capabilities of

the open-source tools that are used, like Prometheus [20], Jaeger [21], and cAdvisor [45].

Therefore, they should be considered carefully. For example, monitoring infrastructure

may use a significant part of a node’s resources. This may cause performance predictions

to be much too conservative. Moreover, we noticed through additional experiments that

73

8.3 Threats To Validity

monitoring infrastructure could result in performance degradation because of interference

with other microservices.

While we have performed some experiments on varying both the percentile tail latency

and peak CPU usage, we have set these variables to a 90% tail latency, and CPU usage

peak over 15 seconds. A limitation of this work is that we do not vary these variables in

our validation. Future research could be conducted to investigate the effect of different

CPU peak intervals, as well as different percentile tail latencies.

We partially could not investigate lower intervals to compute the CPU usage peaks, due

to limitations of cAdvisor [45]. An open-source tool that monitors and gathers CPU usage

data of containers in a Kubernetes [35] environment. cAdvisor appears to take up much of

the CPU usage of a node, which significantly influenced the results in our experiments if

set to frequent polling intervals of under 15 seconds. Therefore, we were unable to perform

profiling and validation experiments with any lower monitoring intervals.

To mitigate the influence of monitoring services on the profiling and performance of the

MDS, we have placed the infrastructure on a separate node while profiling. Additionally,

we set the polling intervals of any services so that they do not use a significant part of a

node’s resources.

8.3.5 Applicability to CPSs

While the main goal of this thesis is to provide a structured approach to hardware di-

mensioning for microservice-based CPSs, we only consider the software components of a

CPS.

A CPS can be a complex distribution system featuring a variety of compute nodes [50].

The spectrum of systems addressed in this context spans from large Intel machines to com-

pact embedded boards tailored for real-time control applications. In the realm of CPSs, a

notable challenge arises when compute nodes, such as the embedded boards, face resource

constraints and must adhere to tight deadlines measured in micro- or milliseconds. Unlike

the methodology presented in this thesis, these components of the system often necessitate

static analysis for timing and schedulability, rather than relying on measurement-based

performance predictions. The more strict latency requirements of a CPS can often be

attributed to these compute nodes. The performance prediction of these hardware com-

ponents falls out of the scope of this thesis, but should be taken into consideration when

performing hardware dimensioning in the context of CPSs.

74

9

Conclusion and Future Work

In this thesis, we have proposed and implemented a structured approach to hardware

dimensioning that consists of a profiling and a performance prediction method. Both have

been validated through a case study. In this chapter, we demonstrate our key findings and

insights derived from our work. Furthermore, we outline potential directions for future

research.

9.1 Conclusion

In Chapter 1, we defined three research questions in the context of hardware dimensioning

for microservice-based CPSs.

RQ1: What is a suitable profiling method and framework for a microservice-

based CPS for the purpose of hardware dimensioning?

In this thesis, we have found that a suitable profiling method in the context of hardware

dimensioning should apply to any general microservice application, be time-efficient, be

able to be performed on a limited amount of hardware, and form the basis for performance

prediction.

Keeping in mind these characteristics, we have created a profiling method that entails

the profiling of individually isolated microservices, where the creation of workload suits

and profiled metrics per microservice are derived from the performance requirements of

the application. The approach requires only one node that represents the target system,

in addition to a set of nodes that does not need to match it. We have determined that a

suitable profiling framework in this context consists of automated deployment, automated

request serving, and data collection and processing infrastructure.

75

9.1 Conclusion

Additionally, we have found that a profile should be built iteratively, where an application-

specific balance needs to be found between 1) the time it takes to profile, and 2) iterating

the profile enough times to ensure that the profiling results indicate trends between the

workload and performance of an application.

RQ2: What is a suitable performance prediction method that predicts whether

the performance requirements of a microservice-based CPS are met, with a

given deployment configuration of microservices over a set of homogeneous

nodes and an application profile?

We have identified that a suitable performance prediction method should strike a balance

between being simple, and being accurate in its prediction, with a preference for a con-

servative prediction. Additionally, the prediction models that are created through this

method should be able to distinguish between different deployment configurations. We

have determined that a prediction accuracy of 20% is sufficient, based on the feedback of

practitioners.

With these characteristics in mind, we have created a cumulative performance prediction

method that leverages the idea that a performance prediction can be made about the

compositions of microservices based on the individually profiled microservices.

We have created two performance prediction models that both consider two core perfor-

mance aspects: 1) a CPU usage prediction model that includes CPU usage and overhead

of isolated microservices and predicts CPU usage peak of microservices, and 2) a latency

prediction model, which considers the latencies of spans within isolated microservices, and

the communication latencies between microservices that can predict tail latencies of sys-

tem workflows. Their predictions are based on a given application profile and deployment

configuration. The predictions of both models differ by less than 20% from the validation

experiments. Additionally, both prediction models are generally conservative in their pre-

dictions.

RQ3: How can we use the profiling and performance prediction methods to

come to a structured approach to hardware dimensioning in the context of a

microservice-based CPS?

We can use the profiling method described in this work as input for our performance pre-

diction models. The predictions of the models then indicate whether relevant performance

requirements are met for a given deployment configuration and number of nodes, and

therefore, whether the deployment configuration is sufficient.

76

9.2 Future work

By determining whether we can find a sufficient deployment configuration for a given

number of nodes through manual design space exploration with the performance prediction

models as evaluation, we can determine whether we can satisfy the relevant performance

requirements for the specified number of nodes. By varying the number of nodes, we

may come to a minimum number for which the relevant performance requirements can be

satisfied.

Thus, altogether, the profiling method, performance prediction method, and manual

design space exploration form a structured approach to hardware dimensioning in this

way.

9.2 Future work

We have provided a method of application profiling and performance prediction for hard-

ware dimensioning that may form the basis for various research directions. In this Section,

we will lay out some of the more promising directions.

The Purpose of Profiling and Performance Prediction

While the profiling and performance prediction methods are designed for hardware dimen-

sioning, they could be applied for other purposes, one of which is performance optimiza-

tion through the redistribution of microservices. It could be beneficial to leverage the

approaches in this thesis to fit that context, as the environments of systems may change.

For example, the number of microservices can be upscaled, or the number of available com-

pute nodes may be diminished. Predicting performance in such a context and adapting to

an optimal deployment configuration as quickly as possible when such events occur may

be beneficial for an application’s performance.

Comprehensive Validation

In our discussion in Chapter 8, we mention that we have only validated our approach

on the MDS. While the MDS is made as a prototype of an industrial CPS, it does not

represent all CPSs, and does not scale to most. Therefore, future work could investigate

the broad applicability of our approach further by validating it on a more comprehensive

set of applications, that varies in size and complexity.

77

9.2 Future work

Different Metrics

The resource usage metrics that we use in our profiles and prediction models are two of

many options that could be considered. In future work, the approach could be extended to

include other metrics, such as the average CPU usage of a microservice, average latencies

of system workflows, or variations of memory usage or speed. An investigation can be

conducted to validate our approach of summing the metrics of components of an application

for other metric types.

Performance Aspects

The profiles and performance prediction models could be extended to include a myriad of

other performance aspects, like microservice interference or the effect of increased message

sizes on application performance. Extending the model could increase the accuracy of

predictions and explain anomalies in our results. We feel that the most logical next step

in the extension of our models is the inclusion of microservice interference. However, this

is a broad topic, where interference can have many causes, therefore we feel that it could

span multiple theses.

Design Space Exploration

In our hardware dimensioning approach we perform manual design space exploration di-

mensioning to find a suitable deployment configuration for a given number of nodes. How-

ever, this approach may be more challenging for larger applications, and therefore, future

research could look into how to find an optimal deployment configuration for any given

number of nodes in a more structured way.

Heterogeneous Nodes

Lastly, this work solely considers systems with homogeneous nodes. In Appendix C.3, we

have shown a very simple experiment as an example of the effect of using heterogeneous

nodes with our performance prediction method. Future work could conduct such experi-

ments to investigate extending the approach to a heterogeneous methodology by looking

at the applicability of predictions on other node types and to what extent it is possible to

construct a performance prediction model that is independent of hardware.

78

Acknowledgements

A special thanks to Prof. Dr. Benny Akesson, Ben Pronk, and others on the TNO-ESI

team, for providing guidance and feedback throughout this project. Without their support,

this thesis would not have been possible.

79

References

[1] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel

Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Mi-

croservices: yesterday, today, and tomorrow. Present and ulterior software

engineering, pages 195–216, 2017. 1

[2] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonça, James Lewis, and Ste-

fan Tilkov. Microservices: The journey so far and challenges ahead. IEEE

Software, 35(3):24–35, 2018. 1, 7

[3] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd

Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul

Modi, et al. Service fabric: a distributed platform for building microser-

vices in the cloud. In Proceedings of the thirteenth EuroSys conference, pages 1–15,

2018. 1

[4] Robert Harrison, Daniel Vera, and Bilal Ahmad. Engineering methods

and tools for cyber–physical automation systems. Proceedings of the IEEE,

104(5):973–985, 2016. 1, 7

[5] Carolina Villarreal Lozano and Kavin Kathiresh Vijayan. Literature

review on cyber physical systems design. Procedia manufacturing, 45:295–300,

2020. 1

[6] Edward A Lee. Cyber physical systems: Design challenges. In 2008 11th

IEEE international symposium on object and component-oriented real-time distributed

computing (ISORC), pages 363–369. IEEE, 2008. 1, 6

[7] Davide Taibi, Valentina Lenarduzzi, Claus Pahl, and Andrea Janes. Mi-

croservices in agile software development: a workshop-based study into

80

REFERENCES

issues, advantages, and disadvantages. In Proceedings of the XP2017 Scientific

Workshops, pages 1–5, 2017. 1

[8] Adalberto R Sampaio, Julia Rubin, Ivan Beschastnikh, and Nelson S

Rosa. Improving microservice-based applications with runtime placement

adaptation. Journal of Internet Services and Applications, 10(1):1–30, 2019. 2

[9] Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, Xin Peng, Wenli Zheng,

and Minyi Guo. Qos-aware and resource efficient microservice deployment

in cloud-edge continuum. In 2021 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 932–941. IEEE, 2021. 2

[10] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The impact of

control technology, 12(1):161–166, 2011. 6

[11] Joy Rahman and Palden Lama. Predicting the end-to-end tail latency of

containerized microservices in the cloud. In 2019 IEEE International Conference

on Cloud Engineering (IC2E), pages 200–210. IEEE, 2019. 7, 16, 19, 20

[12] Marijn Vollaard. Hardware Dimensioning for Microservice Applications

in Cyber-Physical Systems: Current Directions and Challenges. Literature

Study, UvA/VU. 7, 12, 16

[13] Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao Xie, Jun Sun, and

Xuanzhe Liu. Enjoy your observability: an industrial survey of microservice

tracing and analysis. Empirical Software Engineering, 27:1–28, 2022. 8, 9

[14] Shivakumar R Goniwada and Shivakumar R Goniwada. Observability.

Cloud Native Architecture and Design: A Handbook for Modern Day Architecture

and Design with Enterprise-Grade Examples, pages 661–676, 2022. 8

[15] Radoslav Gatev and Radoslav Gatev. Observability: Logs, metrics, and

traces. Introducing Distributed Application Runtime (Dapr) Simplifying Microser-

vices Applications Development Through Proven and Reusable Patterns and Practices,

pages 233–252, 2021. 8

[16] Mainak Chakraborty and Ajit Pratap Kundan. Observability. In Monitor-

ing Cloud-Native Applications: Lead Agile Operations Confidently Using Open Source

Software, pages 25–54. Springer, 2021. 8

81

REFERENCES

[17] Gartner - Peer Insights, 2023. Accessed: Dec. 5, 2023 [Online]. Available:

https://www.gartner.com/peer-insights/home. 8, 9

[18] Paessler PRTG, 2023. Accessed: Dec. 5, 2023 [Online]. Avail-

able: https://www.gartner.com/reviews/market/infrastructure-monitoring-

tools/vendor/paessler/product/paessler-prtg. 8

[19] OPManager, 2023. Accessed: Dec. 5, 2023 [Online]. Avail-

able: https://www.gartner.com/reviews/market/infrastructure-monitoring-

tools/vendor/manageengine/product/opmanager. 8

[20] Prometheus, From metrics to insight, 2023. Accessed: Oct. 16, 2023 [Online].

Available: https://prometheus.io/. 8, 39, 73

[21] Jaeger: open source, distributed tracing platform, 2023. Accessed: Oct. 16,

2023 [Online]. Available: https://www.jaegertracing.io/. 9, 40, 73

[22] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta

Simeoni. Model-based performance prediction in software development: A

survey. IEEE Transactions on Software Engineering, 30(5):295–310, 2004. 11

[23] Allegra De Filippo, Andrea Borghesi, Andrea Boscarino, and Michela

Milano. HADA: An automated tool for hardware dimensioning of AI ap-

plications. Knowledge-Based Systems, 251:109199, 2022. 12

[24] Madhura Purnaprajna, Marek Reformat, and Witold Pedrycz. Genetic

algorithms for hardware–software partitioning and optimal resource allo-

cation. Journal of Systems Architecture, 53(7):339–354, 2007. 13

[25] Anh Vu Do, Junliang Chen, Chen Wang, Young Choon Lee, Albert Y

Zomaya, and Bing Bing Zhou. Profiling applications for virtual machine

placement in clouds. In 2011 IEEE 4th international conference on cloud comput-

ing, pages 660–667. IEEE, 2011. 13, 19, 20

[26] Jungsu Han, Yujin Hong, and Jongwon Kim. Refining microservices place-

ment employing workload profiling over multiple kubernetes clusters. IEEE

access, 8:192543–192556, 2020. 13, 19, 20

82

REFERENCES

[27] Liang Bao, Chase Wu, Xiaoxuan Bu, Nana Ren, and Mengqing Shen. Per-

formance modeling and workflow scheduling of microservice-based applica-

tions in clouds. IEEE Transactions on Parallel and Distributed Systems, 30(9):2114–

2129, 2019. 14, 16, 17, 19, 20, 69

[28] Rafael Weingärtner, Gabriel Beims Bräscher, and Carlos Becker

Westphall. Cloud resource management: A survey on forecasting and

profiling models. Journal of Network and Computer Applications, 47:99–106, 2015.

14

[29] Johannes Grohmann, Martin Straesser, Avi Chalbani, Simon Eismann,

Yair Arian, Nikolas Herbst, Noam Peretz, and Samuel Kounev. Suan-

Ming: Explainable Prediction of Performance Degradations in Microser-

vice Applications. In Proceedings of the ACM/SPEC International Conference on

Performance Engineering, pages 165–176, 2021. 14, 16, 19, 20

[30] Wenkai Lv, Quan Wang, Pengfei Yang, Yunqing Ding, Bijie Yi, Zhenyi

Wang, and Chengmin Lin. Microservice deployment in edge computing

based on deep Q learning. IEEE Transactions on Parallel and Distributed Systems,

33(11):2968–2978, 2022. 14, 16, 19, 20

[31] Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, and Minyi Guo. Adaptive

resource efficient microservice deployment in cloud-edge continuum. IEEE

Transactions on Parallel and Distributed Systems, 33(8):1825–1840, 2021. 14, 19, 20,

64

[32] Isil Karabey Aksakalli, Turgay Celik, Ahmet Burak Can, and Bedir

Tekinerdogan. Systematic approach for generation of feasible deployment

alternatives for microservices. IEEE Access, 9:29505–29529, 2021. 14, 19, 20

[33] Christina Delimitrou and Christos Kozyrakis. ibench: Quantifying in-

terference for datacenter applications. In 2013 IEEE international symposium

on workload characterization (IISWC), pages 23–33. IEEE, 2013. 14, 15, 19, 20, 72

[34] Christina Terese Joseph and K Chandrasekaran. IntMA: Dynamic

Interaction-aware resource allocation for containerized microservices in

cloud environments. Journal of Systems Architecture, 111:101785, 2020. 14, 19,

20, 64

83

REFERENCES

[35] Production-Grade Container Orchestration, Kubernetes, 2023. Accessed:

Oct. 4, 2023 [Online]. Available: https://kubernetes.io/. 14, 27, 37, 74

[36] Madhura Adeppady, Paolo Giaccone, Holger Karl, and Carla Fabiana

Chiasserini. Reducing Microservices Interference and Deployment Time

in Resource-constrained Cloud Systems. IEEE Transactions on Network and

Service Management, 2023. 14, 17, 19, 20, 72

[37] SPEC CPU, 2006. Accessed: Oct. 2, 2023 [Online]. Available:

http://www.spec.org/cpu2006/index.html. 15

[38] Johannes Grohmann, Patrick K Nicholson, Jesus Omana Iglesias, Samuel

Kounev, and Diego Lugones. Monitorless: Predicting performance degra-

dation in cloud applications with machine learning. In Proceedings of the 20th

international middleware conference, pages 149–162, 2019. 16

[39] Wubin Ma, Rui Wang, Yuanlin Gu, Qinggang Meng, Hongbin Huang,

Su Deng, and Yahui Wu. Multi-objective microservice deployment opti-

mization via a knowledge-driven evolutionary algorithm. Complex & Intelli-

gent Systems, 7:1153–1171, 2021. 16, 19, 20

[40] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Edward Suh, and

Christina Delimitrou. Sinan: ML-based and QoS-aware resource man-

agement for cloud microservices. In Proceedings of the 26th ACM international

conference on architectural support for programming languages and operating systems,

pages 167–181, 2021. 16, 19, 20

[41] Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christo-

pher J Anders, and Klaus-Robert Müller. Explaining deep neural net-

works and beyond: A review of methods and applications. Proceedings of the

IEEE, 109(3):247–278, 2021. 16

[42] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance prediction

of component-based applications. Journal of Systems and Software, 74(1):35–43,

2005. 16, 19, 20, 69

[43] Sanford Weisberg. Applied linear regression, 528. John Wiley & Sons, 2005. 18

84

REFERENCES

[44] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen.

Microservice architecture: aligning principles, practices, and culture. " O’Reilly Media,

Inc.", 2016. 21

[45] cAdvisor (Container Advisor), 2023. Accessed: Oct. 16, 2023 [Online]. Available:

https://github.com/google/cadvisor. 39, 73, 74

[46] Node exporter, Prometheus exporter for hardware and

OS metrics, 2023. Accessed: Oct. 16, 2023 [Online]. Available:

https://github.com/prometheus/node_exporter. 39

[47] OpenTelemtry, High-quality, ubiquitous, and portable telemetry to en-

able effective observability, 2023. Accessed: Oct. 16, 2023 [Online]. Available:

https://opentelemetry.io/. 40

[48] Elasticsearch, 2023. Accessed: Oct. 16, 2023 [Online]. Available:

https://github.com/elastic/elasticsearch. 40

[49] Marius Herget, Faezeh Sadat Saadatmand, Martin Bor, Igna-

cio González Alonso, Todor Stefanov, Benny Akesson, and Andy D

Pimentel. Design Space Exploration for Distributed Cyber-Physical Sys-

tems: State-of-the-art, Challenges, and Directions. In 2022 25th Euromicro

Conference on Digital System Design (DSD), pages 632–640. IEEE, 2022. 63

[50] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer,

and Robert I Davis. A comprehensive survey of industry practice in real-

time systems. Real-Time Systems, 58(3):358–398, 2022. 74

85

Appendix A

The Full MDS Profile

A.1 The Full MDS Profile

Here, the full MDS profile is shown.

First of all, for each microservice in the MDS, we store the microservice peak CPU usage

for varying loads, as shown in Figure A.1. The exact metric of peak CPU usage is explained

in Section A.1. We also store the offset, b, and slope, a, for the overhead fitting of each

microservice as shown in Table A.1.

For each latency requirement, we store the 90th percentile tail latencies of the spans in

microservices that represent its system workflow for varying load, as shown in Figure A.3.

Lastly, we store the 90th percentile tail latency communication latencies that represent

the latency requirement workflows, where we make a distinction between latencies of local

communication and remote communication as shown in Figure A.4.

Table A.1: Linear fitting of the overhead for each microservice in the MDS, based on in-
creasing load. a represents the slope and b the offset of the linear fitting, which has the form
ax+ b.

Service a b
PlannerService 0.017 0.217

MealDispatchingService 0.001 0.249
MealPreparingService 0.004 0.287
MealDeliveringService 0.002 0.250

86

A.1 The Full MDS Profile

(a) PlannerService (b) MealDispatchingService

(c) MealPreparingService (d) MealDeliveringService

Figure A.1: The CPU usage component of the MDS profile.

87

A.1 The Full MDS Profile

(a) LR-1 - PlannerService. (b) LR-1 - MealDispatchingService.

(c) LR-3 - MealDeliveringService (d) LR-3 - PlannerService

(e) LR-6 - PlannerService

88

A.1 The Full MDS Profile

(a) LR-7 - MealPreparingService (b) LR-7 - MealDispatchingService

Figure A.3: The 90th percentile latencies of the spans for LR-1, LR-3, LR-6, and LR-7
in the MDS

(a) LR-1 - ScheduleUpdateRequest (b) LR-3 - DeliveryUpdateNotification

(c) LR-7 - MealPreparationRequest

Figure A.4: The Communication component of the MDS profile.

89

Appendix B

Validation Results

In this Appendix, all validation results of the CPU usage model and latency model are

shown.

B.1 CPU Model

90

B.1 CPU Model

(a) EvenSplit 1, Transact01 (b) EvenSplit 1, Transact02

(c) EvenSplit 2, Transact01 (d) EvenSplit 2, Transact02

91

B.1 CPU Model

(e) TripleSolo 1, Transact01 (f) TripleSolo 1, Transact02

(g) TripleSolo 2, Transact01 (h) TripleSolo 2, Transact02

(i) OneNode, Transact01

Figure B.1: The prediction against the validation for the EvenSplit 1, EvenSplit 2,
TripleSolo 1, TripleSolo 2, and OneNode deployment configuration.

92

B.2 Latency Model

B.2 Latency Model

(a) EvenSplit 2, local (b) EvenSplit 1, remote

(c) EvenSplit 1, local (d) EvenSplit 2, remote

(e) EvenSplit 1, local

93

B.2 Latency Model

(f) EvenSplit 1, local (g) EvenSplit 2, remote

Figure B.2: Prediction of 90th percentile tail latency of the system workflow based on LR-1,
LR-3, LR-6, and LR-7 compared to its validation for varying load.

94

Appendix C

Experiments, Interference and
Heterogeneous Nodes

C.1 Idle Overhead Experiments

The results of the overhead offset experiment in the context of the MDS are shown in

Figure C.1. The idle microservice CPU usage is shown in Figure C.1a and the idle node

CPU usage is shown in Figure C.1b. The experiment runs for 600 seconds, or 10 minutes

in this example, as we feel that is sufficient time for the MDS to capture the general idle

CPU usage of each microservice on the TNO cluster. Figure C.1c shows the idle overhead

of each microservice, which is calculated as the difference between the peak node and peak

microservice CPU usage over the 10 minutes. Note that the difference in overhead offset

is fairly minimal, and at most 0.07%.

95

C.2 Experiment on the Effect of Interference on Latencies

(a) The CPU usage of each idle microservice in
isolation.

(b) The CPU usage of the node on which each
microservice runs in isolation.

(c) The idle overhead of each microservice in iso-
lation.

Figure C.1: Overhead offset results of the CPU usage idle experiment in the MDS context.

C.2 Experiment on the Effect of Interference on Latencies

While it is not included in our model, we briefly investigate whether interference between

microservices affects latencies in the MDS context. We do so by comparing the latencies of

LR-3 with the validation of TripleSolo 1, where the MealDeliveringService runs in isolation

on Transact01, and OneNode on Transact01, where all services run together. Here we may

specifically see the 90th percentile tail latencies for the OneNode validation to be higher

if interference contributes significantly to the latency of LR-3. If we do not see this

difference, we may see that the latencies of the TripleSolo 1 configuration are higher. That

could indicate that the communication latency has a more significant part in the latency

96

C.2 Experiment on the Effect of Interference on Latencies

than the interference between microservices in the MDS context.

Figure C.2: Comparison of 90th percentile tail latency of LR-3 for TripleSolo 1 and OneNode
deployment configurations.

The results show that the TripleSolo 1 deployment configuration results in higher laten-

cies. Thus the interference between microservices does not seem to have a bigger impact

on the latencies than the communication does. Note that this result is MDS-specific.

97

C.3 Heterogeneous Nodes

C.3 Heterogeneous Nodes

While the model is made for profiling and performance prediction on homogeneous nodes,

the profile of one type of node could be applied to a performance prediction for nodes

with slightly different specifications as well. In this section, we further investigate this

concept by comparing the model results based on the Transact01 profile to validation on

the Transact02 node. In the experiments shown in this section, we run each configuration

fifty times, and we have taken the average over all runs.

The difference in specification between Transact01 and Transact02 is mainly their CPU

base frequency, where Transact01 has a base clock frequency of 2.60 GHz, while Transact02

has a base clock frequency of 2.40 GHz.

C.3.1 CPU Usage Model

We have conducted a short experiment with the EvenSplit 2 deployment configuration,

where the CPU usage of each pair of microservices is predicted based on the Transact01

profile. Then we compare the prediction to the scenario where each pair of microservices

of EvenSplit 2 are deployed on Transact02 and Transact01. The results are shown in

Figure C.3.

The expectation is that the CPU usage of Transact01 will be lower than that of Trans-

act02, since it has a lower clock frequency. Higher clock speeds allow a processor to execute

instructions more quickly, potentially leading to faster task completion and lower overall

CPU utilization during the specified interval.

(a) First pair of microservices on Transact02 (b) Second pair of microservices on Transact02

Figure C.3: Prediction of the CPU usage model for the EvenSplit 2 deployment configuration
compared to validation on Transact01 and Transact02.

98

C.3 Heterogeneous Nodes

We can see that in this example, in some cases, Transact01 has a higher CPU usage

peak than Transact02 and vice versa. Since the specifications of both nodes are fairly

similar, and the CPU usage does not go over 6%, these results may be sensitive to noise.

Additionally, other node specifications, such as cache size, or memory speed may influence

the results.

Generally, the prediction remains fairly accurate. At most, it overshoots the validation

on Transact02 with 17.24% and undershoots with 12.90% overall deployment configurations

considered in the Chapter 6, compared to 16.25% and 6.80% respectively for Transact01.

It appears that the prediction both overshoots and undershoots more when validating on

Transact02. Therefore, we cannot simply say that Transact01 is faster and therefore has

higher performance in all cases.

The results show that a prediction could be made on different types of nodes, as long

as the nodes do not differ much. Exactly how much the nodes may differ to come to a

sufficiently accurate prediction is dependent on the application and system. Looking into

how well you can profile nodes and adapt a model fitting heterogeneous nodes should be

looked into in future work.

99

C.3 Heterogeneous Nodes

C.3.2 Latency Model

The validation for the latency model for remote communication is not done on two ho-

mogeneous nodes, but on two slightly different nodes, as we had no two homogeneous

nodes available to us. We still feel that this is not an issue in the validation, and that it

would almost exactly match the situation with two homogeneous nodes. To support this

claim, we have performed an experiment where we compare the latencies of LR-3 with

local communication on the Transact01 node to the latencies with the same setup on the

Transact02 node. The experiment is done using the EvenSplit 1 deployment configuration

and its mirrored version, where the MealDeliveringService and PlannerService are put on

the same node. The results are shown in Figure C.4.

In general, we would expect the latencies on Transact02 to be slightly higher than those

of Transact01, as Transact01 is slightly faster in base clock frequency. However, we have

shown in the previous section that this does not hold for the peak CPU usage on both

nodes.

Figure C.4: Comparison of 90th percentile tail latency of LR-3 on Transact01 and Trans-
act02 with the same microservices deployed on them.

As expected, the results show latencies of Transact01 are slightly lower than those of

Transact02. The variability in latencies can be partly explained by noise, since two vali-

dation iterations on the same node may have some variability as well. These results are

similar throughout all latency requirements discussed in the MDS.

Since the validation is done on two heterogeneous nodes, likely, the latency predictions

made in this chapter may even be more accurate than portrayed, as the profile on which

the prediction is based, is made for only one type of node.

100

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.1.1 Proposed Approach
	1.1.2 Research Questions

	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Cyber-Physical Systems (CPS)
	2.2 Microservices and Microservice Deployment
	2.3 Observability in Microservice Applications
	2.3.1 Time-Series Metrics
	2.3.2 Traces, Spans, and System Workflows
	2.3.3 Tail Latency

	2.4 Hardware Dimensioning

	3 Related Work
	3.1 Hardware Dimensioning
	3.2 Profiling
	3.3 Performance Prediction

	4 Case Study
	4.1 The Meal Delivery Service (MDS)
	4.1.1 Request Types
	4.1.2 Artificial Load

	4.2 Performance Requirements
	4.3 Hardware and Experiments Environment

	5 Application Profiling
	5.1 Profiling Infrastructure
	5.1.1 Deployment Configurations
	5.1.2 Workload Suite
	5.1.3 Data Monitoring and Collection

	5.2 Defining Metrics
	5.3 Creating a Profile
	5.3.1 CPU usage Metrics
	5.3.1.1 Microservice CPU Usage
	5.3.1.2 Overhead

	5.3.2 Traces and Latency Metrics
	5.3.2.1 Microservice Spans
	5.3.2.2 Communication

	5.4 Iterative Profiling
	5.5 The MDS Profile
	5.5.1 Experimental Setup
	5.5.2 Profiling Infrastructure
	5.5.3 Defining the Metrics and Creating a Profile

	6 Performance Prediction
	6.1 CPU Usage Prediction Model
	6.1.1 Microservice resource model
	6.1.2 Overhead model
	6.1.3 MDS Performance Prediction
	6.1.4 Model Validation

	6.2 Latency Prediction Model
	6.2.1 Spans in Microservices
	6.2.2 Communication
	6.2.3 MDS Performance Prediction
	6.2.4 Model Validation

	7 Hardware Dimensioning
	7.1 A Step By Step Approach
	7.1.1 The MDS Context

	8 Discussion
	8.1 The Profiling Approach
	8.2 The Performance Prediction Models
	8.2.1 CPU Usage Model
	8.2.2 Latency Model

	8.3 Threats To Validity
	8.3.1 Profiling Time
	8.3.2 Microservice Interference
	8.3.3 The Role of the MDS Case Study
	8.3.4 Tools, Tail Latency and CPU Usage Peak
	8.3.5 Applicability to CPSs

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future work

	References
	A The Full MDS Profile
	A.1 The Full MDS Profile

	B Validation Results
	B.1 CPU Model
	B.2 Latency Model

	C Experiments, Interference and Heterogeneous Nodes
	C.1 Idle Overhead Experiments
	C.2 Experiment on the Effect of Interference on Latencies
	C.3 Heterogeneous Nodes
	C.3.1 CPU Usage Model
	C.3.2 Latency Model

